1
|
Cui YX, Dong L, Zhang M, Liu YN, Chen YH, Jia MZ, Chen KP, Wang H, Shi YW, Ma TY, Chen JH. Long-term exposure to arsenic in drinking water leads to myocardial damage by oxidative stress and reduction in NO. Toxicology 2023; 492:153529. [PMID: 37120063 DOI: 10.1016/j.tox.2023.153529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Chronic arsenic exposure causes myocardial damage. The aim of this study is to investigate if oxidative stress and reduction in NO is involved in the myocardial damage induced by arsenic in drinking water. Rats were divided into a control group and different doses of sodium arsenite. With increasing sodium arsenite concentrations in drinking water, localised inflammatory foci and necrotic myocardial tissues were gradually observed. Compared to the control group, the activities and gene expression of antioxidant enzymes in arsenic-exposed rats decreased. NO content and the NOS activity as well as the expression of NOS mRNA in the myocardial tissue of exposed rats, decreased, and the extracellular NO content of cardiomyocytes treated with sodium arsenite also decreased. The rate of cell apoptosis induced by sodium arsenite decreased after treatment with sodium nitroprusside (an NO donor). In conclusion, arsenic exposure in drinking water can lead to myocardial injury and cardiomyocyte apoptosis through oxidative stress and a reduction in NO content.
Collapse
Affiliation(s)
- Yi-Xin Cui
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Lu Dong
- Department of Endemic Disease, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, PR China.
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yi-Nan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yong-Hui Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Ming-Zhao Jia
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Kun-Pan Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Ya-Wen Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Tian-You Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Jing-Hong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
3
|
Ali SS, Medda N, Dutta SM, Patra R, Maiti S. Protection against Mitochondrial Oxidative-Stress by Flesh-Extract of Edible Freshwater Snail Bellamya bengalensis Prevents Arsenic Induced DNA and Tissue Damage. Anticancer Agents Med Chem 2021; 20:1266-1273. [PMID: 32275495 DOI: 10.2174/1871520620666200410081535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
AIMS Arsenic has carcinogenic properties because of the formation of Reactive Oxygen Species (ROS). ROS damages different macromolecules, tissues and organs, and severely exhausts cellular antioxidants. BACKGROUND Cytosolic and mitochondrial contribution of ROS production by arsenic are not well reported. In regard to the issues of therapy against arsenic or any other toxicity, natural product has gained its popularity due to its less side-effects and non-invasive nature. OBJECTIVES Here, as an ethnomedicine, the flesh-extract (BBE; 100mg/100g bw) of Bellamya bengalensis (an aquatic mollusk) was applied in arsenic intoxicated (0.6 ppm/100g bw/for 28 days alone or in combination with BBE) experimental rats. Our objective was to study the anti-oxidative and anti-apoptotic role of BBE in hepato-gastrointestinal tissue damage by arsenic. METHODS DNA fragmentation assay, catalase activity (gel-zymogram assay) suggests that BBE has a strong protective role against arsenic toxicity, which is decisively demonstrated in hepatic histoarchitecture study by HE (hematoxylin and eosin) staining and by intestinal PAS (Periodic Acid Schiff) staining. RESULTS Measurement of mitochondrial-membrane-potential by fluorescent microcopy clearly demonstrated less membrane damage and lower release of the redox-active inner-membrane product (cytochrome-C, ubiquinone, etc.) in BBE supplemented group compared to that of the only arsenic fed group. The present study clearly suggests that mitochondrial disintegrity is one of the major causes of ROS mediated tissue damage by arsenic. CONCLUSION This study also offers an option for prevention/treatment against arsenic toxicity and its carcinogenicity by widely available low-cost, non-invasive Bellamya extract by protecting cytoskeleton, DNA and mitochondria in the cell.
Collapse
Affiliation(s)
- Sk Sajed Ali
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Nandita Medda
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Sangita M Dutta
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Ritesh Patra
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| |
Collapse
|
4
|
Nakamura S, Kuda T, Midorikawa Y, Takahashi H, Kimura B. Typical gut indigenous bacteria in ICR mice fed a soy protein-based normal or low-protein diet. Curr Res Food Sci 2021; 4:295-300. [PMID: 33997796 PMCID: PMC8102713 DOI: 10.1016/j.crfs.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
For patients with inflammatory bowel disease, cow’s milk allergy, and lactose intolerance, soymilk is a potential alternative to cow’s milk. In this study, we aimed to identify the effects of a soy protein-based low-protein diet on the body and organ weights and the gut microbiome of six-week-old mice fed a diet containing 20% (SP) or 5% (LP) soy protein for 14 days via 16S rRNA (V4) amplicon sequencing. Body weight gain (growth) and liver, spleen, and fat tissue weight were significantly suppressed by the LP diet. Operational taxonomic unit numbers and α-diversity were lower in the LP group than in the SP group. A principal coordinate analysis revealed differences in the gut microbiome compositions of SP and LP mice. The abundances of caecal Roseburia sp., Alistipes sp., and bacteria from the family Muribaculaceae were lower in the LP group than in the SP group. In contrast, the abundance of Desulfovibrionaceae, which is positively correlated with inflammation, was higher in the LP group than in the SP group. These results differed from the effects of a milk casein-based low-protein diet (reported previously). Based on these findings, we conclude that the undesirable effects of a low-protein diet and/or protein deficiency are related to changes in the gut microbiome composition and may differ depending on the kind of proteins used. Six-week-old ICR mice were fed a diet containing 20% (SP) or 5% (LP) soy protein for 14 days. Body weight gain and liver, spleen, and fat tissue weight were significantly suppressed by the LP diet. Caecal Roseburia sp., Alistipes sp., and bacteria from the family Muribaculaceae was lower in the LP. Desulfovibrionaceae, which is positively correlated with inflammation, was higher in the LP group.
Collapse
Affiliation(s)
- Saori Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yuko Midorikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Among Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
5
|
Fazal M, Veeraraghavan VP, Tahreen B, Jayaraman S, Gayathri R. Antioxidant effects of Emblica officinalis and Zingiber officinalis on arsenic and lead induced toxicity on Albino rats. Bioinformation 2021; 17:295-305. [PMID: 34234388 PMCID: PMC8225603 DOI: 10.6026/97320630017295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/ kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats. Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.
Collapse
Affiliation(s)
- Mohd Fazal
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Technical and Medical Sciences, Saveetha University, Chennai, India
- Department of Anatomy Government Medical College Siddipet, Telangana, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Technical and Medical Sciences, Saveetha University, Chennai, India
| | - Bushra Tahreen
- Department of Dentistry, International Dental Care, Banjara Hills, Hyderabad, Telangana, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Technical and Medical Sciences, Saveetha University, Chennai, India
| | - R Gayathri
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Technical and Medical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Rehman K, Fatima F, Akash MSH. Biochemical investigation of association of arsenic exposure with risk factors of diabetes mellitus in Pakistani population and its validation in animal model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:511. [PMID: 31346790 DOI: 10.1007/s10661-019-7670-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is one of the naturally occurring heavy metal that has been reported to cause damaging effects on different body organs. This study was aimed to determine the arsenic level in different water sources and investigate the effect of arsenic exposure on risk factors of diabetes mellitus (DM) in human participants and experimental animals. We recruited 150 participants to investigate the arsenic exposure in their urine and from drinking water. We found that males contained significantly higher (P < 0.001) concentrations of urinary arsenic as compared with that of their female counterparts. Similarly, urinary arsenic concentration was high and showed significant association in the age of ≥ 60 years (P < 0.05), illiterate (P < 0.001), smokers (P < 0.0001), and diabetic (P < 0.0001) participants. Moreover, urinary arsenic exposure was also associated with higher levels of fasting (P < 0.001) and random blood glucose (P < 0.001), HbA1c (P < 0.001), AST, ALT, MDA, IL-6, CRP, blood urea nitrogen, and creatinine in arsenic-exposed diabetics as compared with that of unexposed diabetics. Further, we also exposed the white albino rats with arsenic in drinking water for 30 days and their blood glucose was measured at 15th and 30th days of treatment that was significantly higher (P < 0.001) in arsenic-exposed animals as compared with that of unexposed animals. Similarly, arsenic-exposed animals failed to tolerate exogenously administered glucose (P < 0.001) as compared with that of unexposed animals. Likewise, insulin and glutathione concentrations were also significantly decreased (P < 0.001) in arsenic-exposed animals as compared with that of unexposed animals. The alterations in normal values of glucose, insulin, and glutathione exhibited the damaging effects of arsenic exposure in experimental rats. This study showed that arsenic exposed to human beings and animals through drinking water resulted in the disruption of pancreatic β-cell functioning that provoked the risk factor for development of DM. This study also suggested that long-term arsenic exposure induces hyperglycemia, inflammation, and oxidative stress that may lead to the onset of development of DM.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Fiza Fatima
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Elia AC, Magara G, Caruso C, Masoero L, Prearo M, Arsieni P, Caldaroni B, Dörr AJM, Scoparo M, Salvati S, Brizio P, Squadrone S, Abete MC. A comparative study on subacute toxicity of arsenic trioxide and dimethylarsinic acid on antioxidant status in Crandell Rees feline kidney (CRFK), human hepatocellular carcinoma (PLC/PRF/5), and epithelioma papulosum cyprini (EPC) cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:333-348. [PMID: 29498595 DOI: 10.1080/15287394.2018.1442758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 05/29/2023]
Abstract
