1
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Nikas A, Ahmed H, Moore MR, Zarnitsyna VI, Antia R. When does humoral memory enhance infection? PLoS Comput Biol 2023; 19:e1011377. [PMID: 37603552 PMCID: PMC10470880 DOI: 10.1371/journal.pcbi.1011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.
Collapse
Affiliation(s)
- Ariel Nikas
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Mia R. Moore
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Veronika I. Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Zhang L, Feng X, Wang H, He S, Fan H, Liu D. Antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection downregulates the levels of interferon-gamma/lambdas in porcine alveolar macrophages in vitro. Front Vet Sci 2023; 10:1150430. [PMID: 37008366 PMCID: PMC10050554 DOI: 10.3389/fvets.2023.1150430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Fc gamma receptor-mediated antibody-dependent enhancement (ADE) can promote virus invasion of target cells, sometimes exacerbating the severity of the disease. ADE may be an enormous hurdle to developing efficacious vaccines for certain human and animal viruses. ADE of porcine reproductive and respiratory syndrome virus (PRRSV) infection has been demonstrated in vivo and in vitro. However, the effect of PRRSV-ADE infection on the natural antiviral immunity of the host cells is yet to be well investigated. Specifically, whether the ADE of PRRSV infection affects the levels of type II (interferon-gamma, IFN-γ) and III (interferon-lambdas, IFN-λs) interferons (IFNs) remains unclear. In this study, our results showed that PRRSV significantly induced the secretion of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in porcine alveolar macrophages (PAMs) in early infection, and weakly inhibited the production of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in PAMs in late infection. Simultaneously, PRRSV infection significantly increased the transcription of interferon-stimulated gene 15 (ISG15), ISG56, and 2′, 5′-oligoadenylate synthetase 2 (OAS2) in PAMs. In addition, our results showed that PRRSV infection in PAMs via the ADE pathway not only significantly decreased the synthesis of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 but also significantly enhanced the generation of transforming growth factor-beta1 (TGF-β1). Our results also showed that the ADE of PRRSV infection significantly reduced the mRNAs of ISG15, ISG56, and OAS2 in PAMs. In conclusion, our studies indicated that PRRSV-ADE infection suppressed innate antiviral response by downregulating the levels of type II and III IFNs, hence facilitating viral replication in PAMs in vitro. The ADE mechanism demonstrated in the present study furthered our understanding of persistent pathogenesis following PRRSV infection mediated by antibodies.
Collapse
|
5
|
Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, Zhang Y, Larsson M, Shankar EM. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol 2022; 13:889196. [PMID: 35874775 PMCID: PMC9299105 DOI: 10.3389/fimmu.2022.889196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of host-virus interactions, and impairment of the host’s immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Collapse
Affiliation(s)
- Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Indranil Chattopadhyay
- Cancer and Microbiome Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| |
Collapse
|
6
|
Coleman LA, Khoo SK, Franks K, Prastanti F, Le Souëf P, Karpievitch YV, Laing IA, Bosco A. Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing. J Pers Med 2021; 11:1293. [PMID: 34945765 PMCID: PMC8706513 DOI: 10.3390/jpm11121293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four-six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure.
Collapse
Affiliation(s)
- Laura A. Coleman
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Siew-Kim Khoo
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Kimberley Franks
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Franciska Prastanti
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Peter Le Souëf
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| | - Yuliya V. Karpievitch
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ingrid A. Laing
- Medical School (Paediatrics), University of Western Australia, Perth, WA 6009, Australia; (L.A.C.); (P.L.S.); (I.A.L.)
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (S.-K.K.); (K.F.); (F.P.); (Y.V.K.)
| |
Collapse
|
7
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
8
|
A Zika Vaccine Generated Using the Chimeric Insect-Specific Binjari Virus Platform Protects against Fetal Brain Infection in Pregnant Mice. Vaccines (Basel) 2020; 8:vaccines8030496. [PMID: 32887302 PMCID: PMC7564101 DOI: 10.3390/vaccines8030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is the etiological agent of congenital Zika syndrome (CZS), a spectrum of birth defects that can lead to life-long disabilities. A range of vaccines are in development with the target population including pregnant women and women of child-bearing age. Using a recently described chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV), we generated a ZIKV vaccine (BinJ/ZIKA-prME) and illustrate herein its ability to protect against fetal brain infection. Female IFNAR−/− mice were vaccinated once with unadjuvanted BinJ/ZIKA-prME, were mated, and at embryonic day 12.5 were challenged with ZIKVPRVABC59. No infectious ZIKV was detected in maternal blood, placenta, or fetal heads in BinJ/ZIKA-prME-vaccinated mice. A similar result was obtained when the more sensitive qRT PCR methodology was used to measure the viral RNA. BinJ/ZIKA-prME vaccination also did not result in antibody-dependent enhancement of dengue virus infection or disease. BinJ/ZIKA-prME thus emerges as a potential vaccine candidate for the prevention of CSZ.
Collapse
|
9
|
Prow NA, Liu L, McCarthy MK, Walters K, Kalkeri R, Geiger J, Koide F, Cooper TH, Eldi P, Nakayama E, Diener KR, Howley PM, Hayball JD, Morrison TE, Suhrbier A. The vaccinia virus based Sementis Copenhagen Vector vaccine against Zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 2020; 5:44. [PMID: 32550013 PMCID: PMC7265471 DOI: 10.1038/s41541-020-0191-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.
