1
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Nkurunungi G, Nassuuna J, Natukunda A, Zirimenya L, Walusimbi B, Zziwa C, Ninsiima C, Kabagenyi J, Kabuubi PN, van Dam GJ, Corstjens PLAM, Kayiwa J, Kizza M, Mutebe A, Nakazibwe E, Akello FA, Sewankambo M, Kiwanuka S, Cose S, Wajja A, Kaleebu P, Webb EL, Elliott AM. The effect of intensive praziquantel administration on vaccine-specific responses among schoolchildren in Ugandan schistosomiasis-endemic islands (POPVAC A): an open-label, randomised controlled trial. Lancet Glob Health 2024; 12:e1826-e1837. [PMID: 39424571 PMCID: PMC11483245 DOI: 10.1016/s2214-109x(24)00280-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Vaccine responses differ between populations and are often impaired in rural and low-income settings. The reasons for this are not fully understood, but observational data suggest that the immunomodulating effects of parasitic helminths might contribute. We hypothesised that Schistosoma mansoni infection suppresses responses to unrelated vaccines, and that suppression could be reversed-at least in part-by intensive praziquantel administration. METHODS We conducted an open-label, randomised controlled trial of intensive versus standard intervention against S mansoni among schoolchildren aged 9-17 years from eight primary schools in Koome islands, Uganda. Children were randomly allocated to either an intensive group or a standard group with a computer-generated 1:1 randomisation using permuted blocks sizes 4, 6, 8, and 10. Participants in the intensive group received three praziquantel doses (approximately 40 mg/kg) 2 weeks apart before first vaccination at week 0, and every 3 months thereafter. Participants in the standard group were given one dose of approximately 40 mg/kg praziquantel after the week 8 primary endpoint. Participants in both groups received the BCG vaccine (Serum Institute of India, Pune, India) at week 0; the yellow fever (Sanofi Pasteur, Lyon, France), oral typhoid (PaxVax, London, UK), and first human papillomavirus (HPV) vaccination (Merck, Rahway, NJ, USA) at week 4; and the HPV booster and tetanus-diphtheria vaccine (Serum Institute of India) at week 28. The primary outcome was vaccine response at week 8 (except for tetanus and diphtheria, which was assessed at week 52). The primary analysis population was participants who were infected with S mansoni at baseline, determined retrospectively using either plasma circulating anodic antigen (CAA) or stool PCR. The safety population comprised all randomly allocated participants. The trial was registered at the ISRCTN Registry (ISRCTN60517191) and is complete. FINDINGS Between July 9 and Aug 14, 2019, we enrolled 478 participants, with 239 children per group. 276 (58%) participants were male and 202 (42%) participants were female. Among participants who were positive for S mansoni at baseline (171 [72%] in the intensive group and 164 [69%] in the standard group) intensive praziquantel administration significantly reduced pre-vaccination infection intensity (to median 30 CAA pg/mL [IQR 7-223] vs 1317 [243-8562], p<0·001) compared with standard treatment. Intensive praziquantel administration also reduced week 8 HPV-16-specific IgG response (geometric mean ratio 0·71 [95% CI 0·54-0·94], p=0·017), but had no effect on other primary outcomes. Among all participants (regardless of S mansoni status at baseline) intensive praziquantel administration significantly improved week 8 BCG-specific IFNγ ELISpot response (1·20 [1·01-1·43], p=0·038). Recognised adverse effects of praziquantel were reported more frequently in the intensive group. There were no recorded serious adverse events in either group. INTERPRETATION We show evidence suggesting that praziquantel administration improves the BCG-specific cellular response, but not humoral responses to other vaccines. Despite observational evidence that helminths impair vaccine response, these results show minimal immediate benefits of reducing helminth burden. The effect of longer-term helminth control should be investigated. FUNDING UK Medical Research Council. TRANSLATION For the Luganda translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Bridgious Walusimbi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Prossy N Kabuubi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - John Kayiwa
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Moses Kizza
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alex Mutebe
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Esther Nakazibwe
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Florence A Akello
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Moses Sewankambo
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Samuel Kiwanuka
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Anne Wajja
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Emily L Webb
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Goswami D, Arredondo SA, Betz W, Armstrong J, Kumar S, Zanghi G, Patel H, Camargo N, Oualim KMZ, Seilie AM, Schneider S, Murphy SC, Kappe SHI, Vaughan AM. A conserved Plasmodium nuclear protein is critical for late liver stage development. Commun Biol 2024; 7:1387. [PMID: 39455824 PMCID: PMC11511937 DOI: 10.1038/s42003-024-07063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, imposes a significant health burden and live-attenuated parasites are being pursued as vaccines. Here, we report on the creation of a genetically attenuated parasite by the deletion of Plasmodium LINUP, encoding a liver stage nuclear protein. In the rodent parasite Plasmodium yoelii, LINUP expression was restricted to liver stage nuclei after the onset of liver stage schizogony. Compared to wildtype P. yoelii, P. yoelii LINUP gene deletion parasites (linup-) exhibited no phenotype in blood stages and mosquito stages but suffered developmental arrest late in liver stage schizogony with a pronounced defect in exo-erythrocytic merozoite formation. This defect caused severe attenuation of the liver stage-to-blood stage transition and immunization of mice with linup - parasites conferred robust protection against infectious sporozoite challenge. LINUP gene deletion in the human parasite Plasmodium falciparum also caused a severe defect in late liver stage differentiation. Importantly, P. falciparum linup - liver stages completely failed to transition from the liver stage to a viable blood stage infection in a humanized mouse model. These results suggest that P. falciparum LINUP is an ideal target for late liver stage attenuation that can be incorporated into a late liver stage-arresting replication competent whole parasite vaccine.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenza M Z Oualim
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sophia Schneider
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Mishra A, Paul P, Srivastava M, Mishra S. A Plasmodium late liver stage arresting GAP provides superior protection in mice. NPJ Vaccines 2024; 9:193. [PMID: 39424860 PMCID: PMC11489731 DOI: 10.1038/s41541-024-00975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Liver-stage genetically attenuated malaria parasites (GAPs) are powerful immunogens that provide protection against sporozoite challenge. We previously generated two late liver-stage-arresting GAPs by deleting the stearoyl-CoA desaturase (Scd) or sporozoite conserved orthologous transcript 1 (Scot1) genes in Plasmodium berghei. Immunization with Scd or Scot1 GAP conferred complete protection against a sporozoite challenge. In a safety study, we observed rare breakthrough blood-stage infections in mice inoculated with high doses of sporozoites, indicating that both GAPs were incompletely attenuated. In this study, we generated a Scd/Scot1 GAP by dual gene deletion. This resulted in complete attenuation of the parasites in the liver and did not transition to blood-stage infection despite a high-dose sporozoite challenge. The Scd/Scot1 KO and WT GFP parasites were indistinguishable during blood, mosquito and early liver stage development. Moreover, Scd/Scot1 KO liver-stage schizonts exhibited an abnormal apicoplast biogenesis and nuclear division phenotype, failed to form hepatic merozoites, and exhibited late liver-stage arrest. Compared with early-arresting Speld KO immunization, late-stage liver-arresting Scd/Scot1 KO induces greater and broader CD8+ T-cell responses and elicits stage-transcending immunity that provides superior protection in C57BL/6 mice. These data prove that multiple gene deletions lead to complete attenuation of the parasite and support the development of late liver stage-arresting P. falciparum GAP.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mrigank Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Tumbo A, Lorenz FR, Yang ASP, Sefried S, Schindler T, Mpina M, Dangy JP, Milando FA, Rashid MA, Nyaulingo G, Ramadhani K, Jongo S, Felgner PL, Abebe Y, Sim BKL, Church LWP, Richie TL, Billingsley PF, Murshedkar T, Hoffman SL, Abdulla S, Kremsner PG, Mordmüller B, Daubenberger C, Fendel R. PfSPZ Vaccine induces focused humoral immune response in HIV positive and negative Tanzanian adults. EBioMedicine 2024; 108:105364. [PMID: 39353279 PMCID: PMC11464252 DOI: 10.1016/j.ebiom.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Collapse
