1
|
Alkhalaf M, Mohamed NA, El-Toukhy SE. Prophylactic consequences of sodium salicylate nanoparticles in cisplatin-mediated hepatotoxicity. Sci Rep 2023; 13:10045. [PMID: 37344526 DOI: 10.1038/s41598-023-35916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Unintended side effects linked to the antineoplastic drug cisplatin are a major drawback in its clinical application. The underlying source of these side effects include the generation of reactive oxygen species which are toxic and damaging to tissues and organs. In the present study the anti-inflammatory and antioxidant potential of sodium salicylate was assessed against cisplatin-induced hepatotoxicity in albino rats. Sodium salicylate was used as a model drug and loading into hollow structured porous silica using ultrasound-assisted sol-gel method to produce a nanoemulsion. Transmission Electron Microscopy and Dynamic Light scattering analysis were employed to assess the structural properties and stability of this model. Liver function was assessed by measuring biomarkers including ALT, AST & GGT and oxidant/antioxidant markers including MDA, NO, PON, GSH, MCP1 & AVP in serum or liver tissue. Additionally, blood leukocyte DNA damage was evaluated. Cisplatin significantly altered the normal levels of all biomarkers confirming its hepatotoxic effects. In contrast, treatment with sodium salicylate-loaded silica nanoemulsion significantly restored the levels of these markers. The finding suggests the protective effects of this model drug in preventing cisplatin-induced hepatotoxicity, and therefore may have implications in attenuating cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Maha Alkhalaf
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Nadia A Mohamed
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
2
|
Hafez HS, Kotb ES, El-Khayat Z, Elshaarawy RFM, Serag WM. The diminution and modulation role of water-soluble gallic acid-carboxymethyl chitosan conjugates against the induced nephrotoxicity with cisplatin. Sci Rep 2022; 12:19903. [PMID: 36402822 PMCID: PMC9675851 DOI: 10.1038/s41598-022-21681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
The toxicity of cisplatin (CDDP) toward the renal tubules and its severe effects on the proximal tubules limits its further use in cancer therapy. The current study was undertaken to evaluate the protective effects of gallic acid-grafted O-carboxymethyl chitosan (GA@CMCS) against nephrotoxicity induced by CDDP in rats. Renal injury was assessed in the GA@CMCS/CDDP-treated rats using kidney injury molecule-1 (KIM-1). Moreover, the levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) were measured. The comet assay was performed to measure the DNA damage. The renoprotective activity of GA@CMCS was supported by histo- and immuno-pathological studies of the kidney. GA@CMCS significantly normalized the increases in kidney homogenate of KIM-1, MDA, and NO-induced by CDDP and significantly increased GSH as compared with the CDDP group. GA@CMCS also significantly protects rat kidneys from CDDP-induced histo- and immuno-pathological changes. Both biochemical findings and histo- and immuno-pathological evidence showed the renoprotective potential of GA@CMCS against CDDP-induced oxidative stress, inflammation, and renal dysfunction in rats. In conclusion, GA@CMCS has been shown to mitigate the nephrotoxicity impact of CDDP in cancer therapy.
Collapse
Affiliation(s)
- Hani S. Hafez
- grid.430657.30000 0004 4699 3087Zoology Department, Faculty of Science, Suez University, Suez, 43533 Egypt
| | - Ebtesam S. Kotb
- grid.430657.30000 0004 4699 3087Chemistry Department, Faculty of Science, Suez University, Suez, 43533 Egypt
| | - Zakaria El-Khayat
- grid.419725.c0000 0001 2151 8157Medical Biochemistry Department, National Research Center Egypt, Giza, Egypt
| | - Reda F. M. Elshaarawy
- grid.430657.30000 0004 4699 3087Chemistry Department, Faculty of Science, Suez University, Suez, 43533 Egypt
| | - Waleed M. Serag
- grid.430657.30000 0004 4699 3087Chemistry Department, Faculty of Science, Suez University, Suez, 43533 Egypt
| |
Collapse
|
3
|
Light Stability, Pro-Apoptotic and Genotoxic Properties of Silver (I) Complexes of Metronidazole and 4-Hydroxymethylpyridine against Pancreatic Cancer Cells In Vitro. Cancers (Basel) 2020; 12:cancers12123848. [PMID: 33419296 PMCID: PMC7767315 DOI: 10.3390/cancers12123848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Antimicrobial properties of silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine are well recognized. However, little is known about its anticancer activity toward human pancreatic cancer cells. Our in vitro study revealed that silver (I) ion and its complexes with metronidazole and 4-hydroxymethylpyridine induced pancreatic cancer cells death associated with genotoxic and proapoptotic properties. In turn, the stability of active substances is of crucial importance because it determines the efficacy and applicability in clinical use. Therefore, we also evaluated photostability of silver (I) nitrate and its complexes with metronidazole and 4- hydroxymethylpyridine. Our results showed that studied complexes are more photochemically stable than silver salts, which makes them better candidates for clinical therapy. Abstract Antimicrobial properties of silver (I) ion and its complexes are well recognized. However, recent studies suggest that both silver (I) ion and its complexes possess anticancer activity associated with oxidative stress-induced apoptosis of various cancer cells. In this study, we aimed to investigate whether silver nitrate and its complexes with metronidazole and 4-hydroxymethylpyridine exert anticancer action against human pancreatic cancer cell lines (PANC-1 and 1.2B4). In the study, we compared decomposition speed for silver complexes under the influence of daylight and UV-A (ultraviolet-A) rays. We employed the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide) assay to evaluate the cytotoxicity and the alkaline comet assay to determine genotoxicity of silver nitrate and its complexes. Flow cytometry and the Annexin V-FITC/PI apoptosis detection kit were used to detect the apoptosis of human pancreatic cancer cells. We found a dose dependent decrease of both pancreatic cancer cell line viability after exposure to silver nitrate and its complexes. The flow cytometry analysis confirmed that cell death occurred mainly via apoptosis. We also documented that the studied compounds induced DNA damage. Metronidazole and 4-hydroxymethylpyridine alone did not significantly affect viability and level of DNA damage of pancreatic cancer cell lines. Complex compounds showed better stability than AgNO3, which decomposed slower than when exposed to light. UV-A significantly influences the speed of silver salt decomposition reaction. To conclude, obtained data demonstrated that silver nitrate and its complexes exerted anticancer action against human pancreatic cancer cells.
Collapse
|
4
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
5
|
Wahby AA, Elwassif M, Magdy M, Hamid TAA, Ibrahim AA. Association between DNA Damage and Serum Levels of Copper, Zinc, and Selenium in Full-Term Neonates with Late-Onset Sepsis. J PEDIAT INF DIS-GER 2020. [DOI: 10.1055/s-0040-1717126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Objective The alteration in certain trace elements is usually associated with impaired immune function and higher oxidative stress. Therefore, these elements are suggested to play an important role in the pathogenesis of neonatal sepsis. We aimed to evaluate copper (Cu), zinc (Zn), and selenium (Se) serum levels in full-term neonates with late-onset sepsis (LOS) and correlate these levels with DNA damage and other risk factors of sepsis.
Methods The study included a group of 100 neonates diagnosed with sepsis serving as the case group and another one of 60 neonates serving as the control group. DNA damage was assessed using the comet assay method and trace elements were measured using inductively coupled plasma mass spectrometry.
Results Compared with controls, the percentage of DNA damage was significantly elevated in patients with sepsis, while serum levels of Cu, Zn, and Se were markedly decreased (p = 0.001). A strong negative correlation was revealed between Se and DNA damage (r = −0.6, p = 0.001). However, no correlations were found between Cu or Zn and DNA damage. Univariate logistic regression analysis revealed that DNA damage as well as Cu, Zn, and Se serum levels can be considered as relevant risk factors for neonatal sepsis (p = 0.008, 0.004, 0.004, and 0.003, respectively). Receiver-operating characteristic curve analysis showed that the strongest indicator for neonatal sepsis was Se (area under the curve [AUC] = 0.94, confidence interval [CI] = 0.9–0.98, p = 0.001), followed by Cu (AUC = 0.9, CI = 0.85–0.96, p = 0.001), and then Zn (AUC = 0.87, CI = 0.8–0.93, p = 0.001).