Collapse
Affiliation(s)
- Natalie A Prow
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia.,Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kevin Walters
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Raj Kalkeri
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Jillian Geiger
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Fusataka Koide
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Eri Nakayama
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia
| |
Collapse
|
10
|
Fitzpatrick EA, Wang J, Strome SE. Engineering of Fc Multimers as a Protein Therapy for Autoimmune Disease. Front Immunol 2020; 11:496. [PMID: 32269572 PMCID: PMC7109252 DOI: 10.3389/fimmu.2020.00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The success of Intravenous Immunoglobulin in treating autoimmune and inflammatory processes such as immune thrombocytopenia purpura and Kawasaki disease has led to renewed interest in developing recombinant molecules capable of recapitulating these therapeutic effects. The anti-inflammatory properties of IVIG are, in part, due to the Fc region of the IgG molecule, which interacts with activating or inhibitory Fcγ receptors (FcγRs), the neonatal Fc Receptor, non-canonical FcRs expressed by immune cells and complement proteins. In most cases, Fc interactions with these cognate receptors are dependent upon avidity—avidity which naturally occurs when polyclonal antibodies recognize unique antigens on a given target. The functional consequences of these avid interactions include antibody dependent cell-mediated cytotoxicity, antibody dependent cell phagocytosis, degranulation, direct killing, and/or complement activation—all of which are associated with long-term immunomodulatory effects. Many of these immunologic effects can be recapitulated using recombinant or non-recombinant approaches to induce Fc multimerization, affording the potential to develop a new class of therapeutics. In this review, we discuss the history of tolerance induction by immune complexes that has led to the therapeutic development of artificial Fc bearing immune aggregates and recombinant Fc multimers. The contribution of structure, aggregation and N-glycosylation to human IgG: FcγR interactions and the functional effect(s) of these interactions are reviewed. Understanding the mechanisms by which Fc multimers induce tolerance and attempts to engineer Fc multimers to target specific FcγRs and/or specific effector functions in autoimmune disorders is explored in detail.
Collapse
Affiliation(s)
- Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| | - Jin Wang
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - S E Strome
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States
| |
Collapse
|
11
|
|
12
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
13
|
Sautter CA, Trus I, Nauwynck H, Summerfield A. No Evidence for a Role for Antibodies during Vaccination-Induced Enhancement of Porcine Reproductive and Respiratory Syndrome. Viruses 2019; 11:v11090829. [PMID: 31489915 PMCID: PMC6784192 DOI: 10.3390/v11090829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022] Open
Abstract
Vaccination is one of the most important tools to protect pigs against infection with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1). Although neutralizing antibodies are considered to represent an important mechanism of protective immunity, anti-PRRSV antibodies, in particular at subneutralizing concentrations, have also been reported to exacerbate PRRSV infection, probably through FcγR-mediated uptake of antibody-opsonized PRRSV, resulting in enhanced infection of, and replication in, target cells. Therefore, we investigated this pathway using sera from an animal experiment in which vaccine-mediated enhancement of clinical symptoms was observed. Three groups of six pigs were vaccinated with an inactivated PRRSV vaccine based on the PRRSV-1 subtype 3 strain Lena and challenged after a single or a prime-boost immunization protocol, or injected with PBS. We specifically tested if sera obtained from these animals can enhance macrophage infections, viral shedding, or cytokine release at different dilutions. Neither the presence of neutralizing antibodies nor general anti-PRRSV antibodies, mediated an enhanced infection, increased viral release or cytokine production by macrophages. Taken together, our data indicate that the exacerbated disease was not caused by antibodies.
Collapse
Affiliation(s)
- Carmen A Sautter
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Ivan Trus
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
15
|
Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines 2018; 17:925-934. [PMID: 30300041 DOI: 10.1080/14760584.2018.1522255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.
Collapse
Affiliation(s)
- Natalie A Prow
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| | - Rocio Jimenez Martinez
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - John D Hayball
- c Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences , University of South Australia Cancer Research Institute , Adelaide , Australia
| | - Paul M Howley
- d Inflammation Biology , Sementis Ltd , Berwick , Australia
| | - Andreas Suhrbier
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| |
Collapse
|
16
|
Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep 2018; 8:1860. [PMID: 29382880 PMCID: PMC5789897 DOI: 10.1038/s41598-018-20305-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023] Open
Abstract
The arthropod-transmitted chikungunya virus (CHIKV) causes a flu-like disease that is characterized by incapacitating arthralgia. The re-emergence of CHIKV and the continual risk of new epidemics have reignited research in CHIKV pathogenesis. Virus-specific antibodies have been shown to control virus clearance, but antibodies present at sub-neutralizing concentrations can also augment virus infection that exacerbates disease severity. To explore this occurrence, CHIKV infection was investigated in the presence of CHIKV-specific antibodies in both primary human cells and a murine macrophage cell line, RAW264.7. Enhanced attachment of CHIKV to the primary human monocytes and B cells was observed while increased viral replication was detected in RAW264.7 cells. Blocking of specific Fc receptors (FcγRs) led to the abrogation of these observations. Furthermore, experimental infection in adult mice showed that animals had higher viral RNA loads and endured more severe joint inflammation in the presence of sub-neutralizing concentrations of CHIKV-specific antibodies. In addition, CHIKV infection in 11 days old mice under enhancing condition resulted in higher muscles viral RNA load detected and death. These observations provide the first evidence of antibody-mediated enhancement in CHIKV infection and pathogenesis and could also be relevant for other important arboviruses such as Zika virus.
Collapse
|
17
|
Yang S, Fink D, Hulse A, Pratt RD. Regulatory considerations in development of vaccines to prevent disease caused by Chikungunya virus. Vaccine 2017; 35:4851-4858. [PMID: 28760614 DOI: 10.1016/j.vaccine.2017.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. Chikungunya disease (CHIK) in humans is characterized by sudden onset of high fever, cutaneous rash, myalgia and debilitating polyarthralgia. Until recently the virus was considered endemic to only Africa and Asia, but since 2004 CHIK has spread to previously non-endemic regions, including Europe and the Americas, thereby emerging as a global health threat. Although a variety of CHIKV vaccine candidates have been tested in animals, and a few have advanced to human clinical trials, no licensed vaccine is currently available for prevention of disease. In this article, we review recent efforts in CHIKV vaccine development and discuss regulatory considerations for CHIKV vaccine licensure under U.S. FDA regulations. Several licensure pathways are available, and the most appropriate licensure pathway for a CHIK vaccine will depend on the type of evidence that can be generated to demonstrate the vaccine's effectiveness. If "traditional approval" following demonstration of direct benefit in adequate and well-controlled clinical disease endpoint studies is not possible, the Accelerated Approval and Animal Rule pathways are potential alternatives. In terms of vaccine safety, the potential for vaccine associated arthralgia and antibody-dependent enhancement of infectivity and disease severity are important issues that should be addressed in both pre-clinical and clinical studies. CHIK vaccine developers are encouraged to communicate with the FDA during all stages of vaccine development.