Arsenic (As) is a global contaminant of terrestrial and aquatic environments posing concern for environmental and human health. The effects of subacute concentrations of arsenic trioxide (AsIII) and dimethylarsinic acid (DMAV) were examined using Crandell Rees feline kidney (CRFK), human hepatocellular carcinoma (PLC/PRF/5), and epithelioma papulosum cyprini (EPC). Whole monolayer with suffering cells (confluence 100%, pyknosis and refractive cells; value scale = 2) led to identification of subacute As concentrations for the three cell lines. The selected AsIII concentrations were 1.33 µM for CRFK and 33.37 µM for PLC/PRF/5 and EPC, at 48 hr time point. The selected DMAV concentrations were 0.67 mM for PLC/PRF/5, 1.33 mM for CRFK, and 2.67 mM for EPC for 48 hr. Unlike the AsIII test, the three cell lines did not exhibit marked susceptibility to DMAV-mediated toxicity. Several oxidative stress biomarker levels, directly or indirectly associated with reactive oxygen species (ROS) elimination including superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferase, glyoxalase I, glyoxalase II, and total glutathione, were determined in the three cell lines at 24 and 48 hr. Antioxidant responses in metal-treated cells were significantly altered compared to controls, suggesting a perturbation of redox state. The weakening of antioxidant pathway in either healthy or tumoral cells was greater using AsIII than DMAV. Differences in level of several oxidative stress biomarkers suggest that the oxidative stress mechanism induced by AsIII is distinctly different from DMAV. Multifaceted mechanisms of action underlying ROS generation in tumor and nontumor cells versus AsIII and DMAV exposure are thus involved. Since As-mediated toxicity is quite complex, more data regarding both oxidant-enhancement and oxidant-lowering strategies may be useful to improve knowledge regarding the influence of As on human and animal cells.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- a Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Perugia , Italy
| | - Gabriele Magara
- a Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Perugia , Italy
| | - Claudio Caruso
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | - Loretta Masoero
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | - Marino Prearo
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | - Paola Arsieni
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | - Barbara Caldaroni
- a Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Perugia , Italy
| | | | - Melissa Scoparo
- a Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Perugia , Italy
| | - Stefania Salvati
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | - Paola Brizio
- b Istituto Zooprofilattico Sperimentale del Piemonte , Torino , Italy
| | | | | |
Collapse
|
8
|
Moulahoum H, Boumaza BMA, Ferrat M, Djerdjouri B. Arsenic trioxide exposure accelerates colon preneoplasic aberrant crypt foci induction regionally through mitochondrial dysfunction. Toxicol Res (Camb) 2018; 7:182-190. [PMID: 30090573 DOI: 10.1039/c7tx00213k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
Arsenic poisoning is a worldwide problem. Thus, we studied the effects of arsenic trioxide (ATO) administration on a 1,2-dimethylhydrazine (DMH)-induced preneoplasic colon carcinogenesis model. Mice were separated into four study groups; the control group received only vehicles. The ATO group received daily a 2.5 mg kg-1 dose for 4 weeks. The DMH group received DMH (20 mg kg-1) twice in two weeks. The third group (D-ATO) had the same as the DMH group with ATO administration starting at week 10. At the end of 14 weeks, colons from sacrificed mice were taken, segmented into distal and proximal and subjected to aberrant crypt foci (ACF), aberrant crypt (AC) counting, alcian blue, H&E and Hoechst histological study and lastly oxidative stress marker analysis as well as mitochondrial swelling assessment. Data showed a significant increase in ACF and AC after DMH treatment, which was further increased after ATO addition. A perturbed histological structure was observed and loss of mucin producing cells in the colon tissue was observed. An important impact on the distal colon compared to the proximal one was noticed. The oxidative stress balance showed a similar pattern with an increase in MPO, NO/l-ornithine balance and MDA, while a decrease was observed in the antioxidant enzymes (CAT, SOD and GSH). In all parameters analyzed, the distal colons showed higher values than proximal. Furthermore, histological cell death analysis in combination with mitochondrial permeability pore opening suggested ATO contribution in the pathological effect. Our study has shown that ATO administration accelerated colon cancer development suggesting the heaviness of such treatments and the need to explore combinations and cycle type formulas.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria . .,Ege University , Faculty of Science , Biochemistry Department , 35100 Bornova , İzmir , Turkey
| | - Belkacem Mohamed Amine Boumaza
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| | - Meriem Ferrat
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| | - Bahia Djerdjouri
- Laboratory of Cell and Molecular Biology , Faculty of Biological Sciences , University of Sciences and Technology Houari Boumediene (USTHB) , Algiers , Algeria .
| |
Collapse
|
9
|
Sharma A, Flora SJS. Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol 2018; 45:11-20. [PMID: 29173466 DOI: 10.1016/j.jtemb.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
Abstract
Consumption of arsenic contaminated water causes serious skin disease and cancer in a significant number of exposed people. Chelating agents, consider an expensive therapy, are employed in the treatment of arsenic intoxication. There are reports which suggest that the poorest suffer the most from arsenicosis. This may be due to improper diet intake, consist of low protein and micronutrients which increase the vulnerability to arsenic-related disorders. Several human studies demonstrated the associations between malnourishment and the development of arsenic-caused skin lesions, skin cancer and cardiovascular effects. Thus, there is an urgent need of implementation of mitigation strategies for improving the health of exposed populations. Nutrition enhances the detoxification process so food rich in vitamins, protein, antioxidants help in its detoxification process. Methylation is the detoxification process which takes place via S-adenosylmethionine (SAM). It is a methyl group donor and it derived its methyl group from diet. Nutritional intervention thus may appear as a practical and inexpensive approach. Nutrition provides protection from toxic effect of arsenic by two ways (i) methylation of As (ii) antioxidants which provides protection against free radical species. The governments and NGOs may run awareness programmes in arsenic affected area regarding prevention and alternate therapy which can decrease the susceptibility of the exposed population. They could also help in distributing cheaper, high protein diets particularly to the masses who cannot afford such foods. Thus, to prevent arsenicosis alternate therapy and proper nutrition could be the important strategy for alleviating its toxic effects. This mini review provides an insight on the importance of nutrition in preventing adverse effect cause by arsenic to suffer population.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
10
|
Choudhury ST, Das N, Ghosh S, Ghosh D, Chakraborty S, Ali N. Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride-mediated oxidative hepatocellular damage in rat model. Int J Nanomedicine 2016; 11:2179-93. [PMID: 27274242 PMCID: PMC4876846 DOI: 10.2147/ijn.s101886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4) causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001) increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4-induced oxidative stress–mediated hepatocellular damage and thereby can be considered as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Somsubhra Thakur Choudhury
- Infectious Diseases and Immunology, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Nirmalendu Das
- Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Swarupa Ghosh
- Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Debasree Ghosh
- Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Somsuta Chakraborty
- Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Antioxidant Potential of Spirulina platensis Mitigates Oxidative Stress and Reprotoxicity Induced by Sodium Arsenite in Male Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7174351. [PMID: 26881036 PMCID: PMC4737466 DOI: 10.1155/2016/7174351] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/02/2022]
Abstract
The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication.
Collapse
|
12
|
Acharyya N, Deb B, Chattopadhyay S, Maiti S. Arsenic-Induced Antioxidant Depletion, Oxidative DNA Breakage, and Tissue Damages are Prevented by the Combined Action of Folate and Vitamin B12. Biol Trace Elem Res 2015; 168:122-32. [PMID: 25850544 DOI: 10.1007/s12011-015-0324-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Arsenic is a grade I human carcinogen. It acts by disrupting one-carbon (1C) metabolism and cellular methyl (-CH3) pool. The -CH3 group helps in arsenic disposition and detoxification of the biological systems. Vitamin B12 and folate, the key promoters of 1C metabolism were tested recently (daily 0.07 and 4.0 μg, respectively/100 g b.w. of rat for 28 days) to evaluate their combined efficacy in the protection from mutagenic DNA-breakage and tissue damages. The selected tissues like intestine (first-pass site), liver (major xenobiotic metabolizer) and lung (major arsenic accumulator) were collected from arsenic-ingested (0.6 ppm/same schedule) female rats. The hemo-toxicity and liver and kidney functions were monitored. Our earlier studies on arsenic-exposed humans can correlate carcinogenesis with DNA damage. Here, we demonstrate that the supplementation of physiological/therapeutic dose of vitamin B12 and folate protected the rodents significantly from arsenic-induced DNA damage (DNA fragmentation and comet assay) and hepatic and renal tissue degeneration (histo-architecture, HE staining). The level of arsenic-induced free-radical products (TBARS and conjugated diene) was significantly declined by the restored actions of several antioxidants viz. urate, thiol, catalase, xanthine oxidase, lactoperoxidase, and superoxide dismutase in the tissues of vitamin-supplemented group. The alkaline phosphatase, transaminases, urea and creatinine (hepatic and kidney toxicity marker), and lactate dehydrogenase (tissue degeneration marker) were significantly impaired in the arsenic-fed group. But a significant protection was evident in the vitamin-supplemented group. In conclusion, the combined action of folate and B12 results in the restitution in the 1C metabolic pathway and cellular methyl pool. The cumulative outcome from the enhanced arsenic methylation and antioxidative capacity was protective against arsenic induced mutagenic DNA breakages and tissue damages.
