1
|
Kaur G, Tiwari P, Singla S, Panghal A, Jena G. The intervention of NLRP3 inflammasome inhibitor: oridonin against azoxymethane and dextran sulfate sodium-induced colitis-associated colorectal cancer in male BALB/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03871-z. [PMID: 40035821 DOI: 10.1007/s00210-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer diagnoses. The dysregulation of the NLRP3 inflammasome is prominently linked to several types of cancers. Oridonin, a principal component of Rabdosia rubescens, exhibits inhibitory activity against NLRP3 and is well-recognized for its diverse pharmacological benefits. However, its role in an animal model of colitis-associated colorectal cancer (CACC) remains unexplored. In the present study, the effectiveness of oridonin was investigated against CACC, developed using azoxymethane (AOM), a tumour initiator, and dextran sulphate sodium (DSS), a tumour promoter, in male BALB/c mice. The two-stage murine model of inflammation-associated cancer was established by administering AOM (10 mg/kg b.w.; i.p., once) followed by DSS (2% w/v) in drinking water (3 cycles, 7 days/cycle). Over a span of 10 weeks, the dose-dependent (2.5, 5, and 10 mg/kg, b.w.; i.p.) effects of oridonin were investigated in BALB/c mice. Oridonin significantly alleviated CACC severity, as evidenced by reduced DAI scores and restored body weight. Moreover, it attenuated surrogate markers of inflammation, including myeloperoxidase, nitrite, plasma LPS, TNF-α, IL-1β, and DNA damage. Histopathological examination revealed diminished tumorigenesis and apoptotic cells, corroborated by reduced Ki-67 and TNF-α, along with increased p53 expression in the colon. Following oridonin treatment, IHC/immunofluorescence analyses demonstrated a significantly reduced expression of the components of NLRP3 inflammasome including NLRP3, ASC-1, and caspase-1. Notably, the high dose of oridonin (10 mg/kg) consistently exhibited significant protective effects against CACC by modulating various molecular targets. Present findings confirmed the potential of oridonin in the protection of colitis-associated colorectal cancer, providing valuable insights into its mechanism of action and clinical significance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Priyanka Tiwari
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Shivani Singla
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Archna Panghal
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
2
|
Kaur G, Kushwah AS. Sodium orthovanadate protects against ulcerative colitis and associated liver damage in mice: insights into modulations of Nrf2/Keap1 and NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1557-1574. [PMID: 39120720 DOI: 10.1007/s00210-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Ulcerative colitis (UC) is a prominent category of disease that is associated with bowel inflammation, it can occur at any period of life and is prevalently rising on a global scale. Dextran sulfate sodium (DSS) has been extensively used to develop colitis due to its ability to mimic human UC, providing consistent and reproducible inflammation, ulceration, and disruption of the epithelial barrier in the colon. Chronic inflammation in the gut can lead to alterations in the gut-liver axis, potentially impacting liver function over time, while direct evidence linking diversion colitis to liver damage is limited. Thus, the present study aims to assess the gut and liver damage against DSS and the possible molecular mechanisms. Forty-seven animals were randomly assigned to six groups. Ulcerative colitis was induced using 2.5% w/v DSS in three alternate cycles, each lasting 7 days, with 1-week remission periods in between. SOV (5 and 10 mg/kg, orally) and the standard drug 5-aminosalicylic acid (100 mg/kg, orally) were administered from the start of the 2nd DSS cycle until the end of the experiment. Biochemical parameters, ELISA, histopathological, and immunohistochemical analyses have been conducted to assess damage in the colon and liver. SOV significantly reduced colitis severity by lowering the DAI score, oxidative stress markers (LPS, IL-1β, MPO, nitrite), and restoring liver biomarkers (SGPT, SGOT). Histopathological findings supported these protective benefits in the liver and gut. Moreover, immunohistochemical analysis showed SOV enhanced the expression of the cytoprotective mediator Nrf2/Keap-1 and reduced the expression of inflammatory mediators NF-κB and IL-6. Present findings concluded that SOV demonstrated a dose-dependent effect against UC through anti-inflammatory and antioxidant pathways, with the highest dose of SOV 10 mg/kg having more significant (p < 0.001) results than the low dose of 5 mg/kg.
Collapse
Affiliation(s)
- Gurpreet Kaur
- IK Gujral Punjab Technical University, Kapurthala, 144601, Jalandhar, Punjab, India
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India.
| |
Collapse
|
3
|
Cartus AT, Lachenmeier DW, Guth S, Roth A, Baum M, Diel P, Eisenbrand G, Engeli B, Hellwig M, Humpf HU, Joost HG, Kulling SE, Lampen A, Marko D, Steinberg P, Wätjen W, Hengstler JG, Mally A. Acetaldehyde as a Food Flavoring Substance: Aspects of Risk Assessment. Mol Nutr Food Res 2023; 67:e2200661. [PMID: 37840378 DOI: 10.1002/mnfr.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Indexed: 10/17/2023]
Abstract
The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.
Collapse
Affiliation(s)
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, Bern, 3003, Switzerland
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
5
|
Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1211-1222. [PMID: 36694011 DOI: 10.1007/s00210-023-02396-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.
Collapse
|
6
|
Unterberger-Henig E. Comparative evaluation of three methylene dianiline isomers in the bacterial reverse mutation assay, the in vitro gene mutation test, and the in vitro chromosomal aberration test. Toxicol Ind Health 2022; 38:529-543. [PMID: 35535771 DOI: 10.1177/0748233221091018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
4,4'-MDA is classified as a genotoxic carcinogen based on numerous in vitro and animal data. The consequential assumption that a safe threshold does not exist is not only applied to 4,4'-MDA but also to its structural isomers and impurities 2,2'- and 2,4'-MDA in the absence of substance-specific data. This constitutes a problem in human risk assessments for all three substances as the inherent risks of 2,2'- and 2,4'-MDA and their contribution as impurities to that of 4,4'-MDA are essentially unknown. A comparative in vitro genotoxicity dataset consisting of the bacterial reverse mutation (Ames) test and the chromosomal aberration test in human lymphocytes (both performed according to the current OECD Guidelines) was generated for all three isomers. Furthermore, an in vitro gene mutation test in Chinese hamster ovary (CHO) cells (HPRT locus assay) was conducted with 2,4'-MDA. The results indicate differences regarding the genotoxic mechanism and potential, respectively, between the three structures and suggest that the no-threshold assumption for 4,4'-MDA may not be appropriate for 2,2'- and 2,4'-MDA.
Collapse
|
7
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Stellungnahme zu Acetaldehyd als Aromastoff: Aspekte der Risikobewertung. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOpinion on acetaldehyde as a flavouring substance: considerations for risk assessmentAcetaldehyde occurs naturally in many foods and is also used as a flavouring due to its fruity aroma. The International Agency for Research on Cancer (IARC) classified acetaldehyde as possibly carcinogenic to humans and, in combination with oral intake via alcoholic beverages, as carcinogenic to humans. Therefore, the question arises whether the use of acetaldehyde as a flavouring agent is still justifiable. The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the scientific basis for health risk assessment of the use of acetaldehyde as a flavouring substance and adopted an opinion. Based on the available data, it is at present not possible to conclude if acetaldehyde is genotoxic and mutagenic in vivo after oral exposure. There is also uncertainty regarding the contribution of acetaldehyde as a flavouring substance to the overall exposure to acetaldehyde. Therefore, a science-based assessment on health risk related to the use of acetaldehyde as a flavouring is not possible at present. Considering the genotoxic potential as well as numerous data gaps that need to be closed for a full risk assessment, the SKLM is concerned about the safety of acetaldehyde as a flavouring substance. For reasons of precautionary consumer protection, the SKLM considers that the use of acetaldehyde as a food additive should be re-evaluated.
