1
|
Su-Zhou C, Durand M, Aphalo PJ, Martinez-Abaigar J, Shapiguzov A, Ishihara H, Liu X, Robson TM. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. PHYSIOLOGIA PLANTARUM 2024; 176:e14383. [PMID: 38859677 DOI: 10.1111/ppl.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.
Collapse
Affiliation(s)
- Chenxing Su-Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Alexey Shapiguzov
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Finland
| | - Hirofumi Ishihara
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
2
|
Al-Salman Y, Ghannoum O, Cano FJ. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1661-1676. [PMID: 37300871 DOI: 10.1111/tpj.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|
3
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Joubert D, Zhang N, Berman S, Kaiser E, Molenaar J, Stigter J. A small dynamic leaf-level model predicting photosynthesis in greenhouse tomatoes. PLoS One 2023; 18:e0275047. [PMID: 36927993 PMCID: PMC10019686 DOI: 10.1371/journal.pone.0275047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
The conversion of supplemental greenhouse light energy into biomass is not always optimal. Recent trends in global energy prices and discussions on climate change highlight the need to reduce our energy footprint associated with the use of supplemental light in greenhouse crop production. This can be achieved by implementing "smart" lighting regimens which in turn rely on a good understanding of how fluctuating light influences photosynthetic physiology. Here, a simple fit-for-purpose dynamic model is presented. It accurately predicts net leaf photosynthesis under natural fluctuating light. It comprises two ordinary differential equations predicting: 1) the total stomatal conductance to CO2 diffusion and 2) the CO2 concentration inside a leaf. It contains elements of the Farquhar-von Caemmerer-Berry model and the successful incorporation of this model suggests that for tomato (Solanum lycopersicum L.), it is sufficient to assume that Rubisco remains activated despite rapid fluctuations in irradiance. Furthermore, predictions of the net photosynthetic rate under both 400ppm and enriched 800ppm ambient CO2 concentrations indicate a strong correlation between the dynamic rate of photosynthesis and the rate of electron transport. Finally, we are able to indicate whether dynamic photosynthesis is Rubisco or electron transport rate limited.
Collapse
Affiliation(s)
- Dominique Joubert
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
- * E-mail:
| | - Ningyi Zhang
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Sarah.R. Berman
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Jaap Molenaar
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - J.D. Stigter
- Mathematical and Statistical Methods Group, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
5
|
Pan Y, Du H, Meng X, Guo S. Variation in photosynthetic induction between super hybrid rice and inbred super rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:105-115. [PMID: 35279007 DOI: 10.1016/j.plaphy.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
It is well documented that yield superiority of super hybrid rice is linked with its improved photosynthetic capacity and/or efficiency. In natural environments, the amounts of CO2 assimilated by plants was also impacted by the rapidity of leaf photosynthesis response to fluctuations of light. However, it remains unknow whether the high yield of super hybrid rice was associated with photosynthetic traits under dynamic state. Here, photosynthetic traits under steady-and dynamic state in two super hybrid rice varieties (Ylinagyou 3218 and Yliangyou 5867) with high yield and two inbred super rice varieties (Zhendao 11 and Nanjing 9108) with lower yield. Under steady state, the net photosynthetic rate (A*) in super hybrid rice was 25.3% larger compared with inbred super rice. During photosynthetic induction, there was no obvious association of the rapidity of net photosynthesis rate (A) to sunflecks with rice subpopulations. Stomatal conductance (gs) of super hybrid rice increased slower than that of inbred super rice. The cumulative CO2 fixation (CCF) during photosynthetic induction was 25.2% larger in super hybrid rice than that in inbred super rice. The primary limitation during induction was biochemical limitation rather than stomatal limitation. There was a significantly positive relationship between A* and CCF, while A* was not related with the induction response rate of A. Overall, A* and CCF in super hybrid rice have been improved together, which contributed to its yield superiority, whereas its yield potential still can be improved by increasing induction rate of A under fluctuations of irradiance.
Collapse
Affiliation(s)
- Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Haisu Du
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
6
|
Kubásek J, Hájek T, Duckett J, Pressel S, Šantrůček J. Moss stomata do not respond to light and CO 2 concentration but facilitate carbon uptake by sporophytes: a gas exchange, stomatal aperture, and 13 C-labelling study. THE NEW PHYTOLOGIST 2021; 230:1815-1828. [PMID: 33458818 DOI: 10.1111/nph.17208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/07/2021] [Indexed: 05/06/2023]
Abstract
Stomata exert control on fluxes of CO2 and water (H2 O) in the majority of vascular plants and thus are pivotal for planetary fluxes of carbon and H2 O. However, in mosses, the significance and possible function of the sporophytic stomata are not well understood, hindering understanding of the ancestral function and evolution of these key structures of land plants. Infrared gas analysis and 13 CO2 labelling, with supporting data from gravimetry and optical and scanning electron microscopy, were used to measure CO2 assimilation and water exchange on young, green, ± fully expanded capsules of 11 moss species with a range of stomatal numbers, distributions, and aperture sizes. Moss sporophytes are effectively homoiohydric. In line with their open fixed apertures, moss stomata, contrary to those in tracheophytes, do not respond to light and CO2 concentration. Whereas the sporophyte cuticle is highly impermeable to gases, stomata are the predominant sites of 13 CO2 entry and H2 O loss in moss sporophytes, and CO2 assimilation is closely linked to total stomatal surface areas. Higher photosynthetic autonomy of moss sporophytes, consequent on the presence of numerous stomata, may have been the key to our understanding of evolution of large, gametophyte-independent sporophytes at the onset of plant terrestrialization.
Collapse
Affiliation(s)
- Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| | - Tomáš Hájek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| | - Jeffrey Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jiří Šantrůček
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| |
Collapse
|
7
|
Li JH, Fan LF, Zhao DJ, Zhou Q, Yao JP, Wang ZY, Huang L. Plant electrical signals: A multidisciplinary challenge. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153418. [PMID: 33887526 DOI: 10.1016/j.jplph.2021.153418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Plant electrical signals, an early event in the plant-stimulus interaction, rapidly transmit information generated by the stimulus to other organs, and even the whole plant, to promote the corresponding response and trigger a regulatory cascade. In recent years, many promising state-of-the-art technologies applicable to study plant electrophysiology have emerged. Research focused on expression of genes associated with electrical signals has also proliferated. We propose that it is appropriate for plant electrical signals to be considered in the form of a "plant electrophysiological phenotype". This review synthesizes research on plant electrical signals from a novel, interdisciplinary perspective, which is needed to improve the efficient aggregation and use of plant electrical signal data and to expedite interpretation of plant electrical signals.