Collapse
Affiliation(s)
- Nirmallya Acharyya
- Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and TechnologyVidyasagar University, Midnapore, West Bengal, 721102, India
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Bimal Deb
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Smarajit Maiti
- Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and TechnologyVidyasagar University, Midnapore, West Bengal, 721102, India.
- Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
- Epidemiology and Human Health Division, Agricure Biotech Research Society, Midnapore, 721101, India.
| |
Collapse
|
13
|
Acharyya N, Sajed Ali S, Deb B, Chattopadhyay S, Maiti S. Green tea (Camellia sinensis) alleviates arsenic-induced damages to DNA and intestinal tissues in rat and in situ intestinal loop by reinforcing antioxidant system. ENVIRONMENTAL TOXICOLOGY 2015; 30:1033-1044. [PMID: 24615952 DOI: 10.1002/tox.21977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/15/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
This study elucidates the protective role of Green tea (Camellia sinensis or CS) against arsenic-induced mutagenic DNA-breakage/intestinal (small) damages in female rats. Intestinal epithelial cells receive ingested arsenic initially. Though, the possibility of damages in this tissue is immense and the therapeutic strategies against this damage are of great concern, reports on either issue are scanty. Our earlier study on arsenic-exposed human unveils a link between carcinogenesis and mutagenic DNA damage. Here, we demonstrate that supplementation of CS-extract (10 mg/mL water) with NaAsO2 (0.6 ppm)/100 g b.w. for 28 days to rats offered a significant protection against arsenic-induced oxidative damages to DNA and intestinal (small) tissues by buttressing antioxidant systems. Necrotic and apoptotic damages and their CS-protection are shown in DNA-fragmentation, comet-assay, and histoarchitecture (hematoxylin and eosin and periodic acid-schiff staining) results. Only arsenic exposure significantly decreased intestinal superoxide dismutase, catalase activities, and level of soluble thiol with a concomitant increase in malondialdehyde/conjugated dienes. Alteration of serum necrotic marker lactate dehydrogenase and the metabolic inflammatory marker c-reactive protein also indicate the impairment may be occurring at transcription and/or cellular signal transduction level. In addition, in situ incubation in rat intestinal loop filled for 24 h with NaAsO2 alone (250 µM) or with aqueous CS-extract (250 mg/mL) suggests that small intestinal epithelial cells are significantly protected by CS against arsenic-associated necrotic/mutagenic damages, which is observed in DNA-breakage studies. In conclusion, besides intensifying endogenous antioxidant system, CS polyphenols also offer a direct role on free radical scavenging activity that is associated to the protection from mutagenic DNA-breakages and prevention of tissue necrosis/carcinogenesis generated by arsenic.
Collapse
Affiliation(s)
- Nirmallya Acharyya
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sk Sajed Ali
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Bimal Deb
- Department of Bio-Medical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Bio-Medical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Epidemiology and Human Health, Agricure Biotech Research Society, Mahatabpur, Midnapore, 721101, West Bengal, India
| |
Collapse
|
14
|
Kucukkurt I, Ince S, Demirel HH, Turkmen R, Akbel E, Celik Y. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats. J Biochem Mol Toxicol 2015; 29:564-71. [PMID: 26184899 DOI: 10.1002/jbt.21729] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/30/2023]
Abstract
The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic-induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28-day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic-induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic-induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic-induced lipid peroxidation by enhancing antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03030, Afyonkarahisar, Turkey.
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03030, Afyonkarahisar, Turkey
| | | | - Ruhi Turkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03030, Afyonkarahisar, Turkey
| | - Erten Akbel
- Usak Health Training School, Usak University, 64200, Usak, Turkey
| | - Yasemin Celik
- Afyon Health Training School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
15
|
Klibet F, Boumendjel A, Khiari M, El Feki A, Abdennour C, Messarah M. Oxidative stress-related liver dysfunction by sodium arsenite: Alleviation by Pistacia lentiscus oil. PHARMACEUTICAL BIOLOGY 2015; 54:354-363. [PMID: 25946016 DOI: 10.3109/13880209.2015.1043562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Pistacia lentiscus L. (Anacardiaceae) is an evergreen shrub widely distributed throughout the Mediterranean region. Pistacia lentiscus oil (PLo) was particularly known in North African traditional medicine. Thus, people of these regions have used it externally to treat sore throats, burns and wounds, as well as they employed it internally for respiratory allergies. PLo is rich in essential fatty acids, vitamin E and polyphenols. As a very active site of metabolism, liver is reported to be susceptible to arsenic (As) intoxication. OBJECTIVE The present study evaluates the protective effect of PLo against sodium arsenite-induced hepatic dysfunction and oxidative stress in experimental Wistar rats. MATERIALS AND METHODS Twenty-eight rats were equally divided into four groups; the first served as a control, the remaining groups were respectively treated with PLo (3.3 mL/kg body weight), sodium arsenite (5.55 mg/kg body weight) and a combination of sodium arsenite and PLo. After 21 consecutive days, cellular functions were evaluated by hematological, biochemical and oxidative stress markers. RESULTS A significant decrease in the levels of red blood cells, haemoglobin (p ≤ 0.001), hematocrit (p ≤ 0.001), reduced glutathione and metallothionein (p ≤ 0.05) associated with a significant increase of malondialdehyde (p ≤ 0.001) were noticed in the arsenic-exposed group when compared to the control. The As-treated group also exhibited an increase in hepatic antioxidant enzymes namely superoxide dismutase, glutathione peroxidase (p ≤ 0.01) and catalase (p ≤ 0.05). However, the co-administration of PLo has relatively reduced arsenic effect. CONCLUSION The results showed that arsenic intoxication disturbed the liver pro-oxidant/antioxidant status. PLo co-administration mitigates arsenic-induced oxidative damage in rat.
Collapse
Affiliation(s)
- Fahima Klibet
- a Laboratory of Biochemistry and Environmental Toxicology , and
| | - Amel Boumendjel
- a Laboratory of Biochemistry and Environmental Toxicology , and
| | - Mohamed Khiari
- b Applied Biochemistry and Microbiology Laboratory, Faculty of Sciences , University of Badji Mokhtar , Annaba , Algeria
| | - Abdelfattah El Feki
- c Animal Ecophysiology Laboratory, Faculty of Sciences , Sfax , Tunisia , and
| | - Cherif Abdennour
- d Animal Ecophysiology Laboratory, Faculty of Sciences, University of Badji Mokhtar , Annaba , Algeria
| | | |
Collapse
|
16
|
Guidarelli A, Fiorani M, Azzolini C, Cerioni L, Scotti M, Cantoni O. U937 cell apoptosis induced by arsenite is prevented by low concentrations of mitochondrial ascorbic acid with hardly any effect mediated by the cytosolic fraction of the vitamin. Biofactors 2015; 41:101-10. [PMID: 25809564 DOI: 10.1002/biof.1204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 02/03/2023]
Abstract
Arsenite directly triggers cytochrome c and Smac/DIABLO release in mitochondria isolated from U937 cells. These effects were not observed in mitochondria pre-exposed for 15 min to 10 µM L-ascorbic acid (AA). In other experiments, intact cells treated for 24-72 h with arsenite were found to die by apoptosis through a mechanism involving mitochondrial permeability transition. Pre-exposure (15 min) to low micromolar concentrations of AA and dehydroascorbic acid (DHA), resulting in identical cytosolic levels of the vitamin, had a diverse impact on cell survival, as cytoprotection was only observed after treatment with AA. Also the mitochondrial accumulation of the vitamin was restricted to AA exposure. An additional indication linking cytoprotection to the mitochondrial fraction of the vitamin was obtained in experiments measuring susceptibility to arsenite in parallel with loss of mitochondrial and cytosolic AA at different times after vitamin exposure. Finally, we took advantage of our recent findings that DHA potently inhibits AA transport to demonstrate that DHA abolishes all the protective effects of AA, under the same conditions in which the mitochondrial accumulation of the vitamin is prevented without affecting the overall cellular accumulation of the vitamin.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Zhang D, Liang Y, Xie Q, Gao G, Wei J, Huang H, Li J, Gao J, Huang C. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015; 290:4784-4800. [PMID: 25561743 PMCID: PMC4335216 DOI: 10.1074/jbc.m114.598219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and.
