1
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
2
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
3
|
Paek JH, Kim YN, Shin HS, Jung Y, Rim H. Expansion and characterization of regulatory T cell populations from Korean kidney transplant recipients. Medicine (Baltimore) 2023; 102:e33058. [PMID: 36930095 PMCID: PMC10019245 DOI: 10.1097/md.0000000000033058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
The development of immunosuppressants has enabled remarkable progress in kidney transplantation (KT). However, current immunosuppressants cannot induce immune tolerance, and their nonspecific immunosuppressive effects result in many adverse effects. Regulatory T cells (Tregs) play crucial roles in controlling all specific immune responses. This study evaluated the distribution of Tregs and their effects on kidney allograft function in Korean KT recipients. We enrolled 113 KT recipients with stable graft function. The differentiation and expansion of Tregs were examined by flow cytometry to compare the Tregs subpopulations. Among the 113 patients, 73 (64.6%) were males, and the mean follow-up period from KT to Tregs collection was 147.5 + 111.3 months. Patients receiving lower doses of cyclosporine had higher proportions of Tregs than those with higher doses of cyclosporine (36.3 + 21.6 vs 17.0 + 12.7, P = .010, respectively). Patients taking cyclosporine tended to have higher Tregs numbers than those taking tacrolimus (94.7 + 158.1 vs 49.3 + 69.4, P = .095, respectively). However, no significant association was observed between Tregs and allograft dysfunction in the cox proportional hazard model. Tregs counts may be associated with the type and dose of immunosuppressants. However, no significant relationship was found between Tregs and kidney allograft function in stable KT recipients.
Collapse
Affiliation(s)
- Jin Hyuk Paek
- Renal Division, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
4
|
Islam M, Sevak JK, Sharma MK, Jindal A, Vyas AK, Bajpai M, Ramakrishna G, Sarin SK, Trehanpati N. Immune predictors of hepatitis B surface antigen seroconversion in patients with hepatitis B reactivation. Aliment Pharmacol Ther 2023; 57:689-708. [PMID: 36411952 DOI: 10.1111/apt.17306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroconversion is sometimes observed in hepatitis B reactivation (rHBV), probably due to immune resetting and differentiation. AIMS To investigate sequential immune differentiation and abrogation of tolerance in patients with rHBV who achieved HBsAg seroconversion. METHODS We included 19 patients with chronic hepatitis B (CHBV; HBV DNA log103-8 ), 67 with rHBV (raised ALT [>5XULN], HBV DNAlog104-8 ) and 10 healthy controls. Immune differentiation, tolerance and functional status of CD4, CD8, T regulatory cells (Tregs), B cells and follicular T helper (Tfh) cells were assessed at baseline and 24 weeks. RESULTS At 24 weeks, 81% rHBV (n = 67) lost HBV DNA and HBeAg (41%), and 12 (19%) lost HBsAg and made anti-HBs titers >10 IU/ml. rHBV patients had higher Th1/17, TEM , Tfh, Tfh1/17, plasma and ATM B cells, and lower Tregs, Th2, Th17 and TEMRA expression. rHBV showed lower PD1, TIM3, LAG3, SLAM and TOX compared to CHBV. There was a significant increase in CD8, CD8EM, Tfh, Tfh1/17 and plasma B cells in seroconverters than non-seroconverters. At 24 weeks, we also observed increased plasma B cell frequency in seroconverters. While non-seroconverters showed higher expression of PD1, TIM3, LAG3, SLAM and TOX on CD4/CD8 T cells, blockade of PD1, TIM3, LAG3 and CTLA4 significantly enhanced IFN-γ, TNF-α, IL-4 and IL-21 expression on CD4/CD8 and Tfh cells in non-seroconverters. CONCLUSIONS Non-seroconverters have increased inhibitory markers on CD4/CD8 T cells. There is a critical play of CD8, Tfh and B cells and subsets in seroclearance, along with checkpoint molecules as a potential therapy for non-seroconverters in HBV infection.
Collapse
Affiliation(s)
- Mojahidul Islam
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ashish Kumar Vyas
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
5
|
Yang X, Dai J, Yao S, An J, Wen G, Jin H, Zhang L, Zheng L, Chen X, Yi Z, Tuo B. APOBEC3B: Future direction of liver cancer research. Front Oncol 2022; 12:996115. [PMID: 36203448 PMCID: PMC9530283 DOI: 10.3389/fonc.2022.996115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Liver cancer is one of the most common cancers in the world, and the rate of liver cancer is high due to the of its illness. The main risk factor for liver cancer is infection with the hepatitis B virus (HBV), but a considerable number of genetic and epigenetic factors are also directly or indirectly involved in the underlying pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor family), which has been the focus of virology research for more than a decade, has been found to play a significant role in the occurrence and development of various cancers, providing a new direction for the research of liver cancer. APOBEC3B is a cytosine deaminase that controls a variety of biological processes, such as protein expression, innate immunity, and embryonic development, by participating in the process of cytidine deamination to uridine in DNA and RNA. In humans, APOBEC3B has long been known as a DNA editor for limiting viral replication and transcription. APOBEC3B is widely expressed at low levels in a variety of normal tissues and organs, but it is significantly upregulated in different types of tumor tissues and tumor lines. Thus, APOBEC3B has received increasing attention in various cancers, but the role of APOBEC3B in the occurrence and development of liver cancer due to infection with HBV remains unclear. This review provides a brief introduction to the pathogenesis of hepatocellular carcinoma induced by HBV, and it further explores the latest results of APOBEC3B research in the development of HBV and liver cancer, thereby providing new directions and strategies for the treatment and prevention of liver cancer.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Biguang Tuo,
| |
Collapse
|
6
|
Wang Z, Wang F, Ma H, Lv S. Potential role of HBV DNA-induced CD8 high T cell apoptosis in patients with systemic lupus erythematosus and rheumatoid arthritis. J Int Med Res 2022; 50:3000605221104760. [PMID: 35726595 PMCID: PMC9218476 DOI: 10.1177/03000605221104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective To investigate the potential role of hepatitis B virus (HBV) DNA-induced CD8high T cell apoptosis in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Methods The activity and HBV seropositivity rates of patients with SLE and RA were determined. The proportions of T cell subgroups were detected by fluorescence-activated cell sorting. The apoptosis of T cell subgroups was detected after peripheral blood mononuclear cells were stimulated with HBV DNA. Results The HBV infection rate was higher in patients with RA than in patients with SLE. Current or previous HBV infection was more common among patients with inactive SLE than among those with active SLE. Conversely, previous or current HBV infection was more common among patients with active RA than among those with inactive RA. CD4−CD8high T cell counts were higher among patients with active SLE than in those with inactive SLE. However, CD4−CD8high T cell counts were lower in patients with active RA patients than in those with inactive RA. HBV DNA increased the apoptosis of CD4−CD8high T cells. Conclusion HBV DNA-induced CD8high T cell apoptosis appears to play different roles in SLE and RA.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fen Wang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyang Ma
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shujuan Lv
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Fasano R, Malerba E, Prete M, Solimando AG, Buonavoglia A, Silvestris N, Leone P, Racanelli V. Impact of Antigen Presentation Mechanisms on Immune Response in Autoimmune Hepatitis. Front Immunol 2022; 12:814155. [PMID: 35116039 PMCID: PMC8804214 DOI: 10.3389/fimmu.2021.814155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The liver is a very tolerogenic organ. It is continually exposed to a multitude of antigens and is able to promote an effective immune response against pathogens and simultaneously immune tolerance against self-antigens. In spite of strong peripheral and central tolerogenic mechanisms, loss of tolerance can occur in autoimmune liver diseases, such as autoimmune hepatitis (AIH) through a combination of genetic predisposition, environmental factors, and an imbalance in immunological regulatory mechanisms. The liver hosts several types of conventional resident antigen presenting cells (APCs) such as dendritic cells, B cells and macrophages (Kupffer cells), and unconventional APCs including liver sinusoidal endothelial cells, hepatic stellate cells and hepatocytes. By standard (direct presentation and cross-presentation) and alternative mechanisms (cross-dressing and MHC class II-dressing), liver APCs presents self-antigen to naive T cells in the presence of costimulation leading to an altered immune response that results in liver injury and inflammation. Additionally, the transport of antigens and antigen:MHC complexes by trogocytosis and extracellular vesicles between different cells in the liver contributes to enhance antigen presentation and amplify autoimmune response. Here, we focus on the impact of antigen presentation on the immune response in the liver and on the functional role of the immune cells in the induction of liver inflammation. A better understanding of these key pathogenic aspects could facilitate the establishment of novel therapeutic strategies in AIH.