Collapse
Affiliation(s)
- Sixun Yang
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Doran Fink
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Andrea Hulse
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - R Douglas Pratt
- Division of Vaccines and Related Product Applications, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
18
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
19
|
Markers of dengue severity: a systematic review of cytokines and chemokines. J Gen Virol 2016; 97:3103-3119. [DOI: 10.1099/jgv.0.000637] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
20
|
Wen YM, Mu L, Shi Y. Immunoregulatory functions of immune complexes in vaccine and therapy. EMBO Mol Med 2016; 8:1120-1133. [PMID: 27572622 PMCID: PMC5048363 DOI: 10.15252/emmm.201606593] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Clinical and experimental preparations of IgG/soluble antigen complexes, as well as those formed following antibody therapy in vivo, are multifaceted immune regulators. These immune complexes (ICs) have been tested in humans and animal models, mostly in forms of experimental or clinical vaccination, for at least a century. With intensified research on Fcγ receptor-mediated immune modulation, as well as with immune complex-directed antigen processing, presentation, and inflammatory responses, there are renewed interests of using ICs in vaccines and immunotherapies. Currently, IC-based immune therapy has been broadly experimented in HBV and HIV viral infection control and antitumor treatments. However, mechanistic insights of IC-based treatments are relatively recent subjects of study; strong efforts are needed to establish links to connect laboratory findings with clinical practices. This review covers the history, mechanisms, and in vivo outcomes of this safe and effective therapeutic tool, with a clear aim to bridge laboratory findings with evolving clinical applications.
Collapse
Affiliation(s)
- Yu-Mei Wen
- Key Laboratory of Molecular Medical Virology, MOE/MOH, School of Basic Medical Sciences Shanghai Medical College Fudan University, Shanghai, China
| | - Libing Mu
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute of Immunology Tsinghua University, Beijing, China Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Sci Rep 2016; 6:29201. [PMID: 27380892 PMCID: PMC4933910 DOI: 10.1038/srep29201] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts’ antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection.
Collapse
|
22
|
Abstract
Dengue provides the most abundant example in human medicine and the greatest human illness burden caused by the phenomenon of intrinsic antibody-dependent infection enhancement (iADE). In this immunopathological phenomenon infection of monocytes or macrophages using infectious immune complexes suppresses innate antiviral systems, permitting logarithmic intracellular growth of dengue virus. The four dengue viruses evolved from a common ancestor yet retain similar ecology and pathogenicity, but although infection with one virus provides short-term cross-protection against infection with a different type, millions of secondary dengue infections occur worldwide each year. When individuals are infected in the virtual absence of cross-protective dengue antibodies, the dengue vascular permeability syndrome (DVPS) may ensue. This occurs in around 2 to 4% of second heterotypic dengue infections. A complete understanding of the biologic mechanism of iADE, dengue biology, and the mechanism of host responses to dengue infection should lead to a comprehensive and complete understanding of the pathogenesis of DVPS. A crucial emphasis must be placed on understanding ADE. Clinical and epidemiological observations of DVPS define the research questions and provide research parameters. This article will review knowledge related to dengue ADE and point to areas where there has been little research progress. These observations relate to the two stages of dengue illnesses: afferent phenomena are those that promote the success of the microorganism to infect and survive; efferent phenomena are those mounted by the host to inhibit infection and replication and to eliminate the infectious agent and infected tissues. Data will be discussed as "knowns" and "unknowns."
Collapse
|
23
|
Sun DS, Chang YC, Lien TS, King CC, Shih YL, Huang HS, Wang TY, Li CR, Lee CC, Hsu PN, Chang HH. Endothelial Cell Sensitization by Death Receptor Fractions of an Anti–Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:2743-53. [DOI: 10.4049/jimmunol.1500136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/16/2015] [Indexed: 12/26/2022]
|
24
|
Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med Microbiol Immunol 2014; 203:231-50. [DOI: 10.1007/s00430-014-0334-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
|
25
|
Song S, Bi J, Wang D, Fang L, Zhang L, Li F, Chen H, Xiao S. Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:265-272. [PMID: 23085400 DOI: 10.1016/j.dci.2012.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an emerging animal virus that has caused high economic losses for the swine industry worldwide. Previous in vitro and in vivo studies demonstrated that PRRSV infection induces significant production of interleukin 10 (IL-10), a pleiotropic cytokine with immuno-modulatory functions involved in host defense. However, the underlying regulatory mechanisms during PRRSV remain largely unknown. In the present study, we analyzed the expression kinetics of IL-10 in PRRSV-infected primary porcine alveolar macrophages (PAMs) and showed that PRRSV infection induced IL-10 mRNA and protein expression in a time- and dose-dependent manner. Inhibition of various molecules of the Toll-like receptor (TLR) or RIG-I-like receptor (RLR) signaling pathways demonstrated that the TLR adaptor myeloid differentiation primary response gene 88 (MyD88) has an important role in IL-10 induction during PRRSV infection. Furthermore, treatment with specific inhibitors or siRNA knockdown assays demonstrated that NF-κB and p38 MAPK (mitogen-activated protein kinase) are required for PRRSV-induced IL-10. Taken together, PRRSV infection significantly induced IL-10 expression and this induction depends on NF-κB activation and p38 MAPK in PAMs.
Collapse
Affiliation(s)
- Shuang Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Iankov ID, Penheiter AR, Griesmann GE, Carlson SK, Federspiel MJ, Galanis E. Neutralization capacity of measles virus H protein specific IgG determines the balance between antibody-enhanced infectivity and protection in microglial cells. Virus Res 2012; 172:15-23. [PMID: 23266401 DOI: 10.1016/j.virusres.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/05/2012] [Accepted: 12/03/2012] [Indexed: 01/23/2023]
Abstract
Neutralizing antibodies directed against measles virus (MV) surface glycoproteins prevent viral attachment and entry through the natural receptors. H protein specific IgG can enhance MV infectivity in macrophages via Fcγ receptor (FcγR)-dependent mechanism. H-specific IgM, anti-F antibodies and complement cascade activation are protective against antibody-mediated enhancement of MV infection. However, protective role of anti-H IgG against antibody-enhanced infection is not well understood. Here we designed a set of experiments to test the protective effect of H-specific IgG against FcγR-mediated infection in microglial cells. Microglial cells are also potential target of the antibody-mediated enhancement and spread of MV infection in the central nervous system. A partially neutralizing IgG monoclonal antibody (MAb) CL55, specific for MV H protein, at 10 μg/ml enhanced MV infection in mouse microglial cells by 13-14-fold. Infection-enhancing antibody concentrations induced large multinucleated syncytia formation 48-72 h post-inoculation. We generated anti-H IgG MAb 20H6 with a strong neutralization capacity >1:80,000 at 1mg/ml concentration in MV plaque-reduction neutralization assay. In contrast to the partially protective MAb CL55, enhancement of MV infectivity by MAb 20H6 required dilutions below the 1:120 serum titer considered protective against measles infection in humans. At a concentration of 10 μg/ml MAb 20H6 exhibited a dominant protective effect and prevented MAb CL55-mediated enhancement of MV infection and virus-mediated fusion. These results indicate that neutralization capacity of the H-specific IgG determines the balance between antibody enhancement and protection against MV infection in microglial cells.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock. J Virol 2012; 86:9888-98. [PMID: 22761364 DOI: 10.1128/jvi.00956-12] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome.