| |
Collapse
|
18
|
Khaleghian A, Ghaffari SH, Ahmadian S, Alimoghaddam K, Ghavamzadeh A. Metabolism of arsenic trioxide in acute promyelocytic leukemia cells. J Cell Biochem 2014; 115:1729-39. [PMID: 24819152 DOI: 10.1002/jcb.24838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
Arsenic trioxide (As2O3) effectively induces complete clinical and molecular remissions in acute promyelocytic leukemia (APL) patients and triggers apoptosis in APL cells. The effect induced by As2O3 is also associated with extensive genomic-wide epigenetic changes with large-scale alterations in DNA methylation. We investigated the As2O3 metabolism in association with factors involved in the production of its methylated metabolites in APL-derived cell line, NB4. We used high performance liquid chromatography (HPLC) technique to detect As2O3 metabolites in NB4 cells. The effects of As2O3 on glutathione level, S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were investigated. Also, we studied the expression levels of arsenic methyltransferase (AS3MT) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) by real-time PCR. Our results show that after As2O3 entry into the cell, it was converted into methylated metabolites, mono-methylarsenic (MMA) and dimethylarsenic (DMA). The glutathione (GSH) production was increased in parallel with the methylated metabolites formations. As2O3 treatment inhibited DNMTs (DNMT1, DNMT3a, and DNMT3b) in dose- and time-dependent manners. The SAH levels in As2O3-treated cells were increased; however, the SAM level was not affected. The present study shows that APL cell is capable of metabolizing As2O3. The continuous formation of intracellular methylated metabolites, the inhibition of DNMTs expression levels and the increase of SAH level by As2O3 biotransformation would probably affect the DNMTs-methylated DNA methylation in a manner related to the extent of DNA hypomethylation. Production of intracellular methylated metabolites and epigenetic changes of DNA methylation during As2O3 metabolism may contribute to the therapeutic effect of As2O3 in APL.
Collapse
Affiliation(s)
- Ali Khaleghian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tehran, Iran; Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
19
|
Pal S, Sarkar C. Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:684-699. [PMID: 25233527 DOI: 10.1016/j.etap.2014.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Fluoride, a well-established environmental carcinogen, has been found to cause various neurodegenerative diseases in human. Sub-acute exposure to fluoride at a dose of 20mg/kgb.w./day for 30 days caused significant alteration in pro-oxidant/anti-oxidant status of brain tissue as reflected by perturbation of reduced glutathione content, increased lipid peroxidation, protein carbonylation, nitric oxide and free hydroxyl radical production and decreased activities of antioxidant enzymes. Decreased proteolytic and transaminase enzymes' activities, protein and nucleic acid contents and associated DNA damage were observed in the brain of fluoride intoxicated rats. The neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin level was also significantly altered after fluoride exposure. Protective effect of resveratrol on fluoride-induced metabolic and oxidative dysfunctions was evaluated. Resveratrol was found to inhibit changes in metabolic activities restoring antioxidant status, biogenic amine level and structural organization of the brain. Our findings indicated that resveratrol imparted antioxidative role in ameliorating fluoride-induced metabolic and oxidative stress in different regions of the brain.
Collapse
Affiliation(s)
- Sudipta Pal
- Nutritional Biochemistry Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, West Tripura, Agartala 799022, India.
| | - Chaitali Sarkar
- Nutritional Biochemistry Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, West Tripura, Agartala 799022, India
| |
Collapse
|
20
|
Oxidative stress induced by the chemotherapeutic agent arsenic trioxide. 3 Biotech 2014; 4:425-430. [PMID: 28324479 PMCID: PMC4145621 DOI: 10.1007/s13205-013-0170-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/27/2013] [Indexed: 01/24/2023] Open
Abstract
Arsenic compounds have been used for medicinal purposes throughout history. Arsenic trioxide (As2O3) achieved dramatic remissions in patients with acute promyelocytic leukaemia. Unfortunately, the clinical usefulness of As2O3 has been limited by its toxicity. The present study was designed to investigate the toxic effects of As2O3 at its clinical concentrations. Experimental rats were administered with As2O3 2, 4 and 8 mg/kg body weight for a period of 45 days and the serum glucose, creatine kinase, lactate dehydrogenase, lipid peroxidation and antioxidant status were measured. As2O3-treated rats showed elevated serum glucose, creatine kinase and lactate dehydrogenase concentrations. Lipid peroxidation product malondialdehyde was found to be produced more in arsenic-treated rats. Reduced glutathione and glutathione-dependant antioxidant enzymes, glutathione-S-transferase and glutathione peroxidase, and the antiperoxidative enzymes, superoxide dismutase and catalase, concentrations were reduced with the As2O3 treatment. All these toxic effects were found increased with the increase in concentration of As2O3. The results of the study indicate that As2O3 produced dose-dependant toxic side effects at its clinical concentrations.
Collapse
|
21
|
Emblica officinalis (amla) ameliorates arsenic-induced liver damage via DNA protection by antioxidant systems. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Wu F, Molinaro P, Chen Y. Arsenic Exposure and Subclinical Endpoints of Cardiovascular Diseases. Curr Environ Health Rep 2014; 1:148-162. [PMID: 25013752 DOI: 10.1007/s40572-014-0011-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mechanistic evidence suggests that arsenic exposure from drinking water increases the production of reactive oxygen species and influences inflammatory responses and endothelial nitric oxide homeostasis. These arsenic-induced events may lead to endothelial dysfunction that increases the risk of atherosclerosis and cardiovascular disease. We reviewed accumulating epidemiologic evidence that evaluated the association between arsenic exposure and intermediate markers and subclinical measures that predict future cardiovascular risk. Cross-sectional studies have indicated positive associations between high or low-to-moderate levels of arsenic exposure with indices of subclinical atherosclerosis, QT interval prolongation, and circulating markers of endothelial dysfunction. The evidence is limited for other intermediate endpoints such as markers of oxidative stress and inflammation, QT dispersion, and lipid profiles. Prospective studies are needed to enhance the causal inferences of arsenic's effects on subclinical endpoints of cardiovascular disease, especially at lower arsenic exposure levels.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Peter Molinaro
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY
| |
Collapse
|
23
|
Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine (Lond) 2014; 9:2323-37. [PMID: 24593002 DOI: 10.2217/nnm.14.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS The aims of our work were to investigate the controlling role and the efficacy of nanocapsulated quercetin drug delivery system on the decrement of inflammatory mediators such as MMP-13 in diethyl nitrosamine (DEN)-induced hepatocarcinogenesis. MATERIALS & METHODS Hepatocellular carcinoma was developed in the Swiss albino rats by the exposure of DEN. DEN administration caused the generation of reactive oxygen species, upregulation of TNF-α, IL-6, activation of MMP-13, severe oxidative damage, hyperplastic nodules with preneoplastic lesions and the histopathological changes in rat liver. RESULTS & CONCLUSION Nanocapsulated quercetin treatment restricted all alterations in DEN-mediated development of hepatocarcinogenesis. Therefore, it may be concluded that nanocapsulated quercetin may be accepted as a potent therapeutic formulation in preventing DEN-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ardhendu Kumar Mandal
- Drug Development/Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata - 700032, India
| | | | | | | | | | | |
Collapse
|
24
|
Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies. Food Chem Toxicol 2014; 66:224-36. [PMID: 24468673 DOI: 10.1016/j.fct.2014.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/23/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage.
Collapse
|
25
|
Kotyzová D, Bludovská M, Eybl V. Differential influences of various arsenic compounds on antioxidant defense system in liver and kidney of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1015-1021. [PMID: 24095718 DOI: 10.1016/j.etap.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
In this study, oxidative stress-related parameters and As retention were examined in liver and kidneys of male Wistar rats exposed to arsenic trioxide, sodium arsenite (iAsIII), sodium arsenate (iAsV), and dimethylarsinic acid (DMAsV) at a single ip dose of 3.8 mgAs/kgbw, at 24h post-exposure. In liver, lipid peroxidation increased in iAsIII-exposed rats, glutathione peroxidase activity decreased in inorganic arsenic (iAs)-exposed rats, and catalase and thioredoxin reductase activities decreased significantly in all As-exposed groups. Both As(III) and As(V) exposure elevated GSH level with no effect on glutathione reductase activity. In kidneys, catalase activity decreased significantly in iAs-exposed, rats; GSH level, glutathione reductase and thioredoxin reductase activity decreased in DMAsV-treated, rats. The tissue As retention was higher in kidneys compared to liver and was also higher in As(III)-exposed compared to As(V)-exposed rats. The results demonstrate similar potency of inorganic As(III) and As(V) compounds to inhibit/induce antioxidant defense system, with liver being more vulnerable to acute As(III)- and As(V)-induced oxidative stress.
