1
|
Sharma G, Kaur B, Raheja Y, Kaur A, Singh V, Basotra N, Di Falco M, Tsang A, Chadha BS. Developing endophytic Penicillium oxalicum as a source of lignocellulolytic enzymes for enhanced hydrolysis of biorefinery relevant pretreated rice straw. Bioprocess Biosyst Eng 2024; 47:2055-2073. [PMID: 39249151 DOI: 10.1007/s00449-024-03085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), β-glucosidase (β-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
2
|
Yang H, Han Y, Peng X. Efficient production of sophorose from glucose and its potentially industrial application in cellulase production. BIORESOURCE TECHNOLOGY 2024; 412:131402. [PMID: 39218367 DOI: 10.1016/j.biortech.2024.131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Sophorose is the most effective inducer for cellulase production by Trichoderma reesei. Currently, the biosynthesis of sophorose is very inefficient, resulting in that unavailable for cellulase production in industry. In this study, CoGH1A, a multifunctional thermophilic glycoside hydrolase, was employed for sophorose production. Under the optimized conditions, the sophorose yield was 37.86 g/L with a productivity of 9.47 g/L/h which is by far the highest productivity. Meanwhile, the Fe3O4-CS-THP-CoGH1A nanoparticles were constructed to realize the recycling of CoGH1A. After 5 cycles of catalysis, Fe3O4-CS-THP-CoGH1A retained about 83.90 % enzyme activity. Finally, the mixtures of glucose and disaccharides (MGDC) obtained after being catalyzed by CoGH1A was used for cellulase production. As a result, the cellulase productivity achieved 188.38 FPU/L/h in 120 h. These results indicated that sophorose could be efficiently produced from glucose via transglycosylation by CoGH1A, making it possible to be industrially used as the inducer to improving the cellulase productivity.
Collapse
Affiliation(s)
- Haiqian Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Gurnani B, Natarajan R, Mohan M, Kaur K. Breaking-Down Barriers: Proposal of Using Cellulose Biosynthesis Inhibitors and Cellulase Enzyme as a Novel Treatment Modality for Vision Threatening Pythium Insidiosum Keratitis. Clin Ophthalmol 2024; 18:765-776. [PMID: 38495678 PMCID: PMC10941664 DOI: 10.2147/opth.s450665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Pythium insidiosum, an Oomycete, causes severe keratitis that endangers vision. Its clinical, morphological, and microbiological characteristics are often indistinguishable from those of fungal keratitis, earning it the moniker "parafungus". Distinctive clinical hallmarks that set it apart from other forms of keratitis include radial keratoneuritis, tentacles, marginal infiltration, and a propensity for rapid limbal spread. The therapeutic approach to Pythium keratitis (PK) has long been a subject of debate, and topical and systemic antifungals and antibacterials have been tried with limited success. Approximately 80% of these eyes undergo therapeutic keratoplasty to salvage the eye. Hence, there is a need to innovate for alternative and better medical therapy to safeguard these eyes. The resistance of Pythium to standard antifungal treatments can be attributed to the absence of ergosterol in its cell wall. Cell walls of plants and algae have cellulose as an essential constituent. Cellulose imparts strength and structure and acts as the "skeleton" of the plant. Fungal and animal cell walls typically lack cellulose. The cellular architecture of Pythium shares a similarity with plant and algal cells through the incorporation of cellulose within its cell wall structure. Inhibitors targeting cellulose biosynthesis (CBI), such as Indaziflam, Isoxaben, and Quinoxyphen, serve as critical tools for elucidating the pathways of cellulose synthesis. Furthermore, the enzymatic action of cellulase is instrumental for the extraction of proteins and DNA. To circumvent this issue, we hypothesize that CBI's and cellulase enzymes can act on the Pythium cell wall and may effectively treat PK. The available literature supporting the hypothesis and proof of concept has also been discussed. We have also discussed these drugs' molecular mechanism of action on the Pythium cell wall. We also aim to propose how these drugs can be procured and used as a potential medical management option for this devastating entity.
Collapse
Affiliation(s)
- Bharat Gurnani
- Department of Cataract, Cornea and Refractive Surgery, ASG Eye Hospital, Jodhpur, Rajasthan, 342008, India
| | - Radhika Natarajan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya Medical Research Foundation, Chennai, Tamil Nadu, 600006, India
| | - Madhuvanthi Mohan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya Medical Research Foundation, Chennai, Tamil Nadu, 600006, India
| | - Kirandeep Kaur
- Department of Pediatric Ophthalmology and Strabismus, ASG Eye Hospital, Jodhpur, Rajasthan, 342008, India
| |
Collapse
|
4
|
Lagunes-Reyes M, Sánchez JE, Andrade-Gallegos RH, Gutiérrez-Hernández RF, Camacho-Morales RL. Biodegradation of agave Comiteco bagasse by Pleurotus spp.: a source of cellulases useful in hydrolytic treatment to produce reducing sugars. 3 Biotech 2023; 13:356. [PMID: 37814639 PMCID: PMC10560175 DOI: 10.1007/s13205-023-03783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
This study aimed to determine the production parameters of five strains of Pleurotus spp. during their cultivation on agave Comiteco bagasse, as well as the feasibility of using cellulolytic extracts to produce reducing sugars in the same bagasse. After cultivation, the basidiome production parameters varied between 41.2 and 65.7% (biological efficiency), 0.17 and 0.30 (yield), 0.60 and 0.90% (production rate), 16.4 and 41.1% (Bioconversion) and 9.4 and 21.3 g (mean mushroom weight). At day 15 of growth, P. djamor showed the highest β-glucosidase activity (43.95 ± 4.5 IU/g); on day 33. The same strain had the highest endoglucanase activity (21.12 ± 0.5 IU/ml). Both extracts were partially purified, and the kinetic parameters Vmax and Km were estimated (20.83 µmole/ml sec and 232.01 µmole/ml for β-glucosidase and 685.01 µmole/ml sec and 1,240.34 µmole/ml for endoglucanase). In the enzymatic hydrolysis assay, the highest concentration of reducing sugars (43.13 ± 1.09 g/L; 0.21 g/g bagasse) was obtained by a mixture of the two partially purified extracts acting synergistically after 48 h and with a pH adjustment. The results suggest that the use of agave Comiteco bagasse for cultivating edible mushrooms while obtaining cellulolytic extracts is an alternative treatment for waste reduction and valorization of agro-industrial by-products.