Conclusion The percentage of DNA damage may help in the assessment of neonatal sepsis severity. Altered levels of Cu, Zn, and Se may play significant role in the pathogenesis of neonatal sepsis. Se serum level is strongly correlated with percentage of DNA damage. Therefore, Se can predict the severity of LOS.
Collapse
Affiliation(s)
- Aliaa Ahmed Wahby
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Maha Elwassif
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Mai Magdy
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | | | - Alshaymaa A. Ibrahim
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Low Dose Iron Therapy in Children with Iron Deficiency: DNA Damage and Oxidant Stress Markers. Indian J Hematol Blood Transfus 2020; 37:287-294. [PMID: 33867736 DOI: 10.1007/s12288-020-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
Conflicting data are available regarding oral iron therapy in iron deficiency (ID), iron deficiency anemia (IDA) and its relation to DNA damage, oxidative stress and antioxidant markers. Our aim was assessment of DNA damage, oxidative stress and anti-oxidant markers in children with ID and IDA before and after low dose iron therapy. The study was conducted in two stages, first stage was assessment of DNA damage using comet assay, malondialdehyde (MDA) and anti-oxidant enzymes levels (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) & total antioxidant capacity (TAC) in thirty-nine children with IDA, forty-five children with ID without anemia and sixty healthy controls. Second stage was assessment of previous markers together with hematological response following oral therapy with 10 mg/day ferric ammonium citrate for 8 weeks. Before treatment, there was no significant difference between the three groups regarding MDA, GPx, SOD, CAT and TAC. A significant increase was detected in the DNA damage in the 2 groups compared to control (p < 0.005). Following iron therapy, hematological parameters was improved together with a significant increase in GPx (P = 0.04), SOD (p = 0.002), TAC (P = 0.001) and non-significant reduction in DNA damage in IDA group. There was a significant increase in SOD (p = 0.001) & TAC (p = 0.001) and significant decrease in DNA damage (p = 0.001) in ID group. Low dose iron therapy could be sufficient to improve antioxidant status and DNA damage together with correction of hematologic indices.
Collapse
|
7
|
Hussein J, Attia MF, El Bana M, El-Daly SM, Mohamed N, El-Khayat Z, El-Naggar ME. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140:1305-1314. [PMID: 31449866 DOI: 10.1016/j.ijbiomac.2019.08.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Our goal in this study is to improve the efficiency of docosahexaenoic acid (DHA) toward the enhancement of insulin signaling pathway in vivo via loading with zinc oxide nanoparticles (ZnO NPs). To this end, two consecutive steps were undertaken, preparation of ZnO NPs by one-step solid-state reaction in dry conditions and calcinated followed by loading DHA. Both developed nanoparticles, with and without DHA were then characterized by TEM, SEM, EDX, and Zetasizer. For comparison between free and loaded DHA, four groups of rats were prepared to receive different treatments. Group I; healthy rats (reference), group II; diabetes (streptozotocin-induced), group III and group IV are diabetes orally administered with free DHA and DHA-loaded ZnO NPs (10 mg/kg bw/day), respectively. Blood samples were collected and analyzed where the results demonstrated that fasting blood sugar and insulin resistance were significantly increased in diabetic group along with upgrading in oxidative stress parameters emphasizing the oxidative properties of streptozotocin. HPLC analysis of cell membrane fatty acids resulted in the reduction of omega-6 and 9 and elevation of omega-3 after free DHA and DHA-loaded ZnO NPs streptozotocin treatments. DHA-loaded ZnO NPs had high performance in enhancing insulin signaling pathway as expressed in changes of phosphatidylinositol 3-kinase (PI3K) levels.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed F Attia
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt; Department of Chemistry, Clemson University, Clemson, SC, United States.
| | - Mona El Bana
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Nadia Mohamed
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zakeria El-Khayat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt.
| |
Collapse
|
8
|
Vitamin D Supplementation Reduces Both Oxidative DNA Damage and Insulin Resistance in the Elderly with Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20122891. [PMID: 31200560 PMCID: PMC6628266 DOI: 10.3390/ijms20122891] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Research evidence indicates that vitamin D deficiency is involved in the pathogenesis of insulin resistance (IR) and associated metabolic disorders including hyperglycemia and dyslipidemia. It also suggested that vitamin D deficiency is associated with elevated levels of oxidative stress and its complications. Therefore, the aim of our study was to determine the effect of vitamin D supplementation on DNA damage and metabolic parameters in vitamin D deficient individuals aged >45 with metabolic disorders. Material and Methods: Of 98 initially screened participants, 92 subjects deficient in vitamin D were included in the study. They were randomly assigned to the following group: with vitamin D supplementation (intervention group, n = 48) and without supplementation (comparative group, n = 44). The patients from both groups were divided into two subgroups according to the presence or absence of type 2 diabetes (T2DM). The intervention group was treated with 2000 International Unit (IU) cholecalciferol/day between October and March for three months. At baseline and after three-month supplementation vitamin D concentration (25-OH)D3 and endogenous and oxidative DNA damage were determined. In addition, fast plasma glucose (FPG), fasting insulin, HbA1c and lipid fraction (total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglyceride (TG)), as well as anthropometric measurements (weight, height) were gathered. The following IR-related parameters were calculated Homeostatic Model Assesment – Insulin Resistance (HOMA-IR) and TG/HDL ratio. Results: Three-month vitamin D supplementation increased the mean vitamin D concentration to generally accepted physiological level independently of T2DM presence. Importantly, vitamin D exposure decreased the level of oxidative DNA damage in lymphocytes of patients of intervention group. Among studied metabolic parameters, vitamin D markedly increased HDL level, decreased HOMA-IR, TG/HDL ratio. Furthermore, we found that HbA1c percentage diminished about 0.5% in T2DM patients supplemented with vitamin D. Conclusion: The current study demonstrated that daily 2000I U intake of vitamin D for three months decreased the level of oxidative DNA damage, a marker of oxidative stress, independently on T2DM presence. Furthermore, vitamin D reduced metabolic parameters connected with IR and improved glucose and lipid metabolism. Therefore, our results support the assertion that vitamin D, by reducing oxidative stress and improving of metabolic profile, may decrease IR and related diseases.