Collapse
Affiliation(s)
- Dana Kotyzová
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Medicine in Pilsen, Czech Republic.
| | | | | |
Collapse
|
26
|
Pineda J, Herrera A, Antonio MT. Comparison between hepatic and renal effects in rats treated with arsenic and/or antioxidants during gestation and lactation. J Trace Elem Med Biol 2013; 27:236-41. [PMID: 23339766 DOI: 10.1016/j.jtemb.2012.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 12/21/2012] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether biochemical changes occurred in the liver and kidney of arsenic (As) exposed pups during gestation and lactation, and investigate the potential beneficial role of antioxidants against arsenic exposure damage. Pregnant wistar rats received the following treatments as drinking water: (1) distilled water; (2) arsenic (50 mg/L); (3) antioxidants: zinc (20 mg/L)+vitamin C (2 g/L)+vitamin E (500 mg/L); (4) arsenic (50 mg/L)+antioxidants. As- intoxicated pups showed significant decreases in liver cholesterol and triglyceride concentration, whereas Aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities were increased. Treatment with antioxidants returns these values to control ones. TBARS production in both organs and liver glutathione peroxidase (GPx) activity also increased whereas catalase (CAT) activity in both organs decreased in arsenic-exposed pups; the antioxidant administration only recover TBARS concentration to control values. Our findings suggest that administration of antioxidants during gestation and lactation could prevent some of the negative effects of arsenic.
Collapse
Affiliation(s)
- Javier Pineda
- Department of Physiology (Animal Physiology II), Faculty of Biology, Complutense University, Madrid 28040, Spain
| | | | | |
Collapse
|
27
|
de Munck E, Muñoz-Sáez E, Antonio MT, Pineda J, Herrera A, Miguel BG, Arahuetes RM. Effect of β-N-methylamino-L-alanine on oxidative stress of liver and kidney in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:193-9. [PMID: 23328118 DOI: 10.1016/j.etap.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/03/2023]
Abstract
β-N-methylamino-(L)-alanine (L)-BMAA) is a neurotoxic amino acid, found in the majority of cyanbacterial genera tested. Evidence for implication of (L)-BMAA in neurodegenerative disorders, like amyotrophic lateral sclerosis (ALS), relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. The involvement of (L)-BMAA in oxidative stress was demonstrated in several studies in the central nervous system. In the present study, we investigated the effect of (L)-BMAA on the oxidative stress responses of liver and kidney in rats treated by intraperitoneal administration with this amino acid. Oxidative stress was demonstrated by the quantification of lipid peroxidation, the measurement of both catalase and glutathione peroxidase activities, as well as the quantification of glutathione (GSH) levels and the total antioxidant capacity. It was observed that (L)-BMAA caused a significant increase in the degree of lipid peroxidation and catalase activity in both organs. A significant increase in glutathione peroxidase activity was obtained only in liver, whereas glutathione levels were also increased in both organs. The total antioxidant capacity decreased in liver and increased in kidney. These results suggest that the oxidative stress was higher in liver than in kidney, and might be crucial for (L)-BMAA toxicological action.
Collapse
Affiliation(s)
- Estefanía de Munck
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Tandon N, Roy M, Roy S, Gupta N. Protective Effect of Psidium guajava in Arsenic-induced Oxidative Stress and Cytological Damage in Rats. Toxicol Int 2013; 19:245-9. [PMID: 23293461 PMCID: PMC3532768 DOI: 10.4103/0971-6580.103658] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study was undertaken to evaluate the protective effect of aqueous extract of Psidium guajava leaves against sodium arsenite-induced toxicity in experimental rats. Animals were divided into four groups. Control group received arsenic free distilled water and three treatment groups (II, III, and IV) exposed to the arsenic (NaAsO2) (20 mg/kg b.wt) through drinking water. Group III and IV were administered a daily oral dose of P. guajava leaf extract 50 and 100 mg/kg b.wt. (AEPG50 and AEPG100) for the period of 6 weeks. Blood samples and organs were collected at the end of the experiment. Arsenic exposure resulted in significant rise in lipid peroxidation (LPO) levels in erythrocyte, liver, kidney, and brain. In addition toxin decreased (P<0.05) the level of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the studied tissues. Residual effect of arsenic in various tissues was also observed. Histopathological results revealed mild to severe type of necrosis and degenerative changes in kidney and liver of arsenic intoxicated animals. Cytological alteration in brain tissue was also observed. Treatment with AEPG100 (aqueous extract of P. guajava) @100 mg/kg body weight) significantly restored activities of oxidative stress markers like LPO levels, GSH levels, SOD, and CAT activities but having the limited protective activity of the herbal extract was observed on tissues architecture. It is therefore concluded that prophylactic co-administration of AEPG could provide specific protection from oxidative injury and to some extent on tissue damage.
Collapse
Affiliation(s)
- Neeraj Tandon
- Department of Veterinary Biochemistry, College of Veterinary Science and A.H. Durg, Chhattisgarh, India
| | | | | | | |
Collapse
|
29
|
Melkonian S, Argos M, Chen Y, Parvez F, Pierce B, Ahmed A, Islam T, Ahsan H. Intakes of several nutrients are associated with incidence of arsenic-related keratotic skin lesions in Bangladesh. J Nutr 2012; 142:2128-34. [PMID: 23077185 PMCID: PMC3497963 DOI: 10.3945/jn.112.165720] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Risk of skin lesions due to chronic arsenic exposure can be further affected by nutrient intake. We prospectively evaluated the association of nutrient intake and gender with incident skin lesions using data from the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh. Discrete time hazard models were used to estimate these effects in stratified analyses based on skin lesion severity. Overall, we observed significant associations between low intakes of various nutrients (retinol, calcium, fiber, folate, iron, riboflavin, thiamin, and vitamins A, C, and E) and skin lesion incidence, particularly for keratotic skin lesions. Associations for vitamins C and E showed significant linear trends. Gender-specific analyses revealed an inverse association between the lowest quartile of nutrient intake and keratotic skin lesion incidence for retinol equivalents, calcium, folate, iron, and fiber among women. Interactions by gender were observed for retinol equivalents (P-interaction = 0.03), calcium (P-interaction = 0.04), vitamin A (P-interaction = 0.03), and riboflavin (P-interaction = 0.04) with the incidence of keratotic skin lesions. Understanding differential susceptibility to skin lesion incidence based on nutrient intake will help researchers develop targeted interventions to prevent health consequences of arsenic poisoning in Bangladesh and beyond.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Environmental Medicine, New York University, NY; and
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Brandon Pierce
- Department of Health Studies, and,Departments of Medicine and Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Alauddin Ahmed
- U-Chicago Research Bangladesh, Ltd, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Ltd, Mohakhali, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, and,Departments of Medicine and Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, IL,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic-endemic region of West Bengal, India. Public Health Nutr 2012. [DOI: 10.1017/s1368980012004697] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractObjectiveTo assess whether nutritional deficiency increases susceptibility to arsenic-related health effects.DesignAssessment of nutrition was based on a 24 h recall method of all dietary constituents.SettingEpidemiological cross-sectional study was conducted in an arsenic-endemic area of West Bengal with groundwater arsenic contamination.SubjectsThe study was composed of two groups – Group 1 (cases,n108) exhibiting skin lesions and Group 2 (exposed controls,n100) not exhibiting skin lesions – age- and sex-matched and having similar arsenic exposure through drinking water and arsenic levels in urine and hair.ResultsBoth groups belonged to low socio-economic strata (Group 1 significantly poorer,P< 0·01) and had low BMI (prevalence of BMI < 18·5 kg/m2: in 38 % in Group 1 and 27 % in Group 2). Energy intake was below the Recommended Daily Allowance (set by the Indian Council of Medical Research) in males and females in both groups. Increased risk of arsenical skin lesions was found for those in the lowest quintile of protein intake (v. highest quintile: OR = 4·60, 95 % CI 1·36, 15·50 in males; OR = 5·62, 95 % CI 1·19, 34·57 in females). Significantly lower intakes of energy, protein, thiamin, niacin, Mg, Zn and choline were observed in both males and females of Group 1 compared with Group 2. Significantly lower intakes of carbohydrate, riboflavin, niacin and Cu were also observed in female cases with skin lesions compared with non-cases.ConclusionsDeficiencies of Zn, Mg and Cu, in addition to protein, B vitamins and choline, are found to be associated with arsenical skin lesions in West Bengal.
Collapse
|
31
|
Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ, Tripathi RD, Nautiyal CS. Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. ENVIRONMENT INTERNATIONAL 2012; 46:16-22. [PMID: 22664651 DOI: 10.1016/j.envint.2012.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/29/2012] [Indexed: 05/13/2023]
Abstract
Recent breakthroughs in rice arsenic (As) research demonstrate that As accumulation significantly affects trace nutrients in rice grain. In the present study we analyzed the amino acid (AA) profile of sixteen rice genotypes differing in grain As accumulation, grown at three sites with different soil As concentrations, in ascending order, Chinsurah<Purbosthali<Birnagar. Grain As accumulation negatively correlated with essential amino acids (EAAs) which were more prominent in high As accumulating rice genotypes (HAARGs). Conversely, non-essential amino acids (NEAAs) showed an increase in low As accumulating rice genotypes (LAARGs) but a decrease in HAARGs. EAAs like isoleucine, leucine, valine, phenylalanine, and tyrosine also decreased in most of the genotypes. NEAAs like glutamic acid, glycine, proline, and histidine showed an increase in all LAARGs. Likewise, sulfur containing AAs (methionine and cysteine) increased in LAARGs but decreased in HAARGs. Among NEAAs in HAARGs, only arginine and serine showed some induction in most of the genotypes. At the highest As site (Birnagar) total EAAs and NEAAs show significant reduction in HAARGs compared to LAARGs. The study concluded that As accumulation in rice grain alters EAAs and NEAAs differentially, and reduction was more pronounced in HAARGs than in LAARGs. Thus, As tainted rice limits required levels of AAs in rice based diets and therefore cannot alone fulfill the recommended daily intake (RDI) of AAs.