Collapse
Affiliation(s)
- Miriam Lagunes-Reyes
- El Colegio de la Frontera Sur, Carr. Antiguo Aeropuerto km 2.5, 30700 Tapachula, Chiapas Mexico
| | - José E Sánchez
- El Colegio de la Frontera Sur, Carr. Antiguo Aeropuerto km 2.5, 30700 Tapachula, Chiapas Mexico
| | | | - Rubén F. Gutiérrez-Hernández
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Tapachula, Tecnológico Nacional de México, 30700 Tapachula, Chiapas Mexico
| | - Reyna L. Camacho-Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Álvaro Obregón s/n, Nueva, 21100 Mexicali, BC Mexico
| |
Collapse
|
5
|
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Zivković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. Polymers (Basel) 2023; 15:4080. [PMID: 37896324 PMCID: PMC10609936 DOI: 10.3390/polym15204080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films' structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
Collapse
Affiliation(s)
- Aleksandra Janićijević
- The Academy of Applied Technical Studies Belgrade, 11000 Belgrade, Serbia; (N.Đ.); (D.K.)
| | - Suzana Filipović
- Institute of Technical Sciences of Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Aleksandra Sknepnek
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (V.B.P.)
| | - Branislav Vlahović
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA;
- NASA University Research Center for Aerospace Device Research and Education, NSF Center of Research Excellence in Science, Technology Computational Center for Fundamental and Applied Science and Education, Durham, NC 27707, USA
| | - Nenad Đorđević
- The Academy of Applied Technical Studies Belgrade, 11000 Belgrade, Serbia; (N.Đ.); (D.K.)
| | - Danijela Kovacević
- The Academy of Applied Technical Studies Belgrade, 11000 Belgrade, Serbia; (N.Đ.); (D.K.)
| | - Miljana Mirković
- Department of Material Science, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Predrag Zivković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (P.Z.); (J.R.)
| | - Jelena Rogan
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (P.Z.); (J.R.)
| | - Vladimir B. Pavlović
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (V.B.P.)
| |
Collapse
|
6
|
Dong CD, Patel AK, Madhavan A, Chen CW, Singhania RR. Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery - A review. BIORESOURCE TECHNOLOGY 2023; 379:128992. [PMID: 37011847 DOI: 10.1016/j.biortech.2023.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690 525, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
7
|
Tawfik A, Ismail S, Elsayed M, Qyyum MA, Rehan M. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives. CHEMOSPHERE 2022; 296:133812. [PMID: 35149012 DOI: 10.1016/j.chemosphere.2022.133812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 05/16/2023]
Abstract
The global trend is shifting toward circular economy systems. It is a sustainable environmental approach that sustains economic growth from the use of resources while minimizing environmental impacts. The multiple industrial use of microalgal biomass has received great attention due to its high content of essential nutrients and elements. Nevertheless, low biomass productivity, unbalanced carbon to nitrogen (C/N) ratio, resistant cellular constituents, and the high cost of microalgal harvesting represent the major obstacles for valorization of algal biomass. In recent years, microalgae biomass has been a candidate as a potential feedstock for different bioenergy generation processes with simultaneous treating wastewater and CO2 capture. An overview of the appealing features and needed advancements is urgently essential for microalgae-derived bioenergy generation. The present review provides a timely outlook and evaluation of biomethane production from microalgal biomass and related challenges. Moreover, the biogas recovery potential from microalgal biomass through different pretreatments and synergistic anaerobic co-digestion (AcoD) with other biowastes are evaluated. In addition, the removal of micropollutants and heavy metals by microalgal cells via adsorption and bioaccumulation in their biomass is discussed. Herein, a comprehensive review is presented about a successive high-throughput for anaerobic digestion (AD) of the microalgal biomass in order to achieve for sustainable energy source. Lastly, the valorization of the digestate from AD of microalgae for agricultural reuse is highlighted.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt.
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mahdy Elsayed
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022; 22:10. [PMID: 34986801 PMCID: PMC8729104 DOI: 10.1186/s12866-021-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
9
|
Bail J, Gomez JAM, de Oliveira Vaz GC, de Castro WAC, Bonugli-Santos RC. Structural and functional changes in the fungal community of plant detritus in an invaded Atlantic Forest. BMC Microbiol 2022. [PMID: 34986801 DOI: 10.1186/s12866-021-02431-859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Changes in the fungal community in the litter decomposition by invasive plants can negatively impact nutrient cycling in natural ecosystems. One still does not know the dimension of this hypothesis, but apparently, it is not despicable. This study evaluated the assemblage composition of fungi during litter decomposition in areas of Atlantic Forest invaded or not invaded by Tradescantia zebrina using Illumina MiSeq and metabarcoding analysis. RESULTS The invaded sample showed significantly higher richness and a difference in the species dominance than the invaded litter. Ascomycota was the first most abundant phylum in both areas. Even so, the dissimilarity between areas can be evidenced. The fungal from Basidiomycota were very representative in the non-invaded areas (ranged from an abundance of 43.29% in the non-invaded to 2.35% in the invaded sample). The genus Lepiota can indicate the primary functional group related to biomass degradation and showed the might difference about the invaded areas due to its essential reduction by the invader. In the invaded sample, there was a total absence of the endophyte-undefined saprotroph guild. Also, some genera not taxonomically characterized were eliminated in the invaded sample, revealing that the fungal biodiversity of areas has not yet been thoroughly characterized. CONCLUSIONS Hence, makes impossible the real interpretation of the invasive plant impact, showing the importance of continuing research on fungal biodiversity. It is important to emphasize that the replacement of the native species by T. zebrina may be responsible for the elimination of fungal groups that have not yet been identified.
Collapse
Affiliation(s)
- Jaqueline Bail
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Jose Alejandro Morales Gomez
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Giselle Cristina de Oliveira Vaz
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Wagner Antonio Chiba de Castro
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil
| | - Rafaella Costa Bonugli-Santos
- Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), 1000 Tarquínio Joslin dos Santos Av., Jardim Universitário, Foz do Iguaçu, PR, 85870-901, Brazil.
| |
Collapse
|
10
|
Short-Term Effect of Nitrogen Fertilization on Carbon Mineralization during Corn Residue Decomposition in Soil. NITROGEN 2021. [DOI: 10.3390/nitrogen2040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration.
Collapse
|
11
|
Optimization of fermentation conditions for higher cellulase production using marine Bacillus licheniformis KY962963: An epiphyte of Chlorococcum sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Optimization of hydrolases production from cassava peels by Trametes polyzona BKW001. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Ahamed F, Song HS, Ho YK. Modeling coordinated enzymatic control of saccharification and fermentation by Clostridium thermocellum during consolidated bioprocessing of cellulose. Biotechnol Bioeng 2021; 118:1898-1912. [PMID: 33547803 DOI: 10.1002/bit.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Consolidated bioprocessing (CBP) of cellulose is a cost-effective route to produce valuable biochemicals by integrating saccharification, fermentation and cellulase synthesis in a single step. However, the lack of understanding of governing factors of interdependent saccharification and fermentation in CBP eludes reliable process optimization. Here, we propose a new framework that synergistically couples population balances (to simulate cellulose depolymerization) and cybernetic models (to model enzymatic regulation of fermentation) to enable improved understanding of CBP. The resulting framework, named the unified cybernetic-population balance model (UC-PBM), enables simulation of CBP driven by coordinated control of enzyme synthesis through closed-loop interactions. UC-PBM considers two key aspects in controlling CBP: (1) heterogeneity in cellulose properties and (2) cellular regulation of competing cell growth and cellulase secretion. In a case study on Clostridium thermocellum, UC-PBM not only provides a decent fit with various exometabolomic data, but also reveals that: (i) growth-decoupled cellulase-secreting pathways are only activated during famine conditions to promote the production of growth substrates, and (ii) starting cellulose concentration has a strong influence on the overall flux distribution. Equipped with mechanisms of cellulose degradation and fermentative regulations, UC-PBM is practical to explore phenotypic functions for primary evaluation of microorganisms' potential for metabolic engineering and optimal design of bioprocess.