Collapse
Affiliation(s)
- Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
8
|
Ahovègbé LY, Ogwang PE, Peter EL, Mtewa AG, Kasali FM, Tolo CU, Gbenoudon J, Weisheit A, Pakoyo KF. Therapeutic potentials of Vachellia nilotica (L.) extracts in Hepatitis C infection: A review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Amin OE, Colbeck EJ, Daffis S, Khan S, Ramakrishnan D, Pattabiraman D, Chu R, Micolochick Steuer H, Lehar S, Peiser L, Palazzo A, Frey C, Davies J, Javanbakht H, Rosenberg WM, Fletcher SP, Maini MK, Pallett LJ. Therapeutic Potential of TLR8 Agonist GS-9688 (Selgantolimod) in Chronic Hepatitis B: Remodeling of Antiviral and Regulatory Mediators. Hepatology 2021; 74:55-71. [PMID: 33368377 PMCID: PMC8436741 DOI: 10.1002/hep.31695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.
Collapse
Affiliation(s)
- Oliver E. Amin
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Emily J. Colbeck
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Ruth Chu
- Gilead Sciences Inc.Foster CityCA
| | | | - Sophie Lehar
- Gilead Sciences Inc.Foster CityCA
- Present address:
Genentech Inc.South San FranciscoCA
| | - Leanne Peiser
- Gilead Sciences Inc.Foster CityCA
- Present address:
Bristol Myers SquibbSeattleWA
| | | | - Christian Frey
- Gilead Sciences Inc.Foster CityCA
- Present address:
Ideaya Biosciences Inc.South San FranciscoCA
| | - Jessica Davies
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Hassan Javanbakht
- Gilead Sciences Inc.Foster CityCA
- Present address:
SQZ BiotechnologiesWatertownMA
| | | | | | - Mala K. Maini
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Laura J. Pallett
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Buschow SI, Jansen DTSL. CD4 + T Cells in Chronic Hepatitis B and T Cell-Directed Immunotherapy. Cells 2021; 10:cells10051114. [PMID: 34066322 PMCID: PMC8148211 DOI: 10.3390/cells10051114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The impaired T cell responses observed in chronic hepatitis B (HBV) patients are considered to contribute to the chronicity of the infection. Research on this impairment has been focused on CD8+ T cells because of their cytotoxic effector function; however, CD4+ T cells are crucial in the proper development of these long-lasting effector CD8+ T cells. In this review, we summarize what is known about CD4+ T cells in chronic HBV infection and discuss the importance and opportunities of including CD4+ T cells in T cell-directed immunotherapeutic strategies to cure chronic HBV.
Collapse
|
11
|
Li X, Liu X, Wang W. IL-35: A Novel Immunomodulator in Hepatitis B Virus-Related Liver Diseases. Front Cell Dev Biol 2021; 9:614847. [PMID: 33777929 PMCID: PMC7990793 DOI: 10.3389/fcell.2021.614847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a risk factor for liver cirrhosis (LC) and hepatocellular carcinoma (HCC), however, little is known about the mechanisms involved in the progression of HBV-related diseases. It has been well acknowledged that host immune response was closely related to the clinical outcomes of patients with HBV infection. As the factors closely related to the immunomodulatory process, cytokines are crucial in the cell-cell communication and the host responses to HBV infection. Recently, a newly discovered cytokine, designated as interleukin-35 (IL-35), has been proved to be essential for the progression of chronic HBV infection, the development of cirrhosis, the transformation of cirrhosis to HCC, and the metastasis of HCC. Specifically, it showed various biological activities such as inhibiting the HBV-specific cytotoxic T lymphocyte (CTL) proliferation and cytotoxicity, deactivating the immature effector T-cells (Teffs), as well as delaying the proliferation of dendritic cells. It regulated the immune responses by acting as a “brake” on the activation of Teffs, which subsequently played important roles in the pathogenesis of various inflammatory diseases and malignancies. In this review, we focused on the most recent data on the relationship between IL-35 and chronic HBV infection, LC and HCC.
Collapse
Affiliation(s)
- Xuefen Li
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Drescher HK, Bartsch LM, Weiskirchen S, Weiskirchen R. Intrahepatic T H17/T Reg Cells in Homeostasis and Disease-It's All About the Balance. Front Pharmacol 2020; 11:588436. [PMID: 33123017 PMCID: PMC7566778 DOI: 10.3389/fphar.2020.588436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both acute and chronic hepatic inflammation likely result from an imbalance in the TH1/TH2 cell response and can lead to liver fibrosis and end-stage liver disease. More recently, a novel CD4+ T helper cell subset was described, characterized by the production of IL-17 and IL-22. These TH17 cells 50were predominantly implicated in host defense against infections and in autoimmune diseases. Interestingly, studies over the last 10 years revealed that the development of TH17 cells favors pro-inflammatory responses in almost all tissues and there is a reciprocal relationship between TH17 and TReg cells. The balance between TH17and TReg cells is critical for immune reactions, especially in injured liver tissue and the return to immune homeostasis. The pathogenic contribution of TH17 and TReg cells in autoimmunity, acute infection, and chronic liver injury is diverse and varies among disease etiologies. Understanding the mechanisms underlying TH17 cell development, recruitment, and maintenance, along with the suppression of TReg cells, will inform the development of new therapeutic strategies in liver diseases. Active manipulation of the balance between pathogenic and regulatory processes in the liver may assist in the restoration of homeostasis, especially in hepatic inflammation.