Collapse
|
28
|
Abstract
Mosquito-transmitted alphaviruses causing human rheumatic disease are globally distributed and include chikungunya virus, Ross River virus, Barmah Forest virus, Sindbis virus, o'nyong-nyong virus and Mayaro virus. These viruses cause endemic disease and, occasionally, large epidemics; for instance, the 2004-2011 chikungunya epidemic resulted in 1.4-6.5 million cases, with imported cases reported in nearly 40 countries. The disease is usually self-limiting and characterized by acute and chronic symmetrical peripheral polyarthralgia-polyarthritis, with acute disease usually including fever, myalgia and/or rash. Arthropathy can be debilitating, usually lasts weeks to months and can be protracted; although adequate attention to differential diagnoses is recommended. The latest chikungunya virus epidemic was also associated with some severe disease manifestations and mortality, primarily in elderly patients with comorbidities and the young. Chronic alphaviral rheumatic disease probably arises from inflammatory responses stimulated by the virus persisting in joint tissues, despite robust antiviral immune responses. Serodiagnosis by ELISA is the standard; although international standardization is often lacking. Treatment usually involves simple analgesics and/or NSAIDs, which can provide relief, but better drug treatments are clearly needed. However, the small market size and/or the unpredictable and rapid nature of epidemics present major hurdles for development and deployment of new alphavirus-specific interventions.
Collapse
Affiliation(s)
- Andreas Suhrbier
- Immunovirology Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia.
| | | | | |
Collapse
|
29
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
30
|
Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daëron M, Bruzzone R, Peiris JSM. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 2011; 85:10582-97. [PMID: 21775467 PMCID: PMC3187504 DOI: 10.1128/jvi.00671-11] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.
Collapse
Affiliation(s)
- Martial Jaume
- HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhattacharya P, Gupta G, Majumder S, Adhikari A, Banerjee S, Halder K, Bhattacharya Majumdar S, Ghosh M, Chaudhuri S, Roy S, Majumdar S. Arabinosylated lipoarabinomannan skews Th2 phenotype towards Th1 during Leishmania infection by chromatin modification: involvement of MAPK signaling. PLoS One 2011; 6:e24141. [PMID: 21935379 PMCID: PMC3173371 DOI: 10.1371/journal.pone.0024141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022] Open
Abstract
The parasitic protozoan Leishmania donovani is the causative organism for visceral leishmaniasis (VL) which persists in the host macrophages by deactivating its signaling machinery resulting in a critical shift from proinflammatory (Th1) to an anti-inflammatory (Th2) response. The severity of this disease is mainly determined by the production of IL-12 and IL-10 which could be reversed by use of effective immunoprophylactics. In this study we have evaluated the potential of Arabinosylated Lipoarabinomannan (Ara-LAM), a cell wall glycolipid isolated from non pathogenic Mycobacterium smegmatis, in regulating the host effector response via effective regulation of mitogen-activated protein kinases (MAPK) signaling cascades in Leishmania donovani infected macrophages isolated from BALB/C mice. Ara-LAM, a Toll-like receptor 2 (TLR2) specific ligand, was found to activate p38 MAPK signaling along with subsequent abrogation of extracellular signal-regulated kinase (ERKs) signaling. The use of pharmacological inhibitors of p38MAPK and ERK signaling showed the importance of these signaling pathways in the regulation of IL-10 and IL-12 in Ara-LAM pretreated parasitized macrophages. Molecular characterization of this regulation of IL-10 and IL-12 was revealed by chromatin immunoprecipitation assay (CHIP) which showed that in Ara-LAM pretreated parasitized murine macrophages there was a significant induction of IL-12 by selective phosphorylation and acetylation of histone H3 residues at its promoter region. While, IL-10 production was attenuated by Ara-LAM pretreatment via abrogation of histone H3 phosphorylation and acetylation at its promoter region. This Ara-LAM mediated antagonistic regulations in the induction of IL-10 and IL-12 genes were further correlated to changes in the transcriptional regulators Signal transducer and activator of transcription 3 (STAT3) and Suppressor of cytokine signaling 3 (SOCS3). These results demonstrate the crucial role played by Ara-LAM in regulating the MAPK signaling pathway along with subsequent changes in host effector response during VL which might provide crucial clues in understanding the Ara-LAM mediated protection during Leishmania induced pathogenesis.
Collapse
Affiliation(s)
| | - Gaurav Gupta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anupam Adhikari
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Kuntal Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Moumita Ghosh
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | - Syamal Roy
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
32
|
Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. THE LANCET. INFECTIOUS DISEASES 2010; 10:712-22. [PMID: 20883967 PMCID: PMC3057165 DOI: 10.1016/s1473-3099(10)70166-3] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wide range of microorganisms can replicate in macrophages, and cell entry of these pathogens via non-neutralising IgG antibody complexes can result in increased intracellular infection through idiosyncratic Fcγ-receptor signalling. The activation of Fcγ receptors usually leads to phagocytosis. Paradoxically, the ligation of monocyte or macrophage Fcγ receptors by IgG immune complexes, rather than aiding host defences, can suppress innate immunity, increase production of interleukin 10, and bias T-helper-1 (Th1) responses to Th2 responses, leading to increased infectious output by infected cells. This intrinsic antibody-dependent enhancement (ADE) of infection modulates the severity of diseases as disparate as dengue haemorrhagic fever and leishmaniasis. Intrinsic ADE is distinct from extrinsic ADE, whereby complexes of infectious agents with non-neutralising antibodies lead to an increased number of infected cells. Intrinsic ADE might be involved in many protozoan, bacterial, and viral infections. We review insights into intracellular mechanisms and implications of enhanced pathogenesis after ligation of macrophage Fcγ receptors by infectious immune complexes.