Collapse
Affiliation(s)
- Jin-Hai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Li-Feng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Dong-Jie Zhao
- Institute for Future (IFF), Qingdao University, Qingdao, 266071, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Jie-Peng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
8
|
Flütsch S, Santelia D. Mesophyll-derived sugars are positive regulators of light-driven stomatal opening. THE NEW PHYTOLOGIST 2021; 230:1754-1760. [PMID: 33666260 DOI: 10.1111/nph.17322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Guard cell membrane ion transport and metabolism are deeply interconnected, and their coordinated regulation is integral to stomatal opening. Whereas ion transport is exceptionally well understood, how guard cell metabolism influences stomatal movements is less well known. Organic metabolites, such as malate and sugars, fulfill several functions in guard cells during stomatal opening as allosteric activators, counter-ions, energy source and osmolytes. However, their origin and exact fate remain debated. Recent work revealed that the guard cell carbon pool regulating stomatal function and plant growth is mostly of mesophyll origin, highlighting a tight correlation between mesophyll and guard cell metabolism. This review discusses latest research into guard cell carbon metabolism and its impact on stomatal function and whole plant physiology.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, 8092, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, 8092, Switzerland
| |
Collapse
|
9
|
Zhang X, Mei X, Wang Y, Huang G, Feng F, Liu X, Guo R, Gu F, Hu X, Yang Z, Zhong X, Li Y. Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity. PeerJ 2020; 8:e8927. [PMID: 32391197 PMCID: PMC7199760 DOI: 10.7717/peerj.8927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
A good understanding of the response of photosynthesis rate (P N) and transpiration rate (Tr) to stomatal alteration during the diurnal variations is important to cumulative photosynthetic production and water loss of crops. Six wheat genotypes were studied for 2 years with pot cultivation in rain-shelter. Among different genotypes, stomatal conductance (g s) was significantly correlated with both P N and Tr. But for each genotype, though g s was significantly correlated with P N regardless of relative air humidity (RH) status and it was also significantly correlated with Tr under lower RH (LRH, 15.4%) and moderate RH (MRH, 28.3%), it was not correlated with Tr under higher RH (HRH, 36.7%) during the diurnal changes. The conditional correlation between g s and Tr of wheat evoked new thinking on the relationships among g s, P N and Tr. Path analysis was further carried out to clarify the correlations of g s with the four atmospheric factors, that of Tr with g s and the four factors and the direct and indirect effects of the factors, during their diurnal dynamic variation. The effects of these factors on g s or Tr were related to RH. All the four factors had a much higher correlation with g s under HRH than that under LRH and MRH. Air temperature (T) had a rather higher direct effect than RH and photosynthetically active radiation (PAR). Also, the other factors had a much higher indirect effect on g s through vapor pressure deficit (VPD) and T. Transpiration rate was highly correlated with g s under LRH and MRH, with g s having a higher direct effect on it. In comparison, Tr was not correlated with g s under HRH but highly correlated with the atmospheric factors, with T, RH, and PAR having a higher indirect effect through VPD.
Collapse
Affiliation(s)
- Xinying Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Yajing Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Guirong Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Fu Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xiaoying Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Fengxue Gu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Xin Hu
- Institute of Wheat Research, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu, China
| | - Ziguang Yang
- Luoyang Academy of Agriculture and Forestry, Luoyang, China
| | - Xiuli Zhong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
- Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
| |
Collapse
|
10
|
Updating nasalisation: From concept to technique and results. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:327-334. [DOI: 10.1016/j.anorl.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Petridis A, van der Kaay J, Chrysanthou E, McCallum S, Graham J, Hancock RD. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3069-3080. [PMID: 29590429 PMCID: PMC5972668 DOI: 10.1093/jxb/ery118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 05/20/2023]
Abstract
Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.
Collapse
Affiliation(s)
- Antonios Petridis
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Jeroen van der Kaay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Elina Chrysanthou
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Susan McCallum
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
12
|
Physiology of the paransal sinus ostia: Endoscopic findings. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:147-148. [PMID: 29338943 DOI: 10.1016/j.anorl.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jankowski R, Nguyen DT, Russel A, Toussaint B, Gallet P, Rumeau C. Chronic nasal dysfunction. Eur Ann Otorhinolaryngol Head Neck Dis 2017; 135:41-49. [PMID: 29249643 DOI: 10.1016/j.anorl.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic nasal dysfunction is a clinical concept in the diagnostic and therapeutic management of sinonasal diseases, based on the evo-devo theory of formation of the nose according to which the nose is not a single organ but rather an association of three organs: olfactory nose, respiratory nose and paranasal sinuses. In chronic nasal dysfunction theory, etiological diagnosis takes account of the possible pathophysiological independence of nasal symptoms, in accordance with the different origins and physiology of the three organs constituting the nose. The diagnostic approach of the chronic nasal dysfunction concept breaks down the pathology so as to propose treatment(s) adapted to the diseased organ(s) and to the capacity for physiological resolution of dysfunction induced in one organ by pathology in a neighboring nasal organ. The ethmoid is not a sinus according to evo-devo, and therefore functional endoscopic endonasal surgery (FEES) cannot be restricted to functional endoscopic sinus surgery (FESS). Evo-devo theory and the chronic nasal dysfunction concept offer an alternative to the concept of chronic rhinosinusitis with or without polyps for the management of sinonasal diseases.
Collapse
Affiliation(s)
- R Jankowski
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France.
| | - D T Nguyen
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France
| | - A Russel
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France
| | - B Toussaint
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France
| | - P Gallet
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France
| | - C Rumeau
- Service ORL et chirurgie cervicofaciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandoeuvre-les-Nancy, France
| |
Collapse
|
14
|
Baruah KK, Bharali A, Mazumdar A, Jha G. Genotypic variation in carbon fixation, δ 13C fractionation and grain yield in seven wheat cultivars grown under well-watered conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:809-819. [PMID: 32480609 DOI: 10.1071/fp17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/18/2017] [Indexed: 06/11/2023]
Abstract
Biotic carbon (C) sequestration is currently being considered as a viable option for mitigating atmospheric carbon dioxide (CO2) emission, in which photosynthesis plays a significant role. A field experiment was conducted between 2013 and 2015 to investigate the efficiency of seven modern wheat varieties for CO2 fixation, C partitioning, δ13C fractionation in the leaves, and grain yield. A strong correlation between flag leaf photosynthesis and stomatal density (r=0.891) was detected. Photosynthetic efficiency was highest in the variety WH-1021 (28.93µmolm-2s-1). Grain yield was influenced by biomass accumulation in the heads and these were significantly correlated (r=0.530). Our results show that upregulated biomass partitioning to the developing kernels of wheat was inversely proportional to biomass accumulation in the roots, and led to a higher grain yield. These results led us to conclude that identification of a wheat genotype like WH-1021 followed by WH-1080 and WH-711, with higher isotopic discrimination in the flag leaves, stomatal densities, water use and photosynthetic efficiencies along with higher grain yield, can contribute to sustainable agriculture in future climate change situation in India. A yield increment of 9-48% was recorded in WH-1021 over other six tested wheat varieties.
