1
|
Tian Y, Hu L, Huang Q, Qi J, Shen L, Wang G, Yu W, Hu T. A SARS-CoV-2 mucosal nanovaccine based on assembly of maltodextrin, STING agonist and polyethyleneimine. Int J Biol Macromol 2025:139395. [PMID: 39756748 DOI: 10.1016/j.ijbiomac.2024.139395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/17/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
SARS-CoV-2 has the characteristics of strong transmission with severe morbidity and mortality. Protein-based vaccines have the properties of specificity, effectiveness and safety against SARS-CoV-2. Receptor-binding domain (RBD) homotrimer affords high protection efficacy against stringent lethal viral challenge. Mucosal immunity could block the infection that first infect and replicate in the upper airway mucosa. Due to the physical barriers of the mucosa, mucosal vaccines necessitated appropriate adjuvants and delivery system. In the present study, maltodextrin, PEI and 2',3'-cGAMP acted as the mucosal adjuvants and RBD trimer as the antigen. A mucosal nanovaccine was prepared by assembly of adjuvants and the antigen to a nanoparticle. The vaccine elicited strong serum RBD-specific IgG and IgA response, and mild mucosal IgA and IgG response in the respiratory tract. It stimulated strong neutralizing antibody response and high ACE2-blocking activity in the sera. It promoted the RBD-specific CD4+ and CD8+ T cells secreting IFN-γ, IL-4 and IL-17 A. Moreover, it elicited durable RBD-specific memory T and B memory cell response, activated the T and B cells, enhanced the cytotoxic T cell killing effect, and promoted the maturation of DCs. These findings suggested the clinical potential of the vaccine to combat against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Tian
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijia Hu
- School of International Relations, Beijing Language and Culture University, Beijing 100083, China
| | | | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Mendes S, Guimarães LC, Costa PAC, Fernandez CC, Figueiredo MM, Teixeira MM, dos Santos RAS, Guimarães PPG, Frézard F. Intranasal liposomal angiotensin-(1-7) administration reduces inflammation and viral load in the lungs during SARS-CoV-2 infection in K18-hACE2 transgenic mice. Antimicrob Agents Chemother 2024; 68:e0083524. [PMID: 39470198 PMCID: PMC11619396 DOI: 10.1128/aac.00835-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
To effectively reduce the health impact of coronavirus disease (COVID-19), it is essential to adopt comprehensive strategies to protect individuals from severe acute respiratory syndrome. In that sense, much effort has been devoted to the discovery and repurposing of effective antiviral and anti-inflammatory molecules. The endogenous peptide angiotensin-(1-7) [Ang-(1-7)] has been recently proposed as a promising anti-inflammatory agent to control respiratory infections. Liposomes also emerged as a safe and effective drug carrier system for local drug delivery to the lungs. In this context, the aim of this study was to develop a liposomal formulation of Ang-(1-7) [LAng (1-7)] and investigate its impact on animal survival as well as its antiviral and anti-inflammatory efficacies after intranasal administration in transgenic K18-hACE2 mice infected with SARS-CoV-2. The liposomal formulation was prepared by the ethanol injection method, exhibiting a mean diameter of 100 nm and a polydispersity index of 0.1. Following treatment of infected mice every 12 hours for 5 days, LAng (1-7) extended animal survival compared to the control groups that received either empty liposomes, free Ang-(1-7), or phosphate-buffered saline. Furthermore, the treatment with LAng (1-7) significantly decreased the viral load, as well as IL-6 and tumor necrosis factor levels in the lungs. Conventional treatment with remdesivir by parenteral route used as a positive control promoted similar effects, leading to improved survival rates and reduced viral load in the lungs without significant effects on IL-6 level. In conclusion, liposomal Ang-(1-7) emerges as a promising formulation to improve the treatment and decrease the severity of respiratory infections, such as COVID-19.
Collapse
Affiliation(s)
- Sabrina Mendes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lays Cordeiro Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Couto Fernandez
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Mallah N, Visos-Varela I, Takkouche B, Bugarín-González R, Piñeiro-Lamas M, Herdeiro T, Zapata-Cachafeiro M, Rodríguez-Fernández A, Salgado-Barreira A, Figueiras A. The role of traditional NSAIDs and selective COX-2 inhibitors on COVID-19 outcomes: a real-world data study. Inflammopharmacology 2024; 32:3697-3705. [PMID: 39312097 PMCID: PMC11550288 DOI: 10.1007/s10787-024-01568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/31/2024] [Indexed: 11/10/2024]
Abstract
The relation between use of nonsteroidal anti-inflammatory drugs (NSAIDs) and severity of COVID-19 has been the subject to debate since the outbreak of the pandemic. Despite speculations about the possible harmful or protective effects, the position currently most supported by the scientific community is that there is no association between use of NSAIDs and COVID-19 outcomes. With the aim of contributing to increase the body of evidence on this issue, we conducted a case-control study using real-world data to investigate the association between prior use of NSAIDs, by active ingredient and type (traditional NSAIDs and selective COX-2 inhibitors), and important COVID-19-related outcomes, including susceptibility, PCR + patient progression, and hospitalisation. Our findings suggest that, in general, the use of traditional NSAIDs is not associated with any adverse COVID-19 outcome. However, we observed a possible association between diclofenac and a higher risk of PCR + patient progression. Our results also suggest that selective COX-2 inhibitors might be related with a reduction in the risk of PCR + patient progression. These results suggest that, with the possible exception of diclofenac, the use of NSAIDs should not be advised against for relief of symptoms in patients with COVID-19. In addition, they support the importance of continue to investigate the treatment potential of selective COX-2 inhibitors in the management of COVID-19, something that could have significant implications for the treatment of this disease and other viral infections.
Collapse
Affiliation(s)
- Narmeen Mallah
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Institute of Health Research of Santiago de Compostela de Compostela, Santiago de Compostela, Spain
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
| | - Irene Visos-Varela
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Institute of Health Research of Santiago de Compostela de Compostela, Santiago de Compostela, Spain.
- WHO Collaborating Centre for Vaccine Safety, Santiago de Compostela, Spain.
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain.
| | - Bahi Takkouche
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
- Institute of Health Research of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rosendo Bugarín-González
- Centro de Salud de Monforte de Lemos, Área Sanitaria de Lugo, A Mariña e Monforte de Lemos, SERGAS, Monforte de Lemos, Lugo, Spain
| | - María Piñeiro-Lamas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
| | - Teresa Herdeiro
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Maruxa Zapata-Cachafeiro
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
- Institute of Health Research of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Almudena Rodríguez-Fernández
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
- Institute of Health Research of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Salgado-Barreira
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
- Institute of Health Research of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adolfo Figueiras
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, C/ San Francisco s/n, 15782, Santiago de Compostela, Spain
- Institute of Health Research of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
Lee GB, Kim Y, Lee KE, Vinayagam R, Singh M, Kang SG. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl Biochem Biotechnol 2024; 196:8431-8452. [PMID: 39096472 DOI: 10.1007/s12010-024-05003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Flavonols effectively scavenge the reactive nitrogen species (RNS) and reactive oxygen species (ROS) and act as immune-enhancing, anti-inflammatory, anti-diabetic, and anti-carcinogenic agents. Here, we explored the comparative antioxidant and anti-inflammatory properties of plant-originating flavonols, like quercetin, rutin, and troxerutin against acetylsalicylic acid. Quercetin and rutin showed a high ability to remove active ROS, but troxerutin and acetylsalicylic acid exhibited little such function. In RAW 264.7 cells, quercetin, rutin, and troxerutin did not exhibit cellular toxicity at low concentrations. In addition, quercetin, rutin, and troxerutin considerably (p < 0.05) lowered the protein expression of cyclooxygenase 2 (COX-2) as compared to acetylsalicylic acid in cells inflamed with lipopolysaccharides (LPS). Additionally, in inflamed cells, quercetin and rutin significantly down-regulated the nitrogen oxide (NO) level (p < 0.05) at higher concentrations, whereas Troxerutin did not reduce the NO level. In addition, Troxerutin down-regulated the pro-inflammatory protein markers, such as TNF-α, COX-2, NF-κB, and IL-1β better than quercetin, rutin, and acetylsalicylic acid. We observed that troxerutin exhibited a significantly greater anti-inflammatory effect than acetylsalicylic acid did. Acetylsalicylic acid did not significantly down-regulated the expression of COX-2 and TNF-α (p < 0.05) compared to troxerutin. Hence, it can be concluded that the down-regulation of NO levels and the expression of COX-2 and TNF-α proteins could be mechanisms of action for the natural compounds quercetin, rutin, and troxerutin in preventing inflammation.