Collapse
Affiliation(s)
- Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital, RWTH Aachen, Aachen, Germany
| |
Collapse
|
13
|
Amoras EDSG, Monteiro Gomes ST, Freitas Queiroz MA, de Araújo MSM, de Araújo MTF, da Silva Conde SRS, Ishak R, Vallinoto ACR. Intrahepatic interleukin 10 expression modulates fibrinogenesis during chronic HCV infection. PLoS One 2020; 15:e0241199. [PMID: 33125400 PMCID: PMC7598451 DOI: 10.1371/journal.pone.0241199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Liver fibrosis is a result of continuous damage to the liver combined with accumulation of the extracellular matrix and is characteristic of most chronic liver diseases such as hepatitis C virus (HCV) infection. Methods This study evaluated interleukin 10 (IL10) expression in the liver and plasma of 45 HCV patients and its association with the pathogenesis and progression of liver fibrosis. The expression of transforming growth factor beta (TGFB1) was also assessed. Patients were divided into three groups according to the METAVIR classification (F0-F1, F2 and F3-F4); there was also a control group (n = 8). Results In the control group, high intrahepatic IL10 mRNA expression showed a positive association with F0-F1 fibrosis, no inflammation, low concentrations of liver enzymes and a high viral load; conversely, low intrahepatic IL10 mRNA expression showed a negative association with fibrosis progression. Intrahepatic TGFB1 mRNA expression was greater in the HCV group than in the control group, and regarding different disease phases, its expression increased as fibrosis evolved to more severe forms. Conclusion Intrahepatic IL10 mRNA expression decreases with persistent fibrosis, probably due to the production of TGF-β1, a potent antimitotic and fibrogenic cytokine. IL10 restricts and decreases the immune response and limits the fibrogenic response; however, a decrease in IL10 favors persistent inflammatory infiltrate, resulting in severe fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Regina Souza da Silva Conde
- School of Medicine, Health Science Institute, Universidade Federal do Pará, Belém, Pará, Brazil
- Hepatology Outpatient Clinic, João Barros Barreto University Hospital, Belém, Pará, Brazil
| | - Ricardo Ishak
- Virology Laboratory, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | | |
Collapse
|
14
|
Tang R, Lei Z, Wang X, Qi Q, He J, Liu D, Wang X, Chen X, Zhu J, Li Y, Zhou S, Su C. Hepatitis B envelope antigen increases Tregs by converting CD4+CD25 - T cells into CD4 +CD25 +Foxp3 + Tregs. Exp Ther Med 2020; 20:3679-3686. [PMID: 32855720 PMCID: PMC7444405 DOI: 10.3892/etm.2020.9107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) can establish a lifelong chronic infection in humans, leading to liver cirrhosis, liver failure and hepatocellular carcinoma. Patients with chronic hepatitis B (CHB) exhibit a weak virus-specific immune response. Regulatory T cells (Tregs) play a key role in regulating the immune response in patients with CHB. Patients with hepatitis B envelope antigen (HBeAg)-positive CHB harbored a higher percentage of Tregs in their peripheral blood than those with HBeAg-negative CHB. However, whether and how HBeAg manipulates the host immune system to increase the population of Tregs remains to be elucidated. The present manuscript describes a preliminary immunological study of HBeAg in a mouse model. Multiple potential CD4+ T cell epitopes in HBeAg were identified using Immune Epitope Database consensus binding prediction. It was demonstrated that HBeAg treatment increased the numbers of Tregs in mouse spleens in vitro and in vivo. Furthermore, it was indicated that the HBeAg-mediated increase in Tregs occurred through the conversion of CD4+CD25- T cells into CD4+CD25+Foxp3+ Tregs. Additionally, in vitro study illustrated that HBeAg stimulated murine spleen cells to produce increased transforming growth factor-β, which is required to enable HBeAg to convert T cells into Tregs. The results of the present study may provide further evidence of the effect of HBeAg on Tregs and aid in the development of novel HBeAg-based immunotherapy for CHB.
Collapse
Affiliation(s)
- Rui Tang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhigang Lei
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinpeng Wang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Qianqian Qi
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jingjing He
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Dan Liu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiaoxian Wang
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiaojun Chen
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jifeng Zhu
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yalin Li
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Sha Zhou
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine, Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
15
|
Liu L, Hou J, Xu Y, Qin L, Liu W, Zhang H, Li Y, Chen M, Deng M, Zhao B, Hu J, Zheng H, Li C, Meng S. PD-L1 upregulation by IFN-α/γ-mediated Stat1 suppresses anti-HBV T cell response. PLoS One 2020; 15:e0228302. [PMID: 32628668 PMCID: PMC7337294 DOI: 10.1371/journal.pone.0228302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been recently shown to be a major obstacle to antiviral immunity by binding to its receptor programmed death 1 (PD-1) on specific IFN-γ producing T cells in chronic hepatitis B. Currently, IFN-α is widely used to treat hepatitis B virus (HBV) infection, but its antiviral effect vary greatly and the mechanism is not totally clear. We found that IFN-α/γ induced a marked increase of PD-L1 expression in hepatocytes. Signal and activators of transcription (Stat1) was then identified as a major transcription factor involved in IFN-α/γ-mediated PD-L1 elevation both in vitro and in mice. Blockage of the PD-L1/PD-1 interaction by a specific mAb greatly enhanced HBV-specific T cell activity by the gp96 adjuvanted therapeutic vaccine, and promoted HBV clearance in HBV transgenic mice. Our results demonstrate the IFN-α/γ-Stat1-PD-L1 axis plays an important role in mediating T cell hyporesponsiveness and inactivating liver-infiltrating T cells in the hepatic microenvironment. These data raise further potential interest in enhancing the anti-HBV efficacy of IFN-α and therapeutic vaccines.
Collapse
Affiliation(s)
- LanLan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiu Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| |
Collapse
|
16
|
George JA, Park SO, Choi JY, Uyangaa E, Eo SK. Double-faced implication of CD4 + Foxp3 + regulatory T cells expanded by acute dengue infection via TLR2/MyD88 pathway. Eur J Immunol 2020; 50:1000-1018. [PMID: 32125695 DOI: 10.1002/eji.201948420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023]
Abstract
Dengue infection causes dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). CD4+ Foxp3+ Tregs are expanded in patients during dengue infection, and appear to be associated with clinical severity. However, molecular pathways involved in Treg proliferation and the reason for their insufficient control of severe diseases are poorly understood. Here, dengue infection induced the proliferation of functional CD4+ Foxp3+ Tregs via TLR2/MyD88 pathway. Surface TLR2 on Tregs was responsible for their proliferation, and dengue-expanded Tregs subverted in vivo differentiation of effector CD8+ T cells. An additional interesting finding was that dengue-infected hosts displayed changed levels of susceptibility to other diseases in TLR2-dependent manner. This change included enhanced susceptibility to tumors and bacterial infection, but highly enhanced resistance to viral infection. Further, the transfer of dengue-proliferated Tregs protected the recipients from dengue-induced DHF/DSS and LPS-induced sepsis. In contrast, dengue-infected hosts were more susceptible to sepsis, an effect attributable to early TLR2-dependent production of proinflammatory cytokines. These facts may explain the reason why in some patients, dengue-proliferated Tregs is insufficient to control DF and DHF/DSS. Also, our observations lead to new insights into Treg responses activated by dengue infection in a TLR2-dependent manner, which could differentially act on subsequent exposure to other disease-producing situations.
Collapse
Affiliation(s)
- Junu A George
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| |
Collapse
|
17
|
Hoogeveen RC, Boonstra A. Checkpoint Inhibitors and Therapeutic Vaccines for the Treatment of Chronic HBV Infection. Front Immunol 2020; 11:401. [PMID: 32194573 PMCID: PMC7064714 DOI: 10.3389/fimmu.2020.00401] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of chronic hepatitis B virus (HBV) infection is highly effective in suppressing viral replication, but complete cure is rarely achieved. In recent years, substantial progress has been made in the development of immunotherapy to treat cancer. Applying these therapies to improve the management of chronic HBV infection is now being attempted, and has become an area of active research. Immunotherapy with vaccines and checkpoint inhibitors can boost T cell functions in vitro, and therefore may be used to reinvigorate the impaired HBV-specific T cell response. However, whether these approaches will suffice and restore antiviral T cell immunity to induce long-term HBV control remains an open question. Recent efforts have begun to describe the phenotype and function of HBV-specific T cells on the single epitope level. An improved understanding of differing T cell specificities and their contribution to HBV control will be instrumental for advancement of the field. In this review, we outline correlates of successful versus inadequate T cell responses to HBV, and discuss the rationale behind therapeutic vaccines and checkpoint inhibitors for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - André Boonstra
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Akgöllü E. Evaluation of Forkhead Box P3 gene polymorphisms in chronic HBV infection. J Gene Med 2020; 22:e3172. [PMID: 32037623 DOI: 10.1002/jgm.3172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection causes liver failure, liver cirrhosis and hepatocellular carcinoma. The FOXP3 gene polymorphisms, the rs2232365 A/G and the rs3761548 A/C, were identified to be associated with regulatory T cell-mediated immunosuppression. The response to HBV infection may be affected by FOXP3 polymorphisms. The present study aimed to assess the relationship between FOXP3 gene polymorphisms and chronic HBV infection risk. METHODS FOXP3 gene polymorphisms were explored in 237 chronic HBV patients and in 237 individuals with HBV spontaneous clearance using a real-time polymerase chain reaction. RESULTS The patients with rs2232365 AG and rs3761548 AC genotype had a 1.20- and a 1.58-fold greater HBV risk than non-carriers patients, although they were not significant. Moreover, the AA genotypes of both polymorphisms in the males and females had an increased the persistent HBV risk, although this also was not statistically significant. CONCLUSIONS In conclusion, the present study is the first report to demonstrate that these polymorphisms have no effect on the risk of chronic HBV infection. This results suggest that FOXP3 gene polymorphisms and FOXP3 expression should be evaluated together with frequency of regulatory T cells in HBV infection.