Collapse
Affiliation(s)
- Firnaaz Ahamed
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yong Kuen Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.,Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Gelain L, Kingma E, Geraldo da Cruz Pradella J, Carvalho da Costa A, van der Wielen L, van Gulik WM. Continuous production of enzymes under carbon-limited conditions by Trichoderma harzianum P49P11. Fungal Biol 2020; 125:177-183. [PMID: 33622533 DOI: 10.1016/j.funbio.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzianum to produce extracellular enzymes. All chemostat cultures were carried out at a fixed dilution rate of 0.05 h-1. Experiments using glucose, fructose/glucose and sucrose were performed in duplicate. Glucose condition was found to induce the production of enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-d-glucopyranoside (PNPGase). A concentration of 20 g/L of glucose in the feed provided the highest productivity (1048 ± 16 U/mol h). Extracellular polysaccharides were considered the source of inducers. Based on the obtained results, a new PNPGase production process was developed using mainly glucose. This process raises interesting possibilities of synthesizing the inducer substrate and the induced enzymes in a single step using an easily assimilated carbon source under carbon-limited conditions.
Collapse
Affiliation(s)
- Lucas Gelain
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil.
| | - Esther Kingma
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands
| | - José Geraldo da Cruz Pradella
- Federal University of São Paulo, Institute of Science and Technology, Av. Cesare Mansueto Giulio Lattes, 1201, S. J. Campos, Brazil
| | - Aline Carvalho da Costa
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Campinas, Brazil
| | - Luuk van der Wielen
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands; University of Limerick, Bernal Institute, V94 T9PX, Limerick, Ireland
| | - Walter M van Gulik
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
15
|
Liew KJ, Bruce NC, Sani RK, Chong CS, Yaakop AS, Shamsir MS, Goh KM. Global Transcriptomic Responses of Roseithermus sacchariphilus Strain RA in Media Supplemented with Beechwood Xylan. Microorganisms 2020; 8:E976. [PMID: 32610703 PMCID: PMC7409140 DOI: 10.3390/microorganisms8070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022] Open
Abstract
The majority of the members in order Rhodothermales are underexplored prokaryotic extremophiles. Roseithermus, a new genus within Rhodothermales, was first described in 2019. Roseithermus sacchariphilus is the only species in this genus. The current report aims to evaluate the transcriptomic responses of R. sacchariphilus strain RA when cultivated on beechwood xylan. Strain RA doubled its growth in Marine Broth (MB) containing xylan compared to Marine Broth (MB) alone. Strain RA harbors 54 potential glycosyl hydrolases (GHs) that are affiliated with 30 families, including cellulases (families GH 3, 5, 9, and 44) and hemicellulases (GH 2, 10, 16, 29, 31,43, 51, 53, 67, 78, 92, 106, 113, 130, and 154). The majority of these GHs were upregulated when the cells were grown in MB containing xylan medium and enzymatic activities for xylanase, endoglucanase, β-xylosidase, and β-glucosidase were elevated. Interestingly, with the introduction of xylan, five out of six cellulolytic genes were upregulated. Furthermore, approximately 1122 genes equivalent to one-third of the total genes for strain RA were upregulated. These upregulated genes were mostly involved in transportation, chemotaxis, and membrane components synthesis.
Collapse
Affiliation(s)
- Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - Mohd Shahir Shamsir
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Johor 84600, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| |
Collapse
|
16
|
Qin Y, Fu Y, Li Q, Luo F, He H. Purification and Enzymatic Properties of a Difunctional Glycoside Hydrolase from Aspergillus oryzae HML366. Indian J Microbiol 2020; 60:475-484. [PMID: 33087997 DOI: 10.1007/s12088-020-00892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/30/2020] [Indexed: 01/06/2023] Open
Abstract
In the study, an extracellular enzyme HML CBH1 was purified from the fermentation solution of Aspergillus oryzae HML366, and characterized by biological and molecular analysis. Following the culturing of A. oryzae HML366 under the optimized conditions for enzyme production, an enzyme named HML CBH1 with a molecular weight of 48 kDa was purified using 3000 Da cellulose ultrafiltration column and anion exchange chromatography. The specific activity of the purified enzyme was 9.65 U/mg, and the optimum temperature and pH for the enzyme were 50 and 5.0 °C, respectively. The enzyme was stable at temperatures below 60 °C and pH ranging from 3.0 to 10.0. The partial amino acid sequence of HML CBH1 was analyzed by time-of-flight mass spectrometry, and Mascot and Blast analysis showed that the HML CBH1 sequence was identical to the protein gi:22138643, belonging to the glycoside hydrolase family 7, and had exoglucanase and endoglucanase activity.
Collapse
Affiliation(s)
- Yongling Qin
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300 China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300 China
| | - Yue Fu
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300 China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300 China
| | - Qiqian Li
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300 China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300 China
| | - Fengfeng Luo
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300 China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300 China
| | - Haiyan He
- College of Chemistry and Biological Engineering, Hechi University, Yizhou, 546300 China.,Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Yizhou, 546300 China
| |
Collapse
|
17
|
Osorio-González CS, Chaali M, Hegde K, Brar SK, Kermanshahipour A, Avalos-Ramírez A. Production and Processing of the Enzymes from Lignocellulosic Biomass. VALORIZATION OF BIOMASS TO VALUE-ADDED COMMODITIES 2020. [DOI: 10.1007/978-3-030-38032-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Ramamoorthy NK, T R S, Sahadevan R. Assessment of fed-batch strategies for enhanced cellulase production from a waste lignocellulosic mixture. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Ballmann P, Lightfoot J, Müller M, Dröge S, Prade R. Redesigning the Aspergillus nidulans xylanase regulatory pathway to enhance cellulase production with xylose as the carbon and inducer source. Microb Cell Fact 2019; 18:193. [PMID: 31699093 PMCID: PMC6839167 DOI: 10.1186/s12934-019-1243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Biomass contains cellulose (C6-sugars), hemicellulose (C5-sugars) and lignin. Biomass ranks amongst the most abundant hydrocarbon resources on earth. However, biomass is recalcitrant to enzymatic digestion by cellulases. Physicochemical pretreatment methods make cellulose accessible but partially destroy hemicellulose, producing a C5-sugar-rich liquor. Typically, digestion of pretreated LCB is performed with commercial cellulase preparations, but C5-sugars could in principle be used for “on site” production of cellulases by genetically engineered microorganism, thereby reducing costs. Results Here we report a succession of genetic interventions in Aspergillus nidulans that redesign the natural regulatory circuitry of cellulase genes in such a way that recombinant strains use C5-sugar liquors (xylose) to grow a vegetative tissue and simultaneously accumulate large amounts of cellulases. Overexpression of XlnR showed that under xylose-induction conditions only xylanase C was produced. XlnR overexpression strains were constructed that use the xynCp promoter to drive the production of cellobiohydrolases, endoglucanases and β-glucosidase. All five cellulases accumulated at high levels when grown on xylose. Production of cellulases in the presence of pretreated-biomass C5-sugar liquors was investigated, and cellulases accumulated to much higher enzyme titers than those obtained for traditional fungal cell factories with cellulase-inducing substrates. Conclusions By replacing expensive substrates with a cheap by-product carbon source, the use of C5-sugar liquors directly derived from LCB pretreatment processes not only reduces enzyme production costs, but also lowers operational costs by eliminating the need for off-site enzyme production, purification, concentration, transport and dilution.