Collapse
|
9
|
Mokra K, Woźniak K, Bukowska B, Sicińska P, Michałowicz J. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. CHEMOSPHERE 2018; 201:119-126. [PMID: 29518729 DOI: 10.1016/j.chemosphere.2018.02.166] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 05/25/2023]
Abstract
Because bisphenol A (BPA) and some of its analogs have been supposed to influence development of cancer, we have assessed the effect of BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on DNA bases oxidation, which is a key process in cancer initiation. The analysis was conducted on human peripheral blood mononuclear cells (PBMCs), which are very useful model to assess genotoxic potential of various toxicants in different cell types. In order to determine oxidative damage to DNA pyrimidines and purines, alkaline version of the comet assay with DNA glycosylases, i.e. endonuclease III (Nth) and human 8-oxoguanine DNA glycosylase (hOGG1) was used. PBMCs were exposed to BPA or its analogs in the concentrations of 0.01, 0.1 and 1 μg/mL for 4 h and 0.001, 0.01 and 0.1 μg/mL for 48 h. We have observed that BPA, BPS, BPF and particularly BPAF caused oxidative damage to DNA pyrimidines and more strongly to purines in human PBMCs. The results have also shown that BPS, which is the most commonly used as a substitute for BPA in the manufacture induced definitely the smallest oxidative DNA bases lesions in PBMCs. Moreover, we have noticed that BPA, BPF and BPAF caused DNA damage at very low concentration of 1 ng/mL.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| |
Collapse
|
10
|
Hussein J, El-Naggar ME, Latif YA, Medhat D, El Bana M, Refaat E, Morsy S. Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: Activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids Surf B Biointerfaces 2018; 170:76-84. [PMID: 29883845 DOI: 10.1016/j.colsurfb.2018.05.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate and compare between the effect of both silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on insulin signaling pathway and insulin sensitivity in experimental diabetes. Preparation of AgNPs and ZnONPs in their solid state were carried out using pullulan (Natural polymer) as both reducing and stabilizing agent. The synthesis of these nanoparticles in a large scale were carried out without using any solvents. The experimental male albino rats received diluted solutions of AgNPs and ZNONPs. After the experimental period, blood was withdrawn; erythrocyte membrane lipids were extracted and fatty acids were determined by HPLC. Oxidant, antioxidant profile and phosphatidylinositol 3-kinase (PI3K) were estimated. RESULTS It was observed that the as synthesized AgNPs and ZnONPs have nearly spherical shape with small size due to the stabilization effect of pullulan as proved by UV-vis spectroscopy (UV-vis), Transmission electron microscy (TEM) and Field emission scanning electron microscopy (FESEM), Zeta potential, Dynamic light scattering (DLS) and X-ray diffraction (XRD) techniques. The average hydrodynamic size of the formed AgNPs was 15 nm which is considered as very small size when compared with that of ZnONPs (above 50 nm). Fasting blood sugar was significantly increased in diabetic group along with elevation of MDA and DNA damage indicating the oxidative properties of streptozotocin. Whereas, the treatment with nanoparticles significantly attenuated these elevations. CONCLUSION AgNPs and ZnONPs represent promising materials in attenuating diabetic complications and insulin resistance in experimental diabetes; no Impressive differences were observed between the effect of ZnONPs and AgNPs in this current research.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Cairo, Egypt.
| | - Yasmin Abdel Latif
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Mona El Bana
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Eman Refaat
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| | - Safaa Morsy
- Medical Biochemistry Department, National Research Centre, Doki, Giza, Egypt
| |
Collapse
|
11
|
Zaki M, Kamal S, Basha WA, El-Toukhy S, Yousef W, El-Bassyouni HT, Azmy O. Assessment of DNA damage in obese premenopausal women with metabolic syndrome. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
DNA binding, artificial nuclease activity and cytotoxic studies of newly synthesized steroidal pyrimidines. Int J Biol Macromol 2017; 111:52-61. [PMID: 29292141 DOI: 10.1016/j.ijbiomac.2017.12.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/09/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023]
Abstract
The new steroidal pyrimidine derivatives (4-6) were synthesized by the reaction of steroidal thiosemicarbazones with (2-methyl) diethyl malonate in absolute ethanol. After characterization by spectral and analytical data, the DNA interaction studies of compounds (4-6) were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31×103M-1, 1.93×103M-1 and 2.05×103M-1, respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed a strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of steroidal pyrimidine moiety in the minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). During DAPI staining, the nuclear fragmentations on cells occurred after treatment with compounds 4 and 5. Western blotting analysis clearly indicates that compound 4 causes apoptosis in MCF-7 cancer cells. The results revealed that compound 4 has better prospectus to act as a cancer chemotherapeutic candidate, which warrants further in vivo anticancer investigations.
Collapse
|
13
|
Bielecka-Kowalska A, Czarny P, Wigner P, Synowiec E, Kowalski B, Szwed M, Krupa R, Toma M, Drzewiecka M, Majsterek I, Szemraj J, Sliwinski T, Kowalski M. Ethylene glycol dimethacrylate and diethylene glycol dimethacrylate exhibits cytotoxic and genotoxic effect on human gingival fibroblasts via induction of reactive oxygen species. Toxicol In Vitro 2017; 47:8-17. [PMID: 29107684 DOI: 10.1016/j.tiv.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
Although methacrylic acid derivatives in their polymeric form are considered to be safe, insufficient polymerization and the release of monomers due to either mechanical or enzymatical factors can lead to their reaching millimolar concentrations in local tissue. The present study evaluates the effect of two methacrylate monomers - ethylene glycol dimethacrylate (EGDMA) and diethylene glycol dimethacrylate (DEGDMA) - on human gingival fibroblasts (HGFs). Both monomers were found to reduce cells viability in MTT assay, increase apoptosis and cause cell cycle arrest in G1/G0 phase. They also increased intracellular reactive oxygen species (ROS) production as measured by DCFH-DA and DHE probes and increased expression of GPx4 and SOD2. Both monomers increased DNA damage in comet assay. Moreover, HGFs were not able to repair those lesions within 120min of repair incubation. However, the monomers were not found to have any effect on the integrity of isolated plasmids. We postulate that EGDMA and DEGDMA exhibit their cytotoxic and genotoxic properties via increased production of ROS, which cause DNA damage, affect apoptosis, viability and cell cycle. Further studies are needed to better understand the properties of methacrylic acid monomers and to evaluate the risk that they cause for patients, dentists and dental technicians.
Collapse
Affiliation(s)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bartosz Kowalski
- Department of Maxillofacial Surgery, Medical University of Lodz, Lodz, Poland
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Krupa
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Malgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | | |
Collapse
|
14
|
Abdel-Salam OME, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA. Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. ASIAN PAC J TROP MED 2017; 10:773-786. [PMID: 28942826 DOI: 10.1016/j.apjtm.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effect of NG-nitro-l-arginine methyl ester (l-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, and 7-nitroindazole (7-NI), a selective neuronal NOS inhibitor, on oxidative stress and tissue damage in brain and liver and on DNA damage of peripheral blood lymphocytes in malathion intoxicated rats. METHODS Malathion (150 mg/kg) was given intraperitoneally (i.p.) along with l-NAME or 7-NI (10 or 20 mg/kg, i.p.) and rats were euthanized 4 h later. The lipid peroxidation product malondialdehyde (MDA), nitric oxide (nitrite), reduced glutathione (GSH) concentrations and paraoxonase-1 (PON-1) activity were measured in both brain and liver. Moreover, the activities of glutathione peroxidase (GPx) acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), total antioxidant capacity (TAC), glucose concentrations were determined in brain. Liver enzyme determination, Comet assay, histopathological examination of brain and liver sections and inducible nitric oxide synthase (iNOS) immunohistochemistry were also performed. RESULTS (i) Rats treated with only malathion exhibited increased nitric oxide and lipid peroxidation (malondialdehyde) accompanied with a decrease in GSH content, and PON-1 activity in brain and liver. Glutathione peroxidase activity, TAC, glucose concentrations, AChE and BChE activities were decreased in brain. There were also raised liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and increased DNA damage of peripheral blood lymphocytes (Comet assay). Malathion caused marked histopathological changes and increased the expression of iNOS in brain and liver tissues. (ii) In brain of malathion-intoxicated rats, l-NAME or 7-NI resulted in decreased nitrite and MDA contents while increasing TAC and PON1 activity. Reduced GSH and GPx activity showed an increase by l-NAME. AChE activity increased by 20 mg/kg l-NAME and 10 mg/kg 7-NI. AChE activity decreased by the higher dose of 7-NI while either dose of 7-NI resulted in decreased BChE activity. (iii) In liver of malathion-intoxicated rats, decreased MDA content was observed after l-NAME or 7-NI. Nitrite level was unchanged by l-NAME but increased after 7-NI which also resulted in decreased GSH concentration and PON1 activity. Either inhibitor resulted in decreased liver ALT activity. (iv) DNA damage of peripheral blood lymphocytes was markedly inhibited by l-NAME or 7-NI treatment. (v) iNOS expression in brain and liver decreased by l-NAME or 7-NI. (vi) More marked improvement of the histopathological alterations induced by malathion in brain and liver was observed after 7-NI compared with l-NAME. CONCLUSIONS In malathion intoxicated rats, the neuronal NOS inhibitor 7-NI and to much less extent l-NAME were able to protect the brain and liver tissue integrity along with improvement in oxidative stress parameters. The decrease in DNA damage of peripheral blood lymphocytes by NOS inhibitors also suggests the involvement of nitric oxide in this process.