Collapse
Affiliation(s)
- Kushal Kumar Baruah
- Department of Environmental Science, Tezpur University, Napaam - 784028, Assam, India
| | - Ashmita Bharali
- Department of Environmental Science, Tezpur University, Napaam - 784028, Assam, India
| | - Aninda Mazumdar
- CSIR - National Institute of Oceanography, Dona Paula - 403004, Goa, India
| | - Gulshan Jha
- Department of Environmental Science, Tezpur University, Napaam - 784028, Assam, India
| |
Collapse
|
15
|
Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive Analysis of the CDPK-SnRK Superfamily Genes in Chinese Cabbage and Its Evolutionary Implications in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:162. [PMID: 28239387 PMCID: PMC5301275 DOI: 10.3389/fpls.2017.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/25/2017] [Indexed: 05/30/2023]
Abstract
The CDPK-SnRK (calcium-dependent protein kinase/Snf1-related protein kinase) gene superfamily plays important roles in signaling pathways for disease resistance and various stress responses, as indicated by emerging evidence. In this study, we constructed comparative analyses of gene structure, retention, expansion, whole-genome duplication (WGD) and expression patterns of CDPK-SnRK genes in Brassica rapa and their evolution in plants. A total of 49 BrCPKs, 14 BrCRKs, 3 BrPPCKs, 5 BrPEPRKs, and 56 BrSnRKs were identified in B. rapa. All BrCDPK-SnRK proteins had highly conserved kinase domains. By statistical analysis of the number of CDPK-SnRK genes in each species, we found that the expansion of the CDPK-SnRK gene family started from angiosperms. Segmental duplication played a predominant role in CDPK-SnRK gene expansion. The analysis showed that PEPRK was more preferentially retained than other subfamilies and that CPK was retained similarly to SnRK. Among the CPKs and SnRKs, CPKIII and SnRK1 genes were more preferentially retained than other groups. CRK was closest to CPK, which may share a common evolutionary origin. In addition, we identified 196 CPK genes and 252 SnRK genes in 6 species, and their different expansion and evolution types were discovered. Furthermore, the expression of BrCDPK-SnRK genes is dynamic in different tissues as well as in response to abiotic stresses, demonstrating their important roles in development in B. rapa. In summary, this study provides genome-wide insight into the evolutionary history and mechanisms of CDPK-SnRK genes following whole-genome triplication in B. rapa.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Wenli Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
16
|
McAusland L, Vialet‐Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. THE NEW PHYTOLOGIST 2016; 211:1209-20. [PMID: 27214387 PMCID: PMC4982059 DOI: 10.1111/nph.14000] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Both photosynthesis (A) and stomatal conductance (gs ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and gs in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and Wi . The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.
Collapse
Affiliation(s)
- Lorna McAusland
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | | - Philip Davey
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Neil R. Baker
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Oliver Brendel
- INRAUMR1137 ‘Ecologie et Ecophysiologie Forestières’F‐54280ChampenouxFrance
- UMR1137 ‘Ecologie et Ecophysiologie Forestières’Faculté des SciencesUniversité de LorraineF‐54500Vandoeuvre‐Les‐NancyFrance
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| |
Collapse
|
17
|
Jankowski R, Nguyen DT, Poussel M, Chenuel B, Gallet P, Rumeau C. Sinusology. Eur Ann Otorhinolaryngol Head Neck Dis 2016; 133:263-8. [PMID: 27378676 DOI: 10.1016/j.anorl.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper presents a brief history of the successive anatomical, physiological and pathophysiological concepts about the paranasal sinuses. Sinusology, the science of the paranasal sinuses, is founded on scientific work on the production of nitric oxide (NO) by the sinuses and on the evo-devo theory of their formation. The paranasal sinuses seem to develop after regression of the erythropoietic marrow in the maxillary, frontal and sphenoid bones and its replacement by cavities filled with gas, which escapes into the nasal fossae through the ostium. The sinus epithelium synthesizes NO continuously. The paranasal sinus cavities form a compartmentalized reservoir of NO, which is released discontinuously in boli after an opening of the ostium. Ostium opening can be induced by sound vibration, either internal (humming) or external (an acoustic vibration added to the in-breath). NO plays the role of an "aerocrine" messenger between the upper and lower respiratory tracts, reducing pulmonary vascular resistance and facilitating alveolar oxygen transfer into the bloodstream. Its physiological role in arterial blood oxygenation could be involved in speech and singing or be activated by physiological snoring during sleep. Rhinology, the science of the nose, in which the evo-devo concept distinguishes the respiratory and the olfactory nose, is now backed up by sinusology.
Collapse
Affiliation(s)
- R Jankowski
- Service ORL et chirurgie cervico-faciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandœuvre-lès-Nancy, France.
| | - D T Nguyen
- Service ORL et chirurgie cervico-faciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandœuvre-lès-Nancy, France
| | - M Poussel
- Service des examens de la fonction respiratoire et de l'aptitude à l'exercice-médecine du sport, CHRU de Nancy, 54000 Nancy, France; EA 3450 DevAH, développement, adaptation et handicap, régulations cardiorespiratoires et de la motricité, université de Lorraine, 54505 Lorraine, France
| | - B Chenuel
- Service des examens de la fonction respiratoire et de l'aptitude à l'exercice-médecine du sport, CHRU de Nancy, 54000 Nancy, France; EA 3450 DevAH, développement, adaptation et handicap, régulations cardiorespiratoires et de la motricité, université de Lorraine, 54505 Lorraine, France
| | - P Gallet
- Service ORL et chirurgie cervico-faciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandœuvre-lès-Nancy, France
| | - C Rumeau
- Service ORL et chirurgie cervico-faciale, hôpital de Brabois, centre hospitalier régional universitaire de Nancy, université de Lorraine, bâtiment Louis-Mathieu, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
18
|
Hong D, Jeon BW, Kim SY, Hwang JU, Lee Y. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. THE NEW PHYTOLOGIST 2016; 209:624-35. [PMID: 26451971 DOI: 10.1111/nph.13625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/30/2015] [Indexed: 05/03/2023]
Abstract
Stomata are the tiny valves on the plant surface that mediate gas exchange between the plant and its environment. Stomatal opening needs to be tightly regulated to facilitate CO2 uptake and prevent excess water loss. Plant Rho-type (ROP) GTPase 2 (ROP2) is a molecular component of the system that negatively regulates light-induced stomatal opening. Previously, ROP-interactive Cdc42- and Rac-interactive binding motif-containing protein 7 (RIC7) was suggested to function downstream of ROP2. However, the underlying molecular mechanism remains unknown. To understand the mechanism by which RIC7 regulates light-induced stomatal opening, we analyzed the stomatal responses of ric7 mutant Arabidopsis plants and identified the target protein of RIC7 using a yeast two-hybrid screen. Light-induced stomatal opening was promoted by ric7 knockout, whereas it was inhibited by RIC7 overexpression, indicating that RIC7 negatively regulates stomatal opening in Arabidopsis. RIC7 interacted with exocyst subunit Exo70 family protein B1 (Exo70B1), a component of the vesicle trafficking machinery. RIC7 and Exo70B1 localized to the plasma membrane region under light or constitutively active ROP2 conditions. The knockout mutant of Exo70B1 and ric7/exo70b1 exhibited retarded light-induced stomatal opening. Our results suggest that ROP2 and RIC7 suppress excess stomatal opening by inhibiting Exo70B1, which most likely participates in the vesicle trafficking required for light-induced stomatal opening.