Collapse
|
33
|
How innate immune mechanisms contribute to antibody-enhanced viral infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1829-35. [PMID: 20876821 DOI: 10.1128/cvi.00316-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preexisting antibodies may enhance viral infections. In dengue, nonneutralizing antibodies raised by natural infection with one of four dengue viruses (DENVs) may enhance infection with a different virus by a process we term "intrinsic antibody-dependent enhancement" (iADE). In addition, nonprotective antibodies raised by formalin-inactivated respiratory syncytial virus (RSV) and measles virus vaccines have led to enhanced disease during breakthrough infections. Infections under iADE conditions not only facilitate the process of viral entry into monocytes and macrophages but also modify innate and adaptive intracellular antiviral mechanisms, suppressing type 1 interferon (IFN) production and resulting in enhanced DENV replication. The suppression observed in vitro has been documented in patients with severe (dengue hemorrhagic fever [DHF]) but not in patient with mild (dengue fever [DF]) secondary dengue virus infections. Important veterinary viral infections also may exhibit iADE. It is thought that use of formalin deconforms viral epitopes of RSV, resulting in poor Toll-like receptor (TLR) stimulation; suboptimal maturation of dendritic cells with reduced production of activation factors CD40, CD80, and CD86; decreased germinal center formation in lymph nodes; and the production of nonprotective antibodies. These antibodies fail to neutralize RSV, allowing replication with secondary stimulation of RSV-primed Th2 cells producing more low-avidity antibody, resulting in immune complexes deposited into affected tissue. However, when formalin-inactivated RSV was administered with a TLR agonist to mice, they were protected against wild-type virus challenge. Safe and effective vaccines against RSV/measles virus and dengue virus may benefit from a better understanding of how innate immune responses can promote production of protective antibodies.
Collapse
|
34
|
Thanawongnuwech R, Suradhat S. Taming PRRSV: revisiting the control strategies and vaccine design. Virus Res 2010; 154:133-40. [PMID: 20851723 DOI: 10.1016/j.virusres.2010.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat, causing economically significant impacts on the swine industry worldwide. In this article, we share the information related to the Thai PRRSV and review the available options for PRRS control strategies. Unfortunately, the traditional control strategies and conventional vaccines fail to provide sustainable disease control, as they suffer from both antigenic heterogeneity and various immune evasion strategies of PRRSV. Induction of interleukin (IL)-10 following PRRSV infection is believed to be a focal mechanism leading to the unique immunological outcomes and interference of PRRS vaccine efficacy. It is likely that the nucleocapsid protein plays an important role in induction of IL-10 following PRRSV infection. We propose that removal or reduction of the PRRSV-induced, negative immunomodulatory effects especially during the first 2 weeks following infection is essential to establish proper anti-PRRSV immunity. In other word, incorporation of the "taming strategy" will be needed to reduce PRRSV-induced immunomodulatory effects, and to ensure maximal vaccine-induced immunity in the face of viral exposure. Any PRRSV vaccine that can induce cross-protective immunity and simultaneously eliminate the immunoinhibitory effects of PRRSV would be ideal. In addition, tracking of the inhibitory parameters, following the PRRSV challenge should be included in the vaccine testing protocol. Therefore, the future of PRRSV vaccine development relies tremendously on the basic knowledge of host-virus interactions and the communication between the basic and clinical PRRSV research fields.
Collapse
Affiliation(s)
- Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | | |
Collapse
|
35
|
Abstract
Chikungunya virus is a mosquito-borne arthrogenic alphavirus that has recently reemerged to produce the largest epidemic ever documented for this virus. Here we describe a new adult wild-type mouse model of chikungunya virus arthritis, which recapitulates the self-limiting arthritis, tenosynovitis, and myositis seen in humans. Rheumatic disease was associated with a prolific infiltrate of monocytes, macrophages, and NK cells and the production of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma). Infection with a virus isolate from the recent Reunion Island epidemic induced significantly more mononuclear infiltrates, proinflammatory mediators, and foot swelling than did an Asian isolate from the 1960s. Primary mouse macrophages were shown to be productively infected with chikungunya virus; however, the depletion of macrophages ameliorated rheumatic disease and prolonged the viremia. Only 1 microg of an unadjuvanted, inactivated, whole-virus vaccine derived from the Asian isolate completely protected against viremia and arthritis induced by the Reunion Island isolate, illustrating that protection is not strain specific and that low levels of immunity are sufficient to mediate protection. IFN-alpha treatment was able to prevent arthritis only if given before infection, suggesting that IFN-alpha is not a viable therapy. Prior infection with Ross River virus, a related arthrogenic alphavirus, and anti-Ross River virus antibodies protected mice against chikungunya virus disease, suggesting that individuals previously exposed to Ross River virus should be protected from chikungunya virus disease. This new mouse model of chikungunya virus disease thus provides insights into pathogenesis and a simple and convenient system to test potential new interventions.
Collapse
|
36
|
Induction of interleukin‐10 expression through Fcα receptor in human monocytes and monocyte‐derived dendritic cells: role of p38 MAPKinase. Immunol Cell Biol 2010; 88:486-93. [DOI: 10.1038/icb.2009.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Abstract
A large range of human viruses are associated with the development of arthritis or arthralgia. Although there are many parallels with autoimmune arthritides, there is little evidence that viral arthritides lead to autoimmune disease. In humans viral arthritides usually last from weeks to months, can be debilitating, and are usually treated with non-steroidal anti-inflammatory drugs, but with variable success. Viral arthritides likely arise from immunopathological inflammatory responses directed at viruses and/or their products residing and/or replicating within joint tissues. Macrophages recruited by monocyte chemoattractant protein-1 (MCP-1/CCL2) and activated by interferon, and proinflammatory mediators like tumour necrosis factor alpha, interferon gamma, interleukin-6 and interleukin-1beta appear to be common elements in this group of diseases. The challenge for new treatments is to target excessive inflammation without compromising anti-viral immunity. Recent evidence from mouse models suggests targeting MCP-1 or complement may emerge as viable new treatment options for viral arthritides.