Collapse
Affiliation(s)
- Gi Baek Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yohan Kim
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyung Eun Lee
- Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
da Silva Amorim AF, Sobalvarro JVM, Torres LH, Dos Reis TM. Sotrovimab in the treatment of coronavirus disease-2019 (COVID-19): a systematic review and meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9573-9589. [PMID: 39031183 DOI: 10.1007/s00210-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
This study was carried out to verify the evidence regarding the effectiveness and safety of sotrovimab in patients with COVID-19. This is a systematic review of randomized clinical trials retrieved from the PubMed, Embase, Scopus, Lilacs, and Cochrane Library databases. The risk of bias was measured using the Cochrane Risk and Bias Checklist (RoB 2). For the meta-analysis, RStudio Version 2024.04.2 software was used. The certainty of evidence was assessed using GRADE. The study protocol was registered in PROSPERO (CRD42022355786). A total of 1893 studies were identified and four were included in the study. The total population consisted of 5470 patients with COVID-19, 1921 (35%) in the sotrovimab group and 3549 (65%) in the control group (placebo or BRII-196 + BRII-198 or casirivimab + imdevimab or bamlanivimab + etesevimab, administered in a similar way to sotrovimab, in a single dose with a 60-min intravenous infusion). For the effectiveness outcome, three studies presented low risk and one high risk of bias, while for safety all presented high risk of bias. The meta-analysis showed no significant difference between the sotrovimab and control groups in terms of hospitalization rates (95% confidence interval (CI) - 2.10-0.51; p = 0 > 0.05), use of invasive mechanical ventilation (95% CI - 2.78-0.65; p = 0.35) and mortality (95% CI - 0.92-0.59; p = 0.39). However, sensitivity analysis showed that sotrovimab may be effective in reducing hospitalization rates compared to the control (IV = - 1.57; 95% CI - 2.41-0.73; p = 0.99). The use of sotrovimab in the treatment of patients with COVID-19 had no significant impact on mortality and need for mechanical ventilation and did not appear to be safer compared to controls. However, there was evidence of effectiveness in reducing the rate of hospitalization, although the certainty of the evidence is moderate and the risk of bias is high.
Collapse
Affiliation(s)
- Ana Flávia da Silva Amorim
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Larissa Helena Torres
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| | - Tiago Marques Dos Reis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
6
|
Lai S, Min S. Perioperative cardiovascular risk and preventions of patients with post-COVID-19 condition. Heliyon 2024; 10:e39345. [PMID: 39640715 PMCID: PMC11620228 DOI: 10.1016/j.heliyon.2024.e39345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
COVID-19 infectious is still a widely prevalent disease today. Although most patients with COVID-19 infection are mild. Some patients still develop to post-COVID-19 conditions, significantly increasing the perioperative cardiovascular risks. To better assess and prevent the perioperative cardiovascular risks of patients with COVID-19 infection, the safety and effectiveness of clinical practice can be improved through comprehensive measures, such as medical history collection, detection of symptoms and signs, application of auxiliary examinations, selection of scales and related rehabilitation treatment.
Collapse
Affiliation(s)
- Sixu Lai
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
7
|
Burlacu R, Bourdin V, Blin P, Camaioni F, Clairaz B, Lantéri-Minet M, Laroche F, Raineri F, Perrot S, Stahl JP, Thurin NH, Mouly S. [Over-the-counter non-steroidal anti-inflammatory medications: Focus on the management of acute pain]. Therapie 2024:S0040-5957(24)00177-X. [PMID: 39532557 DOI: 10.1016/j.therap.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the second most widely used class of analgesics in France, after paracetamol. Some NSAIDs are available over the counter (OTC), without a prescription, on the advice of a pharmacist. NSAIDs have recently been the subject of safety alerts from France's Agence nationale de sécurité du médicament et des produits de santé (ANSM), highlighting a risk of worsening certain bacterial infections. This signal has not been confirmed by the European Medicines Agency (EMA) although a "risk of complications due to masking of symptoms of infection" has not been ruled out. These divergent messages can be confusing for healthcare professionals. This literature review, based on an analysis of nearly 200 scientific publications, considers the place of NSAIDs in the OTC management of migraine, tension headaches, postoperative analgesia, acute musculoskeletal and joint pain, dysmenorrhea, viral respiratory infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their toxicity. The role of the pharmacist in dispensing NSAIDs without a prescription is also addressed. NSAIDs offer rapid and effective pain management in a context of increasingly challenging access to care. Their safety profile is reassuring and generally well established but could be strengthened by conducting an ad hoc study to rule on the safety signal issued by the ANSM definitively. Pharmacists have the knowledge and tools to ensure the safe dispensing and rational use of NSAIDs, with or without a prescription. The introduction of risk minimization measures, such as decision-support tools, could enable further progress in ensuring the safe dispensing of OTC NSAIDs.
Collapse
Affiliation(s)
- Ruxandra Burlacu
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France
| | - Venceslas Bourdin
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France
| | - Patrick Blin
- Inserm CIC-P 1401, Bordeaux PharmacoEpi, université de Bordeaux, 33000 Bordeaux, France
| | - Fabrice Camaioni
- Fédération des syndicats pharmaceutiques de France (FSPF), 75009 Paris, France
| | - Béatrice Clairaz
- Société francophone des sciences pharmaceutiques officinales (SFSPO), 91570 Bièvres, France
| | - Michel Lantéri-Minet
- Département d'évaluation et traitement de la douleur et Fédération hospitalo-universitaire InovPain, centre hospitalo-universitaire de Nice, université Côte d'Azur, 06000 Nice, France; Inserm U1107, migraine et douleur trigéminale, Auvergne université, 63100 Clermont-Ferrand, France
| | - Françoise Laroche
- Inserm U 987, centre de la douleur, Sorbonne université, AP-HP, 75012 Paris, France
| | - François Raineri
- Société française de médecine générale, 92130 Issy-les-Moulineaux, France
| | - Serge Perrot
- Inserm U987, Centre de la douleur, hôpital Cochin, université Paris-Cité, 75000 Paris, France
| | - Jean-Paul Stahl
- Infectiologie, université Grenoble-Alpes, 38000 Grenoble, France
| | - Nicolas H Thurin
- Inserm CIC-P 1401, Bordeaux PharmacoEpi, université de Bordeaux, 33000 Bordeaux, France
| | - Stéphane Mouly
- Inserm UMR-S 1144, département de médecine interne, département médico-universitaire INVICTUS, hôpital Lariboisière, Nord - université Paris-Cité, Assistance publique-Hôpitaux de Paris (AP-HP), 2, rue Ambroise-Paré, 75010 Paris, France.