Collapse
Affiliation(s)
- Daewoong Hong
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Byeong Wook Jeon
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Soo Young Kim
- Departments of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Ung Hwang
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Youngsook Lee
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, 790-784, Korea
| |
Collapse
|
19
|
Meng LS, Wang ZB, Yao SQ, Liu A. The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci 2015; 128:3922-32. [PMID: 26395398 DOI: 10.1242/jcs.171207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/14/2015] [Indexed: 01/29/2023] Open
Abstract
Seedlings of large-seeded plants are considered to be able to withstand abiotic stresses efficiently. The molecular mechanisms that underlie the involved signaling crosstalk between the large-seeded trait and abiotic tolerance are, however, largely unknown. Here, we demonstrate the molecular link that integrates plant abscisic acid (ABA) responses to drought stress into the regulation of seed mass. Both loss-of-function mutants of the Auxin Response Factor 2 (ARF2 encoding a transcription factor) and lines overexpressing AINTEGUMENTA (ANT; a transcription factor) under the 35S promoter exhibited large seed and drought-tolerant phenotypes as a result of abnormal ABA-auxin crosstalk signaling pathways in Arabidopsis. The target gene COLD-REGULATED15A (COR15a) was identified as participating in the regulation of seed development with ABA signaling through a negative regulation mechanism that is mediated by ANT. The molecular and genetic evidence presented indicate that ARF2, ANT and COR15A form an ABA-mediated signaling pathway to link modulation of seed mass with drought tolerance. These observations indicate that the ARF2 transcription factor serves as a molecular link that integrates plant ABA responses to drought stress into the regulation of seed mass.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| | - Zhi-Bo Wang
- School of Bioengineering and Biotechnology, Tianshui Normal University, TianShui City 741001, People's Republic of China
| | - Shun-Qiao Yao
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| |
Collapse
|
20
|
Arms EM, Bloom AJ, St. Clair DA. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1713-24. [PMID: 26044122 PMCID: PMC4540768 DOI: 10.1007/s00122-015-2540-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/18/2015] [Indexed: 05/25/2023]
Abstract
QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.
Collapse
Affiliation(s)
- Erin M. Arms
- Plant Sciences Department, University of California-Davis, Mail Stop 3, Davis, CA 95616 USA
| | - Arnold J. Bloom
- Plant Sciences Department, University of California-Davis, Mail Stop 3, Davis, CA 95616 USA
| | - Dina A. St. Clair
- Plant Sciences Department, University of California-Davis, Mail Stop 3, Davis, CA 95616 USA
| |
Collapse
|
21
|
Lim CW, Lim S, Baek W, Lee SC. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. PHYSIOLOGIA PLANTARUM 2015; 154:526-42. [PMID: 25302464 DOI: 10.1111/ppl.12298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/26/2014] [Indexed: 05/08/2023]
Abstract
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
22
|
Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. PLANT CELL REPORTS 2015; 34:1295-306. [PMID: 25861729 DOI: 10.1007/s00299-015-1787-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 05/02/2023]
Abstract
AtWRKY53 is an early factor in drought response and activated expression of AtWRKY53 regulates stomatal movement via reduction of H 2 O 2 content and promotion of starch metabolism in guard cells. Drought is one of the most serious environmental factors limiting the productivity of agricultural crops worldwide. However, the mechanisms underlying drought tolerance in plants remain unclear. AtWRKY53 belongs to the group III of WRKY transcription factors. In this study, we observed both the mRNA and protein products of this gene are rapidly induced under drought conditions. Phenotypic analysis showed AtWRKY53 overexpression lines were hypersensitive to drought stress compared with Col-0 plants. The results of stomatal movement assays and abscisic acid (ABA) content detection indicated that the impaired stomatal closure of 53OV lines was independent of ABA. Further analysis found that WRKY53 regulated stomatal movement via reducing the H2O2 content and promoting the starch metabolism in guard cells. The results of quantitative real-time reverse transcriptase PCR showed that the expression levels of CAT2, CAT3 and QQS were up-regulated in 53OV lines. Chromatin immunoprecipitation assays demonstrated that AtWRKY53 can directly bind to the QQS promoter sequences, thus led to increased starch metabolism. In summary, our results indicated that the activated expression of AtWRKY53 inhibited stomatal closure by reducing H2O2 content and facilitated stomatal opening by promoting starch degradation.
Collapse
Affiliation(s)
- Yiding Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | | |
Collapse
|
23
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
24
|
Lim CW, Lee SC. Functional roles of the pepper MLO protein gene, CaMLO2, in abscisic acid signaling and drought sensitivity. PLANT MOLECULAR BIOLOGY 2014; 85:1-10. [PMID: 24282068 DOI: 10.1007/s11103-013-0155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/11/2013] [Indexed: 05/20/2023]
Abstract
Plants are frequently exposed to various environmental stresses including drought in the natural environment and have evolved physiological, biochemical, and molecular mechanisms to counteract the deleterious effects of stress. Of them, modulation of abscisic acid (ABA) signal transduction allows plants to overcome stress. Recently, Kim and Hwang (Plant J 72:843-855, 2012) identified CaMLO2 that is transcriptionally induced by both biotic and abiotic stress. Based on this, we tested the possibility that CaMLO2 is involved in abiotic stress, although m ildew resistance l ocus O (MLO) proteins have been known as negative regulators in plant defense responses against powdery mildew. The CaMLO2 gene was strongly induced in pepper leaves exposed to ABA and drought. Virus-induced gene silencing of CaMLO2 in pepper plants showed low levels of transpiration and lipid peroxidation in dehydrated leaves. Overexpression of the CaMLO2 gene in Arabidopsis conferred reduced sensitivity to ABA in germination and seedling growth and establishment. High transpiration rates and low degrees of stomatal closure in response to ABA also led transgenic plants to be more vulnerable to drought than the wild-type, which was accompanied by altered expression of stress-related genes. Taken together, these data suggest that CaMLO2 acts as a negative regulator of ABA signaling that suppresses water loss from leaves under drought conditions.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | |
Collapse
|
25
|
|
26
|
Acharya BR, Jeon BW, Zhang W, Assmann SM. Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. THE NEW PHYTOLOGIST 2013; 200:1049-63. [PMID: 24033256 DOI: 10.1111/nph.12469] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 07/22/2013] [Indexed: 05/19/2023]
Abstract
Open Stomata 1 (OST1) (SnRK2.6 or SRK2E), a serine/threonine protein kinase, is a positive regulator in abscisic acid (ABA)-mediated stomatal response, but OST1-regulation of K(+) and Ca(2+) currents has not been studied directly in guard cells and it is unknown whether OST1 activity is limiting in ABA-mediated stomatal responses. We employed loss-of-function and gain-of-function approaches to study native ABA responses of Arabidopsis guard cells. We performed stomatal aperture bioassays, patch clamp analyses and reactive oxygen species (ROS) measurements. ABA inhibition of inward K(+) channels and light-induced stomatal opening are reduced in ost1 mutants while transgenic plants overexpressing OST1 show ABA hypersensitivity in these responses. ost1 mutants are insensitive to ABA-induced stomatal closure, regulation of slow anion currents, Ca(2+) -permeable channel activation and ROS production while OST1 overexpressing lines are hypersensitive for these responses, resulting in accelerated stomatal closure in response to ABA. Overexpression of OST1 in planta in the absence of ABA application does not affect basal apertures or ion currents. Moreover, we demonstrate the physical interaction of OST1 with the inward K(+) channel KAT1, the anion channel SLAC1, and the NADPH oxidases AtrbohD and AtrbohF. Our findings support OST1 as a critical limiting component in ABA regulation of stomatal apertures, ion channels and NADPH oxidases in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Biswa R Acharya
- Biology Department, Penn State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
27
|
Giday H, Kjaer KH, Fanourakis D, Ottosen CO. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1309-16. [PMID: 23726470 DOI: 10.1016/j.jplph.2013.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 05/18/2023]
Abstract
Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r=0.7) and varied by a factor of two, as a result of proportional changes in length and width. Size and density of stomata were not related. Following desiccation, high RH resulted in a significantly lower (6-19%) decline of transpiration in three cultivars, whereas the relative water content (RWC) of high RH-expanded leaflets was lower (29-297%) in seven cultivars. The lower RWC of these leaflets was caused by (a) higher (33-72%) stable transpiration and/or (b) lower (12-143%) RWC at which this stable transpiration occurred, depending on the cultivar. Stomatal size was significantly correlated with both characteristics (r=0.5 and -0.7, respectively). These results indicate that stomatal size explains much of the intraspecific variation in the regulation of transpiration upon water deprivation on rose.