Collapse
Affiliation(s)
- Sanjay Dwivedi
- CSIR- National Botanical Research Institute, Lucknow - 226 001, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ince S, Kucukkurt I, Turkmen R, Demirel HH, Sever E. Dietary Yucca schidigera supplementation reduces arsenic-induced oxidative stress in Swiss albino mice. Toxicol Ind Health 2012; 29:904-14. [DOI: 10.1177/0748233712446730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to clarify the effects of dietary supplementation with Yucca schidigera (Ys) on lipid peroxidation (LPO), antioxidant activity, some biochemical parameters and histopathological changes in arsenic-exposed mice. Forty Swiss albino male mice were divided into five equal groups. Group I (control group) was given normal diet and tap water for 28 days. Group II (arsenic group) was given normal diet and 100 mg/L arsenic along with drinking water for 28 days. Groups III–V were given three different doses of Ys (50, 100 and 200 mg/kg) in supplemented diet and arsenic (100 mg/L) along with drinking water throughout the entire period of 28 days. The arsenic significantly increased serum biochemical parameters and malondialdehyde levels in blood and tissue. However, arsenic significantly decreased tissue glutathione concentration, erythrocyte superoxide dismutase and catalase activities. In contrast, dietary supplementation of Ys, in a dose-dependent manner, resulted in reversal of arsenic-induced oxidative stress, LPO and activities of antioxidant enzymes. Moreover, Ys also exhibited protective action against the arsenic-induced focal gliosis and hyperemi in brain, necrosis and degeneration in liver, degeneration and dilatation in Bowman’s capsule of kidney and hyaline degeneration in heart tissue of mice. Consequently, our results demonstrate that Ys especially high-dose supplementation in diet decreases arsenic-induced oxidative stress and enhances the antioxidant defence mechanism and regenerate of tissues in Swiss albino mice.
Collapse
Affiliation(s)
- Sinan Ince
- Department of Pharmacology and Toxicology, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Department of Biochemistry, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Ruhi Turkmen
- Department of Pharmacology and Toxicology, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | | | - Emine Sever
- Department of Animal Health, Food, Agriculture and Animal Husbandry Provincial Directorate, Sivas, Turkey
| |
Collapse
|
33
|
Maiti S, Chattopadhyay S, Deb B, Samanta T, Maji G, Pan B, Ghosh A, Ghosh D. Antioxidant and metabolic impairment result in DNA damage in arsenic-exposed individuals with severe dermatological manifestations in Eastern India. ENVIRONMENTAL TOXICOLOGY 2012; 27:342-50. [PMID: 20925122 DOI: 10.1002/tox.20647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 05/02/2023]
Abstract
Arsenic is an environmental toxicant, free-radical generator, carcinogenic agent, and aging promoter. Recently, blood samples were analyzed from individuals (control- male 12, female 13; arsenic-exposed- male 16, female 14; and exposed to ≥100 μg/L As, ≥10 y) with dermatological symptoms in few affected villages in Eastern India to unravel their hematopoietic, metabolic, and antioxidant profiles. White blood cells recovered from buffy coat were used for DNA fragmentation test. Present observation suggests that significant number of individuals developed pigmentation and palmoplantar hyperkeratosis with black-brownish patch on their body and many of those developed carcinomas. Hematopoietic data show a significant increase in eosinophil and decrease in monocyte count in either sex. Though insignificant, an increase in neutrophil in female and lymphocyte count in male arsenic-exposed individuals are supported by the earlier report on sex dimorphic immune sensitization. Significant increase in serum alanine transaminase in both sexes and bilirubin only in male suggests the eventuality of hepatic disintegration. Arsenic exposure significantly decreased serum amylase in female. A significant decrease in antioxidant components like catalase, soluble thiol, and recently recognized uric acid worsened the situation by generating free radicals as observed in significant rise in malondialdehyde level, which finally increased DNA fragmentation and arsenic-associated mutagenesis and carcinogenesis. This could attribute to lowering in immune competence and related necrotic and/or apoptotic manifestations.
Collapse
Affiliation(s)
- Smarajit Maiti
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-81. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
35
|
Pinton S, Luchese C, Stangherlin EC, Nogueira CW. Acute exposure to diphenyl ditelluride causes oxidative damage in rat lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:521-526. [PMID: 20709397 DOI: 10.1016/j.ecoenv.2010.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/15/2010] [Accepted: 07/17/2010] [Indexed: 05/29/2023]
Abstract
The present study evaluated the effect of acute exposure to diphenyl ditelluride [(PhTe)(2)] on oxidative status in lungs of rats. Rats were exposed to a single subcutaneous application of (PhTe)(2) at the doses of 0.3, 0.6, 0.9 μmol/kg or vehicle. After 72 h of exposure to (PhTe)(2), biochemical parameters of oxidative stress were carried out in lungs of rats. The lungs of rats exposed to (PhTe)(2) showed an increase in the levels of lipid peroxidation, reactive species and non-protein thiol. Alterations in superoxide dismutase activity were observed at all tested doses. (PhTe)(2) caused an increase in catalase activity and a reduction in ascorbic acid levels at the dose of 0.9 μmol/kg. The oxidative damage was more pronounced in animals treated with the highest dose of (PhTe)(2). Thus, this study demonstrated that acute exposure to (PhTe)(2) induced oxidative damage and an adaptive response of antioxidants in pulmonary tissue of rats.
Collapse
Affiliation(s)
- Simone Pinton
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
36
|
Ghosh D, Ghosh S, Sarkar S, Ghosh A, Das N, Das Saha K, Mandal AK. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem Biol Interact 2010; 186:61-71. [PMID: 20371363 DOI: 10.1016/j.cbi.2010.03.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 01/11/2023]
Abstract
Arsenic, the environmental toxicant causes oxidative damage to liver and produces hepatic fibrosis. The theme of our study was to evaluate the therapeutic efficacy of liposomal and nanocapsulated herbal polyphenolic antioxidant quercetin (QC) in combating arsenic induced hepatic oxidative stress, fibrosis associated upregulation of its gene expression and plasma TGF beta (transforming growth factor beta) in rat model. A single dose of arsenic (sodium arsenite-NaAsO(2), 13 mg/kgb.wt) in oral route causes the generation of reactive oxygen species (ROS), arsenic accumulation in liver, hepatotoxicity and decrease in hepatic plasma membrane microviscosity and antioxidant enzyme levels in liver. Arsenic causes fibrosis associated elevation of its gene expression in liver, plasma TGF ss (from normal value 75.2+/-8.67 ng/ml to 196.2+/-12.07 ng/ml) and release of cytochrome c in cytoplasm. Among the two vesicular delivery systems formulated with QC, polylactide nanocapsules showed a promising result compared to liposomal delivery system in controlling arsenic induced alteration of those parameters. A single dose of 0.5 ml of nanocapsulated QC suspension (QC 2.71 mg/kg b.wt) when injected to rats 1h after arsenic administration orally protects liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress associated gene expression of liver. Histopathological examination also confirmed the pathological improvement in liver. Nanocapsulated plant origin flavonoidal compound may be a potent formulation in combating arsenic induced upregulation of gene expression of liver fibrosis through a complete protection against oxidative attack in hepatic cells of rat liver.
Collapse
Affiliation(s)
- Debasree Ghosh
- Biomembrane Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents. Food Chem Toxicol 2010; 48:1072-7. [DOI: 10.1016/j.fct.2010.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/22/2009] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
|
38
|
Rana T, Asit Kumar Bera, Das S, Pan D, Bandyopadhyay S, Bhattacharya D, De S, Subrata Kumar Das. Supplementation of ascorbic acid prevents oxidative damages in arsenic-loaded hepatic tissue of rat: An ex vivo study. Hum Exp Toxicol 2010; 29:965-72. [DOI: 10.1177/0960327110364641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress due to arsenic toxicity and ameliorative potentiality of L-ascorbic acid was evaluated in an ex vivo system of rat hepatic tissue. The study revealed that arsenic increased the activity of superoxide dismutase (SOD) and catalase (CAT) and the level of lipid peroxidation (LPO), protein carbonyl (PC) and nitric oxide (NO) at 1 hour, 1.5 hours and 2 hours of incubation. Co-treatment with L-ascorbic acid was found effective to normalize the activity of SOD and CAT and the production of LPO, PC and NO in hepatic tissue. This ex vivo study suggested that ascorbic acid is helpful to ameliorate arsenic-induced oxidative stress. This may be one of the alternative screening systems to study the efficacy of antioxidant and hepatoprotective agent.