Collapse
|
9
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Hamada S, Shigano M, Wako Y, Kawasako K, Satomoto K, Mitsumoto T, Fukuda T, Ohyama W, Morita T, Hayashi M. Detection of hepatocarcinogens by combination of liver micronucleus assay and histopathological examination in 2-week or 4-week repeated dose studies. Genes Environ 2022; 44:2. [PMID: 34983681 PMCID: PMC8725540 DOI: 10.1186/s41021-021-00222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background Currently, revisions to the ICH S1 guidance on rodent carcinogenicity testing are being proposed. Application of this approach would reduce the use of animals in accordance with the 3Rs principles (reduce/refine/replace). The method would also shift resources to focus on more scientific mechanism-based carcinogenicity assessments and promote safe and ethical development of new small molecule pharmaceuticals. In the revised draft, findings such as cellular hypertrophy, diffuse and/or focal cellular hyperplasia, persistent tissue injury and/or chronic inflammation, preneoplastic changes, and tumors are listed as histopathology findings of particular interest for identifying carcinogenic potential. In order to predict hepatocarcinogenicity of test chemicals based on the results from 2- or 4-week repeated dose studies, we retrospectively reanalyzed the results of a previous collaborative study on the liver micronucleus assay. We focused on liver micronucleus induction in combination with histopathological changes including hypertrophy, proliferation of oval cells or bile duct epithelial cells, tissue injuries, regenerative changes, and inflammatory changes as the early responses of hepatocarcinogenesis. For these early responses, A total of 20 carcinogens, including 14 genotoxic hepatocarcinogens (Group A) and 6 non-liver-targeted genotoxic carcinogens (Group B) were evaluated. Results In the Group A chemicals, 5 chemicals (NPYR, MDA, NDPA, 2,6-DNT, and NMOR) showed all of the 6 early responses in hepatocarcinogenesis. Five chemicals (DMN, 2,4-DNT, QUN, 2-AAF, and TAA) showed 4 responses, and 4 chemicals (DAB, 2-NP, MCT, and Sudan I) showed 3 responses. All chemicals exhibited at least 3 early responses. Contrarily, in the Group B chemicals (6 chemicals), 3 of the 6 early responses were observed in 1 chemical (MNNG). No more than two responses were observed in 3 chemicals (MMC, MMS, and KA), and no responses were observed in 2 chemicals (CP and KBrO3). Conclusion Evaluation of liver micronucleus induction in combination with histopathological examination is useful for detecting hepatocarcinogens. This assay takes much less time than routine long-term carcinogenicity studies.
Collapse
Affiliation(s)
- Shuichi Hamada
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan.
| | - Miyuki Shigano
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Yumi Wako
- LSIM Safety Institute Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Kazufumi Kawasako
- Rakuno Gakuen University, 582 midorimachi, Bunkyoudai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Kensuke Satomoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Tatsuya Mitsumoto
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Takayuki Fukuda
- BoZo Research Center Inc, 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Takeshi Morita
- National Institute of Technology and Evaluation, 2-49-10 Nishihara, Shibuya-ku, Tokyo, 151-0066, Japan
| | - Makoto Hayashi
- makoto international consulting, 4-23-3-1 Kamiimaizumi, Ebina-shi, Kanagawa, 243-0431, Japan
| |
Collapse
|
11
|
Patlewicz G, Dean JL, Gibbons CF, Judson RS, Keshava N, Vegosen L, Martin TM, Pradeep P, Simha A, Warren SH, Gwinn MR, DeMarini DM. Integrating publicly available information to screen potential candidates for chemical prioritization under the Toxic Substances Control Act: A proof of concept case study using genotoxicity and carcinogenicity. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:1-100185. [PMID: 35128218 PMCID: PMC8809402 DOI: 10.1016/j.comtox.2021.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Toxic Substances Control Act (TSCA) became law in the U.S. in 1976 and was amended in 2016. The amended law requires the U.S. EPA to perform risk-based evaluations of existing chemicals. Here, we developed a tiered approach to screen potential candidates based on their genotoxicity and carcinogenicity information to inform the selection of candidate chemicals for prioritization under TSCA. The approach was underpinned by a large database of carcinogenicity and genotoxicity information that had been compiled from various public sources. Carcinogenicity data included weight-of-evidence human carcinogenicity evaluations and animal cancer data. Genotoxicity data included bacterial gene mutation data from the Salmonella (Ames) and Escherichia coli WP2 assays and chromosomal mutation (clastogenicity) data. Additionally, Ames and clastogenicity outcomes were predicted using the alert schemes within the OECD QSAR Toolbox and the Toxicity Estimation Software Tool (TEST). The evaluation workflows for carcinogenicity and genotoxicity were developed along with associated scoring schemes to make an overall outcome determination. For this case study, two sets of chemicals, the TSCA Active Inventory non-confidential portion list available on the EPA CompTox Chemicals Dashboard (33,364 chemicals, 'TSCA Active List') and a representative proof-of-concept (POC) set of 238 chemicals were profiled through the two workflows to make determinations of carcinogenicity and genotoxicity potential. Of the 33,364 substances on the 'TSCA Active List', overall calls could be made for 20,371 substances. Here 46.67%% (9507) of substances were non-genotoxic, 0.5% (103) were scored as inconclusive, 43.93% (8949) were predicted genotoxic and 8.9% (1812) were genotoxic. Overall calls for genotoxicity could be made for 225 of the 238 POC chemicals. Of these, 40.44% (91) were non-genotoxic, 2.67% (6) were inconclusive, 6.22% (14) were predicted genotoxic, and 50.67% (114) genotoxic. The approach shows promise as a means to identify potential candidates for prioritization from a genotoxicity and carcinogenicity perspective.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jeffry L. Dean
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Catherine F. Gibbons
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nagalakshmi Keshava
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Leora Vegosen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Todd M. Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Prachi Pradeep
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Anita Simha
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Research Triangle Park, North Carolina, USA
| | - Sarah H. Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maureen R. Gwinn
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David M. DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
12
|
Tu H, Yu C, Tong W, Zhou C, Li R, Huang P, Wang Q, Chang Y. Evaluation of the Liver and Blood Micronucleus, and Comet Assay Endpoints in a 14-Day Repeated Dose Study with Methyl Carbamate and 1, 3-Propane Sultone. Mutagenesis 2021; 36:401-406. [PMID: 34516639 DOI: 10.1093/mutage/geab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022] Open
Abstract
The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1, 3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Sprague Dawley rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of 5 male Sprague Dawley rats were treated once daily with MC (300, 600, or 1200 mg/kg/day), PS (37.5, 75, or 150 mg/kg/day), negative control, or 3 positive controls by oral gavage for 15 days. Blood samples were collected at 3 hours after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay, and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated dose studies in animals. Moreover, integration of multiple genotoxicity endpoints into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.