Collapse
Affiliation(s)
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nadia A Mohammed
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | | | | - Amany A Sleem
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
Abdel-Salam OM, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA. Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication. ASIAN PAC J TROP MED 2016; 9:1181-1194. [DOI: 10.1016/j.apjtm.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/19/2016] [Accepted: 09/18/2016] [Indexed: 11/16/2022] Open
|
16
|
Impact of Single Nucleotide Polymorphisms of Base Excision Repair Genes on DNA Damage and Efficiency of DNA Repair in Recurrent Depression Disorder. Mol Neurobiol 2016; 54:4150-4159. [PMID: 27324896 PMCID: PMC5509815 DOI: 10.1007/s12035-016-9971-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/08/2016] [Indexed: 02/08/2023]
Abstract
Elevated level of DNA damage was observed in patients with depression. Furthermore, single nucleotide polymorphisms (SNPs) of base excision repair (BER) genes may modulate the risk of this disease. Therefore, the aim of this study was to delineate the association between DNA damage, DNA repair, the presence of polymorphic variants of BER genes, and occurrence of depression. The study was conducted on peripheral blood mononuclear cells of 43 patients diagnosed with depression and 59 controls without mental disorders. Comet assay was used to assess endogenous (oxidative) DNA damage and efficiency of DNA damage repair (DRE). TaqMan probes were employed to genotype 12 SNPs of BER genes. Endogenous DNA damage was higher in the patients than in the controls, but none of the SNPs affected its levels. DRE was significantly higher in the controls and was modulated by BER SNPs, particularly by c.977C>G–hOGG1, c.972G>C–MUTYH, c.2285T>C–PARP1, c.580C>T–XRCC1, c.1196A>G–XRCC1, c.444T>G–APEX1, c.-468T>G–APEX1, or c.*50C>T–LIG3. Our study suggests that both oxidative stress and disorders in DNA damage repair mechanisms contribute to elevated levels of DNA lesions observed in depression. Lower DRE can be partly attributed to the presence of specific SNP variants.
Collapse
|
17
|
|
18
|
Spectroscopic, Viscositic, DNA Binding and Cytotoxic Studies of Newly Synthesized Steroidal Imidazolidines. J Fluoresc 2015; 26:639-49. [DOI: 10.1007/s10895-015-1750-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
19
|
Dar AM, Gatoo MA, Ahmad A, Ahmad MS, Najar MH, Shamsuzzaman. DNA Interaction Studies and In Vitro Cytotoxicity of Newly Synthesized Steroidal Imidazolidinones. J Fluoresc 2015; 25:1377-87. [PMID: 26245453 DOI: 10.1007/s10895-015-1628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/26/2015] [Indexed: 10/23/2022]
Abstract
New steroidal imidazolidinone derivatives (7-9) were synthesized after reacting steroidal thiosemicarbazones with oxalyl chloride in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (7-9) with DNA were carried out by UV-vis, fluorescence spectroscopy, circular dichroism, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31 × 10(4) M(-1), 2.57 × 10(4) M(-1) and 2.16 × 10(4) M(-1), respectively indicating the higher binding affinity of compound 8 towards DNA. Gel electrophoresis demonstrated that the compounds 7-9 show strong interaction during the cleavage activity with pBR322 DNA. The docking study suggested the intercalation of imidazolidinone moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds 7-9 revealed potential toxicity against the different human cancer cells (MTT assay). Apoptotic degradation of DNA in presence of compounds 7-9 was analyzed by agarose gel electrophoresis and visualized by ethidium bromide staining (comet assay). FACS analysis shows that the compound 8 bring about cell cycle arrest at 7 μM concentration.
Collapse
Affiliation(s)
- Ayaz Mahmood Dar
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202 002, India. .,Department of Chemistry, Government Degree College, Kulgam Kashmir, 192231, J&K, India.
| | - Manzoor Ahmad Gatoo
- Department of Biochemistry, Jawaharlal Nehru Medical College Aligarh Muslim University, Aligarh, 202 002, India
| | - Ajaz Ahmad
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202 002, India
| | - Mir Shabeer Ahmad
- Department of Chemistry, Government Degree College, Kulgam Kashmir, 192231, J&K, India
| | | | - Shamsuzzaman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202 002, India
| |
Collapse
|
20
|
Czarny P, Kwiatkowski D, Kacperska D, Kawczyńska D, Talarowska M, Orzechowska A, Bielecka-Kowalska A, Szemraj J, Gałecki P, Śliwiński T. Elevated level of DNA damage and impaired repair of oxidative DNA damage in patients with recurrent depressive disorder. Med Sci Monit 2015; 21:412-8. [PMID: 25656523 PMCID: PMC4329942 DOI: 10.12659/msm.892317] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. MATERIAL AND METHODS We measured and compared the extent of endogenous DNA damage--single- and double-strand breaks, alkali-labile sites, and oxidative damage of the pyrimidines and purines--in peripheral blood mononuclear cells isolated from rDD patients (n=40) and healthy controls (n=46) using comet assay. We also measured DNA damage evoked by hydrogen peroxide and monitored changes in DNA damage during repair incubation. RESULTS We found an increased number DNA breaks, alkali-labile sites, and oxidative modification of DNA bases in the patients compared to the controls. Exposure to hydrogen peroxide evoked the same increased damage in both groups. Examination of the repair kinetics of both groups revealed that the lesions were more efficiently repaired in the controls than in the patients. CONCLUSIONS For the first time we showed that patients with depression, compared with non-depresses individuals, had more DNA breaks, alkali-labile sites, and oxidative DNA damage, and that those lesions may be accumulated by impairments of the DNA repair systems. More studies must be conducted to elucidate the role of DNA damage and repair in depression.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Łódż, Łódź, Poland
| | | | | | - Daria Kawczyńska
- Department of Molecular Genetics, University of Łódż, Łódź, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Agata Orzechowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Tomasz Śliwiński
- Department of Molecular Genetics, University of Łódż, Łódź, Poland
| |
Collapse
|
21
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Alakhras RS, Stephanou G, Demopoulos NA, Grintzalis K, Georgiou CD, Nikolaropoulos SS. DNA fragmentation induced by all-trans retinoic acid and its steroidal analogue EA-4 in C2 C12 mouse and HL-60 human leukemic cells in vitro. J Appl Toxicol 2013; 34:885-92. [PMID: 23913437 DOI: 10.1002/jat.2908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 11/10/2022]
Abstract
We have recently shown that retinoic acid induces micronucleation mainly via chromosome breakage (Alakhras et al. Cancer Lett 2011; 306: 15-26). To further study retinoic acid clastogenicity and evaluate DNA damaging potential we investigated the ability of (a) all-trans retinoic acid and its steroidal analogue EA-4 to induce DNA fragmentation by using Comet assay under alkaline unwinding and neutral condition electrophoresis, and (b) the retinoids under study to induce small (0-1 kb) DNA fragments. Two cell lines, C2C12 mouse cells and HL-60 human leukemic cells were used in this study. We found that all-trans retinoic acid and its steroidal analogue EA-4 (a) provoke DNA migration due to DNA fragmentation as it is shown by the increased values of Comet parameters, and (b) induce significantly small-size fragmented genomic DNA as indicated by the quantification of necrotic/apoptotic small DNA segments in both cell systems. A different response between the two cell lines was observed in relation to retinoid ability to increase the percentage of DNA in the tail as well as break DNA in to small fragments. Our findings confirm the ability of retinoic acid to provoke micronucleation by disrupting DNA into fragments, among which small pieces of double-stranded DNA up to 1 kb are identified.