Affiliation(s)
- Anneth Tumbo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Sefried
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Maximilian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Jean-Pierre Dangy
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Mohammed A Rashid
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Gloria Nyaulingo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Said Jongo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | | | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States
| | | | | | | | | | | | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
6
|
Chutiyami M, Saravanakumar P, Bello UM, Salihu D, Adeleye K, Kolo MA, Dawa KK, Hamina D, Bhandari P, Sulaiman SK, Sim J. Malaria vaccine efficacy, safety, and community perception in Africa: a scoping review of recent empirical studies. Infection 2024; 52:2007-2028. [PMID: 38441731 PMCID: PMC11499420 DOI: 10.1007/s15010-024-02196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 10/24/2024]
Abstract
AIM The review summarizes the recent empirical evidence on the efficacy, safety, and community perception of malaria vaccines in Africa. METHODS Academic Search Complete, African Journals Online, CINAHL, Medline, PsychInfo, and two gray literature sources were searched in January 2023, and updated in June 2023. Relevant studies published from 2012 were included. Studies were screened, appraised, and synthesized in line with the review aim. Statistical results are presented as 95% Confidence Intervals and proportions/percentages. RESULTS Sixty-six (N = 66) studies met the inclusion criteria. Of the vaccines identified, overall efficacy at 12 months was highest for the R21 vaccine (N = 3) at 77.0%, compared to the RTS,S vaccine (N = 15) at 55%. The efficacy of other vaccines was BK-SE36 (11.0-50.0%, N = 1), ChAd63/MVA ME-TRAP (- 4.7-19.4%, N = 2), FMP2.1/AS02A (7.6-9.9%, N = 1), GMZ2 (0.6-60.0%, N = 5), PfPZ (20.0-100.0%, N = 5), and PfSPZ-CVac (24.8-33.6%, N = 1). Injection site pain and fever were the most common adverse events (N = 26), while febrile convulsion (N = 8) was the most reported, vaccine-related Serious Adverse Event. Mixed perceptions of malaria vaccines were found in African communities (N = 17); awareness was generally low, ranging from 11% in Tanzania to 60% in Nigeria (N = 9), compared to willingness to accept the vaccines, which varied from 32.3% in Ethiopia to 96% in Sierra Leone (N = 15). Other issues include availability, logistics, and misconceptions. CONCLUSION Malaria vaccines protect against malaria infection in varying degrees, with severe side effects rarely occurring. Further research is required to improve vaccine efficacy and community involvement is needed to ensure successful widespread use in African communities.
Collapse
Affiliation(s)
- Muhammad Chutiyami
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia.
| | - Priya Saravanakumar
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | - Umar Muhammad Bello
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Dauda Salihu
- College of Nursing, Jouf University, Sakaka, Saudi Arabia
| | - Khadijat Adeleye
- College of Nursing, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Kabiru Kasamu Dawa
- School of Nursing, Midwifery and Health Education, University of Bedfordshire, Luton, UK
| | - Dathini Hamina
- Department of Nursing Science, University of Maiduguri, Maiduguri, Nigeria
| | - Pratibha Bhandari
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | | | - Jenny Sim
- WHO Collaborating Centre for Nursing, Midwifery and Health Development, University of Technology Sydney, Sydney, Australia
- School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Sydney, Australia
| |
Collapse
|
7
|
Moita D, Prudêncio M. Whole-sporozoite malaria vaccines: where we are, where we are going. EMBO Mol Med 2024; 16:2279-2289. [PMID: 39284948 PMCID: PMC11473726 DOI: 10.1038/s44321-024-00131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 10/16/2024] Open
Abstract
The malaria vaccination landscape has seen significant advancements with the recent endorsement of RTS,S/AS01 and R21/Matrix-M vaccines, which target the pre-erythrocytic stages of Plasmodium falciparum (Pf) infection. However, several challenges remain to be addressed, including the incomplete protection afforded by these vaccines, their dependence on a single Pf antigen, and the fact that they were not designed to protect against P. vivax (Pv) malaria. Injectable formulations of whole-sporozoite (WSpz) malaria vaccines offer a promising alternative to existing subunit vaccines, with recent developments including genetically engineered parasites and optimized administration regimens. Clinical evaluations demonstrate varying efficacy, influenced by factors, such as immune status, prior exposure to malaria, and age. Despite significant progress, a few hurdles persist in vaccine production, deployment, and efficacy in malaria-endemic regions, particularly in children. Concurrently, transgenic parasites expressing Pv antigens emerge as potential solutions for PvWSpz vaccine development. Ongoing clinical studies and advancements in vaccine technology, including the recently described PfSPZ-LARC2 candidate, signify a hopeful future for WSpz malaria vaccines, which hold great promise in the global fight against malaria.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
8
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser D, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Genotypic analysis of RTS,S/AS01 E malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5-17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1025-1036. [PMID: 38723650 PMCID: PMC11339203 DOI: 10.1016/s1473-3099(24)00179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Michal Juraska
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
| | - Angela M Early
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Li Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen F Schaffner
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | | | - Akanksha Khorgade
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Brian Simpkins
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Nima S Hejazi
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - David Benkeser
- Emory University Rollins School of Public Health, Department of Biostatistics and Bioinformatic, Atlanta, GA, USA
| | - Qi Wang
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Samuel Adjei
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Scott Anderson
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Dennis K Bii
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Patrick B Y Buabeng
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Sean English
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Nicholas Fitzgerald
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Jonna Grimsby
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Simon K Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Kisumu, Kenya; Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nelli Westercamp
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Bronwyn L MacInnis
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Dyann F Wirth
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA; Department of Biostatistics, University of Washington, Hans Rosling Center for Population Health, Seattle, WA, USA
| | - Daniel E Neafsey
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
9
|
Ranjit A, Wylie BJ. Malaria in Pregnancy, Current Challenges, and Emerging Prevention Strategies in a Warming Climate. Clin Obstet Gynecol 2024; 67:620-632. [PMID: 39061127 DOI: 10.1097/grf.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Malaria still presents a grave threat to the health of pregnancies worldwide with prevention currently stalling as traditional control and prevention strategies are limited by both insecticide and drug resistance. Furthermore, climate change is bringing malaria to locations where it was once eradicated and intensifying malaria in other areas. Even where malaria is not currently common, obstetricians will need to understand the pathogenesis of the disease, how it is transmitted, methods for prevention and treatment in pregnancy, and promising emerging strategies such as vaccines. A renewed global response is needed for this age-old disease in which pregnancy poses specific susceptibility.