Collapse
Affiliation(s)
- Ersin Akgöllü
- Department of Gastroenterology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
19
|
Boeijen LL, Spaan M, Boonstra A. The effects of nucleoside/nucleotide analogues on host immune cells: the baseline for future immune therapy for HBV? Antivir Ther 2020; 25:181-191. [PMID: 32589166 DOI: 10.3851/imp3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
HBV is a non-cytopathic virus and the progression of liver fibrosis is attributed to the host immune response. Complete suppression of viral replication using nucleotide or nucleoside analogues (NUCs) can prevent most complications related to chronic HBV infection. Unfortunately, antiviral treatment has to be administered lifelong to the majority of patients as HBV persists in the hepatocytes. However, although NUCs are very frequently administered in clinical practice, their effects on vital parts of the host immune response to HBV are not well established. In this review we summarize the currently available data gathered from longitudinal studies that investigated treatment-associated alterations of HBV-specific CD4+ and CD8+ T-cells, regulatory T-cells and natural killer (NK) cells. These observations are important, as they can guide the design of studies that investigate the efficacy of new immune therapeutic agents. Novel experimental compounds will likely be added to ongoing NUC treatment, which leads to a functional cure in only a small minority of patients.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - Michelle Spaan
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Wang M, Hou Y, Meng SH, Yang B, Yang P, Zhang H, Zhu Y. Abnormal IL-10 levels were related to alanine aminotransferase abnormalities during postpartum in HBeAg positive women with chronic hepatitis B. Medicine (Baltimore) 2019; 98:e17969. [PMID: 31725660 PMCID: PMC6867749 DOI: 10.1097/md.0000000000017969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alanine transaminase (ALT) abnormalities are common in chronic hepatitis B (CHB) carriers during postpartum period. Disturbances in cytokines are considered to be associated with hepatitis Flares. There are limited data on cytokines changes in HBeAg positive patients with ALT abnormalities.This is an observational study. Pregnant patients with hepatitis B e-antigen (HBeAg) positive were enrolled from January 2014 to September 2018. Patients were assigned into three groups based on ALT levels in postpartum 6 to 8 weeks: ALT in normal range, ALT in 1 to 2-fold upper limits of normal (ULN) and ALT >2-fold ULN. Serum cytokines, ratios of regulatory T cells, and the concentration of cortisol were collected and compared among the three groups.Of the 135 mothers enrolled, 80.7% (109/135) completed the postpartum 6-week study. 13.8% (15/109) patients had postpartum ALT higher than 2ULN, 27.5% (30/109) patients had ALT in 1 to 2ULN and 58.7% (64/109) patients had ALT in normal range. Compared to control group, patients with ALT >2ULN had a higher IL-10 level (P < .05). No differences of IL-10 levels were found in the comparison of other inter comparison among three groups. No differences were found in the levels of other collected serum cytokines, cortisol, and regulatory T cells among three groups. On multivariate analysis, abnormal IL-10 level was independent risk factor for postpartum ALT elevating >2ULN. At the same time, the incidence of postpartum ALT elevated >2ULN were higher in patients with abnormal elevation IL-10 level than in patients with normal IL-10 level (14/68 vs 1/41, P = .008).CHB patients with postpartum ALT abnormalities show higher IL-10 level and postpartum ALT abnormalities were mainly occurred in patients with abnormal IL-10 level. IL-10 may be an underlying predictor and treatment target of hepatitis B, and further studies are needed.
Collapse
Affiliation(s)
- Ming Wang
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital
| | - Ying Hou
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
| | - Shi-Hui Meng
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Yang
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
| | - Ping Yang
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
| | - Hua Zhang
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
| | - Yunxia Zhu
- Department of Obstetrics and Gynecology, Beijing YouAn Hospital
| |
Collapse
|
21
|
Huang N, Ji FP, Zhang S, Li Z, Li J, Zhou R, Zhang S, Wei W, Li L, Chen H, Li B, Kong G, Yang J, Li Z. Spleen-Associated Effects on Immunity in Hepatitis B Virus-Related Cirrhosis with Portal Hypertension. J Interferon Cytokine Res 2019; 39:95-105. [PMID: 30676849 DOI: 10.1089/jir.2018.0121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Our study aimed to investigate the histologic and immunological changes of portal hypertension (PH) pre- and postsplenectomy in hepatitis B virus (HBV)-related cirrhosis. Peripheral blood samples were obtained from 30 patients with HBV-related cirrhosis and PH at pre- and postsplenectomy time points and from 15 healthy subjects. Spleen tissue specimens were collected from 15 of the patients with HBV-related cirrhosis and from 8 control patients who had undergone splenectomy due to trauma. Immunohistochemical staining was performed to evaluate the immune effector cells and the expression of negative immune regulators. Flow cytometry was used to investigate the immunophenotypes and percentages. The spleen of cirrhotic patients with PH showed extensive depletion of splenic CD4, CD8, and human leukocyte antigen DR cells along with overexpression of the inhibitory receptors programmed death-1 (PD-1) and T cell immunoglobulin domain and mucin domain-3 and their ligands (PD-L2 and galectin-9). Peripheral blood of patients with PH showed remarkable decrease in proportions of CD8 T cell and natural killer (NK) cells and increase in regulatory T (Treg) cells, as well as high expression of PD-1 in CD4/8 T cells. Compared with presplenectomy patients, cirrhotic patients with PH showed increased proportions of CD8 and NK cells, decreased proportion of Treg cells, and decreased expression of PD-1 in peripheral blood CD4/8 T cells after splenectomy. PH-spleen could lead to peripheral tolerance and immunosuppression in HBV cirrhotic patients, and splenectomy may cause beneficial immunological changes.