Collapse
Affiliation(s)
- Raghda S Alakhras
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26 500, Patras, Greece
| | | | | | | | | | | |
Collapse
|
23
|
Misra S, Choudhury RC. Vitamin C Modulation of Cisplatin-Induced Cytogenotoxicity in Bone Marrow, Spermatogonia and its Transmission in the Male Germline of Swiss Mice. J Chemother 2013; 18:182-7. [PMID: 16736887 DOI: 10.1179/joc.2006.18.2.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Relative modulatory effects of three different doses of vitamin C (VC), 10, 20 and 40 mg/kg, on cytogenotoxicity induced by cisplatin (CP) 5 mg/kg were assessed from the comparison of chromosomal aberrations (CAs) and mitotic index in bone marrow cells, micronucleus test (MNT) in polychromatic erythrocytes from the somatic cell line and spermatogonial chromosome aberrations (SCAs), primary spermatocytic chromosome analysis and sperm morphology assay from the male germline of VC-pretreated and CP-alone treated mice. Each pretreatment dose of VC protected bone marrow cells from the CP-induced cytogenotoxicity by decreasing the aberrant metaphases, CAs and MN significantly, particularly the lower doses. The protection was inversely proportional to the pretreated dose of VC i.e., the higher the dose of VC the less protection was provided. The lower doses of VC also protected the spermatogonial cells by significantly decreasing the CP-induced aberrant metaphases and SCAs, whereas the highest dose potentiated such effects by increasing them significantly. Besides, transmission of CP-induced cytogenotoxicity in the male germline was enhanced significantly in all VC pretreated mice, resulting in an increase in the frequency of aberrant prima ry spermatocytes and abnormal sperm. Since the spermatogonial cells with gross effects were eliminated/died, the tolerable effects stabilized in some of them were transmitted through the male germline with the consequent increase in the manifestation of aberrant primary spermatocytes and abnormal sperm. However, VC failed to decrease in the transmission of such effects. Thus, the protective action of VC was dose dependent and tissue specific. Moreover, the time of VC treatment i.e., its pre- or post-treatment to the exposure of cells to cytogenotoxic substances is important in providing protection from or potentiation of the cytogenotoxic effects.
Collapse
Affiliation(s)
- S Misra
- Department of Zoology, Berhampur University, Berhampur-760 007, Orissa, India
| | | |
Collapse
|
24
|
Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol Appl Pharmacol 2013; 268:37-46. [DOI: 10.1016/j.taap.2013.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/25/2012] [Accepted: 01/10/2013] [Indexed: 01/17/2023]
|
25
|
Czarny P, Kasprzak E, Wielgorski M, Udziela M, Markiewicz B, Blasiak J, Szaflik J, Szaflik JP. DNA damage and repair in Fuchs endothelial corneal dystrophy. Mol Biol Rep 2012; 40:2977-83. [PMID: 23275192 PMCID: PMC3594825 DOI: 10.1007/s11033-012-2369-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 01/01/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40 years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called "cornea guttata", apoptosis of corneal endothelial cells, dysfunction of Descement's membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
DNA binding acridine-thiazolidinone agents affecting intracellular glutathione. Bioorg Med Chem 2012; 20:7139-48. [PMID: 23122936 DOI: 10.1016/j.bmc.2012.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Three new acridine-thiazolidinone derivatives (2a-2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a-2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 10(6)-5.89 × 10(6) M(-1). All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC(50) = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.
Collapse
|
27
|
BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability. Leukemia 2012; 27:629-34. [PMID: 23047475 DOI: 10.1038/leu.2012.294] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 25% of TKI-naive patients and 50-90% of patients developing TKI-resistance carry CML clones expressing TKI-resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species, which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI-resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil DNA glycosylase UNG2 were inhibited in BCR-ABL1-transformed cell lines and CD34(+) CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI, we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na(+)/K(+)ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML.
Collapse
|
28
|
Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibition of their repair. Mol Biol Rep 2012; 39:7487-96. [PMID: 22327778 PMCID: PMC3358545 DOI: 10.1007/s11033-012-1582-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/30/2012] [Indexed: 12/02/2022]
Abstract
Methacrylate monomers used in dentistry have been shown to induce DNA double strand breaks (DSBs), one of the most serious DNA damage. In the present work we show that a model dental adhesive consisting of 45% 2-hydroxyethyl methacrylate (HEMA) and 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) at concentrations up to 0.25 mM Bis-GMA induced oxidative DNA in cultured primary human gingival fibroblasts (HGFs) as evaluated by the comet assay and probed with human 8-hydroxyguanine DNA-glycosylase 1. HEMA/Bis-GMA induced DSBs in HGFs as assessed by the neutral comet assay and phosphorylation of the H2AX histone and sodium ascorbate or melatonin (5-methoxy-N-acetyltryptamine) both at 50 μM reduced the DSBs, they also inhibited apoptosis induced by HEMA/Bis-GMA. The adhesive slowed the kinetics of the repair of DNA damage induced by hydrogen peroxide in HGFs, while sodium ascorbate or melatonin improved the efficacy of H2O2-induced damage in the presence of the methacrylates. The adhesive induced a rise in the G2/M cell population, accompanied by a reduction in the S cell population and an increase in G0/G1 cell population. Sodium ascorbate or melatonin elevated the S population and reduced the G2/M population. In conclusion, HEMA/Bis-GMA induce DSBs through, at least in part, oxidative mechanisms, and these compounds may interfere with DSBs repair. Vitamin C or melatonin may reduce the detrimental effects induced by methacrylates applied in dentistry.
Collapse
|
29
|
Jin Y, Luan X, Liu H, Gao C, Li S, Cao D, Li X, Cai Z, Jiang Y. Pharmacokinetics and metabolite identification of a novel VEGFR-2 and Src dual inhibitor 6-chloro-2-methoxy-N-(2-methoxybenzyl) acridin-9-amine in rats by liquid chromatography tandem mass spectrometry. Talanta 2011; 89:70-6. [PMID: 22284461 DOI: 10.1016/j.talanta.2011.11.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 11/24/2022]
Abstract
A novel VEGFR-2 and Src dual inhibitor, 6-Chloro-2-methoxy-N-(2-methoxybenzyl) acridin-9-amine (MBAA), is a 9-aminoacridine derivative, but its pharmacokinetics and metabolism in body remain unknown. Using liquid chromatography tandem electrospray ionization mass spectrometry with the multiple reaction monitoring modes, we developed and validated a simple, rapid, sensitive and accurate technology for analyses of MBAA in the rat plasma, urine and bile. The micro samples were quickly prepared by 96-well plate. Chromatographic separation was performed on a C(18) column with gradient elution. High-quality linearity calibration curves were achieved over a concentration range of 1.00-3000 ng mL(-1). Intra- and inter-day precisions (RSD) were less than 8.5%, and accuracy (RE%) ranged from -2.9% to 12%. Extraction recoveries of MBAA were consistent with an average of 82.2-111.4% at three QC concentrations. When administered intravenously at a single dose of 2.0 mg kg(-1) to male SD rats, MBAA was rapidly eliminated with a T(1/2) of 0.9 ± 0.1h and AUC(0-t) of 369 ± 44.7 ng mL(-1). We identified four direct phase I and phase II metabolites by mass difference of molecular ions between metabolites and the parent compound. Various fragmentation patterns of MBAA were used to identify and characterize its metabolites. This LC-MS/MS analysis provides a useful approach to the pharmacokinetic and metabolic study of MBAA.