| |
Collapse
|
8
|
Majer D, Šporin A, Finšgar M. Optimizing carry-over in automated dissolution system dissoBOT for paracetamol and diclofenac sodium analysis. SLAS Technol 2024; 29:100170. [PMID: 39067817 DOI: 10.1016/j.slast.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this work, an automated dissolution system (dissoBOT) was used for dissolution testing for the first time. Carry-over (CO) of the dissoBOT was determined for paracetamol (PA) and diclofenac sodium (DS), which are active pharmaceutical ingredients (APIs). Initially, partial method validation of the UV-VIS spectrophotometry method for PA and DS determination was performed by defining the limit of detection (LOD), the limit of quantification (LOQ), linear concentration range, accuracy, and precision. The LODs and LOQs were less than 0.01 mg/L for both APIs. The determined linear concentration ranges were from 1.00 mg/L to 30.00 mg/L for PA and from 0.50 mg/L to 3.50 mg/L for DS (the square of the correlation coefficient was greater than 0.9990, and the quality coefficient was less than 1.00 % for both APIs). The accuracy of the method was evaluated by calculating the recovery (Re) of the solutions of standards with known concentrations. The method for both APIs was deemed to be accurate (the average Re for PA and DS were 99.81 % and 101.43 %, respectively). Precision was evaluated by calculating the relative standard deviation (RSD). The method for PA and DS was deemed to be precise, as the RSD value for PA was 0.13 %, and for DS was 0.38 %. The volume (V) of the washing medium in both cleaning cycles performed by the dissoBOT system, as well as the medium dispensing V, were established, where the medium dispensing V was in accordance with the United States Pharmacopeia requirements. The CO of the dissoBOT system, using tap water as the washing medium, was determined to be less than 1.00 % for both APIs. The CO values for one cleaning cycle of the sampling station with a V of 2 mL was in the range of 1.24-1.54 %, for V of 5 mL was in the range of 0.78-0.93 %, and for V of 10 mL was in the range of 0.27-0.36 %. In addition, the CO of the dissoBOT, when employing two cleaning cycles of the sampling station (each V of 10 mL) was reduced (CO <0.20 %). Finally, the dissoBOT was successfully employed for the dissolution PA and DS tables.
Collapse
Affiliation(s)
- David Majer
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Aljaž Šporin
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000, Maribor, Slovenia; Merel, d.o.o., Ob gozdu 25, 2352, Selnica ob Dravi, Slovenia
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000, Maribor, Slovenia.
| |
Collapse
|
9
|
Tang C, Dziedzic A, Khatib MN, Alhumaid S, Thangavelu L, Parameswari RP, Satapathy P, Zahiruddin QS, Rustagi S, Alanazi MA, Al-Thaqafy MS, Hazazi A, Alotaibi J, Al Faraj NJ, Al-Zaki NA, Al Marshood MJ, Al Saffar TY, Alsultan KA, Al-Ahmed SH, Rabaan AA. Stem cell therapy for COVID-19 treatment: an umbrella review. Int J Surg 2024; 110:6402-6417. [PMID: 38967503 PMCID: PMC11487013 DOI: 10.1097/js9.0000000000001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND COVID-19 has presented significant obstacles to healthcare. Stem cell therapy, particularly mesenchymal stem cells, has emerged as a potential treatment modality due to its immunomodulatory and regenerative properties. This umbrella review aims to synthesize current evidence from systematic reviews on the safety and efficacy of stem cell therapy in COVID-19 treatment. METHODS A thorough literature search was performed across Embase, PubMed, Cochrane, and Web of Science from December 2019 to February 2024. Systematic reviews focusing on the use of stem cell therapy for COVID-19 were included. Evidence was synthesized by meta-analysis using R software (V 4.3) for each outcome. The certainty of evidence was assessed using the GRADE approach. RESULTS A total of 24 systematic reviews were included. Stem cell therapy was associated with reduced mortality [risk ratio (RR) 0.72, 95% CI: 0.60-0.86]; shorter hospital stays (mean difference -4.00 days, 95% CI: -4.68 to -3.32), and decreased need for invasive ventilation (RR 0.521, 95% CI: 0.320-0.847). Symptom remission rates improved (RR 1.151, 95% CI: 0.998-1.330), and a reduction in C-reactive protein levels was noted (standardized mean difference -1.198, 95% CI: -2.591 to 0.195), albeit with high heterogeneity. For adverse events, no significant differences were found between stem cell therapy and standard care (RR 0.87, 95% CI: 0.607-1.265). The certainty of evidence ranged from low to moderate. CONCLUSION Stem cell therapy demonstrates a potential benefit in treating COVID-19, particularly in reducing mortality and hospital stay duration. Despite these promising findings, the evidence is varied, and future large-scale randomized trials are essential to confirm the efficacy and optimize the therapeutic protocols for stem cell therapy in the management of the disease. The safety profile is encouraging, with no significant increase in adverse events, suggesting a viable avenue for treatment expansion.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education
| | - Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - RP Parameswari
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Majid S. Al-Thaqafy
- Infection Prevention and Control Department, King Abdulaziz Medical City, National Guard Health Affairs
- Epidemiology and Public Health, King Abdullah International Medical Research Center, National Guard Health Affairs
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Jeddah
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh
| | | | | | | | | | | | | | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
10
|
Mohajeri M, Abedi N. Association of using enteral nutrition containing probiotics and dietary inflammatory index with inflammatory factors serum levels and gastrointestinal complications in infected patients with COVID-19. NUTRITION & FOOD SCIENCE 2024; 54:1219-1233. [DOI: 10.1108/nfs-12-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
PurposeThis paper aims to examine the association between the dietary inflammatory index, the consumption of Enteral Nutrition Supplemented with probiotics with certain serum inflammation markers and gastrointestinal complications among individuals diagnosed with COVID-19.Design/methodology/approachThis cross-sectional investigation involved 100 COVID-19 patients who were admitted to intensive care units in hospitals. These patients were administered two different types of Enteral Nutrition, so the dietary inflammatory index (DII), gastrointestinal complications and some serum inflammation markers have been compared between two groups.FindingsThe mean DII scores in all patients were significantly pro-inflammatory (probiotic formula 2.81 ± 0.01 vs usual formula group 2.93 ± 0.14p= 0.19). The probiotic formula consumption had an inverse association with High-sensitivity C-reactive Protein concentration (coef = −3.19, 95% CI −1.25, −5.14p= 0.001) and lead to a reduction of 2.14 mm/h in the serum level of Erythrocyte sedimentation rate compared to normal formula. The incidence of diarrhea, abdominal pain and vomiting in probiotic formula patients was respectively 94%, 14% and 86% less than in usual formula patients (p= 0.05).Originality/valueIn this cross-sectional study for the first time, the authors found that probiotic formula consumption was inversely associated with serum inflammation markers and gastrointestinal complications incidence. The high DII leads to more gastrointestinal complications incidence and inflammation markers. More studies are needed to prove this relationship.
