1
|
Berry AA, Richie TL, Church LWP, Laurens MB, Boyce C, Kc N, Joshi S, Koudjra AR, Butler L, Chen MC, Abebe Y, Murshedkar T, James ER, Billingsley PF, Sim BKL, Hoffman SL, Lyke KE. Safety, tolerability and immunogenicity of a condensed, multi-dose prime regimen of PfSPZ Vaccine for the prevention of Plasmodium falciparum malaria infection. Malar J 2025; 24:88. [PMID: 40098097 PMCID: PMC11916963 DOI: 10.1186/s12936-025-05299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The World Health Organization (WHO) has called for new malaria vaccines with > 90% efficacy against Plasmodium falciparum infection to expand the anti-disease benefit provided by the RTS,S/AS01 and R21/Matrix M subunit vaccines currently administered to infants and young children in sub-Saharan Africa. Attenuated P. falciparum sporozoites (PfSPZ) are being developed as a traveller's vaccine and to fulfill WHO's call for high-level efficacy in endemic countries to support malaria elimination. METHODS PfSPZ Vaccine, comprised of radiation-attenuated PfSPZ, was compared with normal saline placebo in a randomized, double-blind trial targeting 60 malaria-naive US adults to assess safety, tolerability, immunogenicity, and efficacy against heterologous controlled human malaria infection three and twelve weeks after immunization. Pharmacists provided syringes to blinded clinicians using 3:1 (vaccine:placebo) blocked randomization, for administration by direct venous inoculation on days 1 and 8 (multidose prime) and day 29 (boost), a condensed regimen with superior efficacy. Primary outcomes included adverse events and antibody responses to the P. falciparum circumsporozoite protein (PfCSP). RESULTS 31 participants were screened, randomized and immunized twice (V1, V2) 5-7 days apart, with one withdrawal after an intercurrent adverse event. A vial issue, later traced to the vial manufacturer, halted further immunizations. Solicited local and systemic adverse events recorded for 2 and 7 days after immunizations, respectively, occurred with equal frequency and severity in the 23 vaccinees and 7 controls receiving two immunizations, as did unsolicited adverse events recorded for 28 days and laboratory abnormalities 1 and 5 weeks after V2. Four of 23 vaccinees and one of 7 controls (p = 1.00) developed grade 2 adverse events including subjective fever, headache, malaise, fatigue, rigors, arthralgia and myalgia after V2 but not V1, these symptoms generally resolving within 24 h. Twenty-two of 23 (96%) vaccinees developed IgG (median 99-fold increase over baseline) and IgM (median 1,110-fold increase) antibodies to PfCSP one week after V2. Antibody responses were not associated with reactogenicity. CONCLUSIONS The two-dose priming immunization regimen was safe, well tolerated and highly immunogenic. Larger studies may better define the adverse event profile of condensed regimens of PfSPZ Vaccine in malaria-naive adults. TRIAL REGISTRATION NUMBER clinicaltrial.gov NCT05604521.
Collapse
Affiliation(s)
- Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - L W Preston Church
- Sanaria Inc, Rockville, MD, 20850, USA
- Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Colleen Boyce
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Abra Rachida Koudjra
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauryn Butler
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | - Peter F Billingsley
- Sanaria Inc, Rockville, MD, 20850, USA
- The Vital Narrative, Frederick, MD, 21701, USA
| | | | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
2
|
Dwivedi A, Scalsky RJ, Harris DG, Stabler TC, Shrestha B, Joshi S, Gandhi C, Munro JB, Ifeonu OO, Ouedraogo A, Tiono AB, Coulibaly D, Ouattara A, Richie TL, Sim BKL, Plowe CV, Lyke KE, Takala-Harrison S, Hoffman SL, Thera MA, Sirima SB, Laurens MB, Silva JC. Protective targets of PfSPZ vaccines identified from whole-genome sieve analysis of isolates from malaria vaccine efficacy trials in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.04.25323352. [PMID: 40093207 PMCID: PMC11908318 DOI: 10.1101/2025.03.04.25323352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Identification of antigens targeted by a protective response is a central quest in malaria vaccinology. Whole-genome sieve analysis (SAWG) in samples collected from placebo-controlled field trials of Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines may enable identification of Pf pre-erythrocytic antigens. We applied SAWG to genomic data generated from Pf isolates collected during two field trials measuring the efficacy, in malaria-exposed African adults, of two PfSPZ vaccines. These randomized, double-blind, placebo-controlled trials were conducted in regions of Mali and Burkina Faso characterized by high seasonal transmission, where parasite genetic diversity is high. Genomic sites in which the vaccine allelic state was significantly underrepresented among breakthrough infections in vaccinees relative to placebo recipients were termed "target sites". Protein-coding loci containing target sites that changed amino acids were termed "target loci". The SAWG conducted on clinical trial samples from the Burkina Faso and Mali trials identified 138 and 80 single-copy protein-coding target loci in the Burkinabe and Malian data sets, respectively, with twelve common to both, a number significantly higher than expected (E = 3.9; 99%CI = [0, 9]). Among these was the thrombospondin-related anonymous protein locus, which encodes PfSSP2|TRAP, one of the most abundant and well-characterized pre-erythrocytic stage antigen as well as other genes encoding membrane-associated proteins of unknown function. These results identify SAWG as a potentially powerful tool for identifying protective vaccine antigens in recombining pathogens with large genome size and reveals potential new protective Pf antigens.
Collapse
Affiliation(s)
- Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Ryan J. Scalsky
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - David G. Harris
- Department of Computer Science, University of Maryland College Park; College Park, MD 20742, USA
| | | | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Chakshu Gandhi
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Olukemi O. Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | - Alfred B. Tiono
- Groupe de Recherche Action en Santé; Ouagadougou, Burkina Faso
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako; Bamako, Mali
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | | | - Christopher V. Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | | | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako; Bamako, Mali
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, MD 21201, USA
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, MD 21201, USA
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA); 1349-008 Lisboa, Portugal
| |
Collapse
|
3
|
Obi OA, Obiezue RN, Eze D, Adebote DA. Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review. J Parasit Dis 2025; 49:13-28. [PMID: 39975623 PMCID: PMC11833005 DOI: 10.1007/s12639-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/13/2024] [Indexed: 02/21/2025] Open
Abstract
Recent fights on the control of trypanosomiasis and malaria focused on underscoring the concepts of antigen evasive mechanisms with the view to exploit the defensive mechanisms inherent in VSG and PfEMP1, although giant strides is being achieved towards beating the antigenic propensity of malaria parasites. Trypanosoma and Plasmodium falciparum adopt a common antigenic novelty through alternate expression of VSG and PfEMP1 respectively. These immunodominant antigens sterically shield other surface proteins from host antibodies and unvaryingly turn out to be the requisite elements with difficult underlining immunological concept for unmatched escape mechanisms of vaccine actions. Hence, the uncommon role of the pathogens to brazenly circumnavigate immunity through switching of variant antigens has not kept pace. Switching of variant surface in human trypanosomes occurs through programmed DNA rearrangements while in P. falciparum, switching occurs by purely transcriptional mechanism. The repertoire genes harmonize evasion of human immunity and also rekindle the outcome of infections. The extensive sequence divergence and genetic polymorphism of VSG and PfEMP1 are the requisite elements for the next generation breakthrough in vaccine discoveries. Thus, the springboard for the development of novel targets is lurking with the wit of unraveling the immunological concepts underlining the evasive aptitude of VSG and PfEMP1 with convincing biochemical techniques, hence offering a blueprint for enhanced vaccine targets. This review elucidates evasive mechanisms of VSG and PfEMP1 with link to pathologies, challenges of antigenic switches and prospects to current vaccine scenario.
Collapse
Affiliation(s)
- Okechukwu Anthony Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | - Rose Nduka Obiezue
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Desmond Eze
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | | |
Collapse
|
4
|
Chua YC, Draper SL, Le S, de Menezes MN, Ganley M, Ge Z, Lee A, Phabmixay T, Hirschmann D, Robinson SA, Tan PS, Tullett KM, Anderson RJ, Jayasinghe D, Cozijnsen A, Lahoud MH, Caminschi I, Beattie L, McFadden GI, Larsen DS, Kaisho T, Gras S, Hermans IF, Compton BJ, Heath WR, Painter GF, Holz LE. Mechanistic insight into the induction of liver tissue-resident memory CD8 + T cells by glycolipid-peptide vaccination. Cell Rep 2025; 44:115295. [PMID: 39946236 DOI: 10.1016/j.celrep.2025.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/12/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
We recently demonstrated that vaccines comprising antigenic peptides conjugated to a glycolipid agonist, termed glycolipid-peptide (GLP) vaccines, efficiently generate substantial numbers of long-lived CD8+ liver-resident memory T (Trm) cells that are crucial for protection against malaria liver-stage infection. To understand the underlying mechanism, we examined the prerequisites for priming, differentiation, and secondary boosting of liver Trm cells using these GLP vaccines. Our study revealed that generation of long-lived liver Trm cells relies on CD8+ T cell priming by type 1 conventional dendritic (cDC1) cells, followed by post-priming exposure to a combination of vaccine-derived inflammatory and antigenic signals. Boosting of liver Trm cells is feasible using the same GLP vaccine, but a substantial delay is required for optimal responses due to natural killer T (NKT) cell anergy. Overall, our study unveils key requirements for the development of long-lived liver Trm cells, offering valuable insights for future vaccine design.