Collapse
Affiliation(s)
- Yibao Jin
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Blasiak J, Kasznicki J, Drzewoski J, Pawlowska E, Szczepanska J, Reiter RJ. Perspectives on the use of melatonin to reduce cytotoxic and genotoxic effects of methacrylate-based dental materials. J Pineal Res 2011; 51:157-62. [PMID: 21470304 DOI: 10.1111/j.1600-079x.2011.00877.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine), an indoleamine produced in the pineal gland and many other organs, displays a wide spectrum of protective effects against cell injury of various origins. Contemporary dental restorative materials mainly consist of methacrylate polymers with some additives. However, because of the incompleteness of polymerization process in situ as well as mechanical shearing and enzymatic degradation, methacrylate monomers are released from the restoration into the oral cavity and the pulp, from where they gain access to other tissues and organs. Such monomers have displayed toxic properties in many in vivo and in vitro studies, including cytotoxicity and genotoxicity and a considerable portion of these effects is underlined by the oxidative action of these compounds. As melatonin shows biocompatibility with the oral cavity and displays antioxidative properties, it may be considered as a protective agent against harmful effects of methacrylate monomers derived from dental restorations. Melatonin decreases cytotoxic and genotoxic effects of methacrylate monomers used in dentistry, and it does not influence the bond strength of dental composites. This opens a new possible application of melatonin to improve properties of biomaterials used in dentistry.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
31
|
Wisniewska-Jarosinska M, Sliwinski T, Kasznicki J, Kaczmarczyk D, Krupa R, Bloch K, Drzewoski J, Chojnacki J, Blasiak J, Morawiec-Sztandera A. Cytotoxicity and genotoxicity of capecitabine in head and neck cancer and normal cells. Mol Biol Rep 2011; 38:3679-88. [PMID: 21107724 PMCID: PMC3115142 DOI: 10.1007/s11033-010-0482-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022]
Abstract
The interaction between a chemical and a cell may strongly depend on whether this cell is normal or pathological. Side effects of anticancer drugs may sometimes overcome their benefit action, so it is important to investigate their effect in both the target and normal cells. Capecitabine (Xeloda, CAP), a prodrug of 5-fluorouracil, is mainly used in colon cancer, but little is known about its action in head and neck cancer. We compared the cyto- and genotoxicity of CAP in head and neck HTB-43 cells and normal human lymphocytes by comet assay and flow cytometry. CAP at concentration up to 50 μM significantly decreased the viability of the cancer cells, whereas it did not affect normal lymphocytes. The drug did not interact with isolated plasmid DNA, but it damaged DNA in both cancer and normal cells. However, the extent of the damage in the former was much higher than in the latter. CAP induced apoptosis in the cancer cells, but not in normal lymphocytes. Pre-treatment of the cells with the nitrone spin traps α-(4-pyridil-1-oxide)-N-tert-butylnitrone and N-tert-butyl-α-phenylnitrone decreased the extent of CAP induced DNA damage, suggesting that free radicals may be involved in the formation of DNA lesions induced by CAP. The drug evoked an increase in the G0/G1 cell population accompanied by a decrease in the S cell population. CAP may evoke a pronounced cyto- and genotoxic effects in head and neck cancer cells, whereas it may or may not induce such effects in normal cells to far lesser extent.
Collapse
Affiliation(s)
| | - Tomasz Sliwinski
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jacek Kasznicki
- Department of Clinical Pharmacology, Medical University of Lodz, 95-100 Zgierz, Poland
| | - Dariusz Kaczmarczyk
- Department of Head and Neck Cancer, Medical University of Lodz, 93-509 Lodz, Poland
| | - Renata Krupa
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Bloch
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jozef Drzewoski
- Department of Clinical Pharmacology, Medical University of Lodz, 95-100 Zgierz, Poland
| | - Jan Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, 90-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | | |
Collapse
|
32
|
Szczepanska J, Poplawski T, Synowiec E, Pawlowska E, Chojnacki CJ, Chojnacki J, Blasiak J. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol Biol Rep 2011; 39:1561-74. [PMID: 21617943 PMCID: PMC3249584 DOI: 10.1007/s11033-011-0895-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.
Collapse
Affiliation(s)
- Joanna Szczepanska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Cezary J. Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Jan Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
33
|
Skolimowski JJ, Cieślińska B, Zak M, Osiecka R, Błaszczyk A. Modulation of ethoxyquin genotoxicity by free radical scavengers and DNA damage repair in human lymphocytes. Toxicol Lett 2010; 193:194-9. [PMID: 20093172 DOI: 10.1016/j.toxlet.2010.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022]
Abstract
N-tert-butyl-alpha-phenylnitrone (PBN) and its new derivative N-(Pyridine-4-ylmethylidene)-2-carboxy-tert-butylamine N-oxide (PBNC) were synthesized and used to modulate ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline, EQ) genotoxicity. Ethoxyquin, an antioxidant used mainly as a preservative in animal feeds, was shown to cause DNA breaks in human lymphocytes. The aim of the study was to evaluate the involvement of free radicals in the genotoxicity of EQ and its modulation by cellular repair systems. Human lymphocytes treated with EQ (10-50 microM) and nitrone free radical scavengers (100 microM) were tested with the comet assay. It was shown that both PBN and PBNC reduced the level of EQ-induced DNA damage, but PBN was slightly more effective. The modulation of the level of DNA damage was also observed as a result of DNA repair by cellular repair systems. Moreover, induction of oxidized bases by ethoxyquin was showed; lymphocytes exposed to ethoxyquin and treated with endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (FpG), enzymes recognizing oxidized bases, displayed greater extent of DNA damage than those not treated with the enzymes.
Collapse
Affiliation(s)
- Janusz J Skolimowski
- Department of Organic Chemistry, University of Łódź, Narutowicza 68, 90-136 Łódź, Poland
| | | | | | | | | |
Collapse
|
34
|
Genotoxicity of irinotecan and its modulation by vitamins A, C and E in human lymphocytes from healthy individuals and cancer patients. Toxicol In Vitro 2010; 24:417-24. [DOI: 10.1016/j.tiv.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/18/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
|
35
|
Pawlowska E, Poplawski T, Ksiazek D, Szczepanska J, Blasiak J. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 696:122-9. [DOI: 10.1016/j.mrgentox.2009.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/25/2009] [Accepted: 12/28/2009] [Indexed: 01/22/2023]
|
36
|
Szaflik JP, Janik-Papis K, Synowiec E, Ksiazek D, Zaras M, Wozniak K, Szaflik J, Blasiak J. DNA damage and repair in age-related macular degeneration. Mutat Res 2009; 669:169-76. [PMID: 19559717 DOI: 10.1016/j.mrfmmm.2009.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 05/18/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was greater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vantová Z, Paulíková H, Sabolová D, Kožurková M, Sucháňová M, Janovec L, Kristian P, Imrich J. Cytotoxic activity of acridin-3,6-diyl dithiourea hydrochlorides in human leukemia line HL-60 and resistant subline HL-60/ADR. Int J Biol Macromol 2009; 45:174-80. [DOI: 10.1016/j.ijbiomac.2009.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/20/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
|
38
|
Poplawski T, Pawlowska E, Wisniewska-Jarosinska M, Ksiazek D, Wozniak K, Szczepanska J, Blasiak J. Cytotoxicity and genotoxicity of glycidyl methacrylate. Chem Biol Interact 2009; 180:69-78. [PMID: 19428346 DOI: 10.1016/j.cbi.2009.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 12/11/2022]
Abstract
Methacrylates are used in the polymer form as composite restorative materials in dentistry. However, the polymers can release monomers and co-monomers into the oral cavity and pulp, from where they can migrate into the bloodstream reaching virtually all organs. The local concentration of the released monomers can be in the millimolar range, high enough to induce adverse biological effects. Genotoxicity of methacrylate monomers is of a special significance due to potential serious phenotypic consequences, including cancer, and long latency period. In the present work, we investigated cytotoxicity and genotoxicity of glycidyl methacrylate (GMA) in the human peripheral blood lymphocytes and the CCR-CM human cancer cells. GMA at concentrations up to 5mM evoked a concentration-dependent decrease in the viability of the lymphocytes up to about 80%, as assessed by flow cytometry. This agent did not induce strand breaks in the isolated plasmid DNA, but evoked concentration-dependent DNA damage in the human lymphocytes evaluated by the alkaline and neutral comet assay. This damage included oxidative modifications to the DNA bases, as checked by DNA repair enzymes Endo III and Fpg as well as single and double DNA strand breaks. The lymphocytes exposed to GMA at 2.5 microM were able to remove about 90% of damage to their DNA in 120 min. The ability of GMA to induce DNA double-strand breaks was confirmed by pulsed field gel electrophoresis. The drug evoked apoptosis and induced an increase in the G2/M cell population, accompanied by a decrease in the S cell population and an increase in G0/G1 cell population. Due to broad spectrum of GMA genotoxicity, including DNA double-strand breaks, and a potential long-lasting exposure to this compound, its use should be accompanied by precautions, reducing the chance of its release into blood stream and the possibility to induce adverse biological effects.