Collapse
|
11
|
Liu H, Ji DW, Mei YK, Liu Y, Liu CH, Wang XY, Chen QA. Repurposing of halogenated organic pollutants via alkyl bromide-catalysed transfer chlorination. Nat Chem 2024; 16:1505-1514. [PMID: 38844635 DOI: 10.1038/s41557-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/02/2024] [Indexed: 08/02/2024]
Abstract
Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Hui Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Dai X, Xu R, Li N. The Interplay between Airway Cilia and Coronavirus Infection, Implications for Prevention and Control of Airway Viral Infections. Cells 2024; 13:1353. [PMID: 39195243 DOI: 10.3390/cells13161353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Coronaviruses (CoVs) are a class of respiratory viruses with the potential to cause severe respiratory diseases by infecting cells of the upper respiratory tract, bronchial epithelium, and lung. The airway cilia are distributed on the surface of respiratory epithelial cells, forming the first point of contact between the host and the inhaled coronaviruses. The function of the airway cilia is to oscillate and sense, thereby defending against and removing pathogens to maintain the cleanliness and patency of the respiratory tract. Following infection of the respiratory tract, coronaviruses exploit the cilia to invade and replicate in epithelial cells while also damaging the cilia to facilitate the spread and exacerbation of respiratory diseases. It is therefore imperative to investigate the interactions between coronaviruses and respiratory cilia, as well as to elucidate the functional mechanism of respiratory cilia following coronavirus invasion, in order to develop effective strategies for the prevention and treatment of respiratory viral infections. This review commences with an overview of the fundamental characteristics of airway cilia, and then, based on the interplay between airway cilia and coronavirus infection, we propose that ciliary protection and restoration may represent potential therapeutic approaches in emerging and re-emerging coronavirus pandemics.
Collapse
Affiliation(s)
- Xuyao Dai
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
13
|
Velikova T, Valkov H, Aleksandrova A, Peshevska-Sekulovska M, Sekulovski M, Shumnalieva R. Harnessing immunity: Immunomodulatory therapies in COVID-19. World J Virol 2024; 13:92521. [PMID: 38984079 PMCID: PMC11229839 DOI: 10.5501/wjv.v13.i2.92521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 06/24/2024] Open
Abstract
An overly exuberant immune response, characterized by a cytokine storm and uncontrolled inflammation, has been identified as a significant driver of severe coronavirus disease 2019 (COVID-19) cases. Consequently, deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation. With these delicate dynamics in mind, immunomodulatory therapies have emerged as a promising avenue for mitigating the challenges posed by COVID-19. Precision in manipulating immune pathways presents an opportunity to alter the host response, optimizing antiviral defenses while curbing deleterious inflammation. This review article comprehensively analyzes immunomodulatory interventions in managing COVID-19. We explore diverse approaches to mitigating the hyperactive immune response and its impact, from corticosteroids and non-steroidal drugs to targeted biologics, including anti-viral drugs, cytokine inhibitors, JAK inhibitors, convalescent plasma, monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2, cell-based therapies (i.e., CAR T, etc.). By summarizing the current evidence, we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristo Valkov
- Department of Gastroenterology, University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| |
Collapse
|
14
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
15
|
Invernici F, Bernasconi A, Ceri S. Searching COVID-19 Clinical Research Using Graph Queries: Algorithm Development and Validation. J Med Internet Res 2024; 26:e52655. [PMID: 38814687 PMCID: PMC11176882 DOI: 10.2196/52655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/06/2024] [Accepted: 03/30/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, >1 million studies have been collected within the COVID-19 Open Research Dataset, a corpus of manuscripts created to accelerate research against the disease. Their related abstracts hold a wealth of information that remains largely unexplored and difficult to search due to its unstructured nature. Keyword-based search is the standard approach, which allows users to retrieve the documents of a corpus that contain (all or some of) the words in a target list. This type of search, however, does not provide visual support to the task and is not suited to expressing complex queries or compensating for missing specifications. OBJECTIVE This study aims to consider small graphs of concepts and exploit them for expressing graph searches over existing COVID-19-related literature, leveraging the increasing use of graphs to represent and query scientific knowledge and providing a user-friendly search and exploration experience. METHODS We considered the COVID-19 Open Research Dataset corpus and summarized its content by annotating the publications' abstracts using terms selected from the Unified Medical Language System and the Ontology of Coronavirus Infectious Disease. Then, we built a co-occurrence network that includes all relevant concepts mentioned in the corpus, establishing connections when their mutual information is relevant. A sophisticated graph query engine was built to allow the identification of the best matches of graph queries on the network. It also supports partial matches and suggests potential query completions using shortest paths. RESULTS We built a large co-occurrence network, consisting of 128,249 entities and 47,198,965 relationships; the GRAPH-SEARCH interface allows users to explore the network by formulating or adapting graph queries; it produces a bibliography of publications, which are globally ranked; and each publication is further associated with the specific parts of the query that it explains, thereby allowing the user to understand each aspect of the matching. CONCLUSIONS Our approach supports the process of query formulation and evidence search upon a large text corpus; it can be reapplied to any scientific domain where documents corpora and curated ontologies are made available.
Collapse
Affiliation(s)
- Francesco Invernici
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Anna Bernasconi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
16
|
Angermair S, Hardenberg JH, Rubarth K, Balzer F, Akbari N, Menk M, Spies C, Eckardt KU, Poddubnyy D, Siegmund B, Schneider T, Treskatsch S. In-hospital survival of critically ill COVID-19 patients treated with glucocorticoids: a multicenter real-world data study. Sci Rep 2024; 14:12138. [PMID: 38802435 PMCID: PMC11130266 DOI: 10.1038/s41598-024-62302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The COVID-19 pandemic has posed a major challenge to healthcare systems globally. Millions of people have been infected, and millions of deaths have been reported worldwide. Glucocorticoids have attracted worldwide attention for their potential efficacy in the treatment of COVID-19. Various glucocorticoids with different dosages and treatment durations have been studied in patients with different severities, with a suitable dosage and treatment duration not yet defined. This study aimed to investigate whether in-hospital survival differs between critically ill patients treated with low-dose glucocorticoids, high-dose glucocorticoids or no glucocorticoids. All critically ill patients admitted to the intensive care unit of the Charité Hospital-Universitätsmedizin Berlin between February 2020 and December 2021 with COVID-19 pneumonia receiving supplemental oxygen were eligible to participate in this multicenter real-world data study. Patients were retrospectively assigned to one of three groups: the high corticosteroid dose (HighC) group (receiving 6 mg parenteral dexamethasone or an equivalent corticosteroid dosage for ten days), the low corticosteroid dose (LowC) group (receiving less than 6 mg parenteral dexamethasone or an equivalent corticosteroid dosage for ten days), or the no corticosteroid (NoC) group. Overall survival and risk effects were compared among groups within the total observation period, as well as at 35 days after the onset of COVID-19 symptoms. Adjusted multivariable Cox proportional hazard regression analysis was performed to compare the risk of death between the treatment groups. Out of 1561 critically ill COVID-19 patients, 1014 were included in the baseline analysis. In the survival study, 1009 patients were assigned to the NoC (n = 346), HighC (n = 552), or LowC group (n = 111). The baseline characteristics were balanced between groups, except for age, BMI, APACHE II score, SOFA and SAPS II. While the 35-day survival did not show any differences, a landmark analysis of the patients surviving beyond 35 days revealed differences between groups. The restricted mean survival time was 112 days in the LowC group [95% CI: 97 - 128], 133 days in the HighC group [95% CI: 124 - 141] and 144 days in the NoC group [95% CI: 121 - 167]. The multivariable-adjusted Cox proportional hazard analysis indicated that, regardless of age, sex, health status or invasive oxygenation, a low-dose treatment increased the hazard of death of critically ill COVID-19 patients by a factor of 2.09 ([95% CI: 0.99, 4.4], p = 0.05) and a high-dose corticosteroid treatment increased the risk by a factor of 1.07 ([95% CI: 0.53, 2.15], p = 0.85) compared to no treatment with glucocorticoids. The analysis reveals that corticosteroid treatment does not influence the survival of critically ill COVID-19 patients in the intensive care unit within 35 days. Our evaluations further suggest that regardless of ventilation status, the decision-making process for administering corticosteroid therapy should account for the individual severity of the illness.