Collapse
Affiliation(s)
- Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Shirley Le
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mitch Ganley
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ariane Lee
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Taylah Phabmixay
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daria Hirschmann
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sage A Robinson
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Peck Szee Tan
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Kirsteen M Tullett
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Stephanie Gras
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Ko YK, Kagaya W, Yoneoka D, Kongere J, Opiyo V, Oginga J, Omondi P, Musyoka KB, Chan CW, Kanoi BN, Gitaka J, Kaneko A. Where is the hard-to-reach population? Spatial analysis from a cross-sectional study on the access to bed net and malaria vaccine in the Lake Victoria Region, Kenya. Malar J 2025; 24:42. [PMID: 39939989 PMCID: PMC11823133 DOI: 10.1186/s12936-025-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLIN) and vaccines are effective malaria control tools. However, inadequate uptake has been reported in countries where both interventions are available. To maximize the impact these tools provide, it is crucial to identify populations that are not being reached and the barriers to uptake. METHODS In a cross-sectional study conducted in April 2024 in Kanyamwa Kologi Ward in Homa Bay County, Kenya, 4,662 households in 58 randomely selected villages were visited and interviewed. The proportions of households that (1) received at least one new LLIN within the previous five months (net distribution), (2) reported all children used LLIN (net usage), (3) reported at least one child had received one dose of the RTS,S vaccine (vaccine uptake), and (4) reported all children had received four doses of the vaccine (vaccine completion) were examined. Bayesian spatial autoregression analyses were used to estimate adjusted odds ratio (aOR) and its credible intervals (CrI) to identify the association between the household-level characteristics and the four outcomes. RESULTS The overall uptake proportions were 89.9% for net distribution, 84.4% for net usage, 88.2% for vaccine uptake, and 53.7% for vaccine completion. All four outcomes showed geographical heterogeneity with significant (p < 0.05) Moran's I. Households headed by adults of > 40 years had higher odds of having received a new LLIN (aOR = 2.02, 95% CrI 1.02-5.42), having one child who had received one vaccine dose (aOR = 1.83, 0.69-4.66), and having all children fully vaccinated (aOR = 2.36, 1.09-5.46), but lower odds of net usage by all children (aOR = 0.62, 0.40-0.96). Households with five or more children had higher odds of having received a new LLIN (aOR = 5.36, 2.24-27.0) but lower odds of net usage by all children (aOR = 0.24, 0.14-0.38) and having all children fully vaccinated (aOR = 0.20, 0.04-0.61). Distance to the nearest health centre was negatively associated with all outcomes. Household wealth was positively associated with all outcomes. CONCLUSION Uptake of LLIN and malaria vaccine in Homa Bay County, Kenya varied by geography and household characteristics. These findings suggest that different sets of actions should be considered to improve the coverage and compliance of these interventions in different areas.
Collapse
Affiliation(s)
- Yura K Ko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden.
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Wataru Kagaya
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daisuke Yoneoka
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - James Kongere
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Center for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Victor Opiyo
- Center for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Jared Oginga
- Center for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Protus Omondi
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kelvin B Musyoka
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chim W Chan
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Bernard N Kanoi
- Center for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Center for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Jesse Gitaka
- Center for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Center for Malaria Elimination, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Diawara H, Healy SA, Mwakingwe-Omari A, Issiaka D, Diallo A, Traore S, Soumbounou IH, Gaoussou S, Zaidi I, Mahamar A, Attaher O, Fried M, Wylie BJ, Mohan R, Doan V, Doritchamou JYA, Dolo A, Morrison RD, Wang J, Hu Z, Rausch KM, Zeguime A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Dicko A, Duffy PE. Safety and efficacy of PfSPZ Vaccine against malaria in healthy adults and women anticipating pregnancy in Mali: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. THE LANCET. INFECTIOUS DISEASES 2024; 24:1366-1382. [PMID: 39153490 DOI: 10.1016/s1473-3099(24)00360-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Plasmodium falciparum parasitaemia during pregnancy causes maternal, fetal, and infant mortality. Poor pregnancy outcomes are related to blood-stage parasite sequestration and the ensuing inflammatory response in the placenta, which decreases over successive pregnancies. A radiation-attenuated, non-replicating, whole-organism vaccine based on P falciparum sporozoites (PfSPZ Vaccine) has shown efficacy at preventing infection in African adults. Here, we aimed to examine vaccine safety and efficacy of the PfSPZ Vaccine in adults and women who anticipated conception. METHODS Two randomised, double-blind, placebo-controlled trials (phase 1 MLSPZV3 and phase 2 MLSPZV4) were conducted at a clinical research centre in Mali. MLSPZV3 included adults aged 18-35 years and MLSPZV4 included non-pregnant women aged 18-38 years who anticipated conception within a year of enrolment. In MLSPZV3, participants were stratified by village and randomly assigned (2:1) using block randomisation to receive three doses of 9 × 105 PfSPZ Vaccine or saline placebo at weeks 0, 1, and 4 (4-week schedule) or at weeks 0, 8, and 16 (16-week schedule) and a booster dose around 1 year later. In MLSPZV4, women received presumptive artemether-lumefantrine twice per day for 3 days 2 weeks before dose one and were randomly assigned (1:1:1) using block randomisation to receive three doses of 9 × 105 or 1·8 × 106 PfSPZ Vaccine or saline placebo all administered at weeks 0, 1, and 4 (4-week schedule). Participants in both studies received artemether-lumefantrine 2 weeks before dose three and additionally 2 weeks before dose four (booster dose) in MLSPZV3. Investigators and participants were masked to group assignment. The primary outcome, assessed in the as-treated population, was PfSPZ Vaccine safety and tolerability within 7 days after each dose. The secondary outcome, assessed in the modified intention-to-treat population, was vaccine efficacy against P falciparum parasitaemia (defined as the time-to-first positive blood smear) from dose three until the end of transmission season. In exploratory analyses, MLSPZV4 evaluated incidence of maternal obstetric and neonatal outcomes as safety outcomes, and vaccine efficacy against P falciparum parasitaemia during pregnancy (defined as time-to-first positive blood smear post-conception). In MLSPZV4, women were followed at least once a month with human chorionic gonadotropin testing, and those who became pregnant received standard of care (including intermittent presumptive sulfadoxine-pyrimethamine antimalarial drugs after the first trimester) during routine antenatal visits. These studies are registered with ClinicalTrials.gov, NCT03510481 and NCT03989102. FINDINGS Participants were enrolled for vaccination during the onset of malaria seasons for two sequential studies conducted from 2018 to 2019 for MLSPZV3 and from 2019 to 2021 for MLSPZV4, with follow-up during malaria seasons across 2 years. In MLSPZV3, 478 adults were assessed for eligibility, of whom 220 were enrolled between May 30 and June 12, 2018, and then between Aug 13 and Aug 18, 2018, and 210 received dose one. 66 (96%) of 69 participants who received the 16-week schedule and 68 (97%) of 70 who received the 4-week schedule of the 9 × 105 PfSPZ Vaccine and 70 (99%) of 71 who received saline completed all three doses in year 1. In MLSPZV4, 407 women were assessed for eligibility, of whom 324 were enrolled from July 3 to July 27, 2019, and 320 received dose one of presumptive artemether-lumefantrine. 300 women were randomly assigned with 100 per group (PfSPZ Vaccine 9 × 105, 1·8 × 106, or saline) receiving dose one. First trimester miscarriages were the most commonly reported serious adverse event but occurred at a similar rate across study groups (eight [15%] of 54 with 9 × 105 PfSPZ Vaccine, 12 [21%] of 58 with 1·8 × 106 PfSPZ Vaccine, and five [12%] of 43 with saline). One unrelated maternal death occurred 425 days after the last vaccine dose in the 1·8 × 106 PfSPZ Vaccine group due to peritonitis shortly after childbirth. Most related adverse events reported in MLSPZV3 and MLSPZV4 were mild (grade 1) and frequency of adverse events in the PfSPZ Vaccine groups did not differ from that in the saline group. Two unrelated serious adverse events occurred in MLSPZV3 (one participant had appendicitis in the 9 × 105 PfSPZ Vaccine group and the other in the saline group died due to a road traffic accident). In MLSPZV3, the 9 × 105 PfSPZ Vaccine did not show vaccine efficacy against parasitaemia with the 4-week (27% [95% CI -18 to 55] in year 1 and 42% [-5 to 68] in year 2) and 16-week schedules (16% [-34 to 48] in year 1 and -14% [-95 to 33] in year 2); efficacies were similar or worse against clinical malaria compared with saline. In MLSPZV4, the PfSPZ Vaccine showed significant efficacy against parasitaemia at doses 9 × 105 (41% [15 to 59]; p=0·0069 in year 1 and 61% [36 to 77]; p=0·0011 in year 2) and 1·8 × 106 (54% [34 to 69]; p<0·0001 in year 1 and 45% [13 to 65]; p=0·029 in year 2); and against clinical malaria at doses 9 × 105 (47% [20 to 65]; p=0·0045 in year 1 and 56% [22 to 75]; p=0·0081 in year 2) and 1·8 × 106 (48% [22 to 65]; p=0·0013 in year 1 and 40% [2 to 64]; p=0·069 in year 2). Vaccine efficacy against post-conception P falciparum parasitaemia during first pregnancies that arose in the 2-year follow-up was 57% (14 to 78; p=0·017) in the 9 × 105 PfSPZ Vaccine group versus 49% (3 to 73; p=0·042) in the 1·8 × 106 PfSPZ Vaccine group. Among 55 women who became pregnant within 24 weeks after dose three, vaccine efficacy against parasitaemia was 65% (23 to 84; p=0·0088) with the 9 × 105 PfSPZ Vaccine and 86% (64 to 94; p<0·0001) with the 1·8 × 106 PfSPZ Vaccine. When combined in a post-hoc analysis, women in the PfSPZ Vaccine groups had a non-significantly reduced time-to-first pregnancy after dose one compared with those in the saline group (log-rank test p=0·056). Exploratory maternal obstetric and neonatal outcomes did not differ significantly between vaccine groups and saline. INTERPRETATION PfSPZ Vaccine was safe and well tolerated in adults in Mali. The 9 × 105 and 1·8 × 106 doses of PfSPZ Vaccine administered as per the 4-week schedule, which incorporated presumptive antimalarial treatment before the first vaccine dose, showed significant efficacy against P falciparum parasitaemia and clinical malaria for two malaria transmission seasons in women of childbearing age and against pregnancy malaria. PfSPZ Vaccine without presumptive antimalarial treatment before the first vaccine dose did not show efficacy. FUNDING National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Sanaria.