Collapse
Affiliation(s)
- Anju Ranjit
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Francisco
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
10
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Ten-Caten F, Joseph F Urban, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 in mice. Sci Transl Med 2024; 16:eado1941. [PMID: 39167662 DOI: 10.1126/scitranslmed.ado1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Garcia-Salum
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ana Carolina Santana
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Felipe Ten-Caten
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | | | | | - Susan P Ribeiro
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Diawara H, Healy SA, Mwakingwe-Omari A, Issiaka D, Diallo A, Traore S, Soumbounou IH, Gaoussou S, Zaidi I, Mahamar A, Attaher O, Fried M, Wylie BJ, Mohan R, Doan V, Doritchamou JYA, Dolo A, Morrison RD, Wang J, Hu Z, Rausch KM, Zeguime A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Dicko A, Duffy PE. Safety and efficacy of PfSPZ Vaccine against malaria in healthy adults and women anticipating pregnancy in Mali: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00360-8. [PMID: 39153490 DOI: 10.1016/s1473-3099(24)00360-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Plasmodium falciparum parasitaemia during pregnancy causes maternal, fetal, and infant mortality. Poor pregnancy outcomes are related to blood-stage parasite sequestration and the ensuing inflammatory response in the placenta, which decreases over successive pregnancies. A radiation-attenuated, non-replicating, whole-organism vaccine based on P falciparum sporozoites (PfSPZ Vaccine) has shown efficacy at preventing infection in African adults. Here, we aimed to examine vaccine safety and efficacy of the PfSPZ Vaccine in adults and women who anticipated conception. METHODS Two randomised, double-blind, placebo-controlled trials (phase 1 MLSPZV3 and phase 2 MLSPZV4) were conducted at a clinical research centre in Mali. MLSPZV3 included adults aged 18-35 years and MLSPZV4 included non-pregnant women aged 18-38 years who anticipated conception within a year of enrolment. In MLSPZV3, participants were stratified by village and randomly assigned (2:1) using block randomisation to receive three doses of 9 × 105 PfSPZ Vaccine or saline placebo at weeks 0, 1, and 4 (4-week schedule) or at weeks 0, 8, and 16 (16-week schedule) and a booster dose around 1 year later. In MLSPZV4, women received presumptive artemether-lumefantrine twice per day for 3 days 2 weeks before dose one and were randomly assigned (1:1:1) using block randomisation to receive three doses of 9 × 105 or 1·8 × 106 PfSPZ Vaccine or saline placebo all administered at weeks 0, 1, and 4 (4-week schedule). Participants in both studies received artemether-lumefantrine 2 weeks before dose three and additionally 2 weeks before dose four (booster dose) in MLSPZV3. Investigators and participants were masked to group assignment. The primary outcome, assessed in the as-treated population, was PfSPZ Vaccine safety and tolerability within 7 days after each dose. The secondary outcome, assessed in the modified intention-to-treat population, was vaccine efficacy against P falciparum parasitaemia (defined as the time-to-first positive blood smear) from dose three until the end of transmission season. In exploratory analyses, MLSPZV4 evaluated incidence of maternal obstetric and neonatal outcomes as safety outcomes, and vaccine efficacy against P falciparum parasitaemia during pregnancy (defined as time-to-first positive blood smear post-conception). In MLSPZV4, women were followed at least once a month with human chorionic gonadotropin testing, and those who became pregnant received standard of care (including intermittent presumptive sulfadoxine-pyrimethamine antimalarial drugs after the first trimester) during routine antenatal visits. These studies are registered with ClinicalTrials.gov, NCT03510481 and NCT03989102. FINDINGS Participants were enrolled for vaccination during the onset of malaria seasons for two sequential studies conducted from 2018 to 2019 for MLSPZV3 and from 2019 to 2021 for MLSPZV4, with follow-up during malaria seasons across 2 years. In MLSPZV3, 478 adults were assessed for eligibility, of whom 220 were enrolled between May 30 and June 12, 2018, and then between Aug 13 and Aug 18, 2018, and 210 received dose one. 66 (96%) of 69 participants who received the 16-week schedule and 68 (97%) of 70 who received the 4-week schedule of the 9 × 105 PfSPZ Vaccine and 70 (99%) of 71 who received saline completed all three doses in year 1. In MLSPZV4, 407 women were assessed for eligibility, of whom 324 were enrolled from July 3 to July 27, 2019, and 320 received dose one of presumptive artemether-lumefantrine. 300 women were randomly assigned with 100 per group (PfSPZ Vaccine 9 × 105, 1·8 × 106, or saline) receiving dose one. First trimester miscarriages were the most commonly reported serious adverse event but occurred at a similar rate across study groups (eight [15%] of 54 with 9 × 105 PfSPZ Vaccine, 12 [21%] of 58 with 1·8 × 106 PfSPZ Vaccine, and five [12%] of 43 with saline). One unrelated maternal death occurred 425 days after the last vaccine dose in the 1·8 × 106 PfSPZ Vaccine group due to peritonitis shortly after childbirth. Most related adverse events reported in MLSPZV3 and MLSPZV4 were mild (grade 1) and frequency of adverse events in the PfSPZ Vaccine groups did not differ from that in the saline group. Two unrelated serious adverse events occurred in MLSPZV3 (one participant had appendicitis in the 9 × 105 PfSPZ Vaccine group and the other in the saline group died due to a road traffic accident). In MLSPZV3, the 9 × 105 PfSPZ Vaccine did not show vaccine efficacy against parasitaemia with the 4-week (27% [95% CI -18 to 55] in year 1 and 42% [-5 to 68] in year 2) and 16-week schedules (16% [-34 to 48] in year 1 and -14% [-95 to 33] in year 2); efficacies were similar or worse against clinical malaria compared with saline. In MLSPZV4, the PfSPZ Vaccine showed significant efficacy against parasitaemia at doses 9 × 105 (41% [15 to 59]; p=0·0069 in year 1 and 61% [36 to 77]; p=0·0011 in year 2) and 1·8 × 106 (54% [34 to 69]; p<0·0001 in year 1 and 45% [13 to 65]; p=0·029 in year 2); and against clinical malaria at doses 9 × 105 (47% [20 to 65]; p=0·0045 in year 1 and 56% [22 to 75]; p=0·0081 in year 2) and 1·8 × 106 (48% [22 to 65]; p=0·0013 in year 1 and 40% [2 to 64]; p=0·069 in year 2). Vaccine efficacy against post-conception P falciparum parasitaemia during first pregnancies that arose in the 2-year follow-up was 57% (14 to 78; p=0·017) in the 9 × 105 PfSPZ Vaccine group versus 49% (3 to 73; p=0·042) in the 1·8 × 106 PfSPZ Vaccine group. Among 55 women who became pregnant within 24 weeks after dose three, vaccine efficacy against parasitaemia was 65% (23 to 84; p=0·0088) with the 9 × 105 PfSPZ Vaccine and 86% (64 to 94; p<0·0001) with the 1·8 × 106 PfSPZ Vaccine. When combined in a post-hoc analysis, women in the PfSPZ Vaccine groups had a non-significantly reduced time-to-first pregnancy after dose one compared with those in the saline group (log-rank test p=0·056). Exploratory maternal obstetric and neonatal outcomes did not differ significantly between vaccine groups and saline. INTERPRETATION PfSPZ Vaccine was safe and well tolerated in adults in Mali. The 9 × 105 and 1·8 × 106 doses of PfSPZ Vaccine administered as per the 4-week schedule, which incorporated presumptive antimalarial treatment before the first vaccine dose, showed significant efficacy against P falciparum parasitaemia and clinical malaria for two malaria transmission seasons in women of childbearing age and against pregnancy malaria. PfSPZ Vaccine without presumptive antimalarial treatment before the first vaccine dose did not show efficacy. FUNDING National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Sanaria.