Collapse
|
38
|
Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.4.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dengue fever is gaining increased attention as a major global health problem. It occurs annually in 50–100 million people in more than 100 countries, and places half a million people at risk of life-threatening diseases: dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The pathogenic mechanisms causing DHF/DSS are not clearly understood. This article reviews cellular and molecular mechanisms that might be responsible for the initiation of the pathogenic processes, including hypotheses for DHF/DSS, dengue-permissive target cells, putative dengue receptors, neutralizing and enhancing antibodies to dengue virus, mechanisms of vascular plasma leakage, innate immune response in dengue infection and antibody-dependent enhancement of dengue infection. While reviewing the literature, the article also gives the author’s opinion on perceived areas of importance for future research in human dengue pathogenesis.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, 601 Elmwood Avenue, Box 689, Room 3-5103, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Abstract
Flaviviruses are a group of positive-stranded RNA viruses that cause a spectrum of severe illnesses globally in more than 50 million individuals each year. While effective vaccines exist for three members of this group (yellow fever, Japanese encephalitis, and tick-borne encephalitis viruses), safe and effective vaccines for several other flaviviruses of clinical importance, including West Nile and dengue viruses, remain in development. An effective humoral immune response is critical for protection against flaviviruses and an essential goal of vaccine development. The effectiveness of virus-specific antibodies in vivo reflects their capacity to inhibit virus entry and spread through several mechanisms, including the direct neutralisation of virus infection. Recent advances in our understanding of the structural biology of flaviviruses, coupled with the use of small-animal models of flavivirus infection, have promoted significant advances in our appreciation of the factors that govern antibody recognition and inhibition of flaviviruses in vitro and in vivo. In this review, we discuss the properties that define the potency of neutralising antibodies and the molecular mechanisms by which they inhibit virus infection. How recent advances in this area have the potential to improve the development of safe and effective vaccines and immunotherapeutics is also addressed.
Collapse
|
40
|
Reis SRI, Valente LM, Sampaio AL, Siani AC, Gandini M, Azeredo EL, D'Avila LA, Mazzei JL, Henriques MDGM, Kubelka CF. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. Int Immunopharmacol 2008; 8:468-76. [DOI: 10.1016/j.intimp.2007.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Revised: 11/20/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
41
|
Sun DS, King CC, Huang HS, Shih YL, Lee CC, Tsai WJ, Yu CC, Chang HH. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 2007; 5:2291-9. [PMID: 17958746 DOI: 10.1111/j.1538-7836.2007.02754.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The mechanisms responsible for thrombocytopenia associated with dengue fever (DF) and dengue hemorrhage fever (DHF) remain unclear. OBJECTIVE In this study, we investigated the pathogenic effects of dengue virus (DENV) non-structural protein 1 (NS1) on the elicitation of platelet cross-reactive antibodies. RESULTS The results showed that anti-DENV NS1 immunoglobulins (Igs) derived from both patients with DF/DHF and recombinant NS1-immunized rabbits could opsonize normal human platelets and enhance platelet-macrophage engagements in vitro. In addition, treatments with anti-NS1 Igs abnormally activated human platelets and induced thrombocytopenia in mice. These prothrombotic characteristics of anti-NS1 Ig might increase the disease burden of coagulant-aberrant DHF patients. To test this hypothesis, we injected anti-NS1 Igs into C57BL/6J mice that were preconditioned into a hypercoagulable state by warfarin treatments. When given before but not after platelet-lysate pre-adsorption, the anti-NS1 Igs injection treatments significantly increased mortality, fibrin deposition in lung, and plasma D-dimer levels, but significantly decreased anticoagulant proteins C, protein S and antithrombin III. CONCLUSIONS These results suggest that the platelet-bound antibody fractions of anti-NS1 Ig are prothrombotic, which might exacerbate the severity of disease in hosts with an imbalanced coagulant system.
Collapse
Affiliation(s)
- D-S Sun
- Institute of Molecular and Cellular Biology, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Takano T, Hohdatsu T, Toda A, Tanabe M, Koyama H. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages. Virology 2007; 364:64-72. [PMID: 17382365 PMCID: PMC7103289 DOI: 10.1016/j.virol.2007.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 01/01/2007] [Accepted: 02/11/2007] [Indexed: 11/17/2022]
Abstract
The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Base Sequence
- CD13 Antigens/metabolism
- Cats
- Cells, Cultured
- Coronavirus, Feline/genetics
- Coronavirus, Feline/pathogenicity
- Coronavirus, Feline/physiology
- Culture Media, Conditioned
- DNA Primers/genetics
- Feline Infectious Peritonitis/genetics
- Feline Infectious Peritonitis/immunology
- Feline Infectious Peritonitis/metabolism
- Feline Infectious Peritonitis/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation
- Virus Replication/drug effects
Collapse
|
43
|
Park-Min KH, Serbina NV, Yang W, Ma X, Krystal G, Neel BG, Nutt SL, Hu X, Ivashkiv LB. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 2007; 26:67-78. [PMID: 17239631 DOI: 10.1016/j.immuni.2006.11.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 06/13/2006] [Accepted: 11/06/2006] [Indexed: 01/03/2023]
Abstract
Intravenous immune globulin (IVIG) suppresses autoantibody-mediated inflammation by inducing and activating the inhibitory Fc receptor FcgammaRIIb and downstream negative signaling pathways. We investigated the effects of IVIG on cellular responses to interferon-gamma (IFN-gamma), a potent macrophage activator that exacerbates inflammation. Our study showed that IVIG blocked IFN-gamma signaling and IFN-gamma-induced gene expression and suppressed IFN-gamma function in vivo during immune responses to Listeria monocytogenes and in an IFN-gamma-enhanced model of immune thrombocytopenic purpura. The mechanism of inhibition of IFN-gamma signaling was suppression of expression of the IFNGR2 subunit of the IFN-gamma receptor. The inhibitory effect of IVIG was mediated at least in part by soluble immune complexes and was dependent on FcgammaRIII but independent of FcgammaRIIb. These results reveal an unexpected inhibitory role for the activating FcgammaRIII in mediating suppression of IFN-gamma signaling and suggest that inhibition of macrophage responses to IFN-gamma contributes to the anti-inflammatory properties of IVIG.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College and Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Iankov ID, Pandey M, Harvey M, Griesmann GE, Federspiel MJ, Russell SJ. Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J Virol 2006; 80:8530-40. [PMID: 16912303 PMCID: PMC1563851 DOI: 10.1128/jvi.00593-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antibodies to viral surface glycoproteins play a crucial role in immunity to measles by blocking both virus attachment and subsequent fusion with the host cell membrane. Here, we demonstrate that certain immunoglobulin G (IgG) antibodies can also enhance the entry of measles virus (MV) into monocytes and macrophages. Antibody-dependent enhancement of infectivity was observed in mouse and human macrophages using virions opsonized by a murine monoclonal antibody against the MV hemagglutinin (H) glycoprotein, polyclonal mouse anti-MV IgG, or diluted measles-immune human sera. Neither H-specific Fab fragments nor H-specific IgM could enhance MV entry in monocytes or macrophages, indicating involvement of a Fc gamma receptor (FcgammaR)-mediated mechanism. Preincubation with an anti-fusion protein (anti-F) monoclonal antibody or a fusion-inhibitory peptide blocked infection, indicating that a functional F protein was required for viral internalization. Classical complement pathway activation did not promote infection through complement receptors and inhibited anti-H IgG-mediated enhancement. In vivo, antibody-enhanced infection allowed MV to overcome a highly protective systemic immune response in preimmunized IfnarKo-Ge46 transgenic mice. These data demonstrate a previously unidentified mechanism that may contribute to morbillivirus pathogenesis where H-specific IgG antibodies promote the spread of MV infection among FcgammaR-expressing host cells. The findings point to a new model for the pathogenesis of atypical MV infection observed after immunization with formalin-inactivated MV vaccine and underscore the importance of the anti-F response after vaccination.