Collapse
Affiliation(s)
- Halimatou Diawara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Aye Diallo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seydou Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Santara Gaoussou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Blair J Wylie
- Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Viyada Doan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amagana Dolo
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | | | | | | | | | | | | | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Lamers OAC, Franke-Fayard BMD, Koopman JPR, Roozen GVT, Janse JJ, Chevalley-Maurel SC, Geurten FJA, de Bes-Roeleveld HM, Iliopoulou E, Colstrup E, Wessels E, van Gemert GJ, van de Vegte-Bolmer M, Graumans W, Stoter TR, Mordmüller BG, Houlder EL, Bousema T, Murugan R, McCall MBB, Janse CJ, Roestenberg M. Safety and Efficacy of Immunization with a Late-Liver-Stage Attenuated Malaria Parasite. N Engl J Med 2024; 391:1913-1923. [PMID: 39565990 DOI: 10.1056/nejmoa2313892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND Currently licensed and approved malaria subunit vaccines provide modest, short-lived protection against malaria. Immunization with live-attenuated Plasmodium falciparum malaria parasites is an alternative vaccination strategy that has potential to improve protection. METHODS We conducted a double-blind, controlled clinical trial to evaluate the safety, side-effect profile, and efficacy of immunization, by means of mosquito bites, with a second-generation genetically attenuated parasite (GA2) - a mei2 single knockout P. falciparum NF54 parasite (sporozoite form) with extended development into the liver stage. After an open-label dose-escalation safety phase in which participants were exposed to the bites of 15 or 50 infected mosquitoes (stage A), healthy adults who had not had malaria were randomly assigned to be exposed to 50 mosquito bites per immunization of GA2, an early-arresting parasite (GA1), or placebo (bites from uninfected mosquitoes) (stage B). After the completion of three immunization sessions with 50 mosquito bites per session, we compared the protective efficacy of GA2 against homologous P. falciparum controlled human malaria infection with that of GA1 and placebo. The primary end points were the number and severity of adverse events (in stages A and B) and blood-stage parasitemia greater than 100 P. falciparum parasites per milliliter after bites from GA2-infected mosquitoes (in stage A) and after controlled human malaria infection (in stage B). RESULTS Adverse events were similar across the trial groups. Protective efficacy against subsequent controlled human malaria infection was observed in 8 of 9 participants (89%) in the GA2 group, in 1 of 8 participants (13%) in the GA1 group, and in 0 of 3 participants in the placebo group. A significantly higher frequency of P. falciparum-specific polyfunctional CD4+ and Vδ2+ γδ T cells were observed among participants who received GA2 than among those who received GA1, whereas GA2 and GA1 induced similar antibody titers targeting the P. falciparum circumsporozoite protein. CONCLUSIONS In this small trial, GA2 was associated with a favorable immune induction profile and protective efficacy, findings that warrant further evaluation. (Funded by the Bontius Foundation; ClinicalTrials.gov number, NCT04577066.).
Collapse
Affiliation(s)
- Olivia A C Lamers
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Blandine M D Franke-Fayard
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Jan Pieter R Koopman
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Geert V T Roozen
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Jacqueline J Janse
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Severine C Chevalley-Maurel
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Fiona J A Geurten
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Helena M de Bes-Roeleveld
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Eva Iliopoulou
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Emil Colstrup
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Els Wessels
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Geert-Jan van Gemert
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Marga van de Vegte-Bolmer
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Wouter Graumans
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Thabitha R Stoter
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Benjamin G Mordmüller
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Emma L Houlder
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Teun Bousema
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Rajagopal Murugan
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Matthew B B McCall
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Chris J Janse
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| | - Meta Roestenberg
- From Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden (O.A.C.L., B.M.D.F-.F., J.P.R.K., G.V.T.R., J.J.J., S.C.C.-M., F.J.A.G., H.M.B.-R., E.I., E.C., E.W., E.L.H., R.M., C.J.J., M.R.), and the Department of Medical Microbiology, Radboud University Medical Center, Nijmegen (G.-J.G., M.V.-B., W.G., T.R.S., B.G.M., T.B., M.B.B.M.) - both in the Netherlands
| |
Collapse
|
9
|
Goswami D, Arredondo SA, Betz W, Armstrong J, Kumar S, Zanghi G, Patel H, Camargo N, Oualim KMZ, Seilie AM, Schneider S, Murphy SC, Kappe SHI, Vaughan AM. A conserved Plasmodium nuclear protein is critical for late liver stage development. Commun Biol 2024; 7:1387. [PMID: 39455824 PMCID: PMC11511937 DOI: 10.1038/s42003-024-07063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, imposes a significant health burden and live-attenuated parasites are being pursued as vaccines. Here, we report on the creation of a genetically attenuated parasite by the deletion of Plasmodium LINUP, encoding a liver stage nuclear protein. In the rodent parasite Plasmodium yoelii, LINUP expression was restricted to liver stage nuclei after the onset of liver stage schizogony. Compared to wildtype P. yoelii, P. yoelii LINUP gene deletion parasites (linup-) exhibited no phenotype in blood stages and mosquito stages but suffered developmental arrest late in liver stage schizogony with a pronounced defect in exo-erythrocytic merozoite formation. This defect caused severe attenuation of the liver stage-to-blood stage transition and immunization of mice with linup - parasites conferred robust protection against infectious sporozoite challenge. LINUP gene deletion in the human parasite Plasmodium falciparum also caused a severe defect in late liver stage differentiation. Importantly, P. falciparum linup - liver stages completely failed to transition from the liver stage to a viable blood stage infection in a humanized mouse model. These results suggest that P. falciparum LINUP is an ideal target for late liver stage attenuation that can be incorporated into a late liver stage-arresting replication competent whole parasite vaccine.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenza M Z Oualim
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sophia Schneider
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Mishra A, Paul P, Srivastava M, Mishra S. A Plasmodium late liver stage arresting GAP provides superior protection in mice. NPJ Vaccines 2024; 9:193. [PMID: 39424860 PMCID: PMC11489731 DOI: 10.1038/s41541-024-00975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Liver-stage genetically attenuated malaria parasites (GAPs) are powerful immunogens that provide protection against sporozoite challenge. We previously generated two late liver-stage-arresting GAPs by deleting the stearoyl-CoA desaturase (Scd) or sporozoite conserved orthologous transcript 1 (Scot1) genes in Plasmodium berghei. Immunization with Scd or Scot1 GAP conferred complete protection against a sporozoite challenge. In a safety study, we observed rare breakthrough blood-stage infections in mice inoculated with high doses of sporozoites, indicating that both GAPs were incompletely attenuated. In this study, we generated a Scd/Scot1 GAP by dual gene deletion. This resulted in complete attenuation of the parasites in the liver and did not transition to blood-stage infection despite a high-dose sporozoite challenge. The Scd/Scot1 KO and WT GFP parasites were indistinguishable during blood, mosquito and early liver stage development. Moreover, Scd/Scot1 KO liver-stage schizonts exhibited an abnormal apicoplast biogenesis and nuclear division phenotype, failed to form hepatic merozoites, and exhibited late liver-stage arrest. Compared with early-arresting Speld KO immunization, late-stage liver-arresting Scd/Scot1 KO induces greater and broader CD8+ T-cell responses and elicits stage-transcending immunity that provides superior protection in C57BL/6 mice. These data prove that multiple gene deletions lead to complete attenuation of the parasite and support the development of late liver stage-arresting P. falciparum GAP.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mrigank Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Tumbo A, Lorenz FR, Yang ASP, Sefried S, Schindler T, Mpina M, Dangy JP, Milando FA, Rashid MA, Nyaulingo G, Ramadhani K, Jongo S, Felgner PL, Abebe Y, Sim BKL, Church LWP, Richie TL, Billingsley PF, Murshedkar T, Hoffman SL, Abdulla S, Kremsner PG, Mordmüller B, Daubenberger C, Fendel R. PfSPZ Vaccine induces focused humoral immune response in HIV positive and negative Tanzanian adults. EBioMedicine 2024; 108:105364. [PMID: 39353279 PMCID: PMC11464252 DOI: 10.1016/j.ebiom.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Collapse
Affiliation(s)
- Anneth Tumbo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Sefried
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Maximilian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Jean-Pierre Dangy
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Mohammed A Rashid
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Gloria Nyaulingo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Said Jongo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | | | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States
| | | | | | | | | | | | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
13
|
Chutiyami M, Saravanakumar P, Bello UM, Salihu D, Adeleye K, Kolo MA, Dawa KK, Hamina D, Bhandari P, Sulaiman SK, Sim J. Malaria vaccine efficacy, safety, and community perception in Africa: a scoping review of recent empirical studies. Infection 2024; 52:2007-2028. [PMID: 38441731 PMCID: PMC11499420 DOI: 10.1007/s15010-024-02196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/22/2024] [Indexed: 10/24/2024]
Abstract
AIM The review summarizes the recent empirical evidence on the efficacy, safety, and community perception of malaria vaccines in Africa. METHODS Academic Search Complete, African Journals Online, CINAHL, Medline, PsychInfo, and two gray literature sources were searched in January 2023, and updated in June 2023. Relevant studies published from 2012 were included. Studies were screened, appraised, and synthesized in line with the review aim. Statistical results are presented as 95% Confidence Intervals and proportions/percentages. RESULTS Sixty-six (N = 66) studies met the inclusion criteria. Of the vaccines identified, overall efficacy at 12 months was highest for the R21 vaccine (N = 3) at 77.0%, compared to the RTS,S vaccine (N = 15) at 55%. The efficacy of other vaccines was BK-SE36 (11.0-50.0%, N = 1), ChAd63/MVA ME-TRAP (- 4.7-19.4%, N = 2), FMP2.1/AS02A (7.6-9.9%, N = 1), GMZ2 (0.6-60.0%, N = 5), PfPZ (20.0-100.0%, N = 5), and PfSPZ-CVac (24.8-33.6%, N = 1). Injection site pain and fever were the most common adverse events (N = 26), while febrile convulsion (N = 8) was the most reported, vaccine-related Serious Adverse Event. Mixed perceptions of malaria vaccines were found in African communities (N = 17); awareness was generally low, ranging from 11% in Tanzania to 60% in Nigeria (N = 9), compared to willingness to accept the vaccines, which varied from 32.3% in Ethiopia to 96% in Sierra Leone (N = 15). Other issues include availability, logistics, and misconceptions. CONCLUSION Malaria vaccines protect against malaria infection in varying degrees, with severe side effects rarely occurring. Further research is required to improve vaccine efficacy and community involvement is needed to ensure successful widespread use in African communities.