Collapse
Affiliation(s)
- Honggang Tu
- School of Pharmacy, Shanghai Jiao Tong University, China.,Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Chunrong Yu
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Wen Tong
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Ruowan Li
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qingli Wang
- Center for Drug Evaluation, National Medical Products Administration (China Food and Drug Administration), Beijing, China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
13
|
Chen L, Li N, Liu Y, Faquet B, Alépée N, Ding C, Eilstein J, Zhong L, Peng Z, Ma J, Cai Z, Ouedraogo G. A new 3D model for genotoxicity assessment: EpiSkin™ Micronucleus Assay. Mutagenesis 2021; 36:51-61. [PMID: 32067034 DOI: 10.1093/mutage/geaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/14/2020] [Indexed: 11/12/2022] Open
Abstract
The European Regulation on Cosmetics (no. 1223/2009) has prohibited the use of animals in safety testing since March 2009 for ingredients used in cosmetics. Irreversible events at the chromosome level (clastogenesis and aneugenesis) are commonly evaluated by scoring either micronuclei or chromosome aberrations using cell-based genotoxicity assays. Like most in vitro genotoxicity assays, the 2D in vitro micronucleus assay exhibits a poor specificity and does not mimic the dermal route. To address these limitations, the current project aims to develop and validate a 3D micronucleus assay using the EpiSkin™ model. This project is scientifically supported by the Cosmetics Europe Genotoxicity Task Force. In a first step, two key criteria for the development of micronucleus assay, namely, the sufficient yield of cells from the EpiSkin™ model and an acceptable proliferation rate of the basal layer, were assessed and demonstrated. Subsequently, six chemicals (vinblastine, n-ethylnitrosourea, β-butyrolactone, 2-acetylaminofluorene, 2,4-dichlorophenoland d-limonene) were evaluated in the EpiSkin™ Micronucleus Assay. At least two independent experiments using 48- and 72-h incubations were performed for each chemical. Results showed good inter-experimental reproducibility, as well as the correct identification of all six tested chemicals. The metabolism of 2-acetylaminofluorene on the EpiSkin™ model was also investigated and confirmed by the formation of an intermediate metabolite (2-aminofluorene). These preliminary results from the EpiSkin™ Micronucleus Assay indicate that it is a promising in vitro assay for assessing genotoxicity. The availability and suitability of this test method contribute significantly to the development of non-animal testing methods in China and its impact on the worldwide field.
Collapse
Affiliation(s)
- Lizao Chen
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Nan Li
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Yanfeng Liu
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Brigitte Faquet
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Nathalie Alépée
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Chunmei Ding
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Lingyan Zhong
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhengang Peng
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Jie Ma
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhenzi Cai
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Gladys Ouedraogo
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| |
Collapse
|
14
|
Integrative comparison of cadmium and iron oxide as yellow pigment in terms of cellular stress and genotoxicity in vitro and in vivo. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-020-00113-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Nault R, Bals B, Teymouri F, Black MB, Andersen ME, McMullen PD, Krishnan S, Kuravadi N, Paul N, Kumar S, Kannan K, Jayachandra KC, Alagappan L, Patel BD, Bogen KT, Gollapudi BB, Klaunig JE, Zacharewski TR, Bringi V. A toxicogenomic approach for the risk assessment of the food contaminant acetamide. Toxicol Appl Pharmacol 2020; 388:114872. [PMID: 31881176 PMCID: PMC7014822 DOI: 10.1016/j.taap.2019.114872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or 28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA). Ki67 labeling was increased at doses ≥750 mkd up to 3.3-fold representing the most sensitive apical endpoint. Differential gene expression analysis by RNA-Seq identified 1110 and 1814 differentially expressed genes in male and female rats, respectively, following 28 days of treatment. Down-regulated genes were associated with lipid metabolism while up-regulated genes included cell signaling, immune response, and cell cycle functions. Benchmark dose (BMD) modeling of the Ki67 labeling index determined the BMD10 lower confidence limit (BMDL10) as 190 mkd. Transcriptional BMD modeling revealed excellent concordance between transcriptional POD and apical endpoints. Collectively, these results indicate that acetamide is most likely acting through a mitogenic MoA, though specific key initiating molecular events could not be elucidated. A POD value of 190 mkd determined for cell proliferation is suggested for risk assessment purposes.
Collapse
Affiliation(s)
- Rance Nault
- Institute for Integrative Toxicology, Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Bryan Bals
- Michigan Biotechnology Institute, Lansing, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tim R Zacharewski
- Institute for Integrative Toxicology, Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Venkataraman Bringi
- Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Buxton S, Voges Y, Donath C, Oller A. Gene (HPRT) and chromosomal (MN) mutations of nickel metal powder in V79 Chinese hamster cells. Mutat Res 2020; 819-820:111688. [PMID: 32014793 DOI: 10.1016/j.mrfmmm.2020.111688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Nickel metal is a naturally occurring element used in many industrial and consumer applications. Human epidemiological data and animal cancer bioassays indicate that nickel metal is not likely to be a human carcinogen. Yet, nickel metal is classified as a suspected human carcinogen (CLP) and possibly carcinogenic to humans (IARC). There are no reliable studies on the potential for nickel metal to induce gene and micronucleus (MN) mutations. To fill these datagaps and increase our understanding of the mechanisms underlying the lack of nickel metal carcinogenicity, gene and micronucleus mutation studies were conducted with nickel metal powder (N36F) in V79 Chinese Hamster cells following OECD 476 and 487 guidelines, respectively, under GLP. Gene mutation at the hprt locus was tested, with and without metabolic activation, after 4-h treatment with 0.05-2.5 mM nickel metal powder. Cytokinesis-block MN frequency following exposure to 0.25-1.5 mM nickel metal was tested after 4-h treatment, with and without metabolic activation, followed by a 24-h treatment without metabolic activation. In the gene mutation assay, there were modest increases in hprt mutants observed at some test concentrations, not exceeding 2.2-fold, which were either within the historical control values and/or showed no concentration-response trend. The positive controls showed increases of at least 7-fold. Likewise, no increases in the MN frequency exceeding 1.5-fold were observed with nickel metal, with no concentration-response trends. Taking these results together, it can be concluded that nickel metal is non-mutagenic and does not cause gene nor chromosomal mutations.