Collapse
Affiliation(s)
- Habtamu Giday
- Department of Food Science, Århus University, Kirstinebjergvej 10, DK-5792 Årslev, Denmark.
| | | | | | | |
Collapse
|
28
|
Gallie DR. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 2013; 5:3424-46. [PMID: 23999762 PMCID: PMC3798912 DOI: 10.3390/nu5093424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023] Open
Abstract
Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
29
|
Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S. Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. THE PLANT CELL 2013; 25:558-71. [PMID: 23396828 PMCID: PMC3608778 DOI: 10.1105/tpc.112.105049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/26/2012] [Accepted: 01/16/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule involved in diverse physiological processes, including plant senescence and stomatal closure. The NO and cyclic GMP (cGMP) cascade is the main NO signaling pathway in animals, but whether this pathway operates in plant cells, and the mechanisms of its action, remain unclear. Here, we assessed the possibility that the nitrated cGMP derivative 8-nitro-cGMP functions in guard cell signaling. Mass spectrometry and immunocytochemical analyses showed that abscisic acid and NO induced the synthesis of 8-nitro-cGMP in guard cells in the presence of reactive oxygen species. 8-Nitro-cGMP triggered stomatal closure, but 8-bromoguanosine 3',5'-cyclic monophosphate (8-bromo-cGMP), a membrane-permeating analog of cGMP, did not. However, in the dark, 8-bromo-cGMP induced stomatal opening but 8-nitro-cGMP did not. Thus, cGMP and its nitrated derivative play different roles in the signaling pathways that lead to stomatal opening and closure. Moreover, inhibitor and genetic studies showed that calcium, cyclic adenosine-5'-diphosphate-ribose, and SLOW ANION CHANNEL1 act downstream of 8-nitro-cGMP. This study therefore demonstrates that 8-nitro-cGMP acts as a guard cell signaling molecule and that a NO/8-nitro-cGMP signaling cascade operates in guard cells.
Collapse
Affiliation(s)
- Takahiro Joudoi
- Department of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yudai Shichiri
- Department of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Nobuto Kamizono
- Department of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takaaki Akaike
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jun Yoshitake
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Sumio Iwai
- Department of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
30
|
Gallie DR. L-ascorbic Acid: a multifunctional molecule supporting plant growth and development. SCIENTIFICA 2013; 2013:795964. [PMID: 24278786 PMCID: PMC3820358 DOI: 10.1155/2013/795964] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| |
Collapse
|
31
|
Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. MOLECULAR PLANT 2012; 5:1375-88. [PMID: 22930734 DOI: 10.1093/mp/sss080] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide. However, the mechanism underlying drought tolerance in plants is unclear. WRKY transcription factors are known to function in adaptation to abiotic stresses. By screening a pool of WRKY-associated T-DNA insertion mutants, we isolated a gain-of-function mutant, acquired drought tolerance (adt), showing improved drought tolerance. Under drought stress conditions, adt accumulated higher levels of ABA than wild-type plants. Stomatal aperture analysis indicated that adt was more sensitive to ABA than wild-type plants. Molecular genetic analysis revealed that a T-DNA insertion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein. Constitutive expression of WRKY57 also conferred similar drought tolerance. Consistently with the high ABA content and enhanced drought tolerance, three stress-responsive genes (RD29A, NCED3, and ABA3) were up-regulated in adt. ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences. In addition, during ABA treatment, seed germination and early seedling growth of adt were inhibited, whereas, under high osmotic conditions, adt showed a higher seed germination frequency. In summary, our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels. Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.
Collapse
Affiliation(s)
- Yanjuan Jiang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | |
Collapse
|
32
|
Chen C, Xiao YG, Li X, Ni M. Light-regulated stomatal aperture in Arabidopsis. MOLECULAR PLANT 2012; 5:566-72. [PMID: 22516479 DOI: 10.1093/mp/sss039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stomatal pores of plant leaves, situated in the epidermis and surrounded by a pair of guard cells, allow CO2 uptake for photosynthesis and water loss through transpiration. Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment. This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys). Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture. The signaling components that link the perception of light signals to the stomatal opening response are largely unknown. This review discusses a few newly discovered nuclear genes, their function with respect to the phot-, cry-, and phy-mediated signal transduction cascades, and possible involvement of circadian clock.
Collapse
Affiliation(s)
- Chen Chen
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
33
|
Geiger D, Maierhofer T, Al-Rasheid KAS, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 2011; 4:ra32. [PMID: 21586729 DOI: 10.1126/scisignal.2001346] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
S-type anion channels are direct targets of abscisic acid (ABA) signaling and contribute to chloride and nitrate release from guard cells, which in turn initiates stomatal closure. SLAC1 was the first component of the guard cell S-type anion channel identified. However, we found that guard cells of Arabidopsis SLAC1 mutants exhibited nitrate conductance. SLAH3 (SLAC1 homolog 3) was also present in guard cells, and coexpression of SLAH3 with the calcium ion (Ca2+)-dependent kinase CPK21 in Xenopus oocytes mediated nitrate-induced anion currents. Nitrate, calcium, and phosphorylation regulated SLAH3 activity. CPK21-dependent SLAH3 phosphorylation and activation were blocked by ABI1, a PP2C-type protein phosphatase that is inhibited by ABA and inhibits the ABA signaling pathway in guard cells. We reconstituted the ABA-stimulated phosphorylation of the SLAH3 amino-terminal domain by CPK21 in vitro by including the ABA receptor-phosphatase complex RCAR1-ABI1 in the reactions. We propose that ABA perception by the complex consisting of ABA receptors of the RCAR/PYR/PYL family and ABI1 releases CPK21 from inhibition by ABI1, and then CPK21 is further activated by an increase in the cytosolic Ca2+ concentration, leading to its phosphorylation of SLAH3. Thus, the identification of SLAH3 as the nitrate-, calcium-, and ABA-sensitive guard cell anion channel provides insights into the relationship among stomatal response to drought, signaling by nitrate, and nitrate metabolism.