Collapse
Affiliation(s)
- Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | - Jan-Hendrik Hardenberg
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Kerstin Rubarth
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nilufar Akbari
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Mario Menk
- Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Campus Virchow-Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Denis Poddubnyy
- Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, 10117, Berlin, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, 10117, Berlin, Germany
| | - Thomas Schneider
- Division of Gastroenterology, Infectious Diseases, Rheumatology, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, 10117, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
17
|
Liu S, Wang B, Chen T, Wang H, Liu J, Zhao X, Zhang Y. Two new and effective food-extracted immunomodulatory agents exhibit anti-inflammatory response activity in the hACE2 acute lung injury murine model of COVID-19. Front Immunol 2024; 15:1374541. [PMID: 38807598 PMCID: PMC11130445 DOI: 10.3389/fimmu.2024.1374541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Objective The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. Methods In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. Results Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. Conclusion Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baiqiao Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianran Chen
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
18
|
Yousef M, Rob M, Varghese S, Rao S, Zamir F, Paul P, Chaari A. The effect of microbiome therapy on COVID-19-induced gut dysbiosis: A narrative and systematic review. Life Sci 2024; 342:122535. [PMID: 38408636 DOI: 10.1016/j.lfs.2024.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
AIMS Emerging evidence highlights the role of COVID-19 in instigating gut dysbiosis, with repercussions on disease severity and bidirectional gut-organ communication involving the lung, heart, brain, and liver. This study aims to evaluate the efficacy of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) in addressing gut dysbiosis associated with COVID-19, as well as their impact on related disease severity and clinical outcomes. MATERIALS AND METHODS We systematically review 27 studies exploring the efficacy of different microbiome-modulating therapies: probiotics, prebiotics, synbiotics, and fecal microbiota transplantation as potential interventions for COVID-19. KEY FINDINGS The probiotics and synbiotics investigated encompassed a spectrum of eight bacterial and fungal genera, namely Lactobacillus, Bifidobacterium, Streptococcus, Enterococcus, Pediococcus, Bacillus, Saccharomyces, and Kluyveromyces. Noteworthy prebiotics employed in these studies included chestnut tannin, galactooligosaccharides, fructooligosaccharides, xylooligosaccharide, and resistant dextrin. The majority of the investigated biotics exhibited positive effects on COVID-19 patients, manifesting in symptom alleviation, inflammation reduction, and notable decreases in mortality rates. Five studies reported death rates, showing an average mortality ranging from 0 % to 11 % in the intervention groups, as compared to 3 % to 30 % in the control groups. Specifically, probiotics, prebiotics, and synbiotics demonstrated efficacy in diminishing the duration and severity of symptoms while significantly accelerating viral and symptomatic remission. FMT emerged as a particularly effective strategy, successfully restoring gut microbiota and ameliorating gastrointestinal disorders. SIGNIFICANCE The insights gleaned from this review significantly contribute to our broader comprehension of the therapeutic potential of biotics in addressing COVID-19-related gut dysbiosis and mitigating secondary multi-organ complications.
Collapse
Affiliation(s)
- Mahmoud Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Mlaak Rob
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Sanish Varghese
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Shrinidhi Rao
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Fahad Zamir
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
19
|
Li S, Li W, Wu X, Zhang B, Liu L, Yin L. Immune cell-derived extracellular vesicles for precision therapy of inflammatory-related diseases. J Control Release 2024; 368:533-547. [PMID: 38462043 DOI: 10.1016/j.jconrel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Inflammation-related diseases impose a significant global health burden, necessitating urgent exploration of novel treatment modalities for improved clinical outcomes. We begin by discussing the limitations of conventional approaches and underscore the pivotal involvement of immune cells in the inflammatory process. Amidst the rapid growth of immunology, the therapeutic potential of immune cell-derived extracellular vesicles (EVs) has garnered substantial attention due to their capacity to modulate inflammatory response. We provide an in-depth examination of immune cell-derived EVs, delineating their promising roles across diverse disease conditions in both preclinical and clinical settings. Additionally, to direct the development of the next-generation drug delivery systems, we comprehensively investigate the engineered EVs on their advanced isolation methods, cargo loading techniques, and innovative engineering strategies. This review ends with a focus on the prevailing challenges and considerations regarding the clinical translation of EVs in future, emphasizing the need of standardized characterization and scalable production processes. Ultimately, immune cell-derived EVs represent a cutting-edge therapeutic approach and delivery platform, holding immense promise in precision medicine.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xianggui Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Beiyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Baid K, Irving AT, Jouvenet N, Banerjee A. The translational potential of studying bat immunity. Trends Immunol 2024; 45:188-197. [PMID: 38453577 DOI: 10.1016/j.it.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province; College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus Sensing and Signaling Unit, Paris, France
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
21
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
23
|
Henin D, Fappani C, Carmagnola D, Gori M, Pellegrini G, Colzani D, Amendola A, Perrotta M, Tanzi E, Dellavia C. COVID-19 monitoring of school personnel through molecular salivary test and dried blood spot analysis. J Glob Health 2024; 14:05004. [PMID: 38330189 PMCID: PMC10852534 DOI: 10.7189/jogh.14.05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Background When the coronavirus disease 2019 (COVID-19) pandemic broke out, most countries enforced school closures as a precautionary measure. Although COVID-19 is still present three years later, schools have been reopened. We aimed to test the association of molecular salivary testing (MST) and dried blood spot (DBS) analysis for community surveillance by investigating the immunological profile of a group of school staff during and following COVID-19 vaccination. Methods We conducted the study in a school in Milan from April 2021, when school staff were administered the first dose of vaccine against SARS-CoV-2, until the school year ended in June 2022. Each participant provided samples for MST and DBS one month (T1, W1) after receiving their first dose of vaccine. Subsequently, they collected weekly MST samples for five weeks (W2-W6), plus a DBS sample in the last week (T2). Both samples were collected one (T3), four (T4), and seven months (T5) after the administration of the second vaccine dose in May 2021. A final DBS sample was collected one year (T6) after T3. Results Sixty participants provided 327 MSTs and 251 DBSs. None of the MST samples tested positive for SARS-CoV-2 RNA during the study period. A total of 201 DBS samples tested positive for the IgG semiquantitative analysis. Negative samples were found only at T1 (20.45%) and T2 (7.32%). We observed borderline results at T1 (4.55%), T2 (7.32%), and T4 (2.70%). The anti-SARS-CoV-2 average antibody ratio increased after the second dose between T2 and T3, and the trend peaked after the third dose between T4 and T6. We performed an immunoenzymatic assay of antibodies against nucleocapsid protein on samples collected at T1 from five participants who reported having been infected before the study and from four subjects with an abnormal increase in the antibody values at T4. Two samples tested positive in the first group and two in the second one. Conclusions Our findings show that MST and DBS could be effective tools in the active surveillance of school personnel and that schools could be considered safe settings in view of SARS-CoV-2 infection. Vaccines might have contributed to case and/or symptom reduction.