Collapse
Affiliation(s)
- Samuel Buxton
- NiPERA Inc., 2525 Meridian Parkway Suite 240, Durham, NC 27713 USA
| | - Yvonne Voges
- Department of in vitro Pharmacology/Toxicology, Eurofins BioPharma Product Testing Munich GmbH, Behringstr. 6/8, D82152 Planegg/Munich, Germany
| | - Claudia Donath
- Department of in vitro Pharmacology/Toxicology, Eurofins BioPharma Product Testing Munich GmbH, Behringstr. 6/8, D82152 Planegg/Munich, Germany
| | - Adriana Oller
- NiPERA Inc., 2525 Meridian Parkway Suite 240, Durham, NC 27713 USA
| |
Collapse
|
17
|
Tong W, Zhou C, Huang P, Ma J, Chang Y. Integration of micronucleus, comet, and Pig-a gene mutation endpoints into rat 15-day repeat-treatment studies: Proof-of-principle with Auramine O. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403072. [DOI: 10.1016/j.mrgentox.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
|
18
|
Moore MM, Gollapudi B, Nagane R, Khan N, Patel M, Khanvilkar T, Roy AM, Ramesh E, Bals B, Teymouri F, Nault R, Bringi V. The food contaminant acetamide is not an in vivo clastogen, aneugen, or mutagen in rodent hematopoietic tissue. Regul Toxicol Pharmacol 2019; 108:104451. [PMID: 31470077 PMCID: PMC6876283 DOI: 10.1016/j.yrtph.2019.104451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
Abstract
Acetamide (CAS 60-35-5) is classified by IARC as a Group 2B, possible human carcinogen, based on the induction of hepatocellular carcinomas in rats following chronic exposure to high doses. Recently, acetamide was found to be present in a variety of human foods, warranting further investigation. The regulatory body JECFA has previously noted conflicting reports on acetamide's ability to induce micronuclei (MN) in mice in vivo. To better understand the potential in vivo genotoxicity of acetamide, we performed acute MN studies in rats and mice, and a subchronic study in rats, the target species for liver cancer. In the acute exposure, animals were gavaged with water vehicle control, 250, 1000, or 2000 mg/kg acetamide, or the positive control (1 mg/kg mitomycin C). In the subchronic assay, bone marrow of rats gavaged at 1000 mg/kg/day (limit dose) for 28 days was evaluated. Both acute and subchronic exposures showed no change in the ratio of polychromatic to total erythrocytes (P/E) at any dose, nor was there any increase in the incidence of micronucleated polychromatic erythrocytes (MN-PCE). Potential mutagenicity of acetamide was evaluated in male rats gavaged with vehicle control or 1500 mg/kg/day acetamide using the in vivoPig-a gene mutation assay. There was no increase in mutant red blood cells or reticulocytes in acetamide-treated animals. In both acute and sub-chronic studies, elevated blood plasma acetamide in treated animals provided evidence of systemic exposure. We conclude based on this study that acetamide is not clastogenic, aneugenic, or mutagenic in vivo in rodent hematopoietic tissue warranting a formal regulatory re-evaluation. In vivo micronucleus tests with acetamide in mice and rats. Acetamide blood plasma levels demonstrated evidence of exposure. Acetamide does not induce micronuclei in rats and mice. Acetamide does not increase mutations in the rat Pig-a gene mutation assay.
Collapse
Affiliation(s)
| | | | - Rajendra Nagane
- Jai Research Foundation India, NH-8 Near Daman Ganga Bridge Valvada, Vapi, Gujarat, 396 105, India.
| | - Nadeem Khan
- Jai Research Foundation India, NH-8 Near Daman Ganga Bridge Valvada, Vapi, Gujarat, 396 105, India.
| | - Manish Patel
- Jai Research Foundation India, NH-8 Near Daman Ganga Bridge Valvada, Vapi, Gujarat, 396 105, India.
| | - Tushar Khanvilkar
- Jai Research Foundation India, NH-8 Near Daman Ganga Bridge Valvada, Vapi, Gujarat, 396 105, India.
| | - Avani M Roy
- Jai Research Foundation India, NH-8 Near Daman Ganga Bridge Valvada, Vapi, Gujarat, 396 105, India
| | - E Ramesh
- Eurofins Advinus Limited, Peenya II Phase, Bangalore, 560 058, India.
| | - Bryan Bals
- MBI International, 3815 Technology Blvd, Lansing, MI, 48910, USA.
| | | | - Rance Nault
- Department of Biochemistry and Molecular Biology, Institute for Integrative Toxicology, Michigan State University, 1129 Farm Lane Rm 248, East Lansing, MI, 48824, USA.
| | - Venkataraman Bringi
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S Shaw Lane Rm 2100, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Moore MM, Pottenger LH, House‐Knight T. Critical review of styrene genotoxicity focused on the mutagenicity/clastogenicity literature and using current organization of economic cooperation and development guidance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:624-663. [PMID: 30786062 PMCID: PMC6767453 DOI: 10.1002/em.22278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 05/06/2023]
Abstract
Styrene is an important high production volume chemical used to manufacture polymeric products. In 2018, International Agency for Research on Cancer classified styrene as probably carcinogenic to humans; National Toxicology Program lists styrene as reasonably anticipated to be a human carcinogen. The genotoxicity literature for styrene and its primary metabolite, styrene 7,8-oxide (SO), begins in the 1970s. Organization of Economic Cooperation and Development (OECD) recently updated most genotoxicity test guidelines, making substantial new recommendations for assay conduct and data evaluation for the standard mutagenicity/clastogenicity assays. Thus, a critical review of the in vitro and in vivo rodent mutagenicity/clastogenicity studies for styrene and SO, based on the latest OECD recommendations, is timely. This critical review considered whether a study was optimally designed, conducted, and interpreted and provides a critical assessment of the evidence for the mutagenicity/clastogenicity of styrene/SO. Information on the ability of styrene/SO to induce other types of genotoxicity endpoints is summarized but not critically reviewed. We conclude that when styrene is metabolized to SO, it can form DNA adducts, and positive in vitro mutagenicity/clastogenicity results can be obtained. SO is mutagenic in bacteria and the in vitro mouse lymphoma gene mutation assay. No rodent in vivo mutation studies were identified. SO is clastogenic in cultured mammalian cells. Although the in vitro assays gave positive responses, styrene/SO is not clastogenic/aneugenic in vivo in rodents. In addition to providing updated information for styrene, this review demonstrates the application of the new OECD guidelines for chemicals with large genetic toxicology databases where published results may or may not be reliable. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martha M. Moore
- Ramboll124 West Capitol Avenue, Suite 1605, Little RockArkansas
| | | | | |
Collapse
|
20
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
21
|
Gelbke HP, Buist H, Eisert R, Leibold E, Sherman JH. Derivation of safe exposure levels for potential migration of formaldehyde into food. Food Chem Toxicol 2019; 132:110598. [PMID: 31228601 DOI: 10.1016/j.fct.2019.110598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/16/2023]
Abstract
Polyoxymethylene (POM) is a polymer of formaldehyde used inter alia for kitchenware and food processing machines. By migration into food, consumers may be exposed to small additional amounts of formaldehyde in food. In order to address such potential exposures, Specific Migration Limits are derived using all studies with oral exposure in mammals and birds. The assessment is not only based on local irritation observed in a 2-year rat study that has previously served to calculate acceptable exposure levels, but also on systemic effects, namely on effects on the kidney in adult rats and testes in birds before sexual maturity. At the relatively high oral exposure levels (up to 2000 ppm in drinking water) long-term effects caused by formic acid, the first step metabolite of formaldehyde, such as acidosis, cannot be excluded. The lowest Specific Migration Limit of 2.74 mg/dm2, corresponding to 16.5 mg formaldehyde/kg food, is based upon kidney effects in rats, leading to potential exposures that range between 2900 and 4400 times below the endogenous turnover of formaldehyde. Lastly, a recent migration study with POM showed that migration of formaldehyde into food simulants is over an order of magnitude below the lowest Specific Migration Limit derived herein.