Collapse
Affiliation(s)
- Halimatou Diawara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Aye Diallo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seydou Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Santara Gaoussou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Blair J Wylie
- Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Viyada Doan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amagana Dolo
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | | | | | | | | | | | | | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Ghosh A, Mishra A, Devi R, Narwal SK, Nirdosh, Srivastava PN, Mishra S. A Micronemal Protein, Scot1, Is Essential for Apicoplast Biogenesis and Liver Stage Development in Plasmodium berghei. ACS Infect Dis 2024; 10:3013-3025. [PMID: 39037752 DOI: 10.1021/acsinfecdis.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal-small-molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against malaria via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raksha Devi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Abuelazm MT, Elzeftawy MA, Kamal MA, Badr H, Gamal M, Aboulgheit M, Abdelazeem B, Abd-Elsalam S, Abouzid M. Protective efficacy and safety of radiation-attenuated and chemo-attenuated Plasmodium Falciparum sporozoite vaccines against controlled and natural malaria infection: a systematic review and meta-analysis of randomized controlled trials. Infection 2024; 52:707-722. [PMID: 38319556 DOI: 10.1007/s15010-024-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Despite the significant burden of Plasmodium falciparum (Pf) malaria and the licensure of two vaccines for use in infants and young children that are partially effective in preventing clinical malaria caused by Pf, a highly effective vaccine against Pf infection is still lacking. Live attenuated vaccines using Pf sporozoites as the immunogen (PfSPZ Vaccines) hold promise for addressing this gap. Here we review the safety and efficacy of two of the most promising PfSPZ approaches: PfSPZ Vaccine (radiation attenuated PfSPZ) and PfSPZ-CVac (chemo-attenuated PfSPZ). METHODS We conducted a systematic review and meta-analysis by searching PubMed, EMBASE, SCOPUS, CENTRAL, and WOS until 22nd December 2021. We included randomized controlled trials (RCTs) of these two vaccine approaches that measured protection against parasitaemia following controlled human malaria infection (CHMI) in malaria-naive and malaria-exposed adults or following exposure to naturally transmitted Pf malaria in African adults and children (primary outcome) and that also measured the incidence of solicited and unsolicited adverse events as indicators of safety and tolerability after vaccination (secondary outcome). We included randomized controlled trials (RCTs) that measured the detected parasitaemia after vaccination (primary outcome) and the incidence of various solicited and unsolicited adverse events (secondary outcome). The quality of the included RCTs using the Cochrane ROB 1 tool and the quality of evidence using the GRADE system were evaluated. We pooled dichotomous data using the risk ratio (RR) for development of parasitemia in vaccinees relative to controls as a measure of vaccine efficacy (VE), including the corresponding confidence interval (CI). This study was registered with PROSPERO (CRD42022308057). RESULTS We included 19 RCTs. Pooled RR favoured PfSPZ Vaccine (RR: 0.65 with 95% CI [0.53, 0.79], P = 0.0001) and PfSPZ-table (RR: 0.42 with 95% CI [0.27, 0.67], P = 0.0002) for preventing parasitaemia, relative to normal saline placebo. Pooled RR showed no difference between PfSPZ Vaccine and the control in the occurrence of any solicited adverse event (RR: 1.00 with 95% CI [0.82, 1.23], P = 0.98), any local solicited adverse events (RR: 0.73 with 95% CI [0.49, 1.08], P = 0.11), any systemic solicited adverse events (RR: 0.94 with 95% CI [0.75, 1.17], P = 0.58), and any unsolicited adverse event (RR: 0.93 with 95% CI [0.78, 1.10], P = 0.37). CONCLUSION PfSPZ and PfSPZ-CVacs showed comparable efficacy. Therefore, they can introduce a promising strategy for malaria prophylaxis, but more large-scale field trials are required to sustain efficacy and yield clinically applicable findings.
Collapse
Affiliation(s)
| | | | | | - Helmy Badr
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
15
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
16
|
Senkpeil L, Bhardwaj J, Little MR, Holla P, Upadhye A, Fusco EM, Swanson PA, Wiegand RE, Macklin MD, Bi K, Flynn BJ, Yamamoto A, Gaskin EL, Sather DN, Oblak AL, Simpson E, Gao H, Haining WN, Yates KB, Liu X, Murshedkar T, Richie TL, Sim BKL, Otieno K, Kariuki S, Xuei X, Liu Y, Polidoro RB, Hoffman SL, Oneko M, Steinhardt LC, Schmidt NW, Seder RA, Tran TM. Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine. JCI Insight 2024; 9:e167408. [PMID: 38687615 PMCID: PMC11382880 DOI: 10.1172/jci.insight.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Collapse
Affiliation(s)
- Leetah Senkpeil
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
| | | | - Morgan R Little
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Prasida Holla
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine
| | | | - Phillip A Swanson
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ryan E Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kevin Bi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Barbara J Flynn
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ayako Yamamoto
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Edward Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rafael B Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Balam S, Miura K, Ayadi I, Konaté D, Incandela NC, Agnolon V, Guindo MA, Diakité SA, Olugbile S, Nebie I, Herrera SM, Long C, Kajava AV, Diakité M, Corradin G, Herrera S, Herrera MA. Cross-reactivity of r Pvs48/45, a recombinant Plasmodium vivax protein, with sera from Plasmodium falciparum endemic areas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588966. [PMID: 38659832 PMCID: PMC11042229 DOI: 10.1101/2024.04.10.588966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.