Collapse
Affiliation(s)
- Muhammad Chutiyami
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia.
| | - Priya Saravanakumar
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | - Umar Muhammad Bello
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Dauda Salihu
- College of Nursing, Jouf University, Sakaka, Saudi Arabia
| | - Khadijat Adeleye
- College of Nursing, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Kabiru Kasamu Dawa
- School of Nursing, Midwifery and Health Education, University of Bedfordshire, Luton, UK
| | - Dathini Hamina
- Department of Nursing Science, University of Maiduguri, Maiduguri, Nigeria
| | - Pratibha Bhandari
- School of Nursing and Midwifery, University of Technology Sydney, Sydney, Australia
| | | | - Jenny Sim
- WHO Collaborating Centre for Nursing, Midwifery and Health Development, University of Technology Sydney, Sydney, Australia
- School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Sydney, Australia
| |
Collapse
|
14
|
Moita D, Prudêncio M. Whole-sporozoite malaria vaccines: where we are, where we are going. EMBO Mol Med 2024; 16:2279-2289. [PMID: 39284948 PMCID: PMC11473726 DOI: 10.1038/s44321-024-00131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 10/16/2024] Open
Abstract
The malaria vaccination landscape has seen significant advancements with the recent endorsement of RTS,S/AS01 and R21/Matrix-M vaccines, which target the pre-erythrocytic stages of Plasmodium falciparum (Pf) infection. However, several challenges remain to be addressed, including the incomplete protection afforded by these vaccines, their dependence on a single Pf antigen, and the fact that they were not designed to protect against P. vivax (Pv) malaria. Injectable formulations of whole-sporozoite (WSpz) malaria vaccines offer a promising alternative to existing subunit vaccines, with recent developments including genetically engineered parasites and optimized administration regimens. Clinical evaluations demonstrate varying efficacy, influenced by factors, such as immune status, prior exposure to malaria, and age. Despite significant progress, a few hurdles persist in vaccine production, deployment, and efficacy in malaria-endemic regions, particularly in children. Concurrently, transgenic parasites expressing Pv antigens emerge as potential solutions for PvWSpz vaccine development. Ongoing clinical studies and advancements in vaccine technology, including the recently described PfSPZ-LARC2 candidate, signify a hopeful future for WSpz malaria vaccines, which hold great promise in the global fight against malaria.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
15
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser D, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Genotypic analysis of RTS,S/AS01 E malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5-17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1025-1036. [PMID: 38723650 PMCID: PMC11339203 DOI: 10.1016/s1473-3099(24)00179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Michal Juraska
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
| | - Angela M Early
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Li Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen F Schaffner
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | | | - Akanksha Khorgade
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Brian Simpkins
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Nima S Hejazi
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - David Benkeser
- Emory University Rollins School of Public Health, Department of Biostatistics and Bioinformatic, Atlanta, GA, USA
| | - Qi Wang
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Samuel Adjei
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Scott Anderson
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Dennis K Bii
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Patrick B Y Buabeng
- Kwame Nkrumah University of Science and Technology/Agogo Presbyterian Hospital, Agogo, Asante Akyem, Ghana
| | - Sean English
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Nicholas Fitzgerald
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Jonna Grimsby
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Simon K Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kephas Otieno
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Kisumu, Kenya; Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nelli Westercamp
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Bronwyn L MacInnis
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA
| | - Dyann F Wirth
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA, USA; Department of Biostatistics, University of Washington, Hans Rosling Center for Population Health, Seattle, WA, USA
| | - Daniel E Neafsey
- Broad Institute, Infectious Disease and Microbiome Program, Cambridge, MA, USA; Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
16
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
18
|
Sinumvayo JP, Munezero PC, Tope AT, Adeyemo RO, Bale MI, Nyandwi JB, Haakuria VM, Mutesa L, Adedeji AA. Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines (Basel) 2024; 12:741. [PMID: 39066380 PMCID: PMC11281707 DOI: 10.3390/vaccines12070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Africa, home to the world's second-largest population of approximately 1.3 billion, grapples with significant challenges in meeting its medical needs, particularly in accessing quality healthcare services and products. The continent faces a continuous onslaught of emerging infectious diseases, exacerbating the strain on its already fragile public health infrastructure. The COVID-19 crisis highlighted the urgency to build local vaccine production capacity and strengthen the health infrastructure in general. The risks associated with a heavy reliance on imported vaccines were exposed during the COVID-19 pandemic, necessitating the need to nurture and strengthen the local manufacturing of vaccines and therapeutic biologics. Various initiatives addressing training, manufacturing, and regulatory affairs are underway, and these require increasing dedicated and purposeful financial investment. Building vaccine manufacturing capacity requires substantial investment in training and infrastructure. This manuscript examines the current state of education in vaccinology and related sciences in Africa. It also provides an overview of the continent's efforts to address educational needs in vaccine development and manufacturing. Additionally, it evaluates the initiatives aimed at strengthening vaccine education and literacy, highlighting successful approaches and ongoing challenges. By assessing the progress made and identifying the remaining obstacles, this review offers insights into how Africa can enhance its vaccine manufacturing capacity to respond to vaccine-preventable disease challenges.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Pierre Celestin Munezero
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Adegboyega Taofeek Tope
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Rasheed Omotayo Adeyemo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Muritala Issa Bale
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Jean Baptiste Nyandwi
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| | - Vetjaera Mekupi Haakuria
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
| | - Leon Mutesa
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda;
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Ahmed Adebowale Adedeji
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| |
Collapse
|
19
|
Ain QT, Saleem N, Munawar N, Nawaz R, Naseer F, Ahmed S. Quest for malaria management using natural remedies. Front Pharmacol 2024; 15:1359890. [PMID: 39011507 PMCID: PMC11247327 DOI: 10.3389/fphar.2024.1359890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
Malaria, transmitted through the bite of a Plasmodium-infected Anopheles mosquito, remains a significant global health concern. This review examines the complex life cycle of Plasmodium, emphasizing the role of humans and mosquitoes in its transmission and proliferation. Malarial parasites are transmitted as sporozoites to the human body by biting an infected female Anopheles mosquito. These sporozoites then invade liver cells, multiply, and release merozoites, which infect red blood cells, perpetuating the cycle. As this cycle continues, the affected person starts experiencing the clinical symptoms of the disease. The current treatments for malaria, including chloroquine, artemisinin-based combination therapy, and quinine, are discussed alongside the challenges of drug resistance and misdiagnosis. Although efforts have been made to develop a malarial vaccine, they have so far been unsuccessful. Additionally, the review explores the potential of medicinal plants as remedies for malaria, highlighting the efficacy of compounds derived from Artemisia annua, Cinchona species, and Helianthus annuus L., as well as exploration of plants and phytocompounds like cryptolepine, and isoliquiritigenin against drug-resistant Plasmodium species. Moreover, studies from Pakistan further highlight the diverse vegetal resources utilized in malaria treatment, emphasizing the need for further research into natural remedies. Despite the advantages of herbal medicines, including cost-effectiveness, and fewer side effects; their limitations must be taken into account, including variations in potency and potential drug interactions. The review concludes by advocating for a balanced approach to malaria treatment and prevention, emphasizing the importance of early detection, accurate diagnosis, and integrated efforts to combat the disease in the endemic regions.
Collapse
Affiliation(s)
- Qura Tul Ain
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
20
|
Abuelazm MT, Elzeftawy MA, Kamal MA, Badr H, Gamal M, Aboulgheit M, Abdelazeem B, Abd-Elsalam S, Abouzid M. Protective efficacy and safety of radiation-attenuated and chemo-attenuated Plasmodium Falciparum sporozoite vaccines against controlled and natural malaria infection: a systematic review and meta-analysis of randomized controlled trials. Infection 2024; 52:707-722. [PMID: 38319556 DOI: 10.1007/s15010-024-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Despite the significant burden of Plasmodium falciparum (Pf) malaria and the licensure of two vaccines for use in infants and young children that are partially effective in preventing clinical malaria caused by Pf, a highly effective vaccine against Pf infection is still lacking. Live attenuated vaccines using Pf sporozoites as the immunogen (PfSPZ Vaccines) hold promise for addressing this gap. Here we review the safety and efficacy of two of the most promising PfSPZ approaches: PfSPZ Vaccine (radiation attenuated PfSPZ) and PfSPZ-CVac (chemo-attenuated PfSPZ). METHODS We conducted a systematic review and meta-analysis by searching PubMed, EMBASE, SCOPUS, CENTRAL, and WOS until 22nd December 2021. We included randomized controlled trials (RCTs) of these two vaccine approaches that measured protection against parasitaemia following controlled human malaria infection (CHMI) in malaria-naive and malaria-exposed adults or following exposure to naturally transmitted Pf malaria in African adults and children (primary outcome) and that also measured the incidence of solicited and unsolicited adverse events as indicators of safety and tolerability after vaccination (secondary outcome). We included randomized controlled trials (RCTs) that measured the detected parasitaemia after vaccination (primary outcome) and the incidence of various solicited and unsolicited adverse events (secondary outcome). The quality of the included RCTs using the Cochrane ROB 1 tool and the quality of evidence using the GRADE system were evaluated. We pooled dichotomous data using the risk ratio (RR) for development of parasitemia in vaccinees relative to controls as a measure of vaccine efficacy (VE), including the corresponding confidence interval (CI). This study was registered with PROSPERO (CRD42022308057). RESULTS We included 19 RCTs. Pooled RR favoured PfSPZ Vaccine (RR: 0.65 with 95% CI [0.53, 0.79], P = 0.0001) and PfSPZ-table (RR: 0.42 with 95% CI [0.27, 0.67], P = 0.0002) for preventing parasitaemia, relative to normal saline placebo. Pooled RR showed no difference between PfSPZ Vaccine and the control in the occurrence of any solicited adverse event (RR: 1.00 with 95% CI [0.82, 1.23], P = 0.98), any local solicited adverse events (RR: 0.73 with 95% CI [0.49, 1.08], P = 0.11), any systemic solicited adverse events (RR: 0.94 with 95% CI [0.75, 1.17], P = 0.58), and any unsolicited adverse event (RR: 0.93 with 95% CI [0.78, 1.10], P = 0.37). CONCLUSION PfSPZ and PfSPZ-CVacs showed comparable efficacy. Therefore, they can introduce a promising strategy for malaria prophylaxis, but more large-scale field trials are required to sustain efficacy and yield clinically applicable findings.