Collapse
Affiliation(s)
- Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang W, Jeon BW, Assmann SM. Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2371-9. [PMID: 21262908 DOI: 10.1093/jxb/erq424] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are important signalling agents in both animals and plants. In plants, G proteins modulate numerous responses, including abscisic acid (ABA) and pathogen-associated molecular pattern (PAMP) regulation of guard cell ion channels and stomatal apertures. Previous analyses of mutants deficient in the sole canonical Arabidopsis Gα subunit, GPA1, have shown that Gα-deficient guard cells are impaired in ABA inhibition of K(+) influx channels, and in pH-independent activation of anion efflux channels. ABA-induced Ca(2+) uptake through ROS-activated Ca(2+)-permeable channels in the plasma membrane is another key component of ABA signal transduction in guard cells, but the question of whether these channels are also dependent on Gα for their ABA response has not been evaluated previously. We used two independent Arabidopsis T-DNA null mutant lines, gpa1-3 and gpa1-4, to investigate this issue. We observed that gpa1 mutants are disrupted both in ABA-induced Ca(2+)-channel activation, and in production of reactive oxygen species (ROS) in response to ABA. However, in response to exogenous H(2)O(2) application, I(Ca) channels are activated normally in gpa1 guard cells. In addition, H(2)O(2) inhibition of stomatal opening and promotion of stomatal closure are not disrupted in gpa1 mutant guard cells. These data indicate that absence of GPA1 interrupts ABA signalling between ABA reception and ROS production, with a consequent impairment in Ca(2+)-channel activation.
Collapse
Affiliation(s)
- Wei Zhang
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
35
|
Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. THE PLANT CELL 2011; 23:600-27. [PMID: 21307286 PMCID: PMC3077794 DOI: 10.1105/tpc.110.081224] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 05/19/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Björn Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Daniela Fuentes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Martin Lehmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| |
Collapse
|
36
|
Lin PC, Pomeranz MC, Jikumaru Y, Kang SG, Hah C, Fujioka S, Kamiya Y, Jang JC. The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:253-68. [PMID: 21223390 DOI: 10.1111/j.1365-313x.2010.04419.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tandem zinc finger (TZF) proteins are characterized by two zinc-binding CCCH motifs arranged in tandem. Human TZFs such as tristetraproline (TTP) bind to and trigger the degradation of mRNAs encoding cytokines and various regulators. Although the molecular functions of plant TZFs are unknown, recent genetic studies have revealed roles in hormone-mediated growth and environmental responses, as well as in the regulation of gene expression. Here we show that expression of AtTZF1 (AtCTH/AtC3H23) mRNA is repressed by a hexokinase-dependent sugar signaling pathway. However, AtTZF1 acts as a positive regulator of ABA/sugar responses and a negative regulator of GA responses, at least in part by modulating gene expression. RNAi of AtTZF1-3 caused early germination and slightly stress-sensitive phenotypes, whereas plants over-expressing AtTZF1 were compact, late flowering and stress-tolerant. The developmental phenotypes of plants over-expressing AtTZF1 were only partially rescued by exogenous application of GA, implying a reduction in the GA response or defects in other mechanisms. Likewise, the enhanced cold and drought tolerance of plants over-expressing AtTZF1 were not associated with increased ABA accumulation, suggesting that it is mainly ABA responses that are affected. Consistent with this notion, microarray analysis showed that over-expression of AtTZF1 mimics the effects of ABA or GA deficiency on gene expression. Notably, a gene network centered on a GA-inducible and ABA/sugar-repressible putative peptide hormone encoded by GASA6 was severely repressed by AtTZF1 over-expression. Hence AtTZF1 may serve as a regulator connecting sugar, ABA, GA and peptide hormone responses.
Collapse
Affiliation(s)
- Pei-Chi Lin
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Lee SC, Choi DS, Hwang IS, Hwang BK. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. PLANT MOLECULAR BIOLOGY 2010; 73:409-24. [PMID: 20333442 DOI: 10.1007/s11103-010-9629-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/17/2010] [Indexed: 05/20/2023]
Abstract
RAV1 (Related to ABI3/VP1) proteins function as a transcription factor in signal transduction pathways in plants. The yeast-two-hybrid and in vivo coimmunoprecipitation assays identified the pepper (Capsicum annuum) oxidoreductase protein CaOXR1 that physically interacts with the pepper CaRAV1 transcription factor. The AP2 domain of CaRAV1 protein is essential for its direct interaction with CaOXR1. Both CaRAV1 and CaOXR1 proteins co-localize to the nuclei of plant cells. Virus-induced gene silencing of CaRAV1 and CaRAV1/CAOXR1 confers enhanced susceptibility to high salinity and osmotic stresses, which is accompanied by altered expression of the stress marker genes in pepper. Expression of CaAMP1 (pepper antimicrobial protein) and CaOSM1 (pepper osmotin) is suppressed by 1.2-6.6-fold in silenced leaves upon treatment with NaCl or mannitol. Overexpression of CaRAV1, CaOXR1 and CaOXR1/CaRAV1 in Arabidopsis also confers enhanced resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis infection. In addition, CaRAV1- and CaOXR1/CaRAV1-overexpression (OX) Arabidopsis plants are highly tolerant to high salinity and osmotic stress. Together, these results suggest that CaOXR1 protein positively controls CaRAV1-mediated plant defense during biotic and abiotic stresses.
Collapse
Affiliation(s)
- Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
39
|
Verelst W, Skirycz A, Inzé D. Abscisic acid, ethylene and gibberellic acid act at different developmental stages to instruct the adaptation of young leaves to stress. PLANT SIGNALING & BEHAVIOR 2010; 5:473-5. [PMID: 20383070 PMCID: PMC2958600 DOI: 10.4161/psb.5.4.11421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought stress represents a particularly great environmental challenge for plants. A decreased water availability can severely limit growth, and this jeopardizes the organism's primary goal-to survive and sustain growth long enough to ensure the plentiful production of viable seeds within the favorable growth season. It is therefore vital for a growing plant to sense oncoming drought as early as possible, and to respond to it rapidly and appropriately in all organs. A typical, fast energy-saving response is the arrest of growth in young organs, which is likely mediated by root-derived signals. A recent publication indicates that three plant hormones (abscisic acid, ethylene and gibberellic acid) mediate the adaptation of leaf growth in response to drought, and that they act at different developmental stages. Abscisic acid mainly acts in mature cells, while ethylene and gibberellic acid function in expanding and dividing leaf cells. This provides the plant with a means to differentially control the developmental zones of a growing leaf, and to integrate environmental signals differently in sink and source tissues. Here we discuss the biological implications of this discovery in the context of long-distance xylem and phloem transport.