Collapse
Affiliation(s)
- Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
39
|
Morawiec Z, Janik K, Kowalski M, Stetkiewicz T, Szaflik J, Morawiec-Bajda A, Sobczuk A, Blasiak J. DNA damage and repair in children with Down's syndrome. Mutat Res 2008; 637:118-23. [PMID: 17765270 DOI: 10.1016/j.mrfmmm.2007.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/13/2007] [Accepted: 07/20/2007] [Indexed: 05/17/2023]
Abstract
Down's syndrome (DS) is associated with the presence of a third 21 chromosome and is generally considered as a non-cancer-prone genetic disease. However, leukaemias occur more frequently in children with the syndrome than in general population and there is an open question, whether the presence of an additional chromosome may contribute to genomic instability, which, in turn, may play a role in a higher susceptibility to cancer and leukaemias in particular. In order to assess genomic instability associated with the presence of a third 21 chromosome, we determined the level of endogenous DNA damage and susceptibility to a genotoxic stress-inducing factor, hydrogen peroxide and N-methyl-N'-nitro-N-nitrosoguanidyne (MNNG) as well as the ability to remove DNA damage in the peripheral blood lymphocytes of children with DS and healthy kids. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline comet assay. Oxidative DNA damage was assayed with DNA repair enzymes: endonuclease III-like NTH1 and formamidopyrimidine-DNA glycosylase. The cells taken from children with DS did not display an effective DNA repair after treatment with 10 mM hydrogen peroxide. No difference in the sensitivity to DNA-damaging agents and the efficacy of DNA repair due to age and gender in DS children was observed. These results suggest that children with DS may be characterized by the increased sensitivity to the DNA-damaging agents impaired cellular reaction to DNA damage, which, in turn, may increase the probability of cancers in these children. Therefore, a special care to avoid exposure to potential mutagenic factor my be considered in these children.
Collapse
|
40
|
DNA-damaging activity and mutagenicity of 16 newly synthesized thiazolo[5,4-a]acridine derivatives with high photo-inducible cytotoxicity. Mutat Res 2007; 650:104-14. [PMID: 18160333 DOI: 10.1016/j.mrgentox.2007.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/22/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022]
Abstract
The discovery of the potent anticancer properties of natural alkaloids in the pyrido-thiazolo-acridine series has suggested that thiazolo-acridine derivatives could be of great interest. In a continuous attempt to develop DNA-binding molecules and DNA photo-cleavers, 16 new thiazolo[5,4-a]acridines were synthesized and studied for their photo-inducible DNA-intercalative, cytotoxic and mutagenic activities, by use of the DNA methyl-green bioassay, the Alamar Blue viability assay and the Salmonella mutagenicity test using strains TA97a and TA98 with and without metabolic activation and photo-activation. Without photo-activation, one compound showed a DNA-intercalative activity in the DNA major groove while three compounds displayed intercalating properties after photo-activation. In the dark, four molecules possessed cytotoxic activities against a THP1 acute monocytic leukemia cell line while 15 derivatives displayed photo-inducible cytotoxic activity against this cell line. All compounds were mutagenic in strain TA97a with metabolic activation (+S9mix) and 15 molecules were mutagenic in strain TA98 without activation (-S9mix). Study of the quantitative structure-activity relationships (QSAR) from the Salmonella mutagenicity data revealed that several descriptors could describe cytotoxic and mutagenic activities after photo-activation. From the results of the mutagenicity test, four compounds with elevated mutagenic activities were selected for additional experiments. Their capacities to induce single-strand breaks (SSB) and chromosome-damaging effects were monitored by the comet and the micronucleus assays in normal human keratinocytes. Comparison of the minimal genotoxic concentrations showed that two compounds possessed higher capacities to induce SSB after photo-activation. In the micronucleus assay, three molecules were able to induce high numbers of micronuclei following photo-activation. Overall, the results of this study confirm that acridines are predominantly genotoxic via a DNA-intercalating mechanism in the dark, while DNA-adducts were probably induced following photo-activation.
Collapse
|
41
|
Attia SM, Badary OA, Hamada FM, Hrabé de Angelis M, Adler ID. The chemotherapeutic agents nocodazole and amsacrine cause meiotic delay and non-disjunction in spermatocytes of mice. Mutat Res 2007; 651:105-13. [PMID: 18069049 DOI: 10.1016/j.mrgentox.2007.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/28/2007] [Indexed: 01/16/2023]
Abstract
Aneuploidy of germ cells contributes to reduced fertility, foetal wastage and genetic defects. The possible risk of aneuploidy induction by the cancer chemotherapeutic drugs amsacrine (AMSA) and nocodazole (NOC) was investigated in male mice. Two molecular cytogenetic approaches were used: (1) the BrdU-incorporation assay to test the altered duration of meiotic divisions and (2) the sperm-FISH assay to determine aneuploidy induction during meiosis by observing hyperhaploid and diploid sperm. Sperm were sampled from the Caudae epididymes of treated and solvent control males. Single intraperitoneal injections with NOC (35 mg/kg) and AMSA (15 mg/kg) caused a meiotic delay of 24h. The timing of sperm sampling for the sperm-FISH assay was adjusted accordingly, i.e. 23 days after treatment. Mice were treated with 18, 35 and 50 mg/kg of NOC, or 5, 10, 15 and 20 mg/kg of AMSA. Significant dose-dependent increases above the concurrent controls in the frequencies of hyperhaploid sperm were found with both agents. Significant increases in the frequencies of diploid sperm were found only with AMSA. These results provide a basis for genetic counselling of patients under AMSA or NOC chemotherapy. During a period of 3-4 months after the end of chemotherapy, they may stand a higher risk of siring chromosomally abnormal offspring.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | | | | | | | | |
Collapse
|
42
|
Sliwinski T, Rozej W, Morawiec-Bajda A, Morawiec Z, Reiter R, Blasiak J. Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair. Mutat Res 2007; 634:220-7. [PMID: 17851115 DOI: 10.1016/j.mrgentox.2007.07.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/05/2007] [Accepted: 07/10/2007] [Indexed: 11/25/2022]
Abstract
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 microM and its direct metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 microM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.