Collapse
Affiliation(s)
- Dolaji Henin
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Daniela Carmagnola
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Gori
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
| | - Gaia Pellegrini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniela Colzani
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Antonella Amendola
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre MACH (Centre for Multidisciplinary Research in Health Sciences), Università degli Studi di Milano, Milan, Italy
| | - Mariachiara Perrotta
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Coordinate Research Centre MACH (Centre for Multidisciplinary Research in Health Sciences), Università degli Studi di Milano, Milan, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Tavanappanavar AN, Mulla SI, Shekhar Seth C, Bagewadi ZK, Rahamathulla M, Muqtader Ahmed M, Ayesha Farhana S. Phytochemical analysis, GC-MS profile and determination of antibacterial, antifungal, anti-inflammatory, antioxidant activities of peel and seeds extracts (chloroform and ethyl acetate) of Tamarindus indica L. Saudi J Biol Sci 2024; 31:103878. [PMID: 38125735 PMCID: PMC10730893 DOI: 10.1016/j.sjbs.2023.103878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Tamarindus indica L., is widely used tree in ayurvedic medicine. Here, we aimed to understand the presence of important constituents in seeds and peel of Tamarind fruits and their biological activities. Hence, seeds and peel of Tamarind fruits are used for further extraction process by soxhlet method (chloroform and ethyl acetate solvents). Results suggest that the ethyl acetate extract (seeds) consists of terpenoids (72.29 ± 0.513 mg/g), phenolic content (68.67 ± 2.11 mg/g) and flavonoids (26.36 ± 2.03 mg/g) whereas chloroform extract (seeds) has terpenoids (42.29 ± 0.98 mg/g). Similarly, chloroform extract (peel) has terpenoids (25.96 ± 3.20 mg/g) and flavonoids (46.36 ± 2.03 mg/g) whereas ethyl acetate extract (peel) has terpenoids (62.93 ± 0.987 mg/g). Furthermore, anti-inflammation activity results revealed that the chloroform extract of peel was found to be more effective with IC50 of 226.14 µg/ml by protein denaturation analysis and with IC50 of 245.5 µg/ml on lipoxygenase inhibition activity. Chloroform extract (peel and seeds) shown better antioxidant activity using DPPH than ethyl acetate extract (peel and seeds). Ethyl acetate extract of seeds showed impressive potency by inhibiting the growth of fungus, Candida albicans. Additionally, ethyl acetate extract of seeds showed impressive potency inhibiting the growth of Escherichia coli than Bacillus cereus. GC-MS analysis shown the existence of diverse set of phytochemicals in each extract. Overall, comparative studies highlight the effectiveness of seeds extracts than peel extracts. Moreover, GC-MS results suggest that the seeds and peel extracts (chloroform and ethyl acetate) contains a wide range of compounds (including flavonoids, isovanillic acid, fatty acids and phenolic compounds) which can be utilized for therapeutic purpose.
Collapse
Affiliation(s)
- Adinath N. Tavanappanavar
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, India
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, India
| | | | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P. O. Box 62223, Al Faraa, Abha, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| |
Collapse
|
25
|
Yan W, Yu W, Shen L, Xiao L, Qi J, Hu T. A SARS-CoV-2 nanoparticle vaccine based on chemical conjugation of loxoribine and SpyCatcher/SpyTag. Int J Biol Macromol 2023; 253:127159. [PMID: 37778577 DOI: 10.1016/j.ijbiomac.2023.127159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
SARS-CoV-2 is a particularly transmissible virus that renders the worldwide COVID-19 pandemic and global severe respiratory distress syndrome. Protein-based vaccines hold great advantages to build the herd immunity for their specificity, effectiveness, and safety. Receptor-binding domain (RBD) of SARS-CoV-2 is an appealing antigen for vaccine development. However, adjuvants and delivery system are necessitated to enhance the immunogenicity of RBD. In the present study, RBD was chemically conjugated with loxoribine and SpyCatcher/SpyTag, followed by assembly to form a nanoparticle vaccine. Loxoribine (a TLR7/8 agonist) acted as an adjuvant, and nanoparticles functioned as delivery system for the antigen and the adjuvant. The nanoparticle vaccine elicited high RBD-specific antibody titers, high neutralizing antibody titer, and strong ACE2-blocking activity. It stimulated high splenic levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-4 and IL-5) in BALB/c mice. It promoted the splenocyte proliferation, enhanced the CD4+ and CD8+ T cell percentage and stimulated the maturation of dendritic cells. The vaccine did not render apparent toxicity to the organs of mice. Thus, the nanoparticle vaccine was of potential to act as a preliminarily safe and effective candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
26
|
Shi W, Jiang D, Rando H, Khanduja S, Lin Z, Hazel K, Pottanat G, Jones E, Xu C, Lin D, Yasar S, Cho SM, Lu H. Blood-brain barrier breakdown in COVID-19 ICU survivors: an MRI pilot study. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:333-338. [PMID: 38058998 PMCID: PMC10696574 DOI: 10.1515/nipt-2023-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Objectives Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique. Methods COVID-19 ICU survivors (n=7) and age and sex-matched control participants (n=17) were recruited from June 2021 to March 2023. None of the control participants were hospitalized due to COVID-19 infection. The COVID-19 ICU survivors were studied at 98.6 ± 14.9 days after their discharge from ICU. A non-invasive MRI technique was used to assess the BBB permeability to water molecules, in terms of permeability surface area-product (PS) in the units of mL/100 g/min. Results PS was significantly higher in COVID-19 ICU survivors (p=0.038) when compared to the controls, with values of 153.1 ± 20.9 mL/100 g/min and 132.5 ± 20.7 mL/100 g/min, respectively. In contrast, there were no significant differences in whole-brain cerebral blood flow (p=0.649) or brain volume (p=0.471) between the groups. Conclusions There is preliminary evidence of a chronic BBB breakdown in COVID-19 survivors who had a severe acute infection, suggesting a plausible contributor to neurological long-COVID symptoms.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah Rando
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shivalika Khanduja
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ebony Jones
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
27
|
Man E, Evran S. Deacetylation of Histones and Non-histone Proteins in Inflammatory Diseases and Cancer Therapeutic Potential of Histone Deacetylase Inhibitors. Curr Genomics 2023; 24:136-145. [PMID: 38178983 PMCID: PMC10761333 DOI: 10.2174/0113892029265046231011100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 01/06/2024] Open
Abstract
Epigenetic changes play an important role in the pathophysiology of autoimmune diseases such as allergic asthma, multiple sclerosis, lung diseases, diabetes, cystic fibrosis, atherosclerosis, rheumatoid arthritis, and COVID-19. There are three main classes of epigenetic alterations: post-translational modifications of histone proteins, control by non-coding RNA and DNA methylation. Since histone modifications can directly affect chromatin structure and accessibility, they can regulate gene expression levels. Abnormal expression and activity of histone deacetylases (HDACs) have been reported in immune mediated diseases. Increased acetylated levels of lysine residues have been suggested to be related to the overexpression of inflammatory genes. This review focuses on the effect of HDAC modifications on histone and non-histone proteins in autoimmune diseases. Furthermore, we discuss the potential therapeutic effect of HDAC inhibitors (HDACi) used in these diseases.