Collapse
Affiliation(s)
- Saidou Balam
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Imen Ayadi
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Drissa Konaté
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland aaaa
| | - Merepen A Guindo
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seidina A.S. Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sope Olugbile
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Issa Nebie
- Groupe de Recherche Action Santé (GRAS), Burkina Faso, West Africa
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, France
| | - Mahamadou Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Socrates Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | |
Collapse
|
18
|
Dobbs KR, Atieli HE, Valim C, Beeson JG. Previous Malaria Exposures and Immune Dysregulation: Developing Strategies To Improve Malaria Vaccine Efficacy in Young Children. Am J Trop Med Hyg 2024; 110:627-630. [PMID: 38442424 PMCID: PMC10993830 DOI: 10.4269/ajtmh.23-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 03/07/2024] Open
Abstract
After several decades in development, two malaria vaccines based on the same antigen and with very similar constructs and adjuvants, RTS,S/AS01 (RTS,S) and R21/Matrix-M (R21), were recommended by the WHO for widespread vaccination of children. These vaccines are much-needed additions to malaria control programs that, when used in conjunction with other control measures, will help to accelerate reductions in malaria morbidity and mortality. Although R21 is not yet available, RTS,S is currently being integrated into routine vaccine schedules in some areas. However, the efficacy of RTS,S is partial, short-lived, and varies widely according to age and geographic location. It is not clear why RTS,S induces protection in some individuals and not others, what the immune mechanisms are that favor protective immunity with RTS,S, and how immune mechanisms are influenced by host and environmental factors. Several studies suggest that higher levels of previous malaria exposure negatively impact RTS,S clinical efficacy. In this article, we summarize data suggesting that previous malaria exposures negatively impact the efficacy of RTS,S and other malaria vaccine candidates. We highlight recent evidence suggesting that increasing malaria exposure impairs the generation of functional antibody responses to RTS,S. Finally, we discuss how investigation of clinical and immune factors associated with suboptimal responses to RTS,S can be used to develop strategies to optimize RTS,S, which will remain relevant to R21 and next-generation vaccines.
Collapse
Affiliation(s)
| | | | - Clarissa Valim
- Boston University School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
19
|
Goswami D, Patel H, Betz W, Armstrong J, Camargo N, Patil A, Chakravarty S, Murphy SC, Sim BKL, Vaughan AM, Hoffman SL, Kappe SH. A replication competent Plasmodium falciparum parasite completely attenuated by dual gene deletion. EMBO Mol Med 2024; 16:723-754. [PMID: 38514791 PMCID: PMC11018819 DOI: 10.1038/s44321-024-00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Asha Patil
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
21
|
Watson FN, Shears MJ, Kalata AC, Duncombe CJ, Seilie AM, Chavtur C, Conrad E, Cruz Talavera I, Raappana A, Sather DN, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Murphy SC. Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria. Sci Rep 2024; 14:2881. [PMID: 38311678 PMCID: PMC10838921 DOI: 10.1038/s41598-024-53118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024] Open
Abstract
Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8+ T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Collapse
Affiliation(s)
- Felicia N Watson
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Anya C Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Caroline J Duncombe
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - A Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Ethan Conrad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sean C Murphy
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98109, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, 98105, USA.
| |
Collapse
|
22
|
Kimenyi KM, Akinyi MY, Mwikali K, Gilmore T, Mwangi S, Omer E, Gichuki B, Wambua J, Njunge J, Obiero G, Bejon P, Langhorne J, Abdi A, Ochola-Oyier LI. Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected. BMC Infect Dis 2024; 24:140. [PMID: 38287287 PMCID: PMC10823747 DOI: 10.1186/s12879-024-08973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. METHODS Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. RESULTS Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. CONCLUSIONS The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Kioko Mwikali
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Shaban Mwangi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - James Njunge
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
23
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Caten FT, Urban JF, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575588. [PMID: 38293221 PMCID: PMC10827110 DOI: 10.1101/2024.01.14.575588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Courtney E. Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tamara Garcia-Salum
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carolina Santana
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Felipe Ten Caten
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | | | - Susan P. Ribeiro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. NPJ Vaccines 2024; 9:12. [PMID: 38200025 PMCID: PMC10781674 DOI: 10.1038/s41541-023-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts to lower morbidity and mortality. Both advanced candidate vaccines, RTS,S and R21, are subunit (SU) vaccines that target a single Plasmodium falciparum (Pf) pre-erythrocytic (PE) sporozoite (spz) surface protein known as circumsporozoite (CS). These vaccines induce humoral immunity but fail to elicit CD8 + T-cell responses sufficient for long-term protection. In contrast, whole-organism (WO) vaccines, such as Radiation Attenuated Sporozoites (RAS), achieved sterile protection but require a series of intravenous doses administered in multiple clinic visits. Moreover, these WO vaccines must be produced in mosquitos, a burdensome process that severely limits their availability. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. The priming dose is a single dose of self-replicating RNA encoding the full-length P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LIONTM). The trapping dose consists of one dose of WO RAS. Our vaccine induces a strong immune response when administered in an accelerated regimen, i.e., either 5-day or same-day immunization. Additionally, mice after same-day immunization showed a 2-day delay of blood patency with 90% sterile protection against a 3-week spz challenge. The same-day regimen also induced durable 70% sterile protection against a 2-month spz challenge. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
- Zachary MacMillen
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Adrian Simpson
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Melanie J Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Jesse H Erasmus
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Amit P Khandhar
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Sean C Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Steven G Reed
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - James W Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA.
| |
Collapse
|
25
|
Jongo S, Church LP, Milando F, Qassim M, Schindler T, Rashid M, Tumbo A, Nyaulingo G, Bakari BM, Athuman Mbaga T, Mohamed L, Kassimu K, Simon BS, Mpina M, Zaidi I, Duffy PE, Swanson PA, Seder R, Herman JD, Mendu M, Zur Y, Alter G, KC N, Riyahi P, Abebe Y, Murshedkar T, James ER, Billingsley PF, Sim BKL, Richie TL, Daubenberger C, Abdulla S, Hoffman SL. Safety and protective efficacy of PfSPZ Vaccine administered to HIV-negative and -positive Tanzanian adults. J Clin Invest 2024; 134:e169060. [PMID: 38194272 PMCID: PMC10940097 DOI: 10.1172/jci169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/μL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.
Collapse
Affiliation(s)
- Said Jongo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
| | | | | | | | - Tobias Schindler
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Anneth Tumbo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Maxmillian Mpina
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology and
| | | | | | - Robert Seder
- Vaccine Research Center, NIH, Bethesda, Maryland, USA
| | - Jonathan D. Herman
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maanasa Mendu
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yonatan Zur
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natasha KC
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | | | | | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | - Claudia Daubenberger
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Genton B. R21/Matrix-M™ malaria vaccine: a new tool to achieve WHO's goal to eliminate malaria in 30 countries by 2030? J Travel Med 2023; 30:taad140. [PMID: 37952234 PMCID: PMC10755190 DOI: 10.1093/jtm/taad140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
A potential breakthrough in the fight against malaria is the availability of a new promising tool, the R21/Matrix-M™ malaria vaccine that has shown an efficacy of 75% to protect young children against clinical malaria in different epidemiological settings. WHO recommends its deployment in addition to RTS,S/ASO1 and other effective interventions.
Collapse
Affiliation(s)
- Blaise Genton
- Travel and Tropical Diseases Policlinic, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Okoth WA, Ho MF, Zaman M, Cooper E, Som P, Burgess M, Walton M, Nevagi RJ, Beattie L, Murphy D, Stanisic DI, Good MF. A CAF01-adjuvanted whole asexual blood-stage liposomal malaria vaccine induces a CD4 + T-cell-dependent strain-transcending protective immunity in rodent models. mBio 2023; 14:e0254723. [PMID: 37962347 PMCID: PMC10746282 DOI: 10.1128/mbio.02547-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease that has claimed many lives, especially children <5 years of age in Sub-Saharan Africa, as documented in World Malaria Reports by WHO. Even though vector control and chemoprevention tools have helped with elimination efforts in some, if not all, endemic areas, these efforts have been hampered by serious issues (including drug and insecticide resistance and disruption to social cohesion caused by the COVID-19 pandemic). Development of an effective malaria vaccine is the alternative preventative tool in the fight against malaria. Vaccines save millions of lives each year and have helped in elimination and/or eradication of global diseases. Development of a highly efficacious malaria vaccine that will ensure long-lasting protective immunity will be a "game-changing" prevention strategy to finally eradicate the disease. Such a vaccine will need to counteract the significant obstacles that have been hampering subunit vaccine development to date, including antigenic polymorphism, sub-optimal immunogenicity, and waning vaccine efficacy.