Collapse
Affiliation(s)
- Tanmoy Rana
- Indian Veterinary Research Institute, Kolkata, India
| | | | | | - Diganta Pan
- Indian Veterinary Research Institute, Kolkata, India
| | | | | | - Sumanta De
- Indian Veterinary Research Institute, Kolkata, India
| | | |
Collapse
|
39
|
Chandronitha C, Ananthi S, Ramakrishnan G, Lakshmisundaram R, Gayathri V, Vasanthi HR. Protective role of tannin-rich fraction of Camellia sinensis in tissue arsenic burden in Sprague Dawley rats. Hum Exp Toxicol 2010; 29:705-19. [PMID: 20144955 DOI: 10.1177/0960327110361503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The protective effect of green tea (Camellia sinensis) was tested against arsenic-induced toxicity. However, the possible role of tannins in green tea in alleviating hepatic and renal oxidative injury has also been studied. Administration of sodium arsenite (100 mg/kg/day) for 28 days in Sprague Dawley female rats resulted in significant reduction of biochemical parameters such as delta-aminolevulinic acid dehydratase (ALAD), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and elevation of thiobarbituric acid reactive substances (TBARS) and the index of nitrite/nitrate (NOx) levels. The tissue arsenic burden was increased after arsenic exposure for a period of 28 days. Green tea crude fraction (GTC) co-treated with sodium arsenite for 28 days caused significant (p < .01) elevation of ALAD, GSH, GPx, SOD, and nitrate/nitrite levels and reduction of the TBARS level and tissue burden when compared to detannified green tea fraction (GTDT)-treated groups. The protective role of tannin-rich fraction of C. sinensis when compared to the detannified fraction was also confirmed by histological examinations. The greater activity of GTC than that of detannified green tea fraction correlates with the higher content of tannins in green tea. Overall, these results indicate that the tannin-rich green tea could have improved the defense mechanism against arsenic-induced oxidative stress and reduced the tissue arsenic burden.
Collapse
Affiliation(s)
- C Chandronitha
- Herbal and Indian Medicine Research Laboratory, Department of Biochemistry, Sri Ramachandra University, Chennai, India
| | | | | | | | | | | |
Collapse
|
40
|
Gentry PR, McDonald TB, Sullivan DE, Shipp AM, Yager JW, Clewell HJ. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:1-14. [PMID: 19551812 DOI: 10.1002/em.20505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 microM, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10-100 microM), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA.
Collapse
|
41
|
Bera AK, Rana T, Das S, Bandyopadhyay S, Bhattacharya D, Pan D, De S, Das SK. L-Ascorbate protects rat hepatocytes against sodium arsenite--induced cytotoxicity and oxidative damage. Hum Exp Toxicol 2009; 29:103-11. [PMID: 20028703 DOI: 10.1177/0960327109357215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sodium arsenite-exposed hepatocytes of rat showed higher production of nitric oxide (NO) and increased lipid peroxidation (LPO) level vis-a-vis activity of superoxide dismutase (SOD) and catalase (CAT) were significantly lowered. Subsequently, the cell proliferation index (CPI) and cell viability were also reduced. Treatment with L-ascorbate was found effective in normalizing the arsenic-induced alteration of SOD and CAT activity and LPO level in rat hepatocytes. These observations indicated that L-ascorbate also has potent cytoprotective role as it could reduce the NO production and normalize the cell proliferation and viability of hepatocytes. Therefore, the in vitro study suggested that ascorbic acid is helpful to ameliorate the arsenic-induced cytotoxicity and oxidative stress of rat hepatocytes.
Collapse
Affiliation(s)
- Asit Kumar Bera
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Singh N, Rana SVS. Effect of insulin on arsenic toxicity in diabetic rats—liver function studies. Biol Trace Elem Res 2009; 132:215-26. [PMID: 19452132 DOI: 10.1007/s12011-009-8396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/23/2009] [Indexed: 12/25/2022]
Abstract
Arsenic (iAs)-induced diabetic mellitus has been debated by several workers. However, role of insulin in iAs-induced diabetes is yet to be investigated. Present report suggests that iAs promotes insulin secretion in diabetic rats and inhibits hyperglycemia. Whereas, reverse effects were recorded after insulin treatment to diabetic and iAs-treated rats. These conditions affect accumulation of iAs in liver. It decreased in diabetic and iAs-treated rats but increased after insulin treatment. Reciprocal effects were observed on serum transaminases and total bilirubin. Nevertheless, activity of glucose-6-phosphatase in the liver was stimulated by insulin treatment to diabetic and arsenic-fed rats. These results suggest that manifestations of arsenic-induced diabetes mellitus are not modulated or reversed by insulin. Observations on liver function further suggest that iAs is less toxic in diabetic rats. This protective effect has been attributed to noninsulin-dependent carbohydrate regulatory mechanisms. Diabetes certainly alters the pharmacodynamics and pharmacokinetics of iAs in rat.
Collapse
Affiliation(s)
- Neetu Singh
- CCS University, Meerut, Uttar Pradesh, India
| | | |
Collapse
|
43
|
Sharma A, Sharma MK, Kumar M. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact 2009; 180:20-30. [DOI: 10.1016/j.cbi.2009.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
44
|
Heck JE, Nieves JW, Chen Y, Parvez F, Brandt-Rauf PW, Graziano JH, Slavkovich V, Howe GR, Ahsan H. Dietary intake of methionine, cysteine, and protein and urinary arsenic excretion in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:99-104. [PMID: 19165394 PMCID: PMC2627873 DOI: 10.1289/ehp.11589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 08/22/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND In Bangladesh, millions of people are exposed to arsenic in drinking water; arsenic is associated with increased risk of cancer. Once ingested, arsenic is metabolized via methylation and excreted in urine. Knowledge about nutritional factors affecting individual variation in methylation is limited. OBJECTIVES The purpose of this study was to examine associations between intakes of protein, methionine, and cysteine total urinary arsenic in a large population-based sample. METHODS The study subjects were 10,402 disease-free residents of Araihazar, Bangladesh, who participated in the Health Effects of Arsenic Longitudinal Study (HEALS). Food intakes were assessed using a validated food frequency questionnaire developed for the study population. Nutrient composition was determined by using the U.S. Department of Agriculture National Nutrient Database for Standard Reference. Generalized estimating equations were used to examine association between total urinary arsenic across quintiles of nutrient intakes while controlling for arsenic exposure from drinking water and other predictors of urinary arsenic. RESULTS Greater intakes of protein, methionine, and cysteine were associated with 10-15% greater total urinary arsenic excretion, after controlling for total energy intake, body weight, sex, age, tobacco use, and intake of some other nutrients. CONCLUSIONS Given previously reported risks between lower rates of arsenic excretion and increased rates of cancer, these findings support the role of nutrition in preventing arsenic-related disease.
Collapse
Affiliation(s)
- Julia E. Heck
- Department of Epidemiology, Mailman School of Public Health and
- Institute for Social and Economic Research and Policy, Columbia University, New York, New York, USA
| | - Jeri W. Nieves
- Department of Epidemiology, Mailman School of Public Health and
| | - Yu Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul W. Brandt-Rauf
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Habibul Ahsan
- Department of Epidemiology, Mailman School of Public Health and
- Department of Health Studies and Cancer Research Center, University of Chicago, Chicago, Illinois, USA
- Address correspondence to H. Ahsan, Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, 5841 South Maryland Ave., Suite N102, Chicago, IL 60637 USA. Telephone: (773) 834-9956. Fax: (773) 834-0139. E-mail:
| |
Collapse
|
45
|
Ghosh A, Mandal AK, Sarkar S, Panda S, Das N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 2008; 84:75-80. [PMID: 19036345 DOI: 10.1016/j.lfs.2008.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 10/23/2008] [Accepted: 11/04/2008] [Indexed: 11/15/2022]
Abstract
AIMS This study was performed to evaluate the therapeutic efficacy of nanocapsulated flavonoidal quercetin (QC) in combating arsenic-induced reactive oxygen species (ROS)-mediated oxidative damage in hepatocytes and brain cells in a rat model. MAIN METHODS Hepatic and neuronal cell damage in rats was made by a single injection (sc) of sodium arsenite (NaAsO(2), 13 mg/kg b. wt. in 0.5 ml of physiological saline). A single dose of 500 microl of quercetin suspension (QC) (QC 8.98 micromol/kg) or 500 microl of nanocapsulated QC (NPQC) (QC 8.98 micromol/kg) was given orally to rats at 90 min prior to the arsenite injection. KEY FINDINGS Inorganic arsenic depositions (182+/-15.6 and 110+/-12.8 ng/g protein) were found in hepatic and neuronal mitochondrial membranes. Antioxidant levels in hepatic and neuronal cells were reduced significantly by arsenic. NPQC prevented the arsenite-induced reduction in antioxidant levels in the liver and brain. Arsenic induced a substantial decrease in liver and brain cell membrane microviscosities, and NPQC treatment resulted in a unique protection against the loss. A significant correlation between mitochondrial arsenic and its conjugated diene level was observed both in liver and brain cells for all experimental rats. SIGNIFICANCE Arsenic-specific antidotes are used against arsenic-induced toxicity. However, the target site is poorly recognized and therefore achieving an active concentration of drug molecules can be a challenge. Thus, our objective was to formulate NPQC and to investigate its therapeutic potential in an oral route against arsenite-induced hepatic and neuronal cell damage in a rat model.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Biomembrane Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700032, India
| | | | | | | | | |
Collapse
|
46
|
Flora SJS, Chouhan S, Kannan GM, Mittal M, Swarnkar H. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2008; 1:39-45. [PMID: 19794907 PMCID: PMC2715192 DOI: 10.4161/oxim.1.1.6481] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/03/2008] [Accepted: 06/16/2008] [Indexed: 11/19/2022]
Abstract
Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA), administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks) were treated with taurine (100 mg/kg, i.p., once daily), monoisoamyl dimercaptosuccinic acid (MiADMSA) (50 mg/kg, oral, once daily) either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood delta-aminolevulinic acid dehydratase (ALAD) activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP) level. Clinical hematological variables like white blood cells (WBC), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) showed significant decrease with a significant elevation in platelet (PLT) count. These changes were accompanied by significant decrease in superoxide dismutase (SOD) activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH) level and an increase in oxidized glutathione (GSSG). These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co-administration of a higher dose of taurine (100 mg/kg) and MiADMSA provided more pronounced effects in improving the antioxidant status of liver and kidney and reducing body arsenic burden compared to the individual treatment of MiADMSA or taurine. The results suggest that in order to achieve better effects of chelation therapy, co-administration of taurine with MiADMSA might be preferred.