Collapse
Affiliation(s)
- Patrick Ballmann
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Jorge Lightfoot
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael Müller
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Stephan Dröge
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Rolf Prade
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
20
|
Sharma D, Sharma P, Dev K, Sourirajan A. Endoglucanase gene of M42 aminopeptidase/endoglucanase family from thermophilic Bacillus sp. PW1 and PW2 isolated from Tattapani hot spring, Himachal Pradesh, India. J Genet Eng Biotechnol 2019; 17:4. [PMID: 31659536 PMCID: PMC6821146 DOI: 10.1186/s43141-019-0001-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thermostable cellulases are in constant demand for several biotechnological applications. Two thermophilic bacterial strains PW1 and PW2 isolated from Tattapani hot spring were found to have cellulolytic activity. Subsequently, PW1 and PW2 were identified and mined for genes encoding cellulase activity. RESULTS Sequencing of the 16S rDNA of PW1 and PW2 identified them as Bacillus sp. PW1 (Acc no. KU711837) and Bacillus sp. PW2 (Acc no. KU711838), respectively, which clustered in the clades containing thermophilic members of Bacillus sp. and Geobacillus species. Phylogenetic analysis revealed that despite the morphological and sequence identities, Bacillus sp. PW1 and Bacillus sp. PW2 are different at the genetic level. The cellulase genes (~ 1.1 kb) of the two bacterial strains were amplified using primers designed against related thermophilic cellulases. Sequencing of the cellulase gene amplicons of PW1 and PW2 revealed that they encode proteins of 280 and 206 amino acid residues, respectively. Sequence and domain analysis of the protein products of PW1 and PW2 revealed that they belong to M42 family of aminopeptidase/endoglucanase. The PW2 endoglucanase coding sequence was submitted to Genbank under accession no. MH049504. The structures of putative endoglucanases of PW1 and PW2 were generated using 1VHE.A as template, which showed the presence of vast proportion of random coils. Molecular docking of the modeled endoglucanase proteins with various substrates and products of cellulases showed that carboxymethyl cellulose and maltose exhibit the highest binding affinity, while xylan and glucose the least. CONCLUSIONS The two thermophilic bacteria PW1 and PW2 and their endoglucanase gene can be further utilized for recombinant production of thermostable cellulases for their application in industries.
Collapse
Affiliation(s)
- Divyanshi Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Anand Campus, The Mall, Solan, Himachal Pradesh, 173212, India
| | - Parul Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Anand Campus, The Mall, Solan, Himachal Pradesh, 173212, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Anand Campus, The Mall, Solan, Himachal Pradesh, 173212, India.,Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Anand Campus, The Mall, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
21
|
Abdeljalil S, Borgi I, Carvalho S, Jmal-Hammami L, Gargouri A. Molecular and bioinformatics analyses reveal two differentially expressed intracellular GH1 β-glucosidases from the rare alkalophilic fungus Stachybotrys microspora. Gene 2019; 703:134-144. [PMID: 30974199 PMCID: PMC6525110 DOI: 10.1016/j.gene.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023]
Abstract
The present study reports the isolation and analysis of two novel GH1 β-glucosidases from the alkalophilic fungus Stachybotrys microspora, using PCR and Nested-PCR. Three major gene fragments were obtained by PCR: the first two are very similar and constitute a novel gene, which was named Smbgl1A, and the third PCR fragment is part of a different gene, named Smbgl1B. The truncated gene sequences were completely filled using the recent partial whole genome sequencing data of S. microspora (data not yet published). Moreover, we investigated the relative effects of glucose in comparison to cellulose rather than evaluate their absolute effects. In fact, RT-PCR analysis showed that while Smbgl1A was expressed when the fungus was grown in the presence of cellulose but not when grown with glucose, Smbgl1B was equally expressed under both conditions. The putative catalytic residues and the conserved glycone binding sites were identified. Zymogram analysis showed the intracellular production of β-glucosidases in S. microspora. The predicted secondary structure exhibited a classical (β/α)8 barrel fold, showing that both SmBGL1A and SmBGL1B belong to the GH1 family. Phylogenetic studies showed that SmBGL1A and SmBGL1B belong to the same branch as β-glucosidases from Stachybotrys chlorohalonata and Stachybotrys chartarum. However, SmBGL1A and SmBGL1B form two distinct clades. Isolation of two novel GH 1 β-glucosidases from Stachybotrys microspora Investigation of the relative effects of glucose in comparison to cellulose Zymogram analysis has shown the intracellular production of GH1 β-glucosidases. Prediction of the secondary structure with the presence of a classical (β/α) 8 barrel
Collapse
Affiliation(s)
- Salma Abdeljalil
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia.
| | - Ines Borgi
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| | - Sandra Carvalho
- Mode of Action Group, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Lamia Jmal-Hammami
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax, Road of Sidi Mansour, B.O 1177, 3018, University of Sfax, Tunisia
| |
Collapse
|
22
|
de Paula RG, Antoniêto ACC, Nogueira KMV, Ribeiro LFC, Rocha MC, Malavazi I, Almeida F, Silva RN. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:146. [PMID: 31223336 PMCID: PMC6570945 DOI: 10.1186/s13068-019-1487-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Trichoderma reesei is the most important industrial producer of lignocellulolytic enzymes. These enzymes play an important role in biomass degradation leading to novel applications of this fungus in the biotechnology industry, specifically biofuel production. The secretory pathway of fungi is responsible for transporting proteins addressed to different cellular locations involving some cellular endomembrane systems. Although protein secretion is an extremely efficient process in T. reesei, the mechanisms underlying protein secretion have remained largely uncharacterized in this organism. RESULTS Here, we report for the first time the isolation and characterization of T. reesei extracellular vesicles (EVs). Using proteomic analysis under cellulose culture condition, we have confidently identified 188 vesicular proteins belonging to different functional categories. Also, we characterized EVs production using transmission electron microscopy in combination with light scattering analysis. Biochemical assays revealed that T. reesei extracellular vesicles have an enrichment of filter paper (FPase) and β-glucosidase activities in purified vesicles from 24, 72 and 96, and 72 and 96 h, respectively. Furthermore, our results showed that there is a slight enrichment of small RNAs inside the vesicles after 96 h and 120 h, and presence of hsp proteins inside the vesicles purified from T. reesei grown in the presence of cellulose. CONCLUSIONS This work points to important insights into a better understanding of the cellular mechanisms underlying the regulation of cellulolytic enzyme secretion in this fungus.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900 Brazil
| |
Collapse
|
23
|
Delabona PDS, Silva MR, Paixão DAA, Lima DJ, Rodrigues GN, Lee MDS, Souza MGDS, Bussamra BC, Santos AS, Pradella JGDC. A NOVEL Scytalidium SPECIES: UNDERSTAND THE CELLULOLYTIC SYSTEM FOR BIOMASS SACCHARIFICATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20170495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Priscila da S. Delabona
- Centro Nacional de Pesquisa em Energia e Materiais, Brasil; Universidade Estadual de Campinas, Brasil
| | | | | | - Deise J. Lima
- Centro Nacional de Pesquisa em Energia e Materiais, Brasil
| | | | | | | | | | | | | |
Collapse
|
24
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
25
|
Ahn HJ, You HJ, Park MS, Johnston TV, Ku S, Ji GE. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular β-Glucosidase Responsible for Rapid Platycodin D Production. Int J Mol Sci 2018; 19:ijms19092671. [PMID: 30205574 PMCID: PMC6163259 DOI: 10.3390/ijms19092671] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Platycodi radix (i.e., Platycodon grandiflorum root) products (e.g., tea, cosmetics, and herbal supplements) are popular in East Asian nutraceutical markets due to their reported health benefits and positive consumer perceptions. Platycosides are the key drivers of Platycodi radixes' biofunctional effects; their nutraceutical and pharmaceutical activities are primarily related to the number and varieties of sugar side-chains. Among the various platycosides, platycodin D is a major saponin that demonstrates various nutraceutical activities. Therefore, the development of a novel technology to increase the total platycodin D content in Platycodi radix extract is important, not only for consumers' health benefits but also producers' commercial applications and manufacturing cost reduction. It has been reported that hydrolysis of platycoside sugar moieties significantly modifies the compound's biofunctionality. Platycodi radix extract naturally contains two major platycodin D precursors (platycoside E and platycodin D3) which can be enzymatically converted to platycodin D via β-d-glucosidase hydrolysis. Despite evidence that platycodin D precursors can be changed to platycodin D in the Platycodi radix plant, there is little research on increasing platycodin D concentrations during processing. In this work, platycodin D levels in Platycodi radix extracts were significantly increased via extracellular Aspergillus usamii β-d-glucosidase (n = 3, p < 0.001). To increase the extracellular β-d-glucosidase activity, A. usamii was cultivated in a culture media containing cellobiose as its major carbon source. The optimal pH and temperature of the fungal β-d-glucosidase were 6.0 and 40.0 °C, respectively. Extracellular A. usamii β-d-glucosidase successfully converted more than 99.9% (w/v, n = 3, p < 0.001) of platycoside E and platycodin D3 into platycodin D within 2 h under optimal conditions. The maximum level of platycodin D was 0.4 mM. Following the biotransformation process, the platycodin D was recovered using preparatory High Performance Liquid Chromatography (HPLC) and applied to in vitro assays to evaluate its quality. Platycodin D separated from the Platycodi radix immediately following the bioconversion process showed significant anti-inflammatory effects from the Lipopolysaccharide (LPS)-induced macrophage inflammatory responses with decreased nitrite and IL-6 production (n = 3, p < 0.001). Taken together, these results provide evidence that biocatalysis of Platycodi radix extracts with A. usamii may be used as an efficient method of platycodin D-enriched extract production and novel Platycodi radix products may thereby be created.