Collapse
Affiliation(s)
| | | | | | - Helmy Badr
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
21
|
Goswami D, Patel H, Betz W, Armstrong J, Camargo N, Patil A, Chakravarty S, Murphy SC, Sim BKL, Vaughan AM, Hoffman SL, Kappe SH. A replication competent Plasmodium falciparum parasite completely attenuated by dual gene deletion. EMBO Mol Med 2024; 16:723-754. [PMID: 38514791 PMCID: PMC11018819 DOI: 10.1038/s44321-024-00057-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Asha Patil
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Malaria cases and deaths decreased from 2000 to 2015 but remain increased since 2019. Several new developments and strategies could help reverse this trend. The purpose of this review is to discuss new World Health Organization (WHO) guidelines and recent research on malaria prevention in children. RECENT FINDINGS Fifteen countries have now rolled out seasonal malaria chemoprophylaxis (SMC) in children at highest risk for severe malaria, and new WHO recommendations provide more flexibility for SMC implementation in terms of target age groups, geographic region, and number of cycles. Recent studies confirm that malaria burden in school aged children, and their contribution to transmission, is high. New guidelines permit expanded chemoprevention options for these children. Two vaccines have been approved for use in malaria endemic countries, RTS,S/AS01 E and R21/Matrix-M. Additionally, pyrethroid-chlorfenapyr bed nets are being deployed to combat resistant mosquitoes. SUMMARY While challenges remain in malaria control towards elimination, new guidelines and recently approved vaccines offer hope. Monitoring for continued vaccine and chemoprevention effectiveness, and for possible epidemiologic shifts in severe malaria presentation and deaths as additional prevention efforts roll out will be paramount.
Collapse
Affiliation(s)
- DeAnna J Friedman-Klabanoff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dennis Adu-Gyasi
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
- Centre for Research in Applied Biology, School of Sciences, University of Energy and Natural Resources, Sunyani, Bono Region, Ghana, West Africa
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Bono East Region, Ghana
| |
Collapse
|
24
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. NPJ Vaccines 2024; 9:12. [PMID: 38200025 PMCID: PMC10781674 DOI: 10.1038/s41541-023-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts to lower morbidity and mortality. Both advanced candidate vaccines, RTS,S and R21, are subunit (SU) vaccines that target a single Plasmodium falciparum (Pf) pre-erythrocytic (PE) sporozoite (spz) surface protein known as circumsporozoite (CS). These vaccines induce humoral immunity but fail to elicit CD8 + T-cell responses sufficient for long-term protection. In contrast, whole-organism (WO) vaccines, such as Radiation Attenuated Sporozoites (RAS), achieved sterile protection but require a series of intravenous doses administered in multiple clinic visits. Moreover, these WO vaccines must be produced in mosquitos, a burdensome process that severely limits their availability. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. The priming dose is a single dose of self-replicating RNA encoding the full-length P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LIONTM). The trapping dose consists of one dose of WO RAS. Our vaccine induces a strong immune response when administered in an accelerated regimen, i.e., either 5-day or same-day immunization. Additionally, mice after same-day immunization showed a 2-day delay of blood patency with 90% sterile protection against a 3-week spz challenge. The same-day regimen also induced durable 70% sterile protection against a 2-month spz challenge. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
- Zachary MacMillen
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Adrian Simpson
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Melanie J Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Jesse H Erasmus
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Amit P Khandhar
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Sean C Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA, 98109, USA
| | - Steven G Reed
- HDT Bio, 1150 Eastlake Ave E, Suite 200A, Seattle, WA, 98109, USA
| | - James W Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle, WA, 98102, USA.
| |
Collapse
|
25
|
Jongo S, Church LP, Milando F, Qassim M, Schindler T, Rashid M, Tumbo A, Nyaulingo G, Bakari BM, Athuman Mbaga T, Mohamed L, Kassimu K, Simon BS, Mpina M, Zaidi I, Duffy PE, Swanson PA, Seder R, Herman JD, Mendu M, Zur Y, Alter G, KC N, Riyahi P, Abebe Y, Murshedkar T, James ER, Billingsley PF, Sim BKL, Richie TL, Daubenberger C, Abdulla S, Hoffman SL. Safety and protective efficacy of PfSPZ Vaccine administered to HIV-negative and -positive Tanzanian adults. J Clin Invest 2024; 134:e169060. [PMID: 38194272 PMCID: PMC10940097 DOI: 10.1172/jci169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/μL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.
Collapse
Affiliation(s)
- Said Jongo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
| | | | | | | | - Tobias Schindler
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Anneth Tumbo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Maxmillian Mpina
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology and
| | | | | | - Robert Seder
- Vaccine Research Center, NIH, Bethesda, Maryland, USA
| | - Jonathan D. Herman
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maanasa Mendu
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yonatan Zur
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natasha KC
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | | | | | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | - Claudia Daubenberger
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
27
|
Juraska M, Early AM, Li L, Schaffner SF, Lievens M, Khorgade A, Simpkins B, Hejazi NS, Benkeser DA, Wang Q, Mercer LD, Adjei S, Agbenyega T, Anderson S, Ansong D, Bii DK, Buabeng PBY, English S, Fitzgerald N, Grimsby J, Kariuki SK, Otieno K, Roman F, Samuels AM, Westercamp N, Ockenhouse CF, Ofori-Anyinam O, Lee CK, MacInnis BL, Wirth DF, Gilbert PB, Neafsey DE. Baseline malaria infection status and RTS,S/AS01E malaria vaccine efficacy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298907. [PMID: 38045387 PMCID: PMC10690350 DOI: 10.1101/2023.11.22.23298907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).
Collapse
|
28
|
Sagara I, Healy SA, Assadou MH, Kone M, Swihart BJ, Kwan JL, Fintzi J, Sissoko K, Kamate B, Samake Y, Guindo MA, Doucoure M, Niaré K, Dolo A, Diarra B, Rausch KM, Narum DL, Jones DS, MacDonald NJ, Zhu D, Gorres JP, Imeru A, Mohan R, Thera I, Zaidi I, Salazar-Miralles F, Duan J, Neal J, Morrison RD, Muratova O, Sylla D, O'Connell EM, Wu Y, Hume JCC, Coulibaly MB, Anderson CF, Traore SF, Doumbo OK, Duffy PE. Malaria transmission-blocking vaccines Pfs230D1-EPA and Pfs25-EPA in Alhydrogel in healthy Malian adults; a phase 1, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1266-1279. [PMID: 37499679 PMCID: PMC10615700 DOI: 10.1016/s1473-3099(23)00276-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Malaria transmission-blocking vaccines target mosquito-stage parasites and will support elimination programmes. Gamete vaccine Pfs230D1-EPA/Alhydrogel induced superior activity to zygote vaccine Pfs25-EPA/Alhydrogel in malaria-naive US adults. Here, we compared these vaccines in malaria-experienced Malians. METHODS We did a pilot safety study then double-blind, block-randomised, comparator-controlled main-phase trial in malaria-intense Bancoumana, Mali. 18-50-year-old healthy non-pregnant, non-breastfeeding consenting adult residents were randomly assigned (1:1:1:1) to receive four doses at months 0, 1, 4·5, and 16·5 of either 47 μg Pfs25, 40 μg Pfs230D1 or comparator (Twinrix or Menactra)-all co-administered with normal saline for blinding-or 47 μg Pfs25 plus 40 μg Pfs230D1 co-administered. We documented safety and tolerability (primary endpoint in the as-treated populations) and immunogenicity (secondary endpoint in the as-treated populations: ELISA, standard-membrane-feeding assay, and mosquito direct skin feed assay). This trial is registered at ClinicalTrials.gov, NCT02334462. FINDINGS Between March 19, and June 2, 2015, we screened 471 individuals. Of 225 enrolled for the pilot and main cohorts, we randomly assigned 25 participants to pilot safety cohort groups of five (20%) to receive a two-dose series of Pfs25-EPA/Alhydrogel (16 μg), Pfs230D1-EPA/Alhydrogel (15 μg) or comparator, followed by Pfs25-EPA/Alhydrogel (16 μg) plus Pfs230D1-EPA/Alhydrogel (15 μg) or comparator plus saline. For the main cohort, we enrolled 200 participants between May 11 and June 2, 2015, to receive a four-dose series of 47 μg Pfs25-EPA/Alhydrogel plus saline (n=50 [25%]; Pfs25), 40 μg Pfs230D1-EPA/Alhydrogel plus saline (n=49 [25%]; Pfs230D1), 47 μg Pfs25-EPA/Alhydrogel plus 40 μg Pfs230D1-EPA/Alhydrogel (n=50 [25%]; Pfs25 plus Pfs230D1), or comparator (Twinrix or Menactra) plus saline (n=51 [25%]). Vaccinations were well tolerated in the pilot safety and main phases. Most vaccinees became seropositive after two Pfs230D1 or three Pfs25 doses; peak titres increased with each dose thereafter (Pfs230D1 geometric mean: 77·8 [95% CI 56·9-106·3], 146·4 [108·3-198·0], and 410·2 [301·6-558·0]; Pfs25 geometric mean 177·7 [130·3-242·4] and 315·7 [209·9-474·6]). Functional activity (mean peak transmission-reducing activity) appeared for Pfs230D1 (74·5% [66·6-82·5]) and Pfs25 plus Pfs230D1 (68·6% [57·3-79·8]), after the third dose and after the fourth dose (88·9% [81·7-96·2] for Pfs230D1 and 85·0% [78·4-91·5] Pfs25 plus Pfs230D1) but not for Pfs25 (58·2% [49·1-67·3] after the third dose and 58·2% [48·5-67·9] after the fourth dose). Pfs230D1 transmission-reducing activity (73·7% [64·1-83·3]) persisted 10 weeks after the fourth dose. Transmission-reducing activity of 80% was estimated at 1659 ELISA units for Pfs25, 218 for Pfs230D1, and 223 for Pfs230D1 plus Pfs25. After 3850 direct skin feed assays, 35 participants (12 Pfs25, eight Pfs230D1, five Pfs25 plus Pfs230D1, and ten comparator) had transmitted parasites at least once. The proportion of positive assays in vaccine groups (Pfs25 33 [3%] of 982 [-0·013 to 0·014], Pfs230D1 22 [2%] of 954 [-0·005 to 0·027], and combination 11 [1%] of 940 [-0·024 to 0·002]) did not differ from that of the comparator (22 [2%] of 974), nor did Pfs230D1 and combination groups differ (-0·024 to 0·001). INTERPRETATION Pfs230D1 but not Pfs25 vaccine induces durable serum functional activity in Malian adults. Direct skin feed assays detect parasite transmission to mosquitoes but increased event rates are needed to assess vaccine effectiveness. FUNDING Intramural Research Program of the National Institute of Allergy and Infectious Diseases and US National Institutes of Health.