Collapse
Affiliation(s)
- Na Huang
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Fan Pu Ji
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,3 Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,4 Department of Infectious Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Shu Zhang
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,3 Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Zhenzhen Li
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Jun Li
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Rui Zhou
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,3 Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Shaoying Zhang
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Wei Wei
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Liang Li
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Haiyan Chen
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Baohua Li
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Guangyao Kong
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Jun Yang
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,5 Department of Pathology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Zongfang Li
- 1 National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,2 Shaanxi Provincial Engineering Research Center of Biotherapy and Translational Medicine, and The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China .,3 Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| |
Collapse
|
22
|
Hosseini A, Dolati S, Hashemi V, Abdollahpour‐Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol 2018; 233:6561-6573. [DOI: 10.1002/jcp.26604] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Arezoo Hosseini
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student's Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Sanam Dolati
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
- Student's Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Vida Hashemi
- Department of Basic ScienceFaculty of MedicineMaragheh University of Medical SciencesMaraghehIran
| | - Meghdad Abdollahpour‐Alitappeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Yousefi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
23
|
Gill US, Pallett LJ, Kennedy PTF, Maini MK. Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut 2018; 67:767-775. [PMID: 29331944 PMCID: PMC6058064 DOI: 10.1136/gutjnl-2017-314873] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
In order to optimally refine the multiple emerging drug targets for hepatitis B virus (HBV), it is vital to evaluate virological and immunological changes at the site of infection. Traditionally liver biopsy has been the mainstay of HBV disease assessment, but with the emergence of non-invasive markers of liver fibrosis, there has been a move away from tissue sampling. Here we argue that liver biopsy remains an important tool, not only for the clinical assessment of HBV but also for research progress and evaluation of novel agents. The importance of liver sampling has been underscored by recent findings of specialised subsets of tissue-resident immune subsets capable of efficient pathogen surveillance, compartmentalised in the liver and not sampled in the blood. Importantly, the assessment of virological parameters, such as cccDNA quantitation, also requires access to liver tissue. We discuss strategies to maximise information obtained from the site of infection and disease pathology. Fine needle aspirates of the liver may allow longitudinal sampling of the local virus/host landscape. The careful utilisation of liver tissue and aspirates in conjunction with blood will provide critical information in the assessment of new therapeutics for the functional cure of HBV.
Collapse
Affiliation(s)
- Upkar S Gill
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Patrick T F Kennedy
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, UCL, London, UK
| |
Collapse
|
24
|
Boeijen LL, Hoogeveen RC, Boonstra A, Lauer GM. Hepatitis B virus infection and the immune response: The big questions. Best Pract Res Clin Gastroenterol 2017; 31:265-272. [PMID: 28774408 DOI: 10.1016/j.bpg.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
Clinical events and the host immune response during hepatitis B virus (HBV) infection are intricately linked. Despite decades of research, important questions concerning the immunopathogenesis of chronic HBV infection remain unanswered. For example, it is unclear which immune parameters facilitate persistence, and if HBV can be completely cleared from the human liver. Recent technological breakthroughs now allow researchers to address these seemingly basic, but essential questions surrounding HBV immunity. It will be important to better define the molecular underpinnings of immune cell function and dysfunction during chronic disease and in controlled infection, with particular focus on the liver, as little information is available on the intrahepatic compartment. In the near future, it may be possible to solve some of the controversy surrounding the immune responses to HBV, and establish the features of both the innate and adaptive arms of the immune system required to achieve sustained control of HBV infection.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ruben C Hoogeveen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Popovic B, Golemac M, Podlech J, Zeleznjak J, Bilic-Zulle L, Lukic ML, Cicin-Sain L, Reddehase MJ, Sparwasser T, Krmpotic A, Jonjic S. IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection. PLoS Pathog 2017; 13:e1006345. [PMID: 28448566 PMCID: PMC5423658 DOI: 10.1371/journal.ppat.1006345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/09/2017] [Accepted: 04/11/2017] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (Treg) cells dampen an exaggerated immune response to viral infections in order to avoid immunopathology. Cytomegaloviruses (CMVs) are herpesviruses usually causing asymptomatic infection in immunocompetent hosts and induce strong cellular immunity which provides protection against CMV disease. It remains unclear how these persistent viruses manage to avoid induction of immunopathology not only during the acute infection but also during life-long persistence and virus reactivation. This may be due to numerous viral immunoevasion strategies used to specifically modulate immune responses but also induction of Treg cells by CMV infection. Here we demonstrate that liver Treg cells are strongly induced in mice infected with murine CMV (MCMV). The depletion of Treg cells results in severe hepatitis and liver damage without alterations in the virus load. Moreover, liver Treg cells show a high expression of ST2, a cellular receptor for tissue alarmin IL-33, which is strongly upregulated in the liver of infected mice. We demonstrated that IL-33 signaling is crucial for Treg cell accumulation after MCMV infection and ST2-deficient mice show a more pronounced liver pathology and higher mortality compared to infected control mice. These results illustrate the importance of IL-33 in the suppressive function of liver Treg cells during CMV infection. Treg cells are crucial for immune homeostasis and for dampening immune response to several diseased conditions, including viral infections. Murine cytomegalovirus (MCMV) is a herpesvirus with pathogenic potential, so that early immune mechanisms are essential in controlling virus and protecting from virus-induced pathology. Studies on Foxp3+ Treg cells have revealed their inhibitory role on the early T cell response to MCMV infection and have suggested Treg cells as a target of MCMV’s immunoevasion mechanisms. Here we demonstrate that the number and activation status of liver Treg cells is strongly induced upon MCMV infection in order to protect the host from severe liver damage. They constitutively express high amounts of IL-33 receptor ST2 and their accumulation depends on IL-33, which is released as a tissue alarmin after the cell damage. For the first time, we show an immunoregulatory role of IL-33-dependent Treg cells in the liver of MCMV infected mice and their suppression of MCMV-induced immunopathology.
Collapse
Affiliation(s)
- Branka Popovic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jelena Zeleznjak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lidija Bilic-Zulle
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Rijeka, Croatia
| | - Miodrag L. Lukic
- Department of Microbiology and Immunology, Centre for Molecular Medicine and Stem Cell Research, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Hannover, Germany
| | - Astrid Krmpotic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- * E-mail:
| |
Collapse
|
26
|
Liu B, Gao W, Zhang L, Wang J, Chen M, Peng M, Ren H, Hu P. Th17/Treg imbalance and increased interleukin-21 are associated with liver injury in patients with chronic severe hepatitis B. Int Immunopharmacol 2017; 46:48-55. [PMID: 28259000 DOI: 10.1016/j.intimp.2017.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Th17/Treg imbalance and the levels of related cytokines are essential in the pathogenesis of autoimmune and infectious diseases. The aim of the current study was to assess the Treg/Th17 balance and the levels of related cytokines associated with various degrees of liver injury in patients with chronic hepatitis B virus (HBV) infection. METHODS The proportions of peripheral Th17, Treg and Th1 cells in 7 patients classified as asymptomatic hepatitis B virus carriers (AsCs), 38 patients with low or moderate grade chronic hepatitis B (CHB-LM), 20 patients with chronic severe hepatitis B (CSHB), and 10 healthy controls (HCs) were determined by flow cytometry. The levels of related cytokines and the mRNA expression levels of transcription factors were measured using Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-PCR), respectively. RESULTS The Th17 cell frequency and the mRNA expression levels of RORc were increased in the CSHB group. The Treg cell frequency was increased and Th1 cell frequency and the mRNA expression levels of T-bet were decreased in chronic HBV infection. The levels of IL-21 were increased in the CSHB group and were positively correlated with AST, TB and DB in patients with chronic HBV infection. The Th17/Treg ratio was increased in the CSHB group and was positively correlated with liver injury in chronic HBV infection. CONCLUSIONS Th17/Treg imbalance and increased IL-21 are associated with liver injury in patients with chronic HBV infection. Restoring the Th17/Treg balance may be a novel immunotherapy for patients with CSHB.
Collapse
Affiliation(s)
- Bin Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Gao
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Jung MK, Shin EC. Regulatory T Cells in Hepatitis B and C Virus Infections. Immune Netw 2016; 16:330-336. [PMID: 28035208 PMCID: PMC5195842 DOI: 10.4110/in.2016.16.6.330] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 10/02/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that establish chronic persistent infection by effectively escaping the host immune response and can cause immune-mediated liver injury. It has recently become apparent that regulatory T (Treg) cells, specifically CD4+CD25+Foxp3+ Treg cells, modulate viral diseases by suppressing antiviral immune responses and regulating inflammatory host injury. The roles of Treg cells in HBV and HCV infections range from suppressing antiviral T cell responses to protecting the liver from immune-mediated damage. This review describes Treg cells and subpopulations and focuses on the roles of these cells in HBV and HCV infections.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
28
|
Abstract
Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.