Collapse
Affiliation(s)
| | - Harrie Buist
- TNO Innovation for Life, PO Box 360, 3700, AJ Zeist, Netherlands
| | - Ralf Eisert
- BASF SE, Product Safety, D-67056, Ludwigshafen, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, D-67056, Ludwigshafen, Germany
| | - James H Sherman
- Celanese Corporation, 222 W. Las Colinas Blvd, Irving, TX, USA
| |
Collapse
|
22
|
Evaluation of the novel liver micronucleus assay using formalin-fixed tissues. Genes Environ 2019; 41:13. [PMID: 31086610 PMCID: PMC6507131 DOI: 10.1186/s41021-019-0128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Background The repeated-dose liver micronucleus (RDLMN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly for those that require metabolic activation to show genotoxicity. In a collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS), micronucleus induction of 22 chemicals with the RDLMN assay employing the collagenase digestion method was examined and reported on. Recently, we have developed a method which enables retrospective evaluation of micronucleus induction in formalin-fixed liver tissues (the formalin-fixed method) obtained in general toxicity studies completed in the past. Using this method, we were able to easily evaluate clastogenic potential of chemicals from the formalin-fixed tissues obtained in the general toxicity studies. In this study, to evaluate the usefulness of the formalin-fixed method, we have conducted a liver micronucleus assay using the formalin-fixed liver samples obtained from the above collaborative study (18 of 22 test chemicals) and carried out a comparison with the results obtained by the collagenase digestion method. Results Comparison of the collagenase digestion and formalin-fixed methods was conducted using the results of the micronucleus assays with a total of 18 test chemicals which included 12 genotoxic hepatocarcinogens (Group A), 4 genotoxic carcinogens but not liver targeted (Group B), and 2 nongenotoxic hepatocarcinogens (Group C). The formalin-fixed method obtained the similar results as the collagenase digestion method in 10 out of the 12 chemicals of Group A, and all chemicals of Group B and Group C. Although the results were statistically contradictive due to different levels of concurrent negative control, the 2 other chemicals of Group A showed comparable responses between the two methods. Conclusion The present study shows that the formalin-fixed method is capable of detecting liver carcinogens with sensitivity equal to or higher than that of the collagenase digestion method. We recommend use of the formalin-fixed method because of its capability of enabling retrospective evaluation of micronucleus induction in the formalin-fixed liver tissues obtained in general toxicity studies completed in the past.
Collapse
|
23
|
Kirkland D, Uno Y, Luijten M, Beevers C, van Benthem J, Burlinson B, Dertinger S, Douglas GR, Hamada S, Horibata K, Lovell DP, Manjanatha M, Martus HJ, Mei N, Morita T, Ohyama W, Williams A. In vivo genotoxicity testing strategies: Report from the 7th International workshop on genotoxicity testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403035. [PMID: 31699340 DOI: 10.1016/j.mrgentox.2019.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster, LS24 0AS, United Kingdom.
| | - Yoshifumi Uno
- Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama, 335-8505, Japan
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Carol Beevers
- Exponent International Ltd., The Lenz, Hornbeam Park, Harrogate, HG2 8RE, United Kingdom
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Brian Burlinson
- Envigo, Huntingdon, Cambridgeshire, PE28 4HS, United Kingdom
| | | | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Shuichi Hamada
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Katsuyoshi Horibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - David P Lovell
- St George's Medical School, University of London, London, SW17 0RE, United Kingdom
| | | | | | - Nan Mei
- US FDA, National Center for Toxicological Research, Jefferson, AR, USA
| | - Takeshi Morita
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd., 5-11, Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Andrew Williams
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| |
Collapse
|
24
|
Abstract
Interlaboratory studies are common in toxicology, particularly for the introduction of alternative assays. Numerous papers are available on the statistical analysis of interlaboratory studies, but these deal primarily with the case of a replicated single sample studied in several laboratories. This approach can be used for some assays, but for the majority, the results will be unsatisfactory, i.e. involving great variability between both the dose groups and the laboratories. However, the primary objective of toxicological assays is to achieve similarity between the sizes of effects, rather than to determine absolute values. In the parametric model, the sizes of effects are the studentised differences from the negative control or, for the commonly used dose-response designs, the similarity of the slopes of the dose-response curves. Standard approaches for the estimation of intralaboratory and interlaboratory variability, including Mandel plots, are introduced, and new approaches are presented for demonstrating similarity of effect sizes, with or without assuming a dose-response model. One approach is based on a modification of the parallel-line assay, the other is based on a modification of the interaction contrasts of the analysis of variance. SAS programs are given for all approaches, and real data from an interlaboratory immunotoxicological study are analysed as a demonstration.
Collapse
Affiliation(s)
- Ludwig A Hothorn
- Bioinformatics Unit, University of Hannover, 30419 Hannover, Germany
| |
Collapse
|
25
|
Mittelstaedt RA, Dobrovolsky VN, Revollo JR, Pearce MG, Wang Y, Dad A, McKinzie PB, Rosenfeldt H, Yucesoy B, Yeager R, Hu SC, Tang Y, Min S, Kang HK, Yang DJ, Basavarajappa M, Heflich RH. Evaluation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) mutagenicity using in vitro and in vivo Pig-a assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 837:65-72. [PMID: 30595212 DOI: 10.1016/j.mrgentox.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a genotoxic carcinogen found in tobacco and tobacco smoke. Several in vitro and in vivo assays have been used for evaluating the genotoxicity of tobacco smoke and tobacco smoke constituents like NNK, yet it is not clear which in vitro assays are most appropriate for extrapolating the in vitro responses of these test agents to animal models and humans. The Pig-a gene mutation assay can be performed in vitro, in laboratory animals, and in humans, a potential benefit in estimating in vivo responses from in vitro data. In the current study we used Pig-a as a reporter of gene mutation both in vitro, in L5178Y/Tk+/- cells, and in vivo, in Sprague-Dawley rats. NNK significantly increased Pig-a mutant frequency in L5178Y/Tk+/- cells, but only at concentrations of 100 μg/ml and greater, and only in the presence of S9 activation. Pig-a mutations in L5178Y/Tk+/- cells were detected in 80% of the NNK-induced mutants, with the predominate mutation being G→A transition; vehicle control mutants contained deletions. In the in vivo study, rats were exposed to NNK daily for 90 days by inhalation, a common route of exposure to NNK for humans. Although elevated mutant frequencies were detected, these responses were not clearly associated with NNK exposure, so that overall, the in vivo Pig-a assays were negative. Thus, while NNK induces mutations in the in vitro Pig-a assay, the in vivo Pig-a assay has limited ability to detect NNK mutagenicity under conditions relevant to NNK exposure in smokers.