Collapse
Affiliation(s)
- Issaka Sagara
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadoun H Assadou
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Mamady Kone
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Bruce J Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Kwan
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kourane Sissoko
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Bourama Kamate
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Yacouba Samake
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - M'Bouye Doucoure
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Karamoko Niaré
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Balla Diarra
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - David S Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ismaila Thera
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Fernando Salazar-Miralles
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Junhui Duan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Daman Sylla
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Elise M O'Connell
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mamadou B Coulibaly
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Charles F Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sekou F Traore
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, Mali- National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
29
|
Abstract
Malaria is a mosquito-borne disease caused by protozoan parasites of the genus Plasmodium. Despite significant declines in malaria-attributable morbidity and mortality over the last two decades, it remains a major public health burden in many countries. This underscores the critical need for improved strategies to prevent, treat and control malaria if we are to ultimately progress towards the eradication of this disease. Ideally, this will include the development and deployment of a highly effective malaria vaccine that is able to induce long-lasting protective immunity. There are many malaria vaccine candidates in development, with more than a dozen of these in clinical development. RTS,S/AS01 (also known as Mosquirix) is the most advanced malaria vaccine and was shown to have modest efficacy against clinical malaria in phase III trials in 5- to 17-month-old infants. Following pilot implementation trials, the World Health Organisation has recommended it for use in Africa in young children who are most at risk of infection with P. falciparum, the deadliest of the human malaria parasites. It is well recognised that more effective malaria vaccines are needed. In this review, we discuss malaria vaccine candidates that have progressed into clinical evaluation and highlight the most advanced candidates: Sanaria's irradiated sporozoite vaccine (PfSPZ Vaccine), the chemoattenuated sporozoite vaccine (PfSPZ-CVac), RTS,S/AS01 and the novel malaria vaccine candidate, R21, which displayed promising, high-level efficacy in a recent small phase IIb trial in Africa.
Collapse
Affiliation(s)
- Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
30
|
Ganley M, Holz LE, Minnell JJ, de Menezes MN, Burn OK, Poa KCY, Draper SL, English K, Chan STS, Anderson RJ, Compton BJ, Marshall AJ, Cozijnsen A, Chua YC, Ge Z, Farrand KJ, Mamum JC, Xu C, Cockburn IA, Yui K, Bertolino P, Gras S, Le Nours J, Rossjohn J, Fernandez-Ruiz D, McFadden GI, Ackerley DF, Painter GF, Hermans IF, Heath WR. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol 2023; 24:1487-1498. [PMID: 37474653 DOI: 10.1038/s41590-023-01562-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Collapse
Affiliation(s)
- Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - John C Mamum
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Calvin Xu
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Shears MJ, Watson FN, Stone BC, Cruz Talavera I, Parthiban C, Matsubara J, Kc N, Sim BKL, Hoffman SL, Murphy SC. Preliminary studies on the immunogenicity of a prime-and-trap malaria vaccine in nonhuman primates. Vaccine 2023; 41:5494-5498. [PMID: 37563050 PMCID: PMC10528330 DOI: 10.1016/j.vaccine.2023.07.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Development of next-generation vaccines against Plasmodium falciparum (Pf) is a priority. Many malaria vaccines target the pre-erythrocytic sporozoite (SPZ) and liver stages. These include subunit vaccines based on the Pf circumsporozoite protein (CSP) and attenuated PfSPZ vaccines. However, these strategies require 3-4 doses and have not achieved optimal efficacy against field-transmitted malaria. Prime-and-trap is a recently developed two-step heterologous vaccine strategy that combines priming with DNA encoding CSP followed by a single dose of attenuated SPZ. This strategy aims to induce CD8+ T cells that can eliminate parasites in the liver. Prior data has demonstrated that prime-and-trap with P. yoelii CSP and PySPZ was immunogenic and protective in mice. Here we report preliminary data on the immunogenicity of PfCSP prime and PfSPZ trap vaccine in rhesus macaques. This vaccine induced PfCSP-specific antibodies and T cell responses in all animals. However, response magnitude differed between individuals, suggesting further study is required.
Collapse
Affiliation(s)
- Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.
| | - Felicia N Watson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Brad C Stone
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Chaitra Parthiban
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Jokichi Matsubara
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Natasha Kc
- Sanaria Inc., Rockville, MD, United States
| | | | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Department of Microbiology, University of Washington, Seattle, WA, United States; Washington National Primate Research Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
32
|
MacMillen Z, Hatzakis K, Simpson A, Shears M, Watson F, Erasmus J, Khandhar A, Wilder B, Murphy S, Reed S, Davie J, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. RESEARCH SQUARE 2023:rs.3.rs-3045076. [PMID: 37461621 PMCID: PMC10350175 DOI: 10.21203/rs.3.rs-3045076/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
|
33
|
MacMillen Z, Hatzakis K, Simpson A, Shears MJ, Watson F, Erasmus JH, Khandhar AP, Wilder B, Murphy SC, Reed SG, Davie JW, Avril M. Accelerated prime-and-trap vaccine regimen in mice using repRNA-based CSP malaria vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541932. [PMID: 37292739 PMCID: PMC10245832 DOI: 10.1101/2023.05.23.541932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria, caused by Plasmodium parasites, remains one of the most devastating infectious diseases worldwide, despite control efforts that have lowered morbidity and mortality. The only P. falciparum vaccine candidates to show field efficacy are those targeting the asymptomatic pre-erythrocytic (PE) stages of infection. The subunit (SU) RTS,S/AS01 vaccine, the only licensed malaria vaccine to date, is only modestly effective against clinical malaria. Both RTS,S/AS01 and the SU R21 vaccine candidate target the PE sporozoite (spz) circumsporozoite (CS) protein. These candidates elicit high-titer antibodies that provide short-term protection from disease, but do not induce the liver-resident memory CD8+ T cells (Trm) that confer strong PE immunity and long-term protection. In contrast, whole-organism (WO) vaccines, employing for example radiation-attenuated spz (RAS), elicit both high antibody titers and Trm, and have achieved high levels of sterilizing protection. However, they require multiple intravenous (IV) doses, which must be administered at intervals of several weeks, complicating mass administration in the field. Moreover, the quantities of spz required present production difficulties. To reduce reliance on WO while maintaining protection via both antibodies and Trm responses, we have developed an accelerated vaccination regimen that combines two distinct agents in a prime-and-trap strategy. While the priming dose is a self-replicating RNA encoding P. yoelii CS protein, delivered via an advanced cationic nanocarrier (LION™), the trapping dose consists of WO RAS. This accelerated regime confers sterile protection in the P. yoelii mouse model of malaria. Our approach presents a clear path to late-stage preclinical and clinical testing of dose-sparing, same-day regimens that can confer sterilizing protection against malaria.