Collapse
Affiliation(s)
- Hyung Jin Ahn
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Hyun Ju You
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Korea.
| | - Myung Su Park
- Department of Hotel Culinary Arts, Yeonsung University, Anyang 14001, Korea.
| | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| |
Collapse
|
26
|
Xia Y, Yang L, Xia L. Preparation of a novel soluble inducer by cellobiase-release microcapsules and its application in cellulase production. J Biotechnol 2018; 279:22-26. [DOI: 10.1016/j.jbiotec.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 01/05/2023]
|
27
|
Quantitative multiplexed profiling of Penicillium funiculosum secretome grown on polymeric cellulase inducers and glucose. J Proteomics 2018; 179:150-160. [PMID: 29597011 DOI: 10.1016/j.jprot.2018.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Filamentous fungi respond to the need to secure utilisable carbon from their growth milieu by secreting unique extracellular proteins depending upon the types of polymeric substrates. We have here profiled the variations in the secretome pattern of a non-model hypercellulolytic fungus - Penicillium funiculosum, grown in minimal media containing four different polymeric cellulase inducers, i.e., Avicel, wheat bran, ammonium-pretreated wheat straw and Avicel & wheat bran, and glucose over its early and late log phases of growth. Of the 137 secreted proteins validated at 1% FDR, we identified the quantified proteins in three clusters as early, persistently or lately expressed. The type of carbon substrate present in the culture media significantly affected the levels of cellulolytic enzymes expression by the fungus. The top abundant proteins quantified in the secretome for Avicel and wheat bran were cellobiohydrolaseI [GH7-CBM1], cellobiohydrolaseII [GH6-CBM1], β-glucosidase [GH3], arabinofuranosidase [GH51] and β-xylosidase [GH3], with bicupin being highest in case of wheat straw. Our results further suggested that the fungus secreted the extracellular proteins in waves, such that the initial responders act to hydrolyse the composite substrates in the culture environment before the second wave of proteins which tend to be more tailored to the specific substrate in the cultivating media. BIOLOGICAL SIGNIFICANCE In this article, we have comprehensively examined the dynamics of the secretome of a non-model hypercellulolytic fungus produced in response to model and composite cellulase inducers. Our study has provided additional insights into how the fungus enzyme machinery responds to the presence of different polymeric cellulase inducers over the two different growth phases (early growth and late growth phase). The comprehensive typing and quantification of the different proteins present in the secretomes of the cellulolytic fungal strains in response to diverse nutrient sources hold many prospects in understanding the fungus unique enzyme machinery and dynamics for the downstream biotechnological applications.
Collapse
|
28
|
Hirasawa H, Shioya K, Furukawa T, Tani S, Sumitani JI, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W. Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression. Appl Microbiol Biotechnol 2018; 102:2737-2752. [DOI: 10.1007/s00253-018-8763-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
|
29
|
Squinca P, Badino AC, Farinas CS. A closed-loop strategy for endoglucanase production using sugarcane bagasse liquefied by a home-made enzymatic cocktail. BIORESOURCE TECHNOLOGY 2018; 249:976-982. [PMID: 29145125 DOI: 10.1016/j.biortech.2017.10.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Use of the same lignocellulosic biomass as feedstock for enzymes and ethanol production has been suggested as a lower cost option in future biorefineries. Here, we propose a closed-loop strategy to produce the cellulolytic enzymes required for biomass hydrolysis using sugarcane bagasse liquefied by a home-made enzymatic cocktail as carbon source and inducer. The fed-batch liquefaction conditions were firstly evaluated using commercial enzymes. Subsequently, the effects of different liquefied materials and solids loadings on endoglucanase production by Aspergillus niger cultivated in submerged fermentation were investigated. The liquefied bagasse produced using the home-made cocktail was more favorable for endoglucanase production, resulting in improvement up to 17%, compared to bagasse liquefied by commercial enzymes. The results indicated that liquefied bagasse produced by home-made enzymatic cocktail could provide a cost-effective carbon source and inducer for cellulolytic enzyme production, and could contribute to closing loops within the biorefinery, thus reducing costs and minimizing waste.
Collapse
Affiliation(s)
- Paula Squinca
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil
| | - Cristiane S Farinas
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil.