Collapse
Affiliation(s)
- Roberta A Mittelstaedt
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Vasily N Dobrovolsky
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Javier R Revollo
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Mason G Pearce
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Yiying Wang
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Azra Dad
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Page B McKinzie
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA
| | - Hans Rosenfeldt
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Berran Yucesoy
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Raymond Yeager
- U.S. Food and Drug Administration, Division of Nonclinical Science, Office of Science, Center for Tobacco Products, USA
| | - Shu-Chieh Hu
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Yunan Tang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Seonggi Min
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Hyun-Ki Kang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Dong-Jin Yang
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Mallikarjuna Basavarajappa
- U.S. Food and Drug Administration, Inhalcore, Office of Scientific Coordination, National Center for Toxicological Research, USA
| | - Robert H Heflich
- U.S. Food and Drug Administration, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, USA.
| |
Collapse
|
26
|
Abramsson-Zetterberg L. Strongly heated carbohydrate-rich food is an overlooked problem in cancer risk evaluation. Food Chem Toxicol 2018; 121:151-155. [DOI: 10.1016/j.fct.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
27
|
Usende IL, Alimba CG, Emikpe BO, Bakare AA, Olopade JO. Intraperitoneal sodium metavanadate exposure induced severe clinicopathological alterations, hepato-renal toxicity and cytogenotoxicity in African giant rats (Cricetomys gambianus, Waterhouse, 1840). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26383-26393. [PMID: 29981023 DOI: 10.1007/s11356-018-2588-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Pollution of environment due to increased exploitation of minerals has been on the rise, and vanadium, a metal in the first transition series essential for mammalian existence, is a major component of air pollution. This study investigated the clinico-pathological, hepato-renal toxicity, and cytogenotoxicity of intraperitoneal exposure of African giant rats (AGRs), a proposed model for ecotoxicological research to sodium metavanadate. A total of 27 adult male African giant rats weighing 975 ± 54.10 g were distributed into two major groups: sodium metavanadate (SMV) treated and control. They were observed daily for clinical signs of toxicity. Four rats from each group were randomly collected and sacrificed after 3, 7, and 14 days of SMV treatment. Liver, kidney, and bone marrow were analyzed for histopathology and micronucleated normochromated and polychromated erythrocytes (MNNCE and MNPCE), respectively. Clinical signs in treated AGR include sluggish and weak movements, un-groomed fur, and labored breathing. Histology of the kidney revealed severe glomerular atrophy, tubular ectasia, and vacuolar degeneration of tubular epithelium, while liver histology showed sinusoidal congestion and severe hepatocellular necrosis after 14 days SMV exposure. Also, MNNCE and MNPCE significantly increased with a decrease in PCE/NCE ratio in SMV-treated AGR, suggestive of alternations in bone marrow cell proliferation. Hence, SMV treatment to AGR resulted to severe clinicopathologic alterations, kidney, and liver dysfunction and cytogenotoxicity evident by somatic mutation induction which could be severe with prolonged exposure. This suggests African giant rat as an ecotoxicological model to measure major health risks to animals and human populations in highly polluted environment.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Abuja, Nigeria
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | | | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
28
|
Horibe A, Odashima S, Hamasuna N, Morita T, Hayashi M. Weight of contribution of in vitro chromosomal aberration assay for evaluation of pesticides: Experience of risk assessment at the Food Safety Commission of Japan. Regul Toxicol Pharmacol 2018; 95:133-141. [DOI: 10.1016/j.yrtph.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 11/25/2022]
|
29
|
Kobets T, Duan JD, Brunnemann KD, Iatropoulos MJ, Etter S, Hickey C, Smith B, Williams GM. In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem Toxicol 2018; 115:228-243. [DOI: 10.1016/j.fct.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
30
|
Zeller A, Pfuhler S, Albertini S, Bringezu F, Czich A, Dietz Y, Fautz R, Hewitt NJ, Kirst A, Kasper P. A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis 2018; 33:179-193. [DOI: 10.1093/mutage/gey005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Human Safety, Mason Business Centre, Mason, OH, USA
| | - Silvio Albertini
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | | | - Andreas Czich
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | | | | | | | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee, Bonn, Germany
| |
Collapse
|
31
|
The role of ethyl acrylate induced GSH depletion in the rodent forestomach and its impact on MTD and in vivo genotoxicity in developing an adverse outcome pathway (AOP). Regul Toxicol Pharmacol 2018; 92:173-181. [DOI: 10.1016/j.yrtph.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 02/04/2023]
|
32
|
Zeinali M, Meybodi NT, Rezaee SA, Rafatpanah H, Hosseinzadeh H. Protective effects of chrysin on sub-acute diazinon-induced biochemical, hematological, histopathological alterations, and genotoxicity indices in male BALB/c mice. Drug Chem Toxicol 2017; 41:270-280. [DOI: 10.1080/01480545.2017.1384834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Majid Zeinali
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, Islamic Republic of Iran
- Social Security Organization (SSO), Mashhad, Islamic Republic of Iran
| | - Naser Tayebi Meybodi
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Islamic Republic of Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research center, Division of Inflammatory Diseases, Mashhad University of Medical Science (MUMS), Mashhad, Islamic Republic of Iran
| | - Houshang Rafatpanah
- Immunology Research center, Division of Inflammatory Diseases, Mashhad University of Medical Science (MUMS), Mashhad, Islamic Republic of Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Centre, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| |
Collapse
|
33
|
Silano V, Bolognesi C, Castle L, Chipman K, Cravedi JP, Engel KH, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Pfaff K, Riviere G, Srinivasan J, Tavares Poças MDF, Tlustos C, Wölfle D, Zorn H, Benigni R, Binderup ML, Brimer L, Marcon F, Marzin D, Mosesso P, Mulder G, Oskarsson A, Svendsen C, Anastassiadou M, Carfì M, Saarma S, Mennes W. Safety of ethyl acrylate to be used as flavouring. EFSA J 2017; 15:e05012. [PMID: 32625331 PMCID: PMC7010172 DOI: 10.2903/j.efsa.2017.5012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) was requested by the European Commission according to Art. 29 1(a) of the Regulation (EC) No 178/2002 to carry out a review of existing literature on the safety of ethyl acrylate [FL-no: 09.037] when used as a flavouring substance. Ethyl acrylate [FL-no: 09.037] was evaluated in 2010 by EFSA in FGE.71 as a flavouring substance, based on the 2006 JECFA evaluation. The Panel concluded that ethyl acrylate was of no safety concern at estimated level of intake as flavouring substance based on the Maximised Survey-Derived Daily Intake (MSDI) approach. The Panel has evaluated the new literature available and any previous assessments performed by JECFA (2006) and EFSA (2010). Moreover, new data on the use levels of ethyl acrylate as flavouring substance have been provided. For use as flavouring substance, the chronic dietary exposure estimated using the added portions exposure technique (APET), is calculated to be 3,545 μg/person per day for a 60-kg adult and 2,233 μg/person per day for a 15-kg 3-year-old child. Exposure from food contact materials may be up to 6,000 μg/person per day. The Panel considered that based on the available data, which covers all relevant genetic endpoints (i.e. gene mutations, structural and numerical chromosomal aberrations) there is no concern with respect to genotoxicity of ethyl acrylate. The Panel evaluated the available carcinogenicity studies conducted in rats and mice and agreed with the NTP evaluation (1998) concluding that the forestomach squamous cell papilloma and carcinoma observed in rodents were not relevant to humans. Additionally, there was no evidence of systemic toxicity in short-term and subchronic toxicity studies. Therefore, the Panel concluded that there is no safety concern for the use of ethyl acrylate as a flavouring substance, under the intended conditions of use.