Collapse
Affiliation(s)
| | - Kiara Hatzakis
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - Melanie J. Shears
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Felicia Watson
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | | | | | - Brandon Wilder
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Building 1, Room 2220, 505 NW 185th Ave, Beaverton, OR 97006
| | - Sean C. Murphy
- University of Washington, Department of Laboratory Medicine and Pathology, 750 Republican St., F870, Seattle, WA 98109
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Suite 280, Seattle WA 98102
| | - James W. Davie
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| | - Marion Avril
- MalarVx, Inc 1551 Eastlake Ave E, Suite 100, Seattle WA 98102
| |
Collapse
|
34
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
35
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
36
|
Duffy FJ, Hertoghs N, Du Y, Neal ML, Oyong D, McDermott S, Minkah N, Carnes J, Schwedhelm KV, McElrath MJ, De Rosa SC, Newell E, Aitchison JD, Stuart K. Longitudinal immune profiling after radiation-attenuated sporozoite vaccination reveals coordinated immune processes correlated with malaria protection. Front Immunol 2022; 13:1042741. [PMID: 36591224 PMCID: PMC9798120 DOI: 10.3389/fimmu.2022.1042741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Damian Oyong
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Suzanne McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Evan Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| |
Collapse
|
37
|
Gaoussou S, Attaher O, Swihart B, Traore M, Diarra S, Soumbounou IH, Ndiaye O, Issiaka D, Morrison R, Mahamar A, Duffy PE, Dicko A, Fried M. Pregnancy outcomes in a malaria-exposed Malian cohort of women of child-bearing age. Front Med (Lausanne) 2022; 9:1061538. [PMID: 36569122 PMCID: PMC9772013 DOI: 10.3389/fmed.2022.1061538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
In Sub-Saharan Africa, malaria continues to be associated with adverse pregnancy outcomes including stillbirth, early neonatal death, preterm delivery, and low birth weight. Current preventive measures are insufficient and new interventions are urgently needed. However, before such interventions can be tested in pregnant women, background information on pregnancy outcomes in this target population must be collected. We conducted an observational study in Ouélessébougou, Mali, a malaria-endemic area where first antenatal visit commonly occurs during the second trimester of pregnancy, hindering calculation of miscarriage rate in the population. To accurately determine the rate of miscarriage, 799 non-pregnant women of child-bearing age were enrolled and surveyed via monthly follow up visits that included pregnancy tests. Out of 505 women that completed the study, 364 became pregnant and 358 pregnancies were analyzed: 43 (12%) resulted in miscarriage, 28 (65.1%) occurred during the first trimester of pregnancy. We also determined rates of stillbirth, neonatal death, preterm delivery, and small for gestational age. The results showed high rate of miscarriage during the first trimester and established a basis to evaluate new interventions to prevent pregnancy malaria. This survey design enabled identification of first trimester miscarriages that are often missed by studies conducted in antenatal clinics. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT0297 4608].
Collapse
Affiliation(s)
- Santara Gaoussou
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bruce Swihart
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Moussa Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Soumaila Diarra
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H. Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Oulematou Ndiaye
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Michal Fried,
| |
Collapse
|
38
|
Sirima SB, Ouédraogo A, Tiono AB, Kaboré JM, Bougouma EC, Ouattara MS, Kargougou D, Diarra A, Henry N, Ouédraogo IN, Billingsley PF, Manoj A, Abebe Y, Kc N, Ruben A, Richie TL, James ER, Joshi S, Shrestha B, Strauss K, Lyke KE, Plowe CV, Potter GE, Cox C, Jones W, Sim BKL, Hoffman SL, Laurens MB. A randomized controlled trial showing safety and efficacy of a whole sporozoite vaccine against endemic malaria. Sci Transl Med 2022; 14:eabj3776. [PMID: 36475905 PMCID: PMC10041996 DOI: 10.1126/scitranslmed.abj3776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly effective malaria vaccine remains elusive despite decades of research. Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), a metabolically active, nonreplicating, whole parasite vaccine demonstrated safety and vaccine efficacy (VE) against endemic P. falciparum for 6 months in Malian adults receiving a five-dose regimen. Safety, immunogenicity, and VE of a three-dose regimen were assessed in adults in Balonghin, Burkina Faso in a two-component study: an open-label dose escalation trial with 32 participants followed by a double-blind, randomized, placebo-controlled trial (RCT) with 80 participants randomized to receive three doses of 2.7 × 106 PfSPZ (N = 39) or normal saline (N = 41) just before malaria season. To clear parasitemia, artesunate monotherapy was administered before first and last vaccinations. Thick blood smear microscopy was performed on samples collected during illness and every 4 weeks for 72 weeks after last vaccinations, including two 6-month malaria transmission seasons. Safety outcomes were assessed in all 80 participants who received at least one dose and VE for 79 participants who received three vaccinations. Myalgia was the only symptom that differed between groups. VE (1 - risk ratio; primary VE endpoint) was 38% at 6 months (P = 0.017) and 15% at 18 months (0.078). VE (1 - hazard ratio) was 48% and 46% at 6 and 18 months (P = 0.061 and 0.018). Two weeks after the last dose, antibodies to P. falciparum circumsporozoite protein and PfSPZ were higher in protected versus unprotected vaccinees. A three-dose regimen of PfSPZ Vaccine demonstrated safety and efficacy against malaria infection in malaria-experienced adults.
Collapse
Affiliation(s)
- Sodiomon B Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean M Kaboré
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C Bougouma
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Maurice S Ouattara
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa N Ouédraogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso.,Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | | | | | | | | | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Walter Jones
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Matthew B Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Eappen AG, Li T, Marquette M, Chakravarty S, Kc N, Zanghi G, Hoffman BU, Hettiarachchi H, Patil A, Abebe Y, Tran C, Yossef AA, McWilliams I, Morrison RD, Rathakrishnan A, Inbar E, Aly ASI, De La Vega P, Belmonte M, Sedegah M, Wai T, Campo JJ, King H, Kappe SHI, Li M, Billingsley PF, Sim BKL, Hoffman SL. In vitro production of infectious Plasmodium falciparum sporozoites. Nature 2022; 612:534-539. [PMID: 36477528 DOI: 10.1038/s41586-022-05466-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.
Collapse
Affiliation(s)
| | - Tao Li
- Sanaria, Rockville, MD, USA
| | | | | | - Natasha Kc
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Benjamin U Hoffman
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, UCSF, San Francisco, CA, USA
| | - Hashani Hettiarachchi
- Sanaria, Rockville, MD, USA
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, USA
| | | | | | | | | | | | - Robert D Morrison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Tint Wai
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | - Harley King
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - MingLin Li
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | |
Collapse
|
40
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Kayentao K, Ongoiba A, Preston AC, Healy SA, Doumbo S, Doumtabe D, Traore A, Traore H, Djiguiba A, Li S, Peterson ME, Telscher S, Idris AH, Kisalu NK, Carlton K, Serebryannyy L, Narpala S, McDermott AB, Gaudinski M, Traore S, Cisse H, Keita M, Skinner J, Hu Z, Zéguimé A, Ouattara A, Doucoure M, Dolo A, Djimdé A, Traore B, Seder RA, Crompton PD. Safety and Efficacy of a Monoclonal Antibody against Malaria in Mali. N Engl J Med 2022; 387:1833-1842. [PMID: 36317783 PMCID: PMC9881676 DOI: 10.1056/nejmoa2206966] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).
Collapse
Affiliation(s)
- Kassoum Kayentao
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Aissata Ongoiba
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Anne C Preston
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Sara A Healy
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Safiatou Doumbo
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Didier Doumtabe
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Abdrahamane Traore
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Hamadi Traore
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Adama Djiguiba
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Shanping Li
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Mary E Peterson
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Shinyi Telscher
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Azza H Idris
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Neville K Kisalu
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Kevin Carlton
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Leonid Serebryannyy
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Sandeep Narpala
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Adrian B McDermott
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Martin Gaudinski
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Siriman Traore
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Hamidou Cisse
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Mamadou Keita
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Jeff Skinner
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Zonghui Hu
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Amatigué Zéguimé
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Adama Ouattara
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - M'Bouye Doucoure
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Amagana Dolo
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Abdoulaye Djimdé
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Boubacar Traore
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Robert A Seder
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| | - Peter D Crompton
- From the Malaria Research and Training Center, Mali International Center for Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, H.C., M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); and the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., S.L., M.E.P., J.S., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, and the Vaccine Research Center, NIAID, NIH, Bethesda (S. Telscher, A.H.I., N.K.K., K.C., L.S., S.N., A.B.M., M.G., R.A.S.) - all in Maryland
| |
Collapse
|
42
|
Creation and preclinical evaluation of genetically attenuated malaria parasites arresting growth late in the liver. NPJ Vaccines 2022; 7:139. [PMCID: PMC9636417 DOI: 10.1038/s41541-022-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWhole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.
Collapse
|
43
|
KC N, Church LWP, Riyahi P, Chakravarty S, Seder RA, Epstein JE, Lyke KE, Mordmüller B, Kremsner PG, Sissoko MS, Healy S, Duffy PE, Jongo SA, Nchama VUNN, Abdulla S, Mpina M, Sirima SB, Laurens MB, Steinhardt LC, Oneko M, Li M, Murshedkar T, Billingsley PF, Sim BKL, Richie TL, Hoffman SL. Increased levels of anti-PfCSP antibodies in post-pubertal females versus males immunized with PfSPZ Vaccine does not translate into increased protective efficacy. Front Immunol 2022; 13:1006716. [PMID: 36389797 PMCID: PMC9641621 DOI: 10.3389/fimmu.2022.1006716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.
Collapse
Affiliation(s)
- Natasha KC
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | - Robert A. Seder
- Vaccine Research Center, National Institute of Heath, Bethesda, MD, United States
| | - Judith E. Epstein
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Centre de Recherches Medicales de Lambaréné, Lambaréné, Gabon
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center (MRTC), Mali National Institute of Allergy and Infectious Diseases International Centers for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sara Healy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Said A. Jongo
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Salim Abdulla
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maxmillian Mpina
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - MingLin Li
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | | | - Stephen L. Hoffman
- Sanaria Inc., Rockville, MD, United States
- *Correspondence: Stephen L. Hoffman,
| |
Collapse
|
44
|
Coulibaly D, Kone AK, Traore K, Niangaly A, Kouriba B, Arama C, Zeguime A, Dolo A, Lyke KE, Plowe CV, Abebe Y, Potter GE, Kennedy JK, Galbiati SM, Nomicos E, Deye GA, Richie TL, James ER, KC N, Sim BKL, Hoffman SL, Doumbo OK, Thera MA, Laurens MB. PfSPZ-CVac malaria vaccine demonstrates safety among malaria-experienced adults: A randomized, controlled phase 1 trial. EClinicalMedicine 2022; 52:101579. [PMID: 35928033 PMCID: PMC9343417 DOI: 10.1016/j.eclinm.2022.101579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. METHODS Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. FINDINGS 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. INTERPRETATION PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. FUNDING U.S. National Institutes of Health, Sanaria. REGISTRATION NUMBER ClinicalTrials.gov identifier (NCT number): NCT02996695.