Collapse
Affiliation(s)
- Winter A. Okoth
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Emily Cooper
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Priyanka Som
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Mark Burgess
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Maddison Walton
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Reshma J. Nevagi
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Lynette Beattie
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Declan Murphy
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
28
|
Powell TJ, Tang J, Mitchell R, DeRome ME, Jacobs A, Palath N, Cardenas E, Yorke M, Boyd JG, Kaba SA, Nardin E. Immunogenicity, Efficacy, and Safety of a Novel Synthetic Microparticle Pre-Erythrocytic Malaria Vaccine in Multiple Host Species. Vaccines (Basel) 2023; 11:1789. [PMID: 38140193 PMCID: PMC10748200 DOI: 10.3390/vaccines11121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
We previously reported a protective antibody response in mice immunized with synthetic microparticle vaccines made using layer-by-layer fabrication (LbL-MP) and containing the conserved T1BT* epitopes from the P. falciparum circumsporozoite protein. To further optimize the vaccine candidate, a benchtop tangential flow filtration method (LbL-by-TFF) was developed and utilized to produce vaccine candidates that differed in the status of base layer crosslinking, inclusion of a TLR2 ligand in the antigenic peptide, and substitution of serine or alanine for an unpaired cysteine residue in the T* epitope. Studies in mice revealed consistent superiority of the Pam3Cys-modified candidates and a modest benefit of base layer crosslinking, as evidenced by higher and more persistent antibody titers (up to 18 months post-immunization), a qualitative improvement of T-cell responses toward a Th1 phenotype, and greater protection from live parasite challenges compared to the unmodified prototype candidate. Immunogenicity was also tested in a non-human primate model, the rhesus macaque. Base layer-crosslinked LbL-MP loaded with T1BT* peptide with or without covalently linked Pam3Cys elicited T1B-specific antibody responses and T1BT*-specific T-cell responses dominated by IFNγ secretion with lower levels of IL-5 secretion. The Pam3Cys-modified construct was more potent, generating antibody responses that neutralized wild-type P. falciparum in an in vitro hepatocyte invasion assay. IgG purified from individual macaques immunized with Pam3Cys.T1BT* LbL-MP protected naïve mice from challenges with transgenic P. berghei sporozoites that expressed the full-length PfCS protein, with 50-88% of passively immunized mice parasite-free for ≥15 days. Substitution of serine for an unpaired cysteine in the T* region of the T1BT* subunit did not adversely impact immune potency in the mouse while simplifying the manufacture of the antigenic peptide. In a Good Laboratory Practices compliant rabbit toxicology study, the base layer-crosslinked, Pam3Cys-modified, serine-substituted candidate was shown to be safe and immunogenic, eliciting parasite-neutralizing antibody responses and establishing the dose/route/regimen for a clinical evaluation of this novel synthetic microparticle pre-erythrocytic malaria vaccine candidate.
Collapse
Affiliation(s)
- Thomas J. Powell
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Jie Tang
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Robert Mitchell
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| | - Mary E. DeRome
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Multiple Myeloma Research Foundation, 383 Main Avenue, 5th Floor, Norwalk, CT 06851, USA
| | - Andrea Jacobs
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Naveen Palath
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
- Pfizer, Inc., Andover, MA 01810, USA
| | - Edwin Cardenas
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Michelle Yorke
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - James G. Boyd
- Artificial Cell Technologies, Inc., 5 Science Park, Suite 13, New Haven, CT 06511, USA; (J.T.); (M.E.D.); (A.J.); (N.P.); (E.C.); (M.Y.); (J.G.B.)
| | - Stephen A. Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
- GreenLight Biosciences, Inc., Lexington, MA 02421, USA
| | - Elizabeth Nardin
- Department of Microbiology, School of Medicine, New York University, New York, NY 10010, USA; (R.M.); (E.N.)
| |
Collapse
|
29
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser DA, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Baseline malaria infection status and RTS,S/AS01E malaria vaccine efficacy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298907. [PMID: 38045387 PMCID: PMC10690350 DOI: 10.1101/2023.11.22.23298907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).
Collapse
|
30
|
Abstract
Malaria is a mosquito-borne disease caused by protozoan parasites of the genus Plasmodium. Despite significant declines in malaria-attributable morbidity and mortality over the last two decades, it remains a major public health burden in many countries. This underscores the critical need for improved strategies to prevent, treat and control malaria if we are to ultimately progress towards the eradication of this disease. Ideally, this will include the development and deployment of a highly effective malaria vaccine that is able to induce long-lasting protective immunity. There are many malaria vaccine candidates in development, with more than a dozen of these in clinical development. RTS,S/AS01 (also known as Mosquirix) is the most advanced malaria vaccine and was shown to have modest efficacy against clinical malaria in phase III trials in 5- to 17-month-old infants. Following pilot implementation trials, the World Health Organisation has recommended it for use in Africa in young children who are most at risk of infection with P. falciparum, the deadliest of the human malaria parasites. It is well recognised that more effective malaria vaccines are needed. In this review, we discuss malaria vaccine candidates that have progressed into clinical evaluation and highlight the most advanced candidates: Sanaria's irradiated sporozoite vaccine (PfSPZ Vaccine), the chemoattenuated sporozoite vaccine (PfSPZ-CVac), RTS,S/AS01 and the novel malaria vaccine candidate, R21, which displayed promising, high-level efficacy in a recent small phase IIb trial in Africa.
Collapse
Affiliation(s)
- Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
31
|
Tsoumani ME, Voyiatzaki C, Efstathiou A. Malaria Vaccines: From the Past towards the mRNA Vaccine Era. Vaccines (Basel) 2023; 11:1452. [PMID: 37766129 PMCID: PMC10536368 DOI: 10.3390/vaccines11091452] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium spp. is the etiological agent of malaria, a life-threatening parasitic disease transmitted by infected mosquitoes. Malaria remains a major global health challenge, particularly in endemic regions. Over the years, various vaccine candidates targeting different stages of Plasmodium parasite life-cycle have been explored, including subunit vaccines, vectored vaccines, and whole organism vaccines with Mosquirix, a vaccine based on a recombinant protein, as the only currently approved vaccine for Plasmodium falciparum malaria. Despite the aforementioned notable progress, challenges such as antigenic diversity, limited efficacy, resistant parasites escaping protective immunity and the need for multiple doses have hindered the development of a highly efficacious malaria vaccine. The recent success of mRNA-based vaccines against SARS-CoV-2 has sparked renewed interest in mRNA vaccine platforms. The unique mRNA vaccine features, including their potential for rapid development, scalability, and flexibility in antigen design, make them a promising avenue for malaria vaccine development. This review provides an overview of the malaria vaccines' evolution from the past towards the mRNA vaccine era and highlights their advantages in overcoming the limitations of previous malaria vaccine candidates.