Collapse
|
29
|
Song C, Liu Y, Xu L, Wen J, Jiang D, Chen J, Zhai X, Hu Z, Liu L, Liu J. Hepatitis B virus mutations, expression quantitative trait loci for PTPN12, and their interactions in hepatocellular carcinoma. Cancer Med 2016; 5:1687-93. [PMID: 27075395 PMCID: PMC4944896 DOI: 10.1002/cam4.712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Previously we identified that HBV(Hepatitis B virus) sequence variation, which may interact with host human leukocyte antigen (HLA) genetic variation, could influence host risk of hepatocellular carcinoma (HCC). More HBV‐host interactions need to be identified. Protein tyrosine phosphatase nonreceptor type 12 (PTPN12), serves as an antagonist to tyrosine kinase signaling, may play integral roles in immune response against HBV infection and the development of HCC. Rs11485985 was an expression quantitative trait loci (eQTL) for PTPN12 by bioinformatics analyses. In this study, we genotyped the PTPN12 eQTL and sequenced the HBV region EnhII/BCP/PC in a case–control cohort including 1507 HBV‐related HCC cases and 1560 HBV persistent carriers as controls. The variant genotype GG of rs11489585 increased HCC risk compared to the HBV persistent carriers (adjusted OR = 2.03, 95% confidence interval [CIs] = 1.30–3.18). We also detected borderline significant associations of PTPN12 eQTL rs11489585 with HBV mutations (P = 0.05 for G1799C). Taken together, PTPN12 may influence HCC risk accompanied by HBV mutations.
Collapse
Affiliation(s)
- Ci Song
- Department of Epidemiology, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yao Liu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Lu Xu
- Department of Epidemiology, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Deke Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | | | - Xiangjun Zhai
- Department of Infection Diseases, Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Li Liu
- Digestive Endoscopy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jibin Liu
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
30
|
Adaptive immunity in the liver. Cell Mol Immunol 2016; 13:354-68. [PMID: 26996069 PMCID: PMC4856810 DOI: 10.1038/cmi.2016.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver.
Collapse
|
31
|
Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, Wu W, Wang B, Lu M, Dittmer U, Yang D, Liu J. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model. PLoS One 2016; 11:e0151717. [PMID: 26986976 PMCID: PMC4795771 DOI: 10.1371/journal.pone.0151717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Lin
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xuan Huang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
32
|
Fabre T, Shoukry NH. Immunology of the Liver. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016:13-22. [DOI: 10.1016/b978-0-12-374279-7.19005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Richert-Spuhler LE, Lund JM. The Immune Fulcrum: Regulatory T Cells Tip the Balance Between Pro- and Anti-inflammatory Outcomes upon Infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:217-43. [PMID: 26615099 DOI: 10.1016/bs.pmbts.2015.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) are indispensable for immune homeostasis and the prevention of autoimmunity. In the context of infectious diseases, Tregs are multidimensional. Here, we describe how they may potentiate effector responses by assisting in recruitment of T cells into the infection site to resolve infection, facilitate accelerated antigen-specific memory responses, limit pathology, and contribute to disease resolution and healing, to the great benefit of the host. We also explore the villainous functions of Tregs during infection by reviewing several diseases in which the depletion or reduction in Treg frequency allows for better generation of effector memory, and results in acute resolution of infection, as opposed to chronicity or severe long-term outcomes. We describe findings generated using mouse models of infection as well as experiments performed using human cells and tissues. We propose that Tregs represent an immunologic fulcrum, promoting both pathogen clearance and damage control by preventing excessive destruction of infected tissues though unchecked immune responses.
Collapse
Affiliation(s)
- Laura E Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
34
|
Halota W, Ferenci P, Kozielewicz D, Dybowska D, Lisovoder N, Samira S, Shalit I, Ellis R, Ilan Y. Oral anti-CD3 immunotherapy for HCV-nonresponders is safe, promotes regulatory T cells and decreases viral load and liver enzyme levels: results of a phase-2a placebo-controlled trial. J Viral Hepat 2015; 22:651-7. [PMID: 25412903 DOI: 10.1111/jvh.12369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Orally administered anti-CD3 antibodies are biologically active in the gut through induction of regulatory T cells, exert an immune-modulatory effect, and alleviate insulin resistance and liver damage in patients with NASH. AIMS To determine the safety of oral anti-CD3 monoclonal antibody (MAb) immunotherapy in chronic HCV patients with associated immune dysfunction. METHODS Four groups (n = 9) of chronic HCV patients who were nonresponders to interferon plus ribavirin therapy received oral placebo (group A) or anti-CD3 MAb at one of three dosage levels for 30 days. Patients were followed for safety parameters and serum levels of liver enzymes, virus, cytokines and regulatory T cells. RESULTS Oral anti-CD3 immunotherapy was safe and well tolerated; no treatment-related adverse events were noted. The following improvements were noted relative to pretreatment levels: HCV viral load and AST and ALT levels decreased in the low- and high-dose groups following 30 days of therapy. In two of the treated groups, an increase in regulatory T cells (CD4(+) CD25(+) ) was noted. The positive effects were somewhat more apparent in subjects with initially elevated liver enzyme levels. CONCLUSIONS Oral anti-CD3 MAb immunotherapy for nonresponder HCV patients was safe and well tolerated. Trends and statistically significant improvements were observed as reductions in viral load and liver enzyme levels, along with an increase in regulatory T-cell levels. These data support a role for the immune system in the pathogenesis of HCV infection and suggest that this immunotherapy is worthy of evaluation in combination with HCV antiviral drugs.
Collapse
Affiliation(s)
- W Halota
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - P Ferenci
- University Hospital, Vienna, Austria
| | - D Kozielewicz
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - D Dybowska
- Department of Infectious Diseases and Hepatology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | | | | | - R Ellis
- NasVax Ltd, Ness-Ziona, Israel
| | - Y Ilan
- Liver Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
35
|
Dai K, Huang L, Sun X, Yang L, Gong Z. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection. J Leukoc Biol 2015. [PMID: 26216935 DOI: 10.1189/jlb.4a0415-152r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.
Collapse
Affiliation(s)
- Kai Dai
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Ling Huang
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Xiaomei Sun
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Lihua Yang
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Zuojiong Gong
- *Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China; and Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| |
Collapse
|
36
|
Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection. Viral Immunol 2015; 28:309-24. [DOI: 10.1089/vim.2015.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Expression of Intratumoral Forkhead Box Protein 3 in Posttransplant Lymphoproliferative Disorders. Transplantation 2015; 99:1036-42. [DOI: 10.1097/tp.0000000000000415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Hashempour T, Bamdad T, Bergamini A, Lavergne JP, Haj-Sheykholeslami A, Brakier-Gingras L, Ajorloo M, Merat S. F protein increases CD4+CD25+ T cell population in patients with chronic hepatitis C. Pathog Dis 2015; 73:ftv022. [PMID: 25862675 DOI: 10.1093/femspd/ftv022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/28/2023] Open
Abstract
HCV is a global health problem with an estimated 230 million chronically infected people worldwide. It has been reported that a 17-kd protein translated from core-encoding genomic region can contribute to immune-mediated mechanisms associated with the development of the chronic disease. Also, Treg cells can be contributed to an inadequate response against the viruses, leading to chronic infection. Here we evaluated the ability of protein F to modulate the frequency of CD4+CD25+FoxP3+T and IL-10+T cells in patients with chronic HCV infection. F gene was amplified and cloned in the expression vector. The protein was purified and used for stimulation of PBMCs in the HCV chronic patients and the control groups. The frequency of CD4+CD25+FoxP3+ T cell-like populations and IL-10-producing CD4+CD25+ T cells was assessed in the HCV-infected patients and in the healthy controls by flow cytometry, which showed an increase of both CD4+CD25+FoxP3+ T cell-like population and IL-10-producing CD4+CD25+ T cells in the HCV-infected patients positive for anti-F antibody. Our results suggest the potential involvement of F and core antigens in increasing the frequency of CD4+CD25+FoxP3+ T cell-like population and IL-10-producing CD4+CD25+ T cells which may be associated with HCV-persistent infection.