| |
Collapse
|
30
|
Randhawa A, Ogunyewo OA, Eqbal D, Gupta M, Yazdani SS. Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:15. [PMID: 29416560 PMCID: PMC5784589 DOI: 10.1186/s13068-018-1011-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/08/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND There is an urgent requirement for second-generation bio-based industries for economical yet efficient enzymatic cocktail to convert diverse cellulosic biomass into fermentable sugars. In our previous study, secretome of Penicillium funiculosum NCIM1228 showed high commercial potential by exhibiting high biomass hydrolyzing efficiency. To develop NCIM1228 further as an industrial workhorse, one of the major genetic interventions needed is global deregulation of cellulolytic genes to achieve higher enzyme production. Mig1 orthologs found in all yeast and filamentous fungi are transcriptional regulators that maintain carbon homeostasis by negatively regulating genes of secondary carbon source utilization. Their disruption has long been known to be beneficial for increasing the production of secreted enzymes for alternate carbon source utilization. RESULTS Upon detailed genotypic and phenotypic analysis, we observed that NCIM1228 harbors a truncated yet functional allele of homolog of a well-known catabolite repressor, Mig1. Alleviation of carbon repression in NCIM1228 was attained by replacing functional Mig1134 allele with null allele Mig188. P. funiculosum having Mig188 null allele showed better growth characteristics and 1.75-fold better glucose utilization than parent strain. We also showed that visibly small colony size, one of the major characteristics of CCR disruptant strains in filamentous fungi, was not due to retarded growth, but altered hyphal morphology. CCR-disrupted strain PfMig188 showed profuse branching pattern in terminal hyphae resulting in small and compact colonies with compromised filamentous proliferation. We further observed that basal level expression of two major classes of cellulases, namely, cellobiohydrolase and endoglucanase, was regulated by Mig1134 in NCIM1228, whereas other two major classes, namely, xylanases and β-glucosidase, were only marginally regulated. Finally, CCR disruption in P. funiculosum NCIM1228 led to prolonged cellulase induction in production medium resulting in twofold increased cellulase activity than the parent strain with maximum secreted protein titer being > 14 g/l. CONCLUSIONS CCR-disrupted P. funiculosum showed better growth, enhanced carbon source utilization, profuse branching pattern in terminal hyphae, and higher cellulase activity than parent strain. Our findings are particularly important in shedding light on important functions performed by Mig1 in addition to its role as negative regulator of alternate carbon source utilization in filamentous fungi.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Olusola A. Ogunyewo
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Danish Eqbal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mayank Gupta
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
31
|
Wang Z, An N, Xu W, Zhang W, Meng X, Chen G, Liu W. Functional characterization of the upstream components of the Hog1-like kinase cascade in hyperosmotic and carbon sensing in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:97. [PMID: 29636818 PMCID: PMC5883349 DOI: 10.1186/s13068-018-1098-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Trichoderma reesei holds a high capacity for protein secretion and represents the most important cellulase producer in industry. However, the external signal sensing and intracellular signal transduction during cellulose induction remain unclear. As one of the most pervasive signal transduction pathways in all eukaryotic species, the mitogen-activated protein kinase (MAPK) pathway and its upstream sensing and signaling components are involved in various physiological processes including stress and nutrient sensing. Particularly, the Hog1-type MAPK Tmk3 has been reported to be involved in the cellulase production in T. reesei. RESULTS Here we established the physiological role of two upstream regulatory branches, the Sho1 branch and the Sln1 branch, of the Hog1-type Tmk3 pathway in T. reesei. Deletion of Trste20 of the Sho1 branch or repression of Trypd1 of the Sln1 branch reduced the resistance to high salt stress, whereas TrSho1 showed an opposing effect to that of TrSte20 and the identified TrSln1 seemed to be dispensable in the osmotic regulation. The Sho1 and Sln1 branches also participated in the cell wall integrity maintenance and other stress responses (i.e. oxidative and thermo stresses). Notably, TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch were shown to be differentially involved in the cellulase production of T. reesei. Repression of Trypd1 hardly affected cellulase induction, whereas overexpression of Trypd1 resulted in the reduced production of cellulases. Contrary to the case of Trypd1, repression of Trsho1 or deletion of Trste20 significantly reduced the transcription of cellulase genes. CONCLUSIONS TrSho1 and TrSte20 of the Sho1 branch and TrYpd1 of the Sln1 branch are all involved in general stress responses including hyperosmotic regulation and cell wall integrity maintenance. Moreover, our study revealed that the Sho1 and Sln1 osmosensing pathways are differentially involved in the regulation of cellulase production in T. reesei. The Sho1 branch positively regulated the production of cellulases and the transcription of cellulase genes while TrYpd1 of the Sln1 branch negatively controlled the cellulase production, supporting the crosstalks of osmosensing and nutrient sensing.
Collapse
Affiliation(s)
- Zhixing Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Ning An
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Wenqiang Xu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No.27 Shanda South Road, Jinan, 250100 Shandong People’s Republic of China
| |
Collapse
|
32
|
Janusz G, Mazur A, Wielbo J, Koper P, Żebracki K, Pawlik A, Ciołek B, Paszczyński A, Kubik-Komar A. Comparative transcriptomic analysis of Cerrena unicolor revealed differential expression of genes engaged in degradation of various kinds of wood. Microbiol Res 2017; 207:256-268. [PMID: 29458862 DOI: 10.1016/j.micres.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 12/31/2022]
Abstract
To explore the number of enzymes engaged by Cerrena unicolor FCL139 for wood degradation, the transcriptomes of the fungus growing on birch, ash, maple sawdust and the control liquid medium were analyzed. Among 12,966 gene models predicted for the C. unicolor genome, 10,396 all-unigenes were detected, of which 9567 were found to be expressed in each of the tested growth media. The highest number (107) of unique transcripts was detected during fungus growth in the control liquid medium, while the lowest number (11) - in the fungal culture comprising maple saw dust. Analysis of C. unicolor transcriptomes identified numerous genes whose expression differed substantially between the mycelia growing in control medium and each of the sawdust media used, with the highest number (828) of upregulated transcripts observed during the fungus growth on the ash medium. Among the 294 genes that were potentially engaged in wood degradation, the expression of 59 was significantly (p < .01) changed in the tested conditions. The transcripts of 37 of those genes were at least four times more abundant in the cells grown in all sawdust media when compared to the control medium. Upregulated genes coding for cellulases and, to a lower extent, hemicellulases predominated during fungus growth on sawdust. Transcripts encoding cellulolytic enzymes were the most abundant in mycelia grown on birch and maple while lower number of such transcripts was detected in fungus growing on ash. The expression pattern of lignolytic activities-coding genes was strongly dependent on the type of sawdust applied for fungus growth medium.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Kamil Żebracki
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Beata Ciołek
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Andrzej Paszczyński
- School of Food Science, Food Research Center, University of Idaho, 709 S Deakin St, Moscow, ID, USA
| | - Agnieszka Kubik-Komar
- Chair of Applied Mathematics and Informatics, Lublin University of Life Sciences, Akademicka 13 St., 20-950, Lublin, Poland
| |
Collapse
|
33
|