Collapse
Affiliation(s)
- Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, Bornova-Izmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
| |
Collapse
|
28
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
29
|
Salvador E, Mazzi C, De Santis N, Bertoli G, Jonjić A, Coklo M, Majdan M, Peñalvo JL, Buonfrate D. Impact of domiciliary administration of NSAIDs on COVID-19 hospital outcomes: an unCoVer analysis. Front Pharmacol 2023; 14:1252800. [PMID: 37876733 PMCID: PMC10591104 DOI: 10.3389/fphar.2023.1252800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Effective domiciliary treatment can be useful in the early phase of COVID-19 to limit disease progression, and pressure on hospitals. There are discrepant data on the use of non-steroidal anti-inflammatory drugs (NSAIDs). Aim of this study is to evaluate whether the clinical outcome of patients who were hospitalized for COVID-19 is influenced by domiciliary treatment with NSAIDs. Secondary objective was to explore the association between other patient characteristics/therapies and outcome. Methods: A large dataset of COVID-19 patients was created in the context of a European Union-funded project (unCoVer). The primary outcome was explored using a study level random effects meta-analysis for binary (multivariate logistic regression models) outcomes adjusted for selected factors, including demographics and other comorbidities. Results: 218 out of 1,144 patients reported use of NSAIDs before admission. No association between NSAIDs use and clinical outcome was found (unadj. OR: 0.96, 95%CI: 0.68-1.38). The model showed an independent upward risk of death with increasing age (OR 1.06; 95% CI 1.05-1.07) and male sex (1.36; 95% CI 1.04-1.76). Conclusion: In our study, the domiciliary use of NSAIDs did not show association with clinical outcome in patients hospitalized with COVID-19. Older ages and male sex were associated to an increased risk of death.
Collapse
Affiliation(s)
- Elena Salvador
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Cristina Mazzi
- Clinical Research Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Nicoletta De Santis
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Giulia Bertoli
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Antonija Jonjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Miran Coklo
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Trnava University, Trnava, Slovakia
| | - José L. Peñalvo
- Unit of Non-Communicable Diseases, Institute of Tropical Medicine, Antwerp, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dora Buonfrate
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| |
Collapse
|
30
|
Laughey W, Lodhi I, Pennick G, Smart L, Sanni O, Sandhu S, Charlesworth B. Ibuprofen, other NSAIDs and COVID-19: a narrative review. Inflammopharmacology 2023; 31:2147-2159. [PMID: 37603158 PMCID: PMC10518289 DOI: 10.1007/s10787-023-01309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
At the start of the coronavirus disease 2019 (COVID-19) pandemic (March 2020), there was speculation that non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, used to manage some of the symptoms of COVID-19, could increase the susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and negatively impact clinical outcomes. In the absence of any robust mechanistic and clinical evidence, this speculation led to confusion about the safety of ibuprofen, contributing to the so-called 'infodemic' surrounding COVID-19. A wealth of evidence has been generated in subsequent years, and this narrative review aims to consider the body of in vitro and in vivo research, observational studies, systematic reviews and meta-analyses on the use of NSAIDs, including ibuprofen, in COVID-19. Overall, the direction of evidence supports that NSAIDs do not increase susceptibility to infection, nor worsen disease outcomes in patients with COVID-19. Neither do they impact the immune response to COVID-19 vaccines. There is no basis to limit the use of NSAIDs, and doing so may deprive patients of effective self-care measures to control symptoms.
Collapse
Affiliation(s)
- William Laughey
- Reckitt Health Care UK Ltd, Hull, UK.
- Hull York Medical School, University of York, York, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sawant DA, Razmaria AA, Pandit-Taskar N. Prolonged generalized immune response on 18F-FDG PET/CT following COVID-19 vaccination. Radiol Case Rep 2023; 18:2552-2557. [PMID: 37250482 PMCID: PMC10202611 DOI: 10.1016/j.radcr.2023.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic continues to be a major public health concern affecting millions of people globally. The COVID-19 vaccination has implications in medical assessment of cancer patients especially undergoing diagnostic imaging such as 18F-fluoro-deoxyglucose (FDG) positron emission tomography with computed tomography (PET/CT). The inflammatory changes following vaccination can cause false positive findings on imaging. We present a case of a patient with esophageal carcinoma who had 18F-FDG PET/CT scan, 8 weeks following booster dose of Moderna COVID-19 vaccination, which showed widespread FDG avid reactive lymph nodes and intense splenic uptake for prolonged duration of approximately 8 months (34 weeks) probably representing generalized immune response. It is important from radiological/nuclear medicine perspective to recognize imaging features of such rare effect of COVID-19 vaccination, which can pose a challenge in assessing 18F-FDG PET/CT scans in cancer patients. It has also opened new avenues for future research evaluating such COVID-19 vaccine-related prolonged systemic immunological response in cancer patients.
Collapse
Affiliation(s)
- Devendra A. Sawant
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ali Aria Razmaria
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
32
|
Lapi F, Marconi E, Grattagliano I, Cricelli C. Further data on use of NSAIDs for the home-care therapy of COVID-19. Intern Emerg Med 2023; 18:1599-1602. [PMID: 37046061 PMCID: PMC10096095 DOI: 10.1007/s11739-023-03272-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Francesco Lapi
- Health Search, Italian College of General Practitioners and Primary Care, Via del Sansovino 179, 50142, Florence, Italy.
| | - Ettore Marconi
- Health Search, Italian College of General Practitioners and Primary Care, Via del Sansovino 179, 50142, Florence, Italy
| | | | - Claudio Cricelli
- Italian College of General Practitioners and Primary Care, Florence, Italy
| |
Collapse
|
33
|
Benedetti S, Sisti D, Vandini D, Barocci S, Sudano M, Carlotti E, Teng JLL, Zamai L. Circulating ACE2 level and zinc/albumin ratio as potential biomarkers for a precision medicine approach to COVID-19. Adv Biol Regul 2023; 89:100973. [PMID: 37257289 PMCID: PMC10202900 DOI: 10.1016/j.jbior.2023.100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Highly mutable influenza is successfully countered based on individual susceptibility and similar precision-like medicine approach should be effective against SARS-COV-2. Among predictive markers to bring precision medicine to COVID-19, circulating ACE2 has potential features being upregulated in both severe COVID-19 and predisposing comorbidities. Spike SARS-CoVs were shown to induce ADAM17-mediated shedding of enzymatic active ACE2, thus accounting for its increased activity that has also been suggested to induce positive feedback loops leading to COVID-19-like manifestations. For this reason, pre-existing ACE2 activity and inhibition of ACE2/ADAM17 zinc-metalloproteases through zinc chelating agents have been proposed to predict COVID-19 outcome before infection and to protect from COVID-19, respectively. Since most diagnostic laboratories are not equipped for enzymatic activity determination, other potential predictive markers of disease progression exploitable by diagnostic laboratories were explored. Concentrations of circulating albumin, zinc, ACE2 protein and its activity were investigated in healthy, diabetic (COVID-19-susceptible) and SARS-CoV-2-negative COVID-19 individuals. ACE2 both protein levels and activity significantly increased in COVID-19 and diabetic patients. Abnormal high levels of ACE2 characterised a subgroup (16-19%) of diabetics, while COVID-19 patients were characterised by significantly higher zinc/albumin ratios, pointing to a relative increase of albumin-unbound zinc species, such as free zinc ones. Data on circulating ACE2 levels are in line with the hypothesis that they can drive susceptibility to COVID-19 and elevated zinc/albumin ratios support the therapeutic use of zinc chelating inhibitors of ACE2/ADAM17 zinc-metalloproteases in a targeted therapy for COVID-19.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Daniela Vandini
- Department of Clinical Pathology, ASUR Marche AV1, Urbino, PU, Italy
| | - Simone Barocci
- Department of Clinical Pathology, ASUR Marche AV1, Urbino, PU, Italy
| | - Maurizio Sudano
- Diabetology and Endocrinology Unit, ASUR Marche AV1, Urbino, PU, Italy
| | | | - Jade Lee Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy; INFN-Gran Sasso National Laboratory, Assergi, 67100, L'Aquila, Italy.