Collapse
Affiliation(s)
- Maria E. Tsoumani
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
| | - Antonia Efstathiou
- Department of Biomedical Sciences, University of West Attica, 12243 Aigaleo, Greece; (M.E.T.); (C.V.)
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
32
|
Amai M, Nojima M, Yuki Y, Kiyono H, Nagamura F. A review of criteria strictness in "Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials". Vaccine 2023; 41:5622-5629. [PMID: 37532612 DOI: 10.1016/j.vaccine.2023.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
To assess safety in vaccine development, stricter grading scales, such as the "Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials" issued by the U.S. Food and Drug Administration (FDA grading scale), are required. However, concern exists that their strictness may lead to an overestimation of some adverse events (AEs). We analyzed the details of AEs in a phase I clinical trial of a preventive vaccine for infectious diseases. In this trial, we observed the high occurrence of Grade 1 or greater AEs in hemoglobin changes from baseline value, and hypernatremia, and hypokalemia by FDA grading scale. The range considered as non-AE according to the FDA grading scale shifted or became narrower when compared to reference intervals, especially for a Japanese cohort. For sodium grading, the criterion for hypernatremia was around 2 to mEq/L lower than the upper limit of most standards in several countries. Also, the criterion for hypokalemia was around 0.2 mEq/L higher than the lower limit of most standards. Regarding a decrease in hemoglobin from baseline, the criterion of "any decrease" used for a Grade 1 AE was too strict and we suggest this be omitted. Upper and lower limits of AE criteria for sodium and potassium should be equal to, or 10-20% above, the reference interval consistent with other toxicities determined by laboratory tests. Consideration should be given to the issues surrounding the criteria that determine AEs before conducting clinical trials.
Collapse
Affiliation(s)
- Motoki Amai
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masanori Nojima
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Advanced Medicine Promotion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan; HanaVax Inc., Chiba, Japan
| | - Hiroshi Kiyono
- HanaVax Inc., Chiba, Japan; Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Future Medicine Education and Research Organization, Chiba University, Chiba, Japan; CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine (cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA, USA
| | - Fumitaka Nagamura
- Center for Translational Research, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Advanced Medicine Promotion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Duszenko N, van Schuijlenburg R, Chevalley-Maurel S, van Willigen DM, de Bes-Roeleveld L, van der Wees S, Naar C, Baalbergen E, Heieis G, Bunschoten A, Velders AH, Franke-Fayard B, van Leeuwen FWB, Roestenberg M. Chemically augmented malaria sporozoites display an altered immunogenic profile. Front Immunol 2023; 14:1204606. [PMID: 37720224 PMCID: PMC10500441 DOI: 10.3389/fimmu.2023.1204606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Despite promising results in malaria-naïve individuals, whole sporozoite (SPZ) vaccine efficacy in malaria-endemic settings has been suboptimal. Vaccine hypo-responsiveness due to previous malaria exposure has been posited as responsible, indicating the need for SPZ vaccines of increased immunogenicity. To this end, we here demonstrate a proof-of-concept for altering SPZ immunogenicity, where supramolecular chemistry enables chemical augmentation of the parasite surface with a TLR7 agonist-based adjuvant (SPZ-SAS(CL307)). In vitro, SPZ-SAS(CL307) remained well recognized by immune cells and induced a 35-fold increase in the production of pro-inflammatory IL-6 (p < 0.001). More promisingly, immunization of mice with SPZ-SAS(CL307) yielded improved SPZ-specific IFN-γ production in liver-derived NK cells (percentage IFN-γ+ cells 11.1 ± 1.8 vs. 9.4 ± 1.5%, p < 0.05), CD4+ T cells (4.7 ± 4.3 vs. 1.8 ± 0.7%, p < 0.05) and CD8+ T cells (3.6 ± 1.4 vs. 2.5 ± 0.9%, p < 0.05). These findings demonstrate the potential of using chemical augmentation strategies to enhance the immunogenicity of SPZ-based malaria vaccines.
Collapse
Affiliation(s)
- Nikolas Duszenko
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Danny M. van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Chanel Naar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Baalbergen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Graham Heieis
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Wageningen, Netherlands
| | - Aldrik H. Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
35
|
Watson FN, Shears MJ, Kalata AC, Duncombe CJ, Seilie AM, Chavtur C, Conrad E, Talavera IC, Raappana A, Sather DN, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Murphy SC. Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria. RESEARCH SQUARE 2023:rs.3.rs-3243319. [PMID: 37609210 PMCID: PMC10441511 DOI: 10.21203/rs.3.rs-3243319/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Malaria is caused by Plasmodium parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8+ T cells. Such T cells can be induced by 'prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 μL) was completely protective and dose sparing compared to standard volumes (10-50 μL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Collapse
|
36
|
MacMillen Z, Hatzakis K, Simpson A, Shears M, Watson F, Erasmus J, Khandhar A, Wilder B, Murphy S, Reed S, Davie J, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. RESEARCH SQUARE 2023:rs.3.rs-3045076. [PMID: 37461621 PMCID: PMC10350175 DOI: 10.21203/rs.3.rs-3045076/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
|
37
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541932. [PMID: 37292739 PMCID: PMC10245832 DOI: 10.1101/2023.05.23.541932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - Melanie J. Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | | | | | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR 97006
| | - Sean C. Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - James W. Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| |
Collapse
|
38
|
El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects. Trop Med Health 2023; 51:29. [PMID: 37198702 DOI: 10.1186/s41182-023-00516-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The world has made great strides towards beating malaria, although about half of the world population is still exposed to the risk of contracting malaria. Developing an effective malaria vaccine was a huge challenge for medical science. In 2021 the World Health Organization (WHO) approved the first malaria vaccine, RTS,S/AS01 vaccine (Mosquirix™), for widespread use. This review highlights the history of development, and the different approaches and types of malaria vaccines, and the literature to date. It covers the developmental stages of RTS,S/AS01 and recommends steps for its deployment. The review explores other potential vaccine candidates and their status, and suggests options for their further development. It also recommends future roles for vaccines in eradicating malaria. Questions remain on how RTS,S vaccine will work in widespread use and how it can best be utilized to benefit vulnerable communities. CONCLUSION Malaria vaccines have been in development for almost 60 years. The RTS,S/AS01 vaccine has now been approved, but cannot be a stand-alone solution. Development should continue on promising candidates such as R21, PfSPZ and P. vivax vaccines. Multi-component vaccines may be a useful addition to other malaria control techniques in achieving eradication of malaria.