Collapse
Key Words
- ALT, alanine aminotransferase
- CHMI, Controlled Human Malaria Infection
- CQ, chloroquine
- CSP, circumsporozoite protein
- DOT, directly observed therapy
- DVI, direct venous inoculation
- ELISA, enzyme linked immunosorbent assay
- HR, hazard ratio
- Malaria vaccine
- PCR, polymerase chain reaction
- Pf, Plasmodium falciparum
- PfSPZ Vaccine
- PfSPZ-CVac
- PfSPZ-CVac, Plasmodium falciparum Sporozoite Chemoprophylaxis Vaccine
- Plasmodium falciparum
- SMC, safety monitoring committee
- SPZ, sporozoite
- Sporozoite
- TBS, thick blood smear
- VE, vaccine efficacy
Collapse
Affiliation(s)
- Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
- Corresponding author.
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Charles Arama
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Effie Nomicos
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, U. S. National Institutes of Health, Bethesda, MD, United States
| | - Gregory A. Deye
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, U. S. National Institutes of Health, Bethesda, MD, United States
| | | | | | | | | | | | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
45
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
46
|
Murphy SC, Vaughan AM, Kublin JG, Fishbauger M, Seilie AM, Cruz KP, Mankowski T, Firat M, Magee S, Betz W, Kain H, Camargo N, Haile MT, Armstrong J, Fritzen E, Hertoghs N, Kumar S, Sather DN, Pinder LF, Deye GA, Galbiati S, Geber C, Butts J, Jackson LA, Kappe SH. A genetically engineered Plasmodium falciparum parasite vaccine provides protection from controlled human malaria infection. Sci Transl Med 2022; 14:eabn9709. [PMID: 36001680 PMCID: PMC10423335 DOI: 10.1126/scitranslmed.abn9709] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.
Collapse
Affiliation(s)
- Sean C. Murphy
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
- Department of Microbiology, University of Washington; Seattle, WA 98109
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| | - James G. Kublin
- Department of Global Health, University of Washington; Seattle, WA 98195
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA 98109
| | - Matthew Fishbauger
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Kurtis P. Cruz
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Tracie Mankowski
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Melike Firat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sara Magee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Heather Kain
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Emma Fritzen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Leeya F. Pinder
- Department of Obstetrics and Gynecology, University of Washington; Seattle, WA 98195
| | - Gregory A. Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, United States
| | | | - Casey Geber
- The Emmes Company; Rockville, MD, United States
| | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute; Seattle, WA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Global Health, University of Washington; Seattle, WA 98195
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| |
Collapse
|
47
|
Mordmüller B, Sulyok Z, Sulyok M, Molnar Z, Lalremruata A, Calle CL, Bayon PG, Esen M, Gmeiner M, Held J, Heimann HL, Woldearegai TG, Ibáñez J, Flügge J, Fendel R, Kreidenweiss A, Kc N, Murshedkar T, Chakravarty S, Riyahi P, Billingsley PF, Church LWP, Richie TL, Sim BKL, Hoffman SL, Kremsner PG. A PfSPZ vaccine immunization regimen equally protective against homologous and heterologous controlled human malaria infection. NPJ Vaccines 2022; 7:100. [PMID: 35999221 PMCID: PMC9396563 DOI: 10.1038/s41541-022-00510-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ) in PfSPZ Vaccine, has provided better vaccine efficacy (VE) against controlled human malaria infection (CHMI) with the same parasites as in the vaccine (homologous) than with genetically distant parasites (heterologous). We sought to identify an immunization regimen that provided similar VE against CHMI with homologous and heterologous Pf for at least 9 weeks in malaria-naïve adults. Such a regimen was identified in part 1 (optimization), an open label study, and confirmed in part 2 (verification), a randomized, double-blind, placebo-controlled study in which VE was assessed by cross-over repeat CHMI with homologous (PfNF54) and heterologous (Pf7G8) PfSPZ at 3 and 9-10 weeks. VE was calculated using Bayesian generalized linear regression. In part 1, vaccination with 9 × 105 PfSPZ on days 1, 8, and 29 protected 5/5 (100%) subjects against homologous CHMI at 3 weeks after the last immunization. In part 2, the same 3-dose regimen protected 5/6 subjects (83%) against heterologous CHMI at both 3 and 9-10 weeks after the last immunization. Overall VE was 78% (95% predictive interval: 57-92%), and against heterologous and homologous was 79% (95% PI: 54-95%) and 77% (95% PI: 50-95%) respectively. PfSPZ Vaccine was safe and well tolerated. A 4-week, 3-dose regimen of PfSPZ Vaccine provided similar VE for 9-10 weeks against homologous and heterologous CHMI. The trial is registered with ClinicalTrials.gov, NCT02704533.
Collapse
Affiliation(s)
- Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Zita Sulyok
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Mihály Sulyok
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Zsofia Molnar
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Albert Lalremruata
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Carlos Lamsfus Calle
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Patricia Granados Bayon
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Meral Esen
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Markus Gmeiner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jana Held
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Henri-Lynn Heimann
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Tamirat Gebru Woldearegai
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Javier Ibáñez
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Judith Flügge
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Natasha Kc
- Sanaria Inc., Rockville, MD, USA
- Protein Potential, LLC, Rockville, MD, USA
| | | | | | | | | | | | | | - B Kim Lee Sim
- Sanaria Inc., Rockville, MD, USA
- Protein Potential, LLC, Rockville, MD, USA
| | | | - Peter G Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
48
|
James ER, Matheny S, Overby J, Sim BKL, Eappen AG, Li T, Li ML, Richie TL, Chakravarty S, Gunasekera A, Murshedkar T, Billingsley PF, Hoffman SL. A First for Human Vaccinology: GMP Compliant Radiation Attenuation of Plasmodium falciparum Sporozoites for Production of a Vaccine Against Malaria. Front Immunol 2022; 13:851028. [PMID: 35242146 PMCID: PMC8886114 DOI: 10.3389/fimmu.2022.851028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Ionizing radiation (UV, X-ray and ɣ) administered at an appropriate dose to pathogenic organisms can prevent replication while preserving metabolic activity. We have established the GMP process for attenuation by ionizing radiation of the Plasmodium falciparum (Pf) sporozoites (SPZ) in Sanaria® PfSPZ Vaccine, a protective vaccine against malaria. Mosquitoes raised and infected aseptically with Pf were transferred into infected mosquito transport containers (IMTC) and ɣ-irradiated using a 60Co source. PfSPZ were then extracted, purified, vialed, and cryopreserved. To establish the appropriate radiation conditions, the irradiation field inside the IMTCs was mapped using radiochromic film and alanine transfer dosimeters. Dosimeters were irradiated for times calculated to provide 120-170 Gy at the minimum dose location inside the IMTC and regression analysis was used to determine the time required to achieve a lower 95% confidence interval for 150 Gy. A formula incorporating the half-life of 60Co was then used to construct tables of irradiation times for each calendar day. From the mapping studies, formulae were derived to estimate the minimum and maximum doses of irradiation received inside the IMTC from a reference dosimeter mounted on the outside wall. For PfSPZ Vaccine manufacture a dose of 150 Gy was targeted for each irradiation event, a dose known to completely attenuate PfSPZ. The reference dosimeters were processed by the National Institute of Standards and Technology. There have been 587 irradiation events to produce PfSPZ Vaccine during 13 years which generated multiple lots released for pre-clinical studies and clinical trials. The estimated doses at the minimum dose location (mean 154.3 ± 1.77 Gy; range 150.0-159.3 Gy), and maximum dose location (mean 166.3 ± 3.65 Gy, range 155.7 to 175.3 Gy), in IMTCs were normally distributed. Overall dose uniformity was 1.078 ± 0.012. There was no siginifcant change in measured dose over 13 years. As of January 2022, 21 clinical trials of PfSPZ Vaccine have been conducted, with 1,740 volunteers aged 5 months to 61 years receiving 5,648 doses of PfSPZ Vaccine totalling >5.3 billion PfSPZ administered. There have been no breakthrough infections, confirming the consistency and robustness of the radiation attenuation process.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Li
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pavli A, Maltezou HC. Travel vaccines throughout history. Travel Med Infect Dis 2022; 46:102278. [PMID: 35167951 PMCID: PMC8837496 DOI: 10.1016/j.tmaid.2022.102278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Vaccinations are an important component of travel medicine. Beyond protection of travelers, vaccines are administered to prevent the importation of vaccine-preventable diseases at home and at destination. Proof of immunization to travel dates back to the first smallpox vaccine, developed by Edward Jenner in 1796. However, it took one century to generate the next vaccines against cholera, rabies, and typhoid fever. During the 20th century the armamentarium of vaccines used in travelers largely expanded with yellow fever, poliomyelitis, tetravalent meningococcal, and hepatitis A vaccines. The International Certificate of Inoculation and Vaccination was implemented in 1933. Currently there are vaccines administered to travelers following risk assessment, but also vaccines required according to the 2005 International Health Regulations and vaccines required at certain countries. Finally, within less than one year after the declaration of the coronavirus disease 2019 (COVID-19) pandemic, the first COVID-19 vaccines were launched and approved for emergency use to control the pandemic. Despite practical and ethical challenges, COVID-19 vaccine verifications have been widely used since spring 2021 in many activities, including international travel. In this article, we review the course of development of travel vaccines focusing on those for which a proof of vaccination has been or is required.
Collapse
Affiliation(s)
- Androula Pavli
- Department of Travel Medicine, National Public Health Organization, Athens, Greece
| | - Helena C Maltezou
- Directorate of Research, Studies, and Documentation, National Public Health Organization, Athens, Greece.
| |
Collapse
|
50
|
Zaidi I, Duffy PE. PfSPZ Vaccine learns a lesson. MED 2021; 2:1289-1291. [PMID: 35590146 PMCID: PMC11127246 DOI: 10.1016/j.medj.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Kenya, the first trial of the attenuated whole organism PfSPZ Vaccine in infants has shown little efficacy against malaria infection, whereas trials in African adults have repeatedly observed protection. Differences in immune responses offer clues to the possible reasons.
Collapse
Affiliation(s)
- Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA.
| |
Collapse
|