Collapse
Affiliation(s)
- Swaran J S Flora
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India.
| | | | | | | | | |
Collapse
|
47
|
Sharma A, Sharma MK, Kumar M. Protective Effect of Mentha piperita against Arsenic-Induced Toxicity in Liver of Swiss Albino Mice. Basic Clin Pharmacol Toxicol 2007; 100:249-57. [PMID: 17371529 DOI: 10.1111/j.1742-7843.2006.00030.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protective role of leaves of Mentha piperita Linn (Mint) was studied in adult Swiss albino mice against arsenic-induced hepatopathy. The animals were divided into four groups. Group I: only vehicle (0.9% NaCl) was administered. Group II: the animals received Mentha leaf extract (1 g/kg body weight per day) orally for 30 days. Group III: animals were treated with sodium arsenite (4 mg/kg body weight) intraperitoneally in 0.9% NaCl. Group IV: animals were given Mentha extract for 10 consecutive days prior to sodium arsenite treatment and continuously for 30 days after sodium arsenite treatment. The animals from the above groups were killed at various time-points, and body weight and liver weight were measured. The biochemical estimation of lipid peroxidation (LPO), reduced glutathione (GSH), lactate dehydrogenase (LDH), acid phosphatase (ACP), and alkaline phosphatase (ALP) in liver and serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) in serum were done. In the arsenic-treated group there was a significant increase in ACP, ALP, SGOT, SGPT and LPO content, whereas a significant decrease was recorded in body weight, liver weight, GSH and LDH activity in liver. Pre- and post-treatment of Mentha with arsenic significantly alters the biochemical parameters in liver. A significant decline in ACP, ALP, SGOT, SGPT and LPO content was observed. However, a significant increase in body weight, liver weight, GSH content and LDH activity in liver was estimated. The results indicate that the Mentha extract may be useful in reducing the side effects of arsenic-induced hepatopathy.
Collapse
Affiliation(s)
- Ambika Sharma
- Cell and Molecular Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, India
| | | | | |
Collapse
|
48
|
Mandal AK, Das S, Basu MK, Chakrabarti RN, Das N. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther 2006; 320:994-1001. [PMID: 17138861 DOI: 10.1124/jpet.106.114215] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arsenic, the environmental metalloid toxicant, is known to induce oxidative damage to liver and produce hepatic fibrosis. The theme of our study was to optimize and evaluate the therapeutic efficacy of galactosylated liposomal flavonoidal antioxidant, quercetin (QC), in combating arsenic-induced hepatic fibrogenesis. The rats of the hepatic damage group were injected s.c. a single dose of sodium arsenite (NaAsO(2)) (100.06 microM/kg b. wt. in 0.5 ml of physiological saline). Hepatocytes and stellate cells were separated. Mitochondrial membranes were isolated from all those separated cells. Oxidative damage was monitored at different isolated subcellular parts of different hepatic cells. Liver fibrosis was also induced by the injection of NaAsO(2). Galactosylated liposomal QC injection before NaAsO(2) treatment checked fibrogenesis completely by protecting the liver from oxidative attack in cellular and subcellular levels. The maximal protections from hepatocellular and fatty metamorphosis, necrosis, Kupffer cell hyperplasia, fibrosis, and in the deposition of collagen contents were observed and reconfirmed by our histopathological and histochemical analysis when rats were treated with galactosylated liposomal QC before NaAsO(2) injection. Application of galactosylated liposomal QC may be a potent therapeutic approach for NaAsO(2)-induced fibrogenesis through a complete protection against oxidative attack in cellular and subcellular parts of rat liver.
Collapse
Affiliation(s)
- Ardhendu K Mandal
- Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
49
|
Pal S, Chatterjee AK. Possible beneficial effects of melatonin supplementation on arsenic-induced oxidative stress in Wistar rats. Drug Chem Toxicol 2006; 29:423-33. [PMID: 16931443 DOI: 10.1080/01480540600837993] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The effects of melatonin on arsenic-induced changes on cellular antioxidant system were studied in male rats of the Wistar strain. Arsenic treatment (i.p. as sodium arsenite) was done at a dose of 5.55 mg/kg body weight (equivalent to 35% of LD50) per day for a period of 30 days, while melatonin supplementation (i.p.) was performed at a dose of 10 mg/kg body weight per day for the last 5 days prior to sacrifice. Melatonin supplementation reversed the arsenic-mediated changes in reduced glutathione (GSH) level and lipid peroxidation in liver and kidney. Arsenic-induced decreased glutathione reductase activity in liver and increased activity in kidney was appreciably counteracted by melatonin. Melatonin also inhibited arsenic-induced free hydroxyl radical production in the tissues. The decreased superoxide dismutase (SOD) activity in liver and kidney and that of catalase in liver due to arsenic treatment were also counteracted by melatonin. It is suggested that melatonin acts as a protective agent against arsenic-induced cellular oxidative stress.
Collapse
Affiliation(s)
- Sudipta Pal
- Biochemistry and Nutrition Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Calcutta, India
| | | |
Collapse
|
50
|
Chung JS, Haque R, Guha Mazumder DN, Moore LE, Ghosh N, Samanta S, Mitra S, Hira-Smith MM, von Ehrenstein O, Basu A, Liaw J, Smith AH. Blood concentrations of methionine, selenium, beta-carotene, and other micronutrients in a case-control study of arsenic-induced skin lesions in West Bengal, India. ENVIRONMENTAL RESEARCH 2006; 101:230-7. [PMID: 16332366 DOI: 10.1016/j.envres.2005.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 10/15/2005] [Accepted: 10/20/2005] [Indexed: 05/05/2023]
Abstract
Previous studies have suggested that susceptibility to arsenic toxicity could be influenced by micronutrients, in particular selenium, methionine, and beta-carotene. A case-control study was conducted in West Bengal, India, in a region known to have groundwater arsenic contamination, to determine whether differences in micronutrient status contribute to susceptibility to arsenic-induced skin lesions. Micronutrient status was assessed by blood levels of specific micronutrients and metabolic indicators. Blood was obtained from 180 cases with skin lesions and 192 controls. Blood assays measured micronutrients and carotenoids (folate, selenium, vitamin B12, vitamin B6, retinol, alpha-tocopherol, lutein/zeaxanthin, beta-carotene, lycopene, beta-cryptoxanthin) and metabolic indicators such as glucose, cholesterol, transthyretin, amino acids, and proteins potentially associated with methylation (cysteine, homocysteine, methionine, glutathione). The distributions of nutrient concentrations were similar in cases and controls. The median selenium concentrations in cases and controls were both 1.15 micromol/L, and there was little evidence of differences in other micronutrients. Odds ratios (ORs) for arsenic-induced skin lesions were estimated for each quartile of nutrient concentrations, using the quartile with the highest nutrient level as the referent group. There were no clear trends associated with deficiencies of any micronutrient or metabolic indicator. For decreasing quartiles of selenium, the OR estimates were 1.00, 0.67, 0.99, 0.80; P=0.81; for methionine, the OR estimates were 1.00, 0.83, 0.78, 0.72; P=0.29. For beta-carotene, the ORs were 1.00, 0.53, 0.51, 0.96, demonstrating no increased risk at the lower quartiles. The measured micronutrients and metabolic indicators investigated do not appear to modify the risk of developing arsenic-induced skin lesions. The lack of any trend of increasing risk with lower selenium, vitamin E, and beta-carotene concentrations has important implications for proposed therapeutic interventions. The emphasis of interventions should be on reducing arsenic exposure.
Collapse
Affiliation(s)
- Joyce S Chung
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|