Collapse
Affiliation(s)
- Wim Verelst
- Department of Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
40
|
Abstract
This review examines the evolution of the plant vascular system from its beginnings in the green algae to modern arborescent plants, highlighting the recent advances in developmental, organismal, geochemical and climatological research that have contributed to our understanding of the evolution of xylem. Hydraulic trade-offs in vascular structure-function are discussed in the context of canopy support and drought and freeze-thaw stress resistance. This qualitative and quantitative neontological approach to palaeobotany may be useful for interpreting the water-transport efficiencies and hydraulic limits in fossil plants. Large variations in atmospheric carbon dioxide levels are recorded in leaf stomatal densities, and may have had profound impacts on the water conservation strategies of ancient plants. A hypothesis that links vascular function with stomatal density is presented and examined in the context of the evolution of wood and/or vessels. A discussion of the broader impacts of plant transport on hydrology and climate concludes this review.
Collapse
Affiliation(s)
- J Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA.
| |
Collapse
|
41
|
Wang FF, Lian HL, Kang CY, Yang HQ. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. MOLECULAR PLANT 2010; 3:246-59. [PMID: 19965572 DOI: 10.1093/mp/ssp097] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The stomatal pores of higher plants enable gaseous exchange into and out of leaves for photosynthesis and evaporation. Stomatal opening is induced by both blue and red lights. It is shown that blue light-induced stomatal opening is mediated by the blue light receptor phototropins (PHOT1 and PHOT2) and cryptochromes (CRY1 and CRY2). However, whether phytochrome B (phyB) is involved in red light regulation of stomatal opening remains largely unclear. Here, we report a positive role for Arabidopsis (Arabidopsis thaliana) phyB in the regulation of red light-induced stomatal opening. The phyB mutant stomata displayed a reduced red light response, whereas stomata of the phyB-overexpressing plants displayed a hypersensitive response to red light. In addition, stomata of the cry1 cry2 phyB, phot1 phot2 phyB, and cry1 phyA phyB triple mutant plants showed more reduced light response than those of the single or double mutant plants under white light, implying that phyB acts in concert with phyA, CRY, and PHOT in light regulation of stomatal opening. Stomata of phyB cop1 mutant opened less wide than those of the cop1 mutant, and stomata of the pif3 pif4 mutant opened wider than those of the wild-type, indicating that COP1, together with the PIFs (phytochrome interacting factors), may act downstream of PHYB in regulating stomatal opening. Furthermore, quantitative RT-PCR analysis showed that the expression of MYB60 was reduced in the cry1 cry2 and phyA phyB mutants under blue and red lights, respectively, but induced in the CRY1- and phyB-overexpressing plants. These results demonstrate that phyB and CRY might regulate stomatal opening, at least in part, by regulating MYB60 expression.
Collapse
Affiliation(s)
- Fang-Fang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | |
Collapse
|
42
|
Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. THE PLANT CELL 2009; 21:2624-41. [PMID: 19794114 PMCID: PMC2768914 DOI: 10.1105/tpc.109.069765] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/10/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif-containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Chun-Ying Kang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Li Lian
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Fang-Fang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Rong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Quan Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
43
|
Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC PLANT BIOLOGY 2009; 9:96. [PMID: 19622176 PMCID: PMC2719644 DOI: 10.1186/1471-2229-9-96] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 07/22/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Plant WRKY DNA-binding transcription factors are key regulators in certain developmental programs. A number of studies have suggested that WRKY genes may mediate seed germination and postgermination growth. However, it is unclear whether WRKY genes mediate ABA-dependent seed germination and postgermination growth arrest. RESULTS To determine directly the role of Arabidopsis WRKY2 transcription factor during ABA-dependent seed germination and postgermination growth arrest, we isolated T-DNA insertion mutants. Two independent T-DNA insertion mutants for WRKY2 were hypersensitive to ABA responses only during seed germination and postgermination early growth. wrky2 mutants displayed delayed or decreased expression of ABI5 and ABI3, but increased or prolonged expression of Em1 and Em6. wrky2 mutants and wild type showed similar levels of expression for miR159 and its target genes MYB33 and MYB101. Analysis of WRKY2 expression level in ABA-insensitive and ABA-deficient mutants abi5-1, abi3-1, aba2-3 and aba3-1 further indicated that ABA-induced WRKY2 accumulation during germination and postgermination early growth requires ABI5, ABI3, ABA2 and ABA3. CONCLUSION ABA hypersensitivity of the wrky2 mutants during seed germination and postgermination early seedling establishment is attributable to elevated mRNA levels of ABI5, ABI3 and ABI5-induced Em1 and Em6 in the mutants. WRKY2-mediated ABA responses are independent of miR159 and its target genes MYB33 and MYB101. ABI5, ABI3, ABA2 and ABA3 are important regulators of the transcripts of WRKY2 by ABA treatment. Our results suggest that WRKY2 transcription factor mediates seed germination and postgermination developmental arrest by ABA.
Collapse
Affiliation(s)
- Wenbo Jiang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| |
Collapse
|
44
|
Abstract
Chloroplasts are a key feature of most guard cells; however, the function of these organelles in stomatal responses has been a subject of debate. This review examines evidence for and against a role of guard cell chloroplasts in stimulating stomatal opening. Controversy remains over the extent to which guard cell Calvin cycle activity contributes to stomatal regulation. However, this is only one of four possible functions of guard cell chloroplasts; other roles include supply of ATP, blue-light signalling and starch storage. Evidence exists for all these mechanisms, but is highly dependent upon species and growth/measurement conditions, with inconsistencies between different laboratories reported. Significant plasticity and extreme flexibility in guard cell osmoregulatory, signalling and sensory pathways may be one explanation. The use of chlorophyll a fluorescence analysis of individual guard cells is discussed in assessing guard and mesophyll cell physiology in relation to stomatal function. Developments in transgenic and molecular techniques have recently provided interesting, albeit contrasting, data regarding the role of these highly conserved organelles in stomatal function. Recent studies examining the link between mesophyll photosynthesis and stomatal conductance are discussed. An enhanced understanding of these processes may be fundamental in generating crop plants with greater water use efficiencies, capable of combating future climatic changes.