Collapse
Affiliation(s)
- Ianko D Iankov
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Qasimi P, Ming-Lum A, Ghanipour A, Ong CJ, Cox ME, Ihle J, Cacalano N, Yoshimura A, Mui ALF. Divergent Mechanisms Utilized by SOCS3 to Mediate Interleukin-10 Inhibition of Tumor Necrosis Factor α and Nitric Oxide Production by Macrophages. J Biol Chem 2006; 281:6316-24. [PMID: 16352613 DOI: 10.1074/jbc.m508608200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytokine interleukin-10 (IL-10) potently inhibits macrophage function through activation of the transcription factor STAT3. The expression of SOCS3 (suppressor of cytokine signaling-3) has been shown to be induced by IL-10 in a STAT3-dependent manner. However, the relevance of SOCS3 expression to the anti-inflammatory effect of IL-10 on macrophages has been controversial. Through kinetic analysis of the requirement for SOCS3 in IL-10 inhibition of lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNFalpha) transcription and translation, SOCS3 was found to be necessary for TNFalpha expression during the early phase, but not the late phase of IL-10 action. SOCS3 was essential for IL-10 inhibition of LPS-stimulated production of iNOS (inducible nitric-oxide synthase) protein and nitric oxide (NO). To determine the domains of SOCS3 protein important in mediating these effects, SOCS3-/- macrophages were reconstituted with SOCS3 mutated for the SH2, KIR, SOCS box domains, and tyrosines 204 (Tyr204) and 221 (Tyr221). The SH2 domain, SOCS box, and both Tyr204 and Tyr221 were required for IL-10 inhibition of TNFalpha mRNA and protein expression, but interestingly the KIR domain was necessary only for IL-10 inhibition of TNFalpha protein expression. In contrast, Tyr204 and Tyr221 were the only structural features of SOCS3 that were necessary in mediating IL-10 inhibition of iNOS protein expression and NO production. These data define SOCS3 as an important mediator of IL-10 inhibition of macrophage activation and that SOCS3 interferes with distinct LPS-stimulated signal transduction events through differing mechanisms.
Collapse
Affiliation(s)
- Pooran Qasimi
- Department of Surgery, University of British Columbia, Immunity and Infection Research Centre and Prostate Cancer Reseach Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia V6H 3Z6 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Best SM, Bloom ME. Pathogenesis of aleutian mink disease parvovirus and similarities to b19 infection. ACTA ACUST UNITED AC 2006; 52:331-4. [PMID: 16316395 DOI: 10.1111/j.1439-0450.2005.00864.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aleutian mink disease parvovirus (ADV) is an unusual member of the autonomous parvoviruses in both its replication and pathogenesis. Infection of newborn mink kits results in an acute disease typified by virus replication in type II pneumocytes in the lung. This replication is permissive and cytopathic, characterized by the production of high levels of viral replicative intermediates and infectious progeny. However, infection of adult Aleutian mink leads to a chronic form of the disease termed Aleutian disease (AD). In this case, virus replication occurs predominantly in lymph node macrophages and is restricted, with viral DNA replication, RNA transcription, protein expression and production of infectious progeny occurring at low levels. B19 is the only autonomous parvovirus known to infect humans. The primary site of virus replication in both children and adults is in erythrocyte precursors in the blood and bone marrow, although viral genomes have been detected in various other tissues. B19 infection often causes a self-limiting disease although persistent infection of B19 can occur in both immuno-compromised and -competent people. Perhaps the most striking similarity between infection with ADV or with B19 is the important role the humoral immune response to infection has in pathogenesis. It can be both protective and pathogenic. Due to of the central role of antibody in the disease caused by either virus, understanding the specific roles of antibody production in protection, antibody-mediated enhancement of infection, the establishment of persistent infection and immune-mediated pathology will provide insight into the pathogenesis of these infections. A second similarity between the two viruses is the ability to establish persistent infection. Persistence of ADV is associated with restricted replication. Although many cellular factors may contribute to restricted virus replication, the interactions between the major non-structural protein, NS1, and the cells are likely to be critical. Parallels exist between the expression and post-translational modification of ADV and B19 NS1 proteins that may contribute to restriction of virus replication. Thus, a study of the regulation of NS1 expression and its interactions with cell signalling pathways may lead to increased understanding of the restricted replication of these two viruses, and perhaps of persistent infection.