Gao J, Qian Y, Wang Y, Qu Y, Zhong Y. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:272. [PMID: 29167702 PMCID: PMC5688634 DOI: 10.1186/s13068-017-0963-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/07/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The enzymes for efficient hydrolysis of lignocellulosic biomass are a major factor in the development of an economically feasible cellulose bioconversion process. Up to now, low hydrolysis efficiency and high production cost of cellulases remain the significant hurdles in this process. The aim of the present study was to develop a versatile cellulase system with the enhanced hydrolytic efficiency and the ability to synthesize powerful inducers by genetically engineering Trichoderma reesei. RESULTS In our study, we employed a systematic genetic strategy to construct the carbon catabolite-derepressed strain T. reesei SCB18 to produce the cellulase complex that exhibited a strong cellulolytic capacity for biomass saccharification and an extraordinary high β-glucosidase (BGL) activity for cellulase-inducing disaccharides synthesis. We first identified the hypercellulolytic and uracil auxotrophic strain T. reesei SP4 as carbon catabolite repressed, and then deleted the carbon catabolite repressor gene cre1 in the genome. We found that the deletion of cre1 with the selectable marker pyrG led to a 72.6% increase in total cellulase activity, but a slight reduction in saccharification efficiency. To facilitate the following genetic modification, the marker pyrG was successfully removed by homologous recombination based on resistance to 5-FOA. Furthermore, the Aspergillus niger BGLA-encoding gene bglA was overexpressed, and the generated strain T. reesei SCB18 exhibited a 29.8% increase in total cellulase activity and a 51.3-fold enhancement in BGL activity (up to 103.9 IU/mL). We observed that the cellulase system of SCB18 showed significantly higher saccharification efficiency toward differently pretreated corncob residues than the control strains SDC11 and SP4. Moreover, the crude enzyme preparation from SCB18 with high BGL activity possessed strong transglycosylation ability to synthesize β-disaccharides from glucose. The transglycosylation product was finally utilized as the inducer for cellulase production, which provided a 63.0% increase in total cellulase activity compared to the frequently used soluble inducer, lactose. CONCLUSIONS In summary, we constructed a versatile cellulase system in T. reesei for efficient biomass saccharification and powerful cellulase inducer synthesis by combinational genetic manipulation of three distinct types of genes to achieve the customized cellulase production, thus providing a viable strategy for further strain improvement to reduce the cost of biomass-based biofuel production.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yuanchao Qian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
34
|
Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Sci Rep 2017; 7:10161. [PMID: 28860637 PMCID: PMC5579273 DOI: 10.1038/s41598-017-10964-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
Cellulolytic fungi have evolved a sophisticated genetic regulatory network of cellulase synthesis to adapt to the natural environment. Even in the absence of lignocellulose, it still secretes low levels of “constitutive” cellulase for standby application. However, the mechanisms of this constitutive expression remain incompletely understood. Here we identified a cellobiose synthetase (CBS) from Rhizopus stolonifer, which has the capacity to catalyse the synthesis of cellobiose from uridine diphosphate glucose (UDPG). Through the construction of R. stolonifer Δcbs strain, we found that CBS plays a key role in the synthesis of cellulase. Further analysis of cellulase synthesis under glucose culture reveals that the cellobiose-responsive regulator CLR1 was activated by CBS-synthesized cellobiose, thereby promoting the expression of CLR2 and finally opening the transcription of cellulase genes. Our results suggest that R. stolonifer can be induced by self-synthesized cellobiose to produce cellulase, which can be used to reconstruct the expression regulation network to achieve rapid production of cellulase using simple carbon source. Based on our data, the “constitutive expression” of cellulase actually derives from the induction of cellobiose that synthesized by CBS from carbohydrate metabolites, which updates our knowledge of cellulase, and provides a novel insight into the regulation of cellulase synthesis.
Collapse
|
35
|
Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures. PLoS One 2017; 12:e0183628. [PMID: 28850605 PMCID: PMC5574564 DOI: 10.1371/journal.pone.0183628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase) activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA) at 48 h was significantly higher other periods (P < 0.05). Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77) and xylanase (3.13 ±.091) than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively). Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets.
Collapse
|
36
|
Behera B, Sethi B, Mishra R, Dutta S, Thatoi H. Microbial cellulases - Diversity & biotechnology with reference to mangrove environment: A review. J Genet Eng Biotechnol 2017; 15:197-210. [PMID: 30647656 PMCID: PMC6296582 DOI: 10.1016/j.jgeb.2016.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022]
Abstract
Cellulose is an abundant natural biopolymer on earth, found as a major constituent of plant cell wall in lignocellulosic form. Unlike other compounds cellulose is not easily soluble in water hence enzymatic conversion of cellulose has become a key technology for biodegradation of lignocellulosic materials. Microorganisms such as aerobic bacteria, fungi, yeast and actinomycetes produce cellulase that degrade cellulose by hydrolysing the β-1, 4-glycosidic linkages of cellulose. In contrast to aerobic bacteria, anaerobic bacteria lack the ability to effectively penetrate into the cellulosic material which leads to the development of complexed cellulase systems called cellulosome. Among the different environments, the sediments of mangrove forests are suitable for exploring cellulose degrading microorganisms because of continuous input of cellulosic carbon in the form of litter which then acts as a substrate for decomposition by microbe. Understanding the importance of cellulase, the present article overviews the diversity of cellulolytic microbes from different mangrove environments around the world. The molecular mechanism related to cellulase gene regulation, expression and various biotechnological application of cellulase is also discussed.
Collapse
Affiliation(s)
- B.C. Behera
- Department of Biotechnology, North Orissa University, Baripada 757003, Odisha, India
| | - B.K. Sethi
- Department of Biotechnology, MITS School of Biotechnology, Bhubaneswar 751024, India
| | - R.R. Mishra
- Department of Biotechnology, MITS School of Biotechnology, Bhubaneswar 751024, India
| | - S.K. Dutta
- Department of Zoology, North Orissa University, Baripada 757003, Odisha, India
| | - H.N. Thatoi
- Department of Biotechnology, North Orissa University, Baripada 757003, Odisha, India
| |
Collapse
|
37
|
Xue D, Lin D, Gong C, Peng C, Yao S. Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Xue DS, Liang LY, Zheng G, Lin DQ, Zhang QL, Yao SJ. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Xiong L, Kameshwar AKS, Chen X, Guo Z, Mao C, Chen S, Qin W. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Microb Cell Fact 2016; 15:215. [PMID: 28031033 PMCID: PMC5192574 DOI: 10.1186/s12934-016-0614-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Background ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. Results In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with d-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. Conclusion We propose a cost effective and ecofriendly method for the degradation of lignocellulosic biomass such as bark to produce xylitol by using genetically modified T. reesei. Efficient conversion rate and production yield obtained in our current study provides a great scope for the xylitol industries, as our method bypasses the pretreatment of bark achieving clean and low-cost xylitol production.
Collapse
Affiliation(s)
- Lili Xiong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China.,Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | | | - Xi Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiyun Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
40
|
Transcriptional analysis of genes encoding β-glucosidase of Schizophyllum commune KUC9397 under optimal conditions. Folia Microbiol (Praha) 2016; 62:191-196. [PMID: 27905050 DOI: 10.1007/s12223-016-0484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
The present study was conducted to determine the gene responsible for beta-glucosidase (BGL) production and to generate a full-length complementary DNA (cDNA) of one of the putative BGL genes, which showed a significant expression level when Schizophyllum commune KUC9397 was grown in optimized medium. The relative expression levels of seven genes encoding BGL of S. commune KUC9397 were determined with real-time quantitative reverse transcription PCR in cellulose-containing optimized medium (OM) compared to glucose-containing basal medium (BM). The most abundant transcript was bgl3a in OM. The transcript number of the bgl3a increased more than 57.60-fold when S. commune KUC9397 was grown on cellulose-containing OM compared to that on glucose-containing BM. The bgl3a was identified, and a deduced amino acid sequence of bgl3a shared homology (97%) with GH3 BGL of S. commune H4-8. This is the first report showing the transcription levels of genes encoding BGL and identification of full-length cDNA of glycoside hydrolase 3 (GH3) BGL from S. commune. Furthermore, this study is one of the steps for consolidated bioprocessing of lignocellulosic biomass to bioethanol.