Collapse
Affiliation(s)
- Tayebeh Hashempour
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331 Tehran, Iran Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, 14117 Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-331 Tehran, Iran
| | - Alberto Bergamini
- Department of Internal Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Jean Pierre Lavergne
- Laboratoire de Bioinformatique et RMN structurales, Institut de Biologie et chimie des protéines, UMR 5086 CNRS, Université Claude Bernard Lyon I
| | - Arghavan Haj-Sheykholeslami
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, 14117 Tehran, Iran
| | - Léa Brakier-Gingras
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Pavillon Roger-Gaudry, bureau E-519, C.P. 6128, Succ. Centre-ville, Montréal, Québec
| | - Mehdi Ajorloo
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, 14117 Tehran, Iran
| | - Shahin Merat
- Digestive Disease Research Center, Shariati Hospital, Tehran University of Medical Sciences, 14117 Tehran, Iran
| |
Collapse
|
39
|
Dai K, Huang L, Chen J, Yang L, Gong Z. Amphiregulin promotes the immunosuppressive activity of intrahepatic CD4 + regulatory T cells to impair CD8 + T-cell immunity against hepatitis B virus infection. Immunology 2015; 144:506-517. [PMID: 25298208 DOI: 10.1111/imm.12400] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection causes liver diseases and hepatocellular carcinoma. Immunotolerance in HBV-infected patients is one of the factors that incur failure of HBV clearance and persistent HBV amplification. However, the mechanisms underlying immunotolerance after HBV infection are yet to be thoroughly understood. Using a novel HBV mouse model, we found for the first time that epidermal growth factor receptor (EGFR) is up-regulated on intrahepatic regulatory T (Treg) cells in HBV-infected mouse livers. The EGFR-positive Treg cells are more immunosuppressive than EGFR-negative Treg cells, demonstrated by higher expression of immunosuppressive cytokines and robust inhibition of CD8+ T-cell proliferation in vitro. Furthermore, EGFR-positive Treg cells potently restrain CD8+ T-cell-mediated anti-viral activity, leading to higher HBV burden in hepatocytes. Amphiregulin, a cytokine of the EGF family, is significantly up-regulated in HBV-infected livers, but the cellular sources of amphiregulin are still elusive. Amphiregulin promotes the immunosuppressive activity of EGFR-positive Treg cells in vitro, so as to profoundly inhibit production of anti-viral components in CD8+ T cells. Taken together, our discovery elucidated a novel mechanism contributing to immunotolerance and viral amplification after HBV infection. Our study may provide new clues for developing therapeutic strategies against HBV infection.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Huang
- Department of Cardiology, the Central Hospital of Wuhan, Wuhan, China
| | - Jing Chen
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Ringelhan M, O'Connor T, Protzer U, Heikenwalder M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J Pathol 2015; 235:355-67. [PMID: 25196558 DOI: 10.1002/path.4434] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains the number one risk factor for hepatocellular carcinoma (HCC), accounting for more than 600 000 deaths/year. Despite highly effective antiviral treatment options, chronic hepatitis B (CHB), subsequent end-stage liver disease and HCC development remain a major challenge worldwide. In CHB, liver damage is mainly caused by the influx of immune cells and destruction of infected hepatocytes, causing necro-inflammation. Treatment with nucleoside/nucleotide analogues can effectively suppress HBV replication in patients with CHB and thus decrease the risk for HCC development. Nevertheless, the risk of HCC in treated patients showing sufficient suppression of HBV DNA replication is significantly higher than in patients with inactive CHB, regardless of the presence of baseline liver cirrhosis, suggesting direct, long-lasting, predisposing effects of HBV. Direct oncogenic effects of HBV include integration in the host genome, leading to deletions, cis/trans-activation, translocations, the production of fusion transcripts and generalized genomic instability, as well as pleiotropic effects of viral transcripts (HBsAg and HBx). Analysis of these viral factors in active surveillance may allow early identification of high-risk patients, and their integration into a molecular classification of HCC subtypes might help in the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marc Ringelhan
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Second Medical Department, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; German Centre for Infection research (DZIF), Munich Partner Site, Germany
| | | | | | | |
Collapse
|
41
|
Chaudhary B, Elkord E. Downregulation of immunosuppressive environment in patients with chronic HBV hepatitis on maintained remission. Front Immunol 2015; 6:52. [PMID: 25717327 PMCID: PMC4324156 DOI: 10.3389/fimmu.2015.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Affiliation(s)
- Belal Chaudhary
- United Arab Emirates University , Al Ain , United Arab Emirates ; University of Salford , Manchester , UK ; University of Cambridge , Cambridge , UK
| | - Eyad Elkord
- United Arab Emirates University , Al Ain , United Arab Emirates ; University of Salford , Manchester , UK ; University of Manchester , Manchester , UK
| |
Collapse
|
42
|
Kowazaki Y, Osawa Y, Imamura J, Ohashi K, Sakamaki H, Kimura K. Immunological analysis of a patient with hepatitis B virus (HBV) reactivation after bone marrow transplantation. Intern Med 2015; 54:1213-7. [PMID: 25986258 DOI: 10.2169/internalmedicine.54.3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Patients with resolved hepatitis B virus (HBV) infection undergoing chemo- or immunosuppressive therapy are at potential risk for HBV reactivation. To determine whether the host immune response contributes to liver injury, we performed an immunological analysis of a patient with HBV reactivation. Consistent with the detection of HBV DNA in the sera, the number of polyclonal HBV-specific cytotoxic T lymphocytes (CTLs) gradually increased; however, the number of CD4(+)CD25(+) regulatory T cells (Treg) decreased. The interaction between HBV-specific CTLs and CD4(+)CD25(+) Treg is an important determinant of liver injury during HBV reactivation. Therefore, monitoring the number of these cells might be a useful modality for the diagnosis of acute hepatitis resulting from HBV reactivation.
Collapse
Affiliation(s)
- Yuka Kowazaki
- Division of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Hepatitis B virus (HBV) infection acquired in adult life is generally self-limited while chronic persistence of the virus is the prevalent outcome when infection is acquired perinatally. Both control of infection and liver cell injury are strictly dependent upon protective immune responses, because hepatocyte damage is the price that the host must pay to get rid of intracellular virus. Resolution of acute hepatitis B is associated with functionally efficient, multispecific antiviral T-cell responses which are preceded by a poor induction of intracellular innate responses at the early stages of infection. Persistent control of infection is provided by long-lasting protective memory, which is probably sustained by continuous stimulation of the immune system by trace amounts of virus which are never totally eliminated, persisting in an occult episomic form in the nucleus of liver cells even after recovery from acute infection. Chronic virus persistence is instead characterized by a lack of protective T-cell memory maturation and by an exhaustion of HBV-specific T-cell responses. Persistent exposure of T cells to high antigen loads is a key determinant of functional T-cell impairment but also other mechanisms can contribute to T-cell inhibition, including the tolerogenic effect of the liver environment. The degree of T-cell impairment is variable and its severity is related to the level of virus replication and antigen load. The antiviral T-cell function is more efficient in patients who can control infection either partially, such as inactive HBsAg carriers with low levels of virus replication, or completely, such as patients who achieve HBsAg loss either spontaneously or after antiviral therapy. Thus, understanding the features of the immune responses associated with control of infection is needed for the successful design of novel immune modulatory therapies based on the reconstitution of efficient antiviral responses in chronic HBV patients.