Collapse
Affiliation(s)
- Tracy Lawson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
45
|
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H. Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:455-66. [PMID: 18410480 DOI: 10.1111/j.1365-313x.2008.03518.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite the fact that glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to environmental stresses, their physiological functions and mechanisms of action in stress responses remain largely unknown. Here, we assessed the functional roles of GRP7, one of the eight GRP family members in Arabidopsis thaliana, on seed germination, seedling growth, and stress tolerance under high salinity, drought, or cold stress conditions. The transgenic Arabidopsis plants overexpressing GRP7 under the control of the cauliflower mosaic virus 35S promoter displayed retarded germination and poorer seedling growth compared with the wild-type plants and T-DNA insertional mutant lines under high salinity or dehydration stress conditions. By contrast, GRP7 overexpression conferred freezing tolerance in Arabidopsis plants. GRP7 is expressed abundantly in the guard cells, and has been shown to influence the opening and closing of the stomata, in accordance with the prevailing stress conditions. GRP7 is localized to both the nucleus and the cytoplasm, and is involved in the export of mRNAs from the nucleus to the cytoplasm under cold stress conditions. Collectively, these results provide compelling evidence that GRP7 affects the growth and stress tolerance of Arabidopsis plants under high salt and dehydration stress conditions, and also confers freezing tolerance, particularly via the regulation of stomatal opening and closing in the guard cells.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3317-25. [PMID: 18648104 PMCID: PMC2529243 DOI: 10.1093/jxb/ern185] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian, Beijing 100093, PR China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian, Beijing 100093, PR China
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110016, PR China
| |
Collapse
|
47
|
Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J. A plastid protein crucial for Ca2+-regulated stomatal responses. THE NEW PHYTOLOGIST 2008; 179:675-686. [PMID: 18507772 DOI: 10.1111/j.1469-8137.2008.02492.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
* Guard cell movements are regulated by environmental cues including, for example, elevations in extracellular Ca(2+) concentration. Here, the subcellular localization and physiological function of the Ca(2+)-sensing receptor (CAS) protein was investigated. * CAS protein localization was ascertained by microscopic analyses of green fluorescent protein (GFP) fusion proteins and biochemical fractionation assays. Comparative guard cell movement investigations were performed in wild-type and cas loss-of-function mutant lines of Arabidopsis thaliana. Cytoplasmic Ca(2+) dynamics were addressed in plants expressing the yellow cameleon reporter protein YC3.6. * This study identified CAS as a chloroplast-localized protein that is crucial for proper stomatal regulation in response to elevations of external Ca(2+). CAS fulfils this role through modulation of the cytoplasmic Ca(2+) concentration. * This work reveals a novel role of the chloroplast in cellular Ca(2+) signal transduction.
Collapse
Affiliation(s)
- Stefan Weinl
- Molekulare Entwicklungsbiologie der Pflanzen, Institut für Botanik und Botanischer Garten, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | - Katrin Held
- Molekulare Entwicklungsbiologie der Pflanzen, Institut für Botanik und Botanischer Garten, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | - Kathrin Schlücking
- Molekulare Entwicklungsbiologie der Pflanzen, Institut für Botanik und Botanischer Garten, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | - Leonie Steinhorst
- Molekulare Entwicklungsbiologie der Pflanzen, Institut für Botanik und Botanischer Garten, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | - Sebastian Kuhlgert
- Institut für Biochemie und Biotechnologie der Pflanzen, Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | - Michael Hippler
- Institut für Biochemie und Biotechnologie der Pflanzen, Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | - Jörg Kudla
- Molekulare Entwicklungsbiologie der Pflanzen, Institut für Botanik und Botanischer Garten, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
48
|
Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. THE PLANT CELL 2008; 20:1134-51. [PMID: 18451323 PMCID: PMC2390749 DOI: 10.1105/tpc.108.058263] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/26/2008] [Accepted: 04/10/2008] [Indexed: 05/18/2023]
Abstract
Drought is one of the most important environmental constraints limiting plant growth and agricultural productivity. To understand the underlying mechanism of drought tolerance and to identify genes for improving this important trait, we conducted a gain-of-function genetic screen for improved drought tolerance in Arabidopsis thaliana. One mutant with improved drought tolerance was isolated and designated as enhanced drought tolerance1. The mutant has a more extensive root system than the wild type, with deeper roots and more lateral roots, and shows a reduced leaf stomatal density. The mutant had higher levels of abscisic acid and Pro than the wild type and demonstrated an increased resistance to oxidative stress and high levels of superoxide dismutase. Molecular genetic analysis and recapitulation experiments showed that the enhanced drought tolerance is caused by the activated expression of a T-DNA tagged gene that encodes a putative homeodomain-START transcription factor. Moreover, overexpressing the cDNA of the transcription factor in transgenic tobacco also conferred drought tolerance associated with improved root architecture and reduced leaf stomatal density. Therefore, we have revealed functions of the homeodomain-START factor that were gained upon altering its expression pattern by activation tagging and provide a key regulator that may be used to improve drought tolerance in plants.
Collapse
Affiliation(s)
- Hong Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud JB, Véry AA, Simonneau T, Sentenac H. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci U S A 2008; 105:5271-6. [PMID: 18367672 PMCID: PMC2278230 DOI: 10.1073/pnas.0709732105] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 11/18/2022] Open
Abstract
At least four genes encoding plasma membrane inward K+ channels (K(in) channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K(in) channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell K(in) channel (GCK(in)) activity, providing a model to investigate the roles of this activity in the plant. GCK(in) activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCK(in) activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCK(in) activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments.
Collapse
Affiliation(s)
- Anne Lebaudy
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Alain Vavasseur
- Laboratoire des Echanges Membranaires et Signalisation, Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Université Aix-Marseille, 13108 St. Paul lez Durance Cedex, France; and
| | - Eric Hosy
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Ingo Dreyer
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Nathalie Leonhardt
- Laboratoire des Echanges Membranaires et Signalisation, Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Université Aix-Marseille, 13108 St. Paul lez Durance Cedex, France; and
| | - Jean-Baptiste Thibaud
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Anne-Aliénor Véry
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Thierry Simonneau
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Unité Mixte de Recherche 759, Institut National de la Recherche Agronomique/Montpellier SupAgro, 1 Place Viala, 34060 Montpellier Cedex 1, France
| | - Hervé Sentenac
- *Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique (U.386)/Montpellier SupAgro/Université Montpellier 2, 1 Place Viala, 34060 Montpellier Cedex 1, France
| |
Collapse
|
50
|
Jiang J, Wang P, An G, Wang P, Song CP. The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. PLANT CELL REPORTS 2008; 27:377-85. [PMID: 19704432 DOI: 10.1007/s00299-007-0449-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/06/2007] [Accepted: 09/03/2007] [Indexed: 05/08/2023]
Abstract
SB203580 is a specific inhibitor of p38 mitogen-activated protein (MAP) kinase and has been widely used to investigate the physiological roles of p38 in animal and yeast cells. Here by using an epidermal strip bioassay, laser-scanning confocal microscopy and whole-cell patch clamp analysis, we assess the effects of pyridinyl imidazoles-like SB203580 on the H(2)O(2) signaling in guard cells of Vicia faba L. The results indicated that SB203580 blocks H(2)O(2)- or ABA-induced stomatal closure, ABA-induced H(2)O(2) generation, and decrease in K(+) fluxing across plasma membrane of Vicia guard cells by application of ABA and H(2)O(2), whereas its analog SB202474 had no effect on these events. Thus, these results suggest that activation of p38-like MAP kinase modulates guard cell ROS signaling in response to stress.
Collapse
Affiliation(s)
- Jing Jiang
- Laboratory of Plant Stress Biology and College of Life Sciences, Henan University, Kaifeng, Henan 475001, People's Republic of China.
| | | | | | | | | |
Collapse
|