Collapse
|
41
|
Cambri G, de Sousa MML, Fonseca DDM, Marchini FK, da Silveira JLM, Paba J. Analysis of the Biotechnological Potential of a Lentinus crinitus Isolate in the Light of Its Secretome. J Proteome Res 2016; 15:4557-4568. [DOI: 10.1021/acs.jproteome.6b00636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geison Cambri
- Departamento
de Bioquímica, Setor de Ciências Biológicas,
Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba-PR, Brazil
| | - Mirta Mittelstedt Leal de Sousa
- Department
of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Davi de Miranda Fonseca
- Department
of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
- Proteomics
and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Fabricio K. Marchini
- Laboratório
de Genômica Funcional, Instituto Carlos Chagas, Fundação Oswaldo Cruz, 81350-010 Curitiba-PR, Brazil
| | - Joana Lea Meira da Silveira
- Departamento
de Bioquímica, Setor de Ciências Biológicas,
Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba-PR, Brazil
| | - Jaime Paba
- Departamento
de Bioquímica, Setor de Ciências Biológicas,
Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba-PR, Brazil
| |
Collapse
|
42
|
Borgi I, Gargouri A. A novel high molecular weight thermo-acidoactive β-glucosidase from Beauveria bassiana. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Muslim SN, Al-Kadmy IMS, Hussein NH, Mohammed Ali AN, Taha BM, Aziz SN, Kheraif AAA, Divakar DD, Ramakrishnaiah R. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition. Microb Pathog 2016; 100:257-262. [PMID: 27725283 DOI: 10.1016/j.micpath.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 11/18/2022]
Abstract
A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved.
Collapse
Affiliation(s)
- Sahira Nsayef Muslim
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq.
| | - Nadheema Hammood Hussein
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq
| | - Alaa Naseer Mohammed Ali
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq
| | - Buthainah Mohammed Taha
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq
| | - Sarah Naji Aziz
- Al-Mustansiriyah University, College of Science, Department of Biology, Branch of Biotechnology, Box 10422, Baghdad, Iraq
| | - Abdulaziz Abdullah Al Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ravikumar Ramakrishnaiah
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
44
|
|
45
|
Ramezani S, Asoodeh A. Biochemical characterization and gene cloning of a novel alkaline endo -1-4-glucanase from Bacillus subtilis DR8806. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Li Y, Liu C, Bai F, Zhao X. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. BIORESOURCE TECHNOLOGY 2016; 216:503-10. [PMID: 27268435 DOI: 10.1016/j.biortech.2016.05.108] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/05/2023]
Abstract
Cellulase is a prerequisite for the bioconversion of lignocellulosic biomass, but its high cost presents the biggest challenge. In this article, low-cost mixture was produced from glucose through the transglycosylation reaction catalyzed by β-glucosidase for cellulase overproduction by Trichodema reesei RUT C30. As a result, cellulase titer of 90.3FPU/mL, which was more than 10 folds of that achieved with lactose as inducer, was achieved at 144h. Meanwhile, cellulase productivity was drastically increased to 627.1FPU/L/h, at least 3-5 folds higher than previously reported by the fungal species. The crude enzyme was further tested by hydrolyzing NaOH-pretreated corn stover with 15% solid loading, and 96.6g/L glucose was released with 92.6% sugar yield at 96h and 44.8g/L ethanol was obtained.
Collapse
Affiliation(s)
- Yonghao Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China.
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism & School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Wilkinson S, Smart KA, James S, Cook DJ. Bioethanol Production from Brewers Spent Grains Using a Fungal Consolidated Bioprocessing (CBP) Approach. BIOENERGY RESEARCH 2016; 10:146-157. [PMID: 32269706 PMCID: PMC7114960 DOI: 10.1007/s12155-016-9782-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Production of bioethanol from brewers spent grains (BSG) using consolidated bioprocessing (CBP) is reported. Each CBP system consists of a primary filamentous fungal species, which secretes the enzymes required to deconstruct biomass, paired with a secondary yeast species to ferment liberated sugars to ethanol. Interestingly, although several pairings of fungi were investigated, the sake fermentation system (A. oryzae and S. cerevisiae NCYC479) was found to yield the highest concentrations of ethanol (37 g/L of ethanol within 10 days). On this basis, 1 t of BSG (dry weight) would yield 94 kg of ethanol using 36 hL of water in the process. QRT-PCR analysis of selected carbohydrate degrading (CAZy) genes expressed by A. oryzae in the BSG sake system showed that hemicellulose was deconstructed first, followed by cellulose. One drawback of the CBP approach is lower ethanol productivity rates; however, it requires low energy and water inputs, and hence is worthy of further investigation and optimisation.
Collapse
Affiliation(s)
- Stuart Wilkinson
- Brewing Science Section, Division of Food Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Katherine A. Smart
- SABMiller Plc, SABMiller House, Church Street West, Woking, Surrey GU21 6HS UK
| | - Sue James
- SABMiller Plc, SABMiller House, Church Street West, Woking, Surrey GU21 6HS UK
| | - David J. Cook
- Brewing Science Section, Division of Food Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
48
|
Liu P, Li J, Deng Z. Bio-transformation of agri-food wastes by newly isolated Neurospora crassa and Lactobacillus plantarum for egg production. Poult Sci 2016; 95:684-93. [DOI: 10.3382/ps/pev357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/13/2015] [Indexed: 11/20/2022] Open
|
49
|
Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum. Biochem Res Int 2016; 2016:3978124. [PMID: 26977320 PMCID: PMC4761672 DOI: 10.1155/2016/3978124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 11/17/2022] Open
Abstract
Production of β-glucosidase from Fusarium oxysporum was investigated during degradation of some cellulosic substrates (Avicel, α-cellulose, carboxymethyl cellulose (CMC), and methylcellulose). Optimized production of β-glucosidase using the cellulosic substrate that supported highest yield of enzyme was examined over 192 h fermentation period and varied pH of 3.0–11.0. The β-glucosidase produced was characterized for its suitability for industrial application. Methyl cellulose supported the highest yield of β-glucosidase (177.5 U/mg) at pH 6.0 and 30°C at 96 h of fermentation with liberation of 2.121 μmol/mL glucose. The crude enzyme had optimum activity at pH 5.0 and 70°C. The enzyme was stable over broad pH range of 4.0–7.0 with relative residual activity above 60% after 180 min of incubation. β-glucosidase demonstrated high thermostability with 83% of its original activity retained at 70°C after 180 min of incubation. The activity of β-glucosidase was enhanced by Mn2+ and Fe2+ with relative activities of 167.67% and 205.56%, respectively, at 5 mM and 360% and 315%, respectively, at 10 mM. The properties shown by β-glucosidase suggest suitability of the enzyme for industrial applications in the improvement of hydrolysis of cellulosic compounds into fermentable sugars that can be used in energy generation and biofuel production.
Collapse
|
50
|
Mesa L, Salvador CA, Herrera M, Carrazana DI, González E. Cellulases by Penicillium sp. in different culture conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2016-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe high cost of cellulolytic enzymes used in the ethanol production process has led to a growing interest in situ production. The evaluation of the influence of several factors in the fungus Penicillium sp. cellulase production using pretreated sugarcane bagasse is very interesting. Penicillium sp. cellulase production by using filter paper as cellulosic substrate and the use of glucose, sucrose and lactose like co-substrates was assessed. In the experiments using filter paper as a cellulosic substrate, the highest FPase enzyme activity obtained was 280 FPU.L-1 using sucrose as co-substrate. Subsequently, the study of pretreated sugarcane bagasse was conducted using Plackett-Burman experimental design with analysis of 6 factors influencing the process. The highest FPase activity was 615.1 FPU.L-1. The factors influencing FPase and β- glucosidase activity were the use of molasses and the solid loading. The successful use of molasses as co-substrate opens perspectives for future researches.
Collapse
|