Collapse
|
34
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats. Biomed Pharmacother 2017; 95:764-770. [DOI: 10.1016/j.biopha.2017.08.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022] Open
|
35
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
36
|
Nagasue R, Murata I, Sasaki K, Sakai R, Miyajima H, Shimoda M. Effectiveness of the liver micronucleus assay using juvenile mice. J Vet Med Sci 2017; 79:1310-1317. [PMID: 28603212 PMCID: PMC5559381 DOI: 10.1292/jvms.17-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effectiveness of the liver micronucleus (MN) assay using juvenile mice. Therefore, we analyzed various hepatic cytochrome P450 (CYP)- mediated activities of ethoxyresorufin
O-deethylation, pentoxyresorufin O-dealkylation, tolbutamide hydroxylation, bufuralol 1’-hydroxylation, aniline hydroxylation and midazolam 4-hydroxylation by CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and
CYP3A, respectively, in non-treated male ICR mice aged between 3 and 8 weeks. The enzyme efficiency levels in 3- and 4-week-old mice were approximately similar to or higher than those in 8-week-old mice, except for CYP1A and CYP2E
in 3- and 4-week-old mice, respectively. Since these results suggest that juvenile mice have sufficient activities for most CYP enzymes, we also conducted a liver MN assay using diethylnitrosamine (DEN), a rodent hepatocarcinogen,
on male ICR mice aged between 3 and 6 weeks. A peripheral blood (PB) MN assay was performed simultaneously in 4-week-old mice. Assays incorporating DEN produced positive results in 3- and 4-week-old mice and showed a
dose-dependent increase in the micronucleated hepatocyte frequencies at 4 weeks. Both the liver MN assay in 5- and 6-week-old mice and the PB MN assay had negative results when using DEN. These results suggest that 3- and
4-week-old mice have micronuclei-inducing potential in the liver to detect genotoxic compounds using the liver MN assay.
Collapse
Affiliation(s)
- Ritsuko Nagasue
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikue Murata
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Rina Sakai
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Minoru Shimoda
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
37
|
Adachi H, Uematsu Y, Yamada T. Evaluation of the RBC Pig-a and PIGRET assays using single doses of hydroxyurea and melphalan in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:35-42. [PMID: 27931812 DOI: 10.1016/j.mrgentox.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
To evaluate the suitability of the rat Pig-a assay on reticulocytes (PIGRET assay) as a short-term test, red blood cell (RBC) Pig-a and PIGRET assays after single doses with hydroxyurea (HU) and melphalan (L-PAM) were conducted and the results of both assays were compared. HU was administered once orally to male SD rats at 250, 500 and 1000mg/kg, and both assays were conducted using peripheral blood withdrawn from the jugular vein at 1, 2 and 4 weeks after dosing. L-PAM was administered at 1.25, 2.5 and 5mg/kg in the same manner. L-PAM produced significant dose-dependent increases in mutant frequencies in the PIGRET assay after single oral doses, but did not produce dose-dependent increases in mutant frequencies in the RBC Pig-a assay. These results suggest that the PIGRET assay is more sensitive for the evaluation of the mutagenic potential of L-PAM than the RBC Pig-a assay. In contrast, HU, a clastogenic but not DNA-reactive compound, gave negative results in both assays. The results with these 2 chemicals indicate that the single-dose PIGRET assay in rats has the potential to properly detect DNA-reactive compounds that directly cause DNA damage in a short-term assay.
Collapse
Affiliation(s)
- Hideki Adachi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan.
| | - Yasuaki Uematsu
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan
| | - Toru Yamada
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
38
|
Hayashi M. The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ 2016; 38:18. [PMID: 27733885 PMCID: PMC5045625 DOI: 10.1186/s41021-016-0044-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/04/2016] [Indexed: 12/03/2022] Open
Abstract
Genotoxicity is commonly evaluated during the chemical safety assessment together with other toxicological endpoints. The micronucleus test is always included in many genotoxic test guidelines for long time in many classes of chemicals, e.g., pharmaceutical chemicals, agricultural chemicals, food additives. Although the trend of the safety assessment of chemicals faces to animal welfare and in vitro systems are more welcome than the in vivo systems, the in vivo test systems are paid more attention in the field of genotoxicity because of its weight of evidence. In this review, I will summarize the following points: 1) historical consideration of the test development, 2) characteristics of the test including advantages and limitations, 3) new approaches considering to the animal welfare.
Collapse
Affiliation(s)
- Makoto Hayashi
- makoto international consulting (mic), Kami-imaizumi, Ebina, Kanagawa 243-0431 Japan
| |
Collapse
|
39
|
Albertini RJ, Kaden DA. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit Rev Toxicol 2016; 47:145-184. [DOI: 10.1080/10408444.2016.1211987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Williams GM, Kobets T, Iatropoulos MJ, Duan JD, Brunnemann KD. GRAS determination scientific procedures and possible alternatives. Regul Toxicol Pharmacol 2016; 79 Suppl 2:S105-11. [PMID: 27328372 DOI: 10.1016/j.yrtph.2016.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/27/2022]
Abstract
The use of a food substance is Generally Recognized as Safe (GRAS) through scientific procedures or experience based on common use in food. The pivotal data used for GRAS determination must be of common knowledge and should include evidence for safety under the conditions of intended use of the substance. Such evidence includes data on the identity and specifications of the substance, its properties of absorption, distribution, metabolism and excretion, and depending on the level of concern, data on genotoxicity, acute and subchronic toxicity, reproductive and developmental toxicity and carcinogenicity. Several alternative procedures can be used as the replacement for standard scientific procedures in order to improve the GRAS process.
Collapse
Affiliation(s)
- Gary M Williams
- Department of Pathology, New York Medical College, 40Sunshine Cottage Road, BSB # 413, Valhalla, NY, 10595, USA.
| | - Tetyana Kobets
- Department of Pathology, New York Medical College, 40Sunshine Cottage Road, BSB # 413, Valhalla, NY, 10595, USA
| | - Michael J Iatropoulos
- Department of Pathology, New York Medical College, 40Sunshine Cottage Road, BSB # 413, Valhalla, NY, 10595, USA
| | - Jian-Dong Duan
- Department of Pathology, New York Medical College, 40Sunshine Cottage Road, BSB # 413, Valhalla, NY, 10595, USA
| | - Klaus D Brunnemann
- Department of Pathology, New York Medical College, 40Sunshine Cottage Road, BSB # 413, Valhalla, NY, 10595, USA
| |
Collapse
|
41
|
Monitoring genotoxicity in freshwater microcrustaceans: A new application of the micronucleus assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 803-804:27-33. [DOI: 10.1016/j.mrgentox.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/10/2016] [Indexed: 01/05/2023]
|
42
|
Morita T, Hamada S, Masumura K, Wakata A, Maniwa J, Takasawa H, Yasunaga K, Hashizume T, Honma M. Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:1-29. [DOI: 10.1016/j.mrgentox.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
43
|
Shigano M, Takashima R, Takasawa H, Hamada S. Optimization of specimen preparation from formalin-fixed liver tissues for liver micronucleus assays: Hepatocyte staining with fluorescent dyes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 800-801:35-9. [PMID: 27085473 DOI: 10.1016/j.mrgentox.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
The liver micronucleus (MN) assay is an effective and important in vivo test for detecting genotoxic compounds, particularly those that require metabolic activation. For this assay, hepatocytes (HEPs) can be isolated by collagenase treatment but without requirement for in situ liver perfusion. Consequently, the liver MN assay can be integrated into a general repeated-dose (RD) toxicity study. The method is also applicable to liver MN assays involving partial hepatectomy or the use of juvenile rats. Here, we propose an improved method for staining HEPs prepared from formalin-fixed liver tissues for MN assays, without collagenase treatment. HEP suspensions are prepared by treating the tissues with concentrated KOH and a fluorescent dye, SYBR(®) Gold (SYGO), is used for staining. Visualization of the MN in SYGO-stained HEPs is clearer than with Wright-Giemsa staining. We compared the induction of MN as measured with our new method versus the conventional method using collagenase dispersion. Our method not only enables the integration of the liver MN assay into a general RD toxicity study but also allows it to be conducted retrospectively.