Collapse
Affiliation(s)
- S M Best
- Laboratory of Persistent Viral Diseases, NIAID, NIH. Rocky Mountain Laboratories, 903 S. Fourth St., Hamilton, MT 59840, USA.
| | | |
Collapse
|
47
|
Teixeira L, Marques A, Meireles CS, Seabra AR, Rodrigues D, Madureira P, Faustino AMR, Silva C, Ribeiro A, Ferreira P, Correia da Costa JM, Canada N, Vilanova M. Characterization of the B-cell immune response elicited in BALB/c mice challenged with Neospora caninum tachyzoites. Immunology 2005; 116:38-52. [PMID: 16108816 PMCID: PMC1802410 DOI: 10.1111/j.1365-2567.2005.02195.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activation of B cells occurring in hosts infected with protozoan parasites has been implicated either in protective or parasite-evasion immune-mediated mechanisms. Intraperitoneal inoculation of Neospora caninum tachyzoites into BALB/c mice induces an acute response characterized by a rapid increase in the numbers of CD69-expressing peritoneal and splenic B cells. This early B-cell stimulatory effect preceded an increase in the numbers of total and immunoglobulin-secreting splenic B cells and a rise in serum levels of N. caninum-specific immunoglobulins, predominantly of the immunoglobulin G2a (IgG2a) and IgM isotypes. Increased numbers of B cells expressing the costimulatory molecules CD80 and CD86 were also observed in the N. caninum-infected mice. The B-cell stimulatory effect observed in mice challenged with N. caninum tachyzoites was reduced in mice challenged with gamma-irradiated parasites. Contrasting with the peripheral B-cell expansion, a depletion of B-lineage cells was observed in the bone-marrow of the N. caninum-infected mice. Intradermal immunization of BALB/c mice with diverse N. caninum antigenic preparations although inducing the production of parasite-specific antibodies nevertheless impaired interferon-gamma (IFN-gamma) mRNA expression and caused lethal susceptibility to infection in mice inoculated with a non-lethal parasitic inoculum. This increased susceptibility to N. caninum was not observed in naïve mice passively transferred with anti-N. caninum antibodies. Taken together, these results show that N. caninum induces in BALB/c mice a parasite-specific, non-polyclonal, B-cell response, reinforce previous observations made by others showing that immunization with N. caninum whole structural antigens increases susceptibility to murine neosporosis and further stress the role of IFN-gamma in the host protective immune mechanisms against this parasite.
Collapse
Affiliation(s)
- Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rulli NE, Suhrbier A, Hueston L, Heise MT, Tupanceska D, Zaid A, Wilmes A, Gilmore K, Lidbury BA, Mahalingam S. Ross River virus: Molecular and cellular aspects of disease pathogenesis. Pharmacol Ther 2005; 107:329-42. [PMID: 15923040 DOI: 10.1016/j.pharmthera.2005.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2005] [Indexed: 11/16/2022]
Abstract
Ross River virus (RRV) is a mosquito-borne alphavirus indigenous to Australia and the Western Pacific region and is responsible for several thousand cases of human RRV disease (RRVD) per annum. The disease primarily involves polyarthritis/arthralgia, with many patients also presenting with rash, myalgia, fever, and/or lethargy. The symptoms can be debilitating at onset, but they usually resolve within 3-6 months. Recent insights into the RRV-host relationship, associated pathology, and molecular biology of infection have generated a number of potential avenues for improved treatment. Although vaccine development has been proposed, the small market size and potential for antibody-dependent enhancement (ADE) of disease make this approach unattractive. Recent insights into the molecular basis of RRV-ADE and the virus's ability to manipulate host inflammatory and immune responses create potential new opportunities for therapeutic invention. Such interventions should overcome virus-induced dysregulation of protective host responses to promote viral clearance and/or ameliorate inflammatory immunopathology.
Collapse
Affiliation(s)
- Nestor E Rulli
- School of Health Sciences, University of Canberra, Kirinari Street, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Du Z, Shen Y, Yang W, Mecklenbrauker I, Neel BG, Ivashkiv LB. Inhibition of IFN-alpha signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proc Natl Acad Sci U S A 2005; 102:10267-72. [PMID: 16000408 PMCID: PMC1177356 DOI: 10.1073/pnas.0408854102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytokine signaling by the Jak-STAT pathway is subject to complex negative regulation that limits the amplitude and duration of signal transduction. Inhibition of signaling also mediates negative crosstalk, whereby factors with opposing biological activities crossinhibit each other's function. Here, we investigated a rapidly inducible mechanism that inhibited Jak-STAT activation by IFN-alpha, a cytokine that is important for antiviral responses, growth control, and modulation of immune responses. IFN-alpha-induced signaling and gene activation were inhibited by ligation of Fc receptors and Toll-like receptors 7 and 8 in a PKCbeta-dependent manner. Neither PKCbeta nor PKCdelta influenced responses of cells treated with IFN-alpha alone. Inhibition of IFN-alpha signaling correlated with suppression of IFN-alpha-dependent antiviral responses. PKC-mediated inhibition did not require de novo gene expression but involved the recruitment of PKCbeta to the IFN-alpha receptor and interaction with protein tyrosine phosphatase SHP-2, resulting in augmented phosphatase activity. PKC-mediated inhibition of IFN-alpha signaling was abolished in SHP-2-deficient cells, demonstrating a pivotal role for SHP-2 in this inhibitory pathway. Together, our data describe a rapidly inducible, direct mechanism of inhibition of Jak-STAT signaling mediated by a PKCbeta-SHP-2 signaling pathway.
Collapse
Affiliation(s)
- Zhimei Du
- Graduate Program in Immunology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The induction of immune responses requires critical interaction between innate parts of the immune system, which respond rapidly and in a relatively nonspecific manner, and other specific parts, which recognize particular epitopes on an antigen. A critical element in this interaction is the role played by dendritic cells (DCs), which represent "professional antigen-presenting cells." DCs endocytose and process antigen to peptide presented on the cell surface in association with major histocompatibility complex (MHC) molecules. This presentation results in interaction with and stimulation of helper T (Th) lymphocytes, which recognize peptide in association with either MHC class II or cytotoxic T (Tc) lymphocytes, which recognize peptide in association with MHC class I. Stimulation of Th lymphocytes produces the growth and differentiation factors (cytokines) essential for the B lymphocytes that have responded to a more intact form of the antigen and that differentiate into antibody-producing cells. The precise interaction between the cells depends on cognate ligand-receptor recognition between the B and Th lymphocytes. DCs also play a direct role with the stimulation of the B lymphocytes. It appears that DC can deliver antigen to the B lymphocytes in a more intact form than the processed form essential for stimulating T lymphocytes, and can release cytokines that assist the differentiation of the B lymphocytes into antibody-producing cells. This close relationship among the three cell types and the cytokines that are produced ensures the precise control and regulation necessary for immune response development.
Collapse
Affiliation(s)
- Kenneth C McCullough
- Immunology Department, the Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | |
Collapse
|