Collapse
Affiliation(s)
- Carlo Ferrari
- Unit of Infectious Disease and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
44
|
Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol 2014; 61:1397-406. [PMID: 25157983 DOI: 10.1016/j.jhep.2014.08.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/07/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible transcription factors (HIFs) activate diverse pathways that regulate cellular metabolism, angiogenesis, proliferation, and migration, enabling a cell to respond to a low oxygen or hypoxic environment. HIFs are regulated by oxygen-dependent and independent signals including: mitochondrial dysfunction, reactive oxygen species, endoplasmic reticular stress, and viral infection. HIFs have been reported to play a role in the pathogenesis of liver disease of diverse aetiologies. This review explores the impact of HIFs on hepatocellular biology and inflammatory responses, highlighting the therapeutic potential of targeting HIFs for an array of liver pathologies.
Collapse
Affiliation(s)
- Garrick K Wilson
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK; NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Interleukin-16 gene polymorphisms are considerable host genetic factors for patients' susceptibility to chronic hepatitis B infection. HEPATITIS RESEARCH AND TREATMENT 2014; 2014:790753. [PMID: 25692036 PMCID: PMC4322659 DOI: 10.1155/2014/790753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
Host genetic background is known as an important factor in patients' susceptibility to infectious diseases such as viral hepatitis. The aim of this study was to determine the effect of genetic polymorphisms of interleukin-16 (IL-16) cytokine on susceptibility of hepatitis B virus (HBV) infected patients to develop chronic HBV infection. Genotyping was conducted using PCR followed by enzymatic digestion and RFLP (restriction fragment length polymorphism) analysis. We genotyped three single nucleotide polymorphisms (SNPs) in the Il-16 gene (rs11556218 T>G, rs4778889 T>C, and rs4072111 C>T) to test for relationship between variation at these loci and patients' susceptibility to chronic HBV infection. Allele frequency of Il-16 gene rs4072111 and rs11556218 was significantly different between chronic HBV patients and healthy blood donors. Genotype frequency of rs4778889 polymorphism of Il-16 gene was significantly different when chronic HBV patients and HBV clearance subjects were compared. Our results showed that Il-16 gene polymorphisms are considerable host genetic factors when we chase biomarkers for prognosis of HBV infected patients.
Collapse
|
46
|
Balmasova IP, Yushchuk ND, Mynbaev OA, Alla NR, Malova ES, Shi Z, Gao CL. Immunopathogenesis of chronic hepatitis B. World J Gastroenterol 2014; 20:14156-14171. [PMID: 25339804 PMCID: PMC4202346 DOI: 10.3748/wjg.v20.i39.14156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) is a widespread infectious disease with unfavorable outcomes and life-threatening consequences for patients, in spite of modern vaccination and antiviral treatment modalities. Cutting-edge experimental approaches have demonstrated key pathways that involve cross-talk between viral particles and host immune cells. All events, including penetration of hepatitis B virus (HBV) particles into host cells, establishing persistence, and chronization of CHB infection, and possibility of complete elimination of HBV particles are controlled by the immune system. Researchers have paid special attention to the replication capacity of HBV in host cells, which is associated with cellular changes that reflect presentation of viral antigens and variability of HBV antigen features. In addition, specific HBV proteins have an immune-modulating ability to initiate molecular mechanisms that “avoid” control by the immune system. The relationship between immunological shifts and chronic infection stages has been intensively studied since it was recognized that the immune system is a direct participant in the recurrent (cyclic) nature of CHB. Understanding the wide diversity of molecular pathways and the crosstalk between innate and adaptive immune system components will provide fresh insight into CHB immune pathogenesis and the possibilities of developing new treatment strategies for this disease.
Collapse
|
47
|
Li J, Ren W, Ma W, Zhang J, Shi J, Qin C. Interleukin-21 responses in patients with chronic hepatitis B. J Interferon Cytokine Res 2014; 35:134-42. [PMID: 25243706 DOI: 10.1089/jir.2013.0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-21 has been demonstrated to play a pivotal role in controlling chronic viral infections. However, little is known about the regulatory role of IL-21 in T cell immunity during the process of chronic hepatitis B (CHB). In the present study, the levels of serum IL-21 in 77 patients with various degrees of CHB in immune clearance phase (IC), 25 patients infected with hepatitis B virus (HBV) in immune tolerance phase (IT), and 25 healthy controls (HC) were measured and their potential association with major clinic indexes was examined. Peripheral blood mononuclear cells from CHB patients were stimulated with hepatitis B core antigen (HBcAg) in the presence or absence of anti-IL-21 antibody or recombinant IL-21, and the frequency of HBcAg-specific IL-21(+)CD4(+) and interferon (IFN)-γ(+)CD8(+) T cells was characterized by flow cytometry. Our data indicated that the levels of serum IL-21 were significantly higher in the IC CHB patients than that in the other groups and were positively correlated with the levels of serum HBV DNA and HBeAg in the IC patients. There was a low frequency of HBcAg-specific IL-21(+)CD4(+) T cells in IC CHB patients. Further, IL-21 enhanced HBcAg-specific IFN-γ(+)CD8(+) T cell proliferation, while treatment with anti-IL-21 inhibited antigen-specific IFN-γ(+)CD8(+) T cell expansion in vitro. Our findings imply that IL-21 positively regulates proinflammatory IFN-γ(+)CD8(+) T cell responses during the process of chronic HBV infection in humans.
Collapse
Affiliation(s)
- Jie Li
- 1 Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University , Shandong, China
| | | | | | | | | | | |
Collapse
|
48
|
Regulatory role of CD4(+)CD25 (+)Foxp3 (+) regulatory T cells on IL-17-secreting T cells in chronic hepatitis B patients. Dig Dis Sci 2014; 59:1475-83. [PMID: 24442238 DOI: 10.1007/s10620-013-3022-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 12/30/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Both interleukin (IL)-17-secreting CD4(+) T (Th17) and CD4(+)CD25(+)Foxp3(+) T regulatory (Treg) cells have been shown to be associated with disease progression or liver damage in chronic hepatitis B (CHB) patients. However, the relationship between Treg cells and IL-17-secreting T cells in hepatitis B virus (HBV) infections is unclear. METHODS The frequencies of Treg cells and IL-17-secreting T cells in hepatitis B e antigen (HBeAg)-positive CHB patients and healthy subjects were measured by flow cytometric analysis. The role of Treg cells on the differentiation of Ag-specific IL-17-secreting T cells was determined by removing the Treg cells from peripheral blood mononuclear cells (PBMCs) in HBeAg-positive CHB patients. RESULTS The frequencies of both Th17 (1.71 ± 0.58 vs. 1.08 ± 0.36 %; P < 0.01) and Treg cells (8.92 ± 4.11 vs. 6.45 ± 1.56 %; P < 0.01) were increased in the peripheral blood of HBeAg-positive CHB patients compared with healthy controls, but in not the IL-17-secreting CD8(+) T (Tc17) cells. The frequency of Treg cells was significantly associated with that of Th17 cells (r = 0.625, P = 0.001) in CHB patients. Spearman analysis showed a positive correlation between the frequency of Treg cells and HBV DNA load (r = 0.508, P = 0.008), as well as between the frequency of Th17 cells and serum alanine aminotransferase level (r = 0.516, P = 0.007). The deletion of Treg cells significantly enhanced both Th17 and Tc17 cell development in PBMCs following recombinant HBV core antigen stimulation. CONCLUSIONS Our data indicate a clear inverse relationship between Th17 cells and Treg cells and that Treg cells can inhibit Th17 cell development in CHB patients.
Collapse
|
49
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
50
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|