Collapse
Affiliation(s)
- Miyuki Shigano
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan.
| | | | - Hironao Takasawa
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| | - Shuichi Hamada
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| |
Collapse
|
44
|
Alimba CG, Bakare AA. In vivo micronucleus test in the assessment of cytogenotoxicity of landfill leachates in three animal models from various ecological habitats. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:310-319. [PMID: 26589948 DOI: 10.1007/s10646-015-1589-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
The in vivo micronucleus (MN) test, a standard test for the genotoxicity screening of xenobiotics, was used to evaluate the cytotoxic and genotoxic activities of landfill leachates in Clarias gariepinus, Coturnix coturnix japonica and Rattus norvegicus. These organisms were exposed to various sub-lethal concentrations (1-50%) of Olusosun and Aba Eku landfill leachates. At post exposure, peripheral erythrocytes from catfish and quail, and bone marrow cells of quail and rat were subjected to MN analysis following standard protocols. The leachates induced significant increase in MN formation and total nuclear abnormalities (NAs) in the peripheral erythrocytes of catfish and quail. NAs occurred in the order; BN > BL > LB > NT in the catfish and BN > BudN > TLN > TN in quail. There was significant increase in MN formation in the bone marrow cells of quail, and micronucleated polychromatic erythrocytes and micronucleated normochromatic erythrocytes formation in the bone marrow of rats. The concentration dependent significant (p < 0.05) decrease in the PCE/NCE ratio in the bone marrow of the leachate treated rats suggest alterations in the bone marrow cell proliferation, leading to the suppression of immature erythrocytes (PCE). MN induction showed positive corrections with leachate concentrations in the test organisms; and it increased with exposure duration in the catfish. Indiscriminate disposal of solid waste generates leachates containing multiple xenobiotics that are capable of increasing genomic instability among vertebrates inhabiting various ecological habitats.
Collapse
Affiliation(s)
- Chibuisi G Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| | - Adekunle A Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
45
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
46
|
Udroiu I, Antoccia A, Tanzarella C, Giuliani L, Pacchierotti F, Cordelli E, Eleuteri P, Villani P, Sgura A. Genotoxicity Induced by Foetal and Infant Exposure to Magnetic Fields and Modulation of Ionising Radiation Effects. PLoS One 2015; 10:e0142259. [PMID: 26559811 PMCID: PMC4641635 DOI: 10.1371/journal.pone.0142259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
Background Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays. Aim and methods Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 μT magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis. Results ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying ELF-MF biological effects.
Collapse
Affiliation(s)
- Ion Udroiu
- Dept. of Science, University of Rome “Roma Tre”, Rome, Italy
- * E-mail:
| | | | | | - Livio Giuliani
- Research Center of Monteporzio Catone, INAIL, Rome, Italy
| | | | - Eugenia Cordelli
- Technical Unit for Radiation Biology and Human Health, ENEA, Rome, Italy
| | - Patrizia Eleuteri
- Technical Unit for Radiation Biology and Human Health, ENEA, Rome, Italy
| | - Paola Villani
- Technical Unit for Radiation Biology and Human Health, ENEA, Rome, Italy
| | - Antonella Sgura
- Dept. of Science, University of Rome “Roma Tre”, Rome, Italy
| |
Collapse
|
47
|
Soeteman-Hernández LG, Fellows MD, Johnson GE, Slob W. Correlation of In Vivo Versus In Vitro Benchmark Doses (BMDs) Derived From Micronucleus Test Data: A Proof of Concept Study. Toxicol Sci 2015; 148:355-67. [PMID: 26443842 PMCID: PMC4659532 DOI: 10.1093/toxsci/kfv189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement).
Collapse
Affiliation(s)
| | - Mick D Fellows
- AstraZeneca, R&D Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom; and
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP Wales, United Kingdom
| | - Wout Slob
- *National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
48
|
Soeteman-Hernández LG, Johnson GE, Slob W. Estimating the carcinogenic potency of chemicals from the in vivo micronucleus test. Mutagenesis 2015; 31:347-58. [PMID: 26163673 DOI: 10.1093/mutage/gev043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the applicability of using in vivo mouse micronucleus (MN) data to derive cancer potency information. We also present a new statistical methodology for correlating estimated potencies between in vivo MN tests and cancer studies, which could similarly be used for other systems (e.g. in vitro vs. in vivo genotoxicity tests). The dose-response modelling program PROAST was used to calculate benchmark doses (BMDs) for estimating the genotoxic and carcinogenic potency for 48 compounds in mice; most of the data were retrieved from the National Toxicology Program (NTP) database, while some additional data were retrieved from the Carcinogenic Potency Database and published studies. BMD05s (doses with 5% increase in MN frequency) were derived from MN data, and BMD10s (doses with 10% extra cancer risk) were derived from carcinogenicity data, along with their respective lower (BMDL) and upper (BMDU) confidence bounds. A clear correlation between the in vivo MN BMD05s and the cancer BMD10s was observed when the lowest BMD05 from the in vivo MN was plotted against the lowest BMD10 from the carcinogenicity data for each individual compound. By making a further selection of BMDs related to more or less equally severe cancer lesions, the correlation was considerably improved. Getting a general scientific consensus on how we can quantitatively compare different tumour lesion types and investigating the impact of MN study duration are needed to refine this correlation analysis. Nevertheless, our results suggest that a BMD derived from genotoxicity data might provide a prediction of the tumour potency (BMD10) with an uncertainty range spanning roughly a factor of 100.
Collapse
Affiliation(s)
| | - George E Johnson
- Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP Wales, UK
| | - Wout Slob
- Centre for Nutrition, Prevention and Care, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
49
|
Canipa S, Cayley A, Drewe WC, Williams RV, Hamada S, Hirose A, Honma M, Morita T. Usingin vitrostructural alerts for chromosome damage to predictin vivoactivity and direct future testing. Mutagenesis 2015; 31:17-25. [DOI: 10.1093/mutage/gev047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Morita T, Uno Y, Honma M, Kojima H, Hayashi M, Tice RR, Corvi R, Schechtman L. The JaCVAM international validation study on the in vivo comet assay: Selection of test chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|