Collapse
Affiliation(s)
- Tomasz Sliwinski
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Wozniak K, Kolacinska A, Blasinska-Morawiec M, Morawiec-Bajda A, Morawiec Z, Zadrozny M, Blasiak J. The DNA-damaging potential of tamoxifen in breast cancer and normal cells. Arch Toxicol 2007; 81:519-27. [PMID: 17593413 DOI: 10.1007/s00204-007-0188-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/24/2007] [Indexed: 11/30/2022]
Abstract
Tamoxifen (TAM) is a non-steroidal anti-estrogen used widely in the treatment and chemoprevention of breast cancer. TAM treatment can lead to DNA damage, but the mechanism of this process is not fully understood and the experimental data are often inconclusive. We compared the DNA-damaging potential of TAM in normal human peripheral blood lymphocytes and MCF-7 breast cancer cells by using the comet assay. In order to assess whether oxidative DNA damage may contribute to TAM-induced lesions, we employed two DNA repair enzymes: endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg). The kinetics of repair of DNA damage was also measured. In order to evaluate the involvement of free radicals in the genotoxicity of TAM we pre-treated the cells with nitrone spin traps: DMPO and POBN. The use of common antioxidants: vitamin C, amifostine and genistein, helped to assess the contribution of free radicals. TAM damaged DNA in both normal and cancer cells, inducing mainly DNA strand breaks but not alkali-labile sites. The drug at 5 and 10 microM induced DNA double strand breaks (DSBs) in lymphocytes and at 10 microM in MCF-7 cells. We observed complete repair of DSBs in cancer cells by contrast with incomplete repair of these lesions in lymphocytes. In both types of cells TAM induced oxidized purines and pyrimidines. Incubation of the cells with nitrone spin traps and antioxidants decreased, with exception of amifostine in MCF-7 cells, the extents of DNA damage in both kinds of cells, but the results were more distinct in cancer cells. Our results indicate that TAM can be genotoxic for normal and cancer cells by free radicals generation. It seems to have a higher genotoxic potential for normal cells, which can be the result of incomplete repair of DNA DSBs. Free radicals scavengers can modulate TAM-induced DNA damage interfering with its antitumour activity in cancer cells.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Rogoza RM, Fairfax DF, Henry P, N-Marandi S, Khan RF, Gupta SK, Mishra RK. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Synapse 2005; 54:156-63. [PMID: 15452862 DOI: 10.1002/syn.20078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The typical antipsychotic drug haloperidol causes vacuous chewing movements (VCM) in rats, which are representative of early-Parkinsonian symptoms or later-onset extrapyramidal side effects of tardive dyskinesia (TD) in humans. Haloperidol (HP) has been hypothesized to potentiate increases in oxidative stress or free radical-mediated levels of toxic metabolites in rat striatum while simultaneous upregulating dopamine (DA)-D2 receptors leading to presumed DA supersensitivity. Alpha(alpha)-Phenyl-N-tert-butylnitrone (PBN) is an antioxidant used to combat oxidative stress and measure increases in PBN spin-adduct activity. Thus, the aim of this study was to investigate whether VCMs are related to upregulation of DA-D2 receptors or to increased levels of free radicals produced during oxidative stress, and whether PBN had any protective effects. Rats received daily chronic (28 day) i.p. injections of saline, haloperidol (2 mg/kg), PBN (150 mg/kg), or haloperidol + PBN. The VCM model was used to measure extrapyramidal side effects of drug treatments. Electron spin resonance (ESR) spectroscopy was performed to compare concentrations of free radical species in rats receiving injections of HP + PBN. To examine the upregulation of DA-D2 receptors, binding assays were carried out to assess the increase in DA-D(2) receptor numbers with respect to VCMs following treatment of rats injected with HP, PBN, and HP + PBN. Results of these experiments show that HP-induced VCMs in rats results from increases in oxidative cellular events and may not be related to increases in striatal DA-D(2) receptors.
Collapse
Affiliation(s)
- Raina M Rogoza
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
45
|
Csuk R, Barthel A, Brezesinski T, Raschke C. Synthesis of pathogen inactivating nucleic acid intercalators. Eur J Med Chem 2004; 39:975-88. [PMID: 15501547 DOI: 10.1016/j.ejmech.2004.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/19/2004] [Accepted: 07/30/2004] [Indexed: 11/22/2022]
Abstract
A series of antiviral compounds consisting of an intercalating acridine derived part, a spacer region and a reactive EDTA-derived conjugate was synthesized in an easy sequence starting from 1,omega-alkyldiamines. As shown in model screenings, in the presence of ascorbic acid the Fe-complexes of these compounds reduced the phage-titer of MS2-phages by several logarithmic decades.
Collapse
Affiliation(s)
- René Csuk
- Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle (Saale), Germany.
| | | | | | | |
Collapse
|
46
|
Blasiak J, Arabski M, Krupa R, Wozniak K, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Zadrozny M. Basal, oxidative and alkylative DNA damage, DNA repair efficacy and mutagen sensitivity in breast cancer. Mutat Res 2004; 554:139-48. [PMID: 15450412 DOI: 10.1016/j.mrfmmm.2004.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/30/2004] [Accepted: 04/02/2004] [Indexed: 04/30/2023]
Abstract
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, ul. Banacha 12/16, 90-237, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, Zurawska M, Drzewoski J. DNA damage and repair in type 2 diabetes mellitus. Mutat Res 2004; 554:297-304. [PMID: 15450427 DOI: 10.1016/j.mrfmmm.2004.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/14/2004] [Accepted: 05/19/2004] [Indexed: 04/30/2023]
Abstract
DNA damage may be associated with type 2 diabetes mellitus (T2DM) and its complications mainly through oxidative stress. Little is known about DNA repair disturbances potentially contributing to the overall extent of DNA damage in T2DM, which, in turn, may be linked with genomic instability resulting in cancer. To assess whether DNA repair may be perturbed in 2DM we determined: (1) the level of endogenous basal DNA damage, this means damage recognized in the alkaline comet assay (DNA strand breaks and alkali labile sites) as well as endogenous oxidative and alkylative DNA damage (2) the sensitivity to DNA-damaging agents hydrogen peroxide and doxorubicin and the efficacy of removing of DNA damage induced by these agents in peripheral blood lymphocytes of T2DM patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair was evaluated by the alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The levels of basal endogenous and oxidative DNA damage in diabetes patients were higher than in control subjects. There was no difference between the level of alkylative DNA in the patients and the controls. Diabetes patients displayed higher susceptibility to hydrogen peroxide and doxorubicin and decreased efficacy of repairing DNA damage induced by these agents than healthy controls. Our results suggest that type 2 diabetes mellitus may be associated not only with the elevated level of oxidative DNA damage but also with the increased susceptibility to mutagens and the decreased efficacy of DNA repair. These features may contribute to a link between diabetes and cancer and metrics of DNA damage and repair, measured by the comet assay, may be markers of risk of cancer in diabetes.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
McCumber LM. The potential influence of cell protectors for dose escalation in cancer therapy: an analysis of amifostine. Med Dosim 2004; 29:139-43. [PMID: 15191764 DOI: 10.1016/j.meddos.2004.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 05/01/2003] [Indexed: 11/15/2022]
Abstract
The attempt to increase the therapeutic ratio in an effort to improve survival or quality of life is the goal of modern cancer therapy. It is commonly accepted that local and systemic tumor control would increase if the dose intensity of antineoplastic drugs, radiation therapy, or the combination were increased. Radiation dose escalation using intensity-modulated radiation therapy (IMRT), accelerated or hypofractionated radiation schemes, and multidrug chemotherapy regimens are being used to try to increase tumor kill while inflicting minimal injury to normal tissue. Modern chemoradiation techniques have led to improved local regional control and increased cure rates, but the potentially severe and debilitating adverse effects of the therapies prevent them from reaching the ultimate goal of curing the disease while leaving the patient with a good quality of life. Cell protectants such as amifostine function by reducing the effects of therapy on normal cells while maintaining tumor sensitivity to the therapy. In various studies, amifostine has been analyzed and appears to be a potentially powerful adjuvant to current cancer therapy. Administering amifostine may allow dose escalation with less or equal risk to surrounding normal tissues. This could improve therapeutic efficacy, survival, and quality of life for cancer patients.
Collapse
Affiliation(s)
- Linda M McCumber
- Department of Radiation Oncology, University of North Carolina Hospital, Chapel Hill, NC 27514, USA
| |
Collapse
|