Collapse
Affiliation(s)
- Amal A El-Moamly
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed A El-Sweify
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
39
|
Oyong DA, Duffy FJ, Neal ML, Du Y, Carnes J, Schwedhelm KV, Hertoghs N, Jun SH, Miller H, Aitchison JD, De Rosa SC, Newell EW, McElrath MJ, McDermott SM, Stuart KD. Distinct immune responses associated with vaccination status and protection outcomes after malaria challenge. PLoS Pathog 2023; 19:e1011051. [PMID: 37195999 PMCID: PMC10228810 DOI: 10.1371/journal.ppat.1011051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/30/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Damian A. Oyong
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Fergal J. Duffy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ying Du
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nina Hertoghs
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Seong-Hwan Jun
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Suzanne M. McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Edwards CL, Ng SS, de Labastida Rivera F, Corvino D, Engel JA, Montes de Oca M, Bukali L, Frame TC, Bunn PT, Chauhan SB, Singh SS, Wang Y, Na J, Amante FH, Loughland JR, Soon MS, Waddell N, Mukhopadhay P, Koufariotis LT, Johnston RL, Lee JS, Kuns R, Zhang P, Boyle MJ, Hill GR, McCarthy JS, Kumar R, Engwerda CR. IL-10-producing Th1 cells possess a distinct molecular signature in malaria. J Clin Invest 2023; 133:e153733. [PMID: 36594463 PMCID: PMC9797345 DOI: 10.1172/jci153733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2022] [Indexed: 01/04/2023] Open
Abstract
Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.
Collapse
Affiliation(s)
- Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | | | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
41
|
Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol 2023; 14:1172691. [PMID: 37168860 PMCID: PMC10166207 DOI: 10.3389/fimmu.2023.1172691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.
Collapse
Affiliation(s)
- Laura Matarazzo
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Paulo J. G. Bettencourt
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
- *Correspondence: Paulo J. G. Bettencourt,
| |
Collapse
|
42
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
43
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
44
|
Duffy FJ, Hertoghs N, Du Y, Neal ML, Oyong D, McDermott S, Minkah N, Carnes J, Schwedhelm KV, McElrath MJ, De Rosa SC, Newell E, Aitchison JD, Stuart K. Longitudinal immune profiling after radiation-attenuated sporozoite vaccination reveals coordinated immune processes correlated with malaria protection. Front Immunol 2022; 13:1042741. [PMID: 36591224 PMCID: PMC9798120 DOI: 10.3389/fimmu.2022.1042741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Damian Oyong
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Suzanne McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Evan Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| |
Collapse
|
45
|
Sirima SB, Ouédraogo A, Tiono AB, Kaboré JM, Bougouma EC, Ouattara MS, Kargougou D, Diarra A, Henry N, Ouédraogo IN, Billingsley PF, Manoj A, Abebe Y, Kc N, Ruben A, Richie TL, James ER, Joshi S, Shrestha B, Strauss K, Lyke KE, Plowe CV, Potter GE, Cox C, Jones W, Sim BKL, Hoffman SL, Laurens MB. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci Transl Med 2022; 14:eabj3776. [PMID: 36475905 PMCID: PMC10041996 DOI: 10.1126/scitranslmed.abj3776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly effective malaria vaccine remains elusive despite decades of research. Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), a metabolically active, nonreplicating, whole parasite vaccine demonstrated safety and vaccine efficacy (VE) against endemic P. falciparum for 6 months in Malian adults receiving a five-dose regimen. Safety, immunogenicity, and VE of a three-dose regimen were assessed in adults in Balonghin, Burkina Faso in a two-component study: an open-label dose escalation trial with 32 participants followed by a double-blind, randomized, placebo-controlled trial (RCT) with 80 participants randomized to receive three doses of 2.7 × 106 PfSPZ (N = 39) or normal saline (N = 41) just before malaria season. To clear parasitemia, artesunate monotherapy was administered before first and last vaccinations. Thick blood smear microscopy was performed on samples collected during illness and every 4 weeks for 72 weeks after last vaccinations, including two 6-month malaria transmission seasons. Safety outcomes were assessed in all 80 participants who received at least one dose and VE for 79 participants who received three vaccinations. Myalgia was the only symptom that differed between groups. VE (1 - risk ratio; primary VE endpoint) was 38% at 6 months (P = 0.017) and 15% at 18 months (0.078). VE (1 - hazard ratio) was 48% and 46% at 6 and 18 months (P = 0.061 and 0.018). Two weeks after the last dose, antibodies to P. falciparum circumsporozoite protein and PfSPZ were higher in protected versus unprotected vaccinees. A three-dose regimen of PfSPZ Vaccine demonstrated safety and efficacy against malaria infection in malaria-experienced adults.
Collapse
Affiliation(s)
- Sodiomon B Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean M Kaboré
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C Bougouma
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Maurice S Ouattara
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa N Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Walter Jones
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Duszenko N, van Willigen DM, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. Chemically Enhanced Immunogenicity of Bacteria by Supramolecular Functionalization with an Adjuvant. Chembiochem 2022; 23:e202200434. [PMID: 36177993 PMCID: PMC10098600 DOI: 10.1002/cbic.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Indexed: 01/25/2023]
Abstract
Many pathogens blunt immune responses because they lack immunogenic structural features, which typically results in disease. Here, we show evidence suggesting that pathogen immunogenicity can be chemically enhanced. Using supramolecular host-guest chemistry, we complexed onto the surface of a poorly immunogenic bacterium (Staphylococcus aureus) a TLR7 agonist-based adjuvant. "Adjuvanted" bacteria were readily recognized by macrophages and induced a more pro-inflammatory immunophenotype. Future applications of this concept could yield treatment modalities that bolster the immune system's response to pathogenic microbes.
Collapse
Affiliation(s)
- Nikolas Duszenko
- Interventional Molecular Imaging (IMI) Laboratory, Departments of Radiology & Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging (IMI) Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen (The, Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen (The, Netherlands
| | - Meta Roestenberg
- Departments of Parasitology & Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging (IMI) Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden, The Netherlands
| |
Collapse
|
47
|
In vitro production of infectious Plasmodium falciparum sporozoites. Nature 2022; 612:534-539. [PMID: 36477528 DOI: 10.1038/s41586-022-05466-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.
Collapse
|
48
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Creation and preclinical evaluation of genetically attenuated malaria parasites arresting growth late in the liver. NPJ Vaccines 2022; 7:139. [PMCID: PMC9636417 DOI: 10.1038/s41541-022-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWhole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.
Collapse
|
50
|
KC N, Church LWP, Riyahi P, Chakravarty S, Seder RA, Epstein JE, Lyke KE, Mordmüller B, Kremsner PG, Sissoko MS, Healy S, Duffy PE, Jongo SA, Nchama VUNN, Abdulla S, Mpina M, Sirima SB, Laurens MB, Steinhardt LC, Oneko M, Li M, Murshedkar T, Billingsley PF, Sim BKL, Richie TL, Hoffman SL. Increased levels of anti-PfCSP antibodies in post-pubertal females versus males immunized with PfSPZ Vaccine does not translate into increased protective efficacy. Front Immunol 2022; 13:1006716. [PMID: 36389797 PMCID: PMC9641621 DOI: 10.3389/fimmu.2022.1006716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.
Collapse
Affiliation(s)
- Natasha KC
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | - Robert A. Seder
- Vaccine Research Center, National Institute of Heath, Bethesda, MD, United States
| | - Judith E. Epstein
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Centre de Recherches Medicales de Lambaréné, Lambaréné, Gabon
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center (MRTC), Mali National Institute of Allergy and Infectious Diseases International Centers for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sara Healy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Said A. Jongo
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Salim Abdulla
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maxmillian Mpina
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - MingLin Li
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | | | - Stephen L. Hoffman
- Sanaria Inc., Rockville, MD, United States
- *Correspondence: Stephen L. Hoffman,
| |
Collapse
|