| |
Collapse
|
34
|
Xiao L, Yu W, Shen L, Yan W, Qi J, Hu T. Mucosal SARS-CoV-2 Nanoparticle Vaccine Based on Mucosal Adjuvants and Its Immune Effectiveness by Intranasal Administration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466148 DOI: 10.1021/acsami.3c05456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 is a respiratory virus that causes significant threats to human health. Mucosal immunity provides a first-line defense to prevent the infection of SARS-CoV-2 in the respiratory tract. Because most SARS-CoV-2 vaccines could not stimulate mucosal immunity in the respiratory tract, appropriate mucosal adjuvants or delivery systems are needed for mucosal vaccine development. Mannan, polyarginine, and 2',3'-cGAMP are three mucosal adjuvants that could stimulate mucosal immunity. In the present study, the three adjuvants were assembled with a receptor-binding domain (RBD) by electrostatic interaction to generate a nanoparticle vaccine (RBD-MP-cG). RBD-MP-cG elicited mucosal IgA and IgG response in bronchoalveolar lavage and nasal lavage by intranasal administration. It induced a robust RBD-specific antibody response, high levels of protective neutralizing antibody, and ACE2-blocking activity in the mouse sera. It stimulated the splenic secretion of high levels of Th1-, Th2-, and Th17-type cytokines. Thus, RBD-MP-cG elicited strong mucosal immunity and systematic immunity by intranasal administration. RBD-MP-cG was expected to act as a safe, effective, and easily produced mucosal nanoparticle vaccine to combat the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| |
Collapse
|
35
|
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22:449-475. [PMID: 37076602 PMCID: PMC10113999 DOI: 10.1038/s41573-023-00672-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
Collapse
Affiliation(s)
- Guangdi Li
- Xiangya School of Public Health, Central South University; Hunan Children's Hospital, Changsha, China.
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine & German Center for Infection Research (DZIF), University of Lübeck, Lübeck, Germany.
| | - Richard Whitley
- Department of Paediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Covello RD, Pasin L, Fresilli S, Tóth K, Damiani C, Hajjar LA, Zangrillo A, Landoni G. Meta-Analysis of Glucocorticoids for Covid-19 Patients Not Receiving Oxygen. NEJM EVIDENCE 2023; 2:EVIDoa2200283. [PMID: 38320047 DOI: 10.1056/evidoa2200283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Glucocorticoids reduce mortality in hospitalized patients with severe and critical coronavirus disease 2019 (Covid-19), although a possible harm was documented in patients with Covid-19 not requiring oxygen. METHODS: We searched Embase, BioMed Central, medRxiv, bioRxiv, PubMed, and the Cochrane Central Register of Controlled Trials for any randomized trial or matched study ever performed on adult patients with Covid-19 not receiving oxygen therapy treated with intravenous or oral glucocorticoids versus any comparator (standard therapy or placebo); there were no restrictions on dose or time of administration. The primary end point was all-cause mortality at the longest available follow-up. RESULTS: Five randomized trials and one propensity-matched study involving 6634 hospitalized patients not on oxygen were finally included (3704 received glucocorticoids and 2930 received standard treatment). The overall mortality of patients treated with glucocorticoids was significantly higher than the mortality of patients in the control group (509 of 3704 [14%] in the glucocorticoid group vs. 294 of 2930 [10%] in the control group; odds ratio, 1.56 [95% confidence interval, 1.27 to 1.92], with three articles reporting mortality events and contributing to the combined odds ratio; P<0.001; number needed to harm=27). CONCLUSIONS: Glucocorticoid use likely increases mortality in hospitalized patients with Covid-19 not receiving oxygen, with a number needed to harm of 27. (PROSPERO number CRD42022342996.)
Collapse
Affiliation(s)
| | - Laura Pasin
- Anesthesia and Intensive Care, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Stefano Fresilli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan
| | - Krisztina Tóth
- Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Caterina Damiani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan
| | | | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan
| |
Collapse
|
37
|
Tomidokoro D, Asai Y, Hayakawa K, Kutsuna S, Terada M, Sugiura W, Ohmagari N, Hiroi Y. Comparison of the clinical characteristics and outcomes of Japanese patients with COVID-19 treated in primary, secondary, and tertiary care facilities. J Infect Chemother 2023; 29:302-308. [PMID: 36526254 PMCID: PMC9745966 DOI: 10.1016/j.jiac.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
AIM To compare the characteristics and clinical course of patients with coronavirus disease (COVID-19) according to the healthcare level of the admitted hospital, to provide an insight into determining the appropriate level of care for each patient. METHODS This retrospective, observational study utilized data from the COVID-19 Registry Japan (COVIREGI-JP), the largest Japanese registry of hospitalized patients with COVID-19. Datasets were obtained from reports filed as of May 31, 2022. RESULTS A total of 59,707 patients (2004 in the primary care group, 41,420 in the secondary care group, and 16,283 in the tertiary care group) from 585 facilities were included in the analysis. Patients with established risk factors for severe disease, such as old age and the presence of comorbidities, were treated at higher care facilities and had poorer initial conditions and in-hospital clinical course, as well as higher mortality. Analysis of the fatality rates for each complication suggested that patients with complications requiring procedures (e.g. pleural effusions, myocardial ischemia, and arrhythmia) may have better survival rates in facilities with specialist availability. The number of deaths and severe COVID-19 cases in this study were notably less than those reported overseas. CONCLUSION Our results showed that more difficult COVID-19 cases with poor outcomes were treated at higher care level facilities in Japan. Attending to possible complications may be useful for selecting an appropriate treatment hospital. Healthcare providers need to maintain a broad perspective on the distribution of medical resources.
Collapse
Affiliation(s)
- Daiki Tomidokoro
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Asai
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- Department of Infection Control and Prevention, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka, Japan
| | - Mari Terada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukio Hiroi
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
38
|
Frasca L, Ocone G, Palazzo R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023; 12:pathogens12020233. [PMID: 36839505 PMCID: PMC9964607 DOI: 10.3390/pathogens12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a challenge for the whole world since the beginning of 2020, and COVID-19 vaccines were considered crucial for disease eradication. Instead of producing classic vaccines, some companies pointed to develop products that mainly function by inducing, into the host, the production of the antigenic protein of SARS-CoV-2 called Spike, injecting an instruction based on RNA or a DNA sequence. Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
Collapse
|
39
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Guerra A, Tuttolomondo D, Gaibazzi N, Meschi T. Insights from comparison of the clinical presentation and outcomes of patients hospitalized with COVID-19 in an Italian internal medicine ward during first and third wave. Front Med (Lausanne) 2023; 10:1112728. [PMID: 36817786 PMCID: PMC9928966 DOI: 10.3389/fmed.2023.1112728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background The reasons of variability of clinical presentation of coronavirus disease-19 (COVID-19) across different pandemic waves are not fully understood, and may include individual risk profile, SARS-CoV-2 lineage and seasonal variations of viral spread. The objective of this retrospective study was to compare the characteristics and outcomes of patients admitted with confirmed coronavirus disease-19 (COVID-19) in the same season during the first (March 2020) and the third pandemic wave (March 2021, dominance of SARS-CoV-2 B.1.1.7 lineage) in an internal medicine ward of a large teaching hospital in Italy. Materials and methods Data of 769 unvaccinated patients (399 from the first and 370 from the third wave) were collected from clinical records, including symptom type and duration, extension of lung abnormalities on chest computed tomography (CT) and PaO2/FiO2 ratio on admission arterial blood gas analysis. Results Third wave patients were in average younger (median 65, interquartile range [IQR] 55-75, vs. 72, IQR 61-81 years old, p < 0.001), with less comorbidities and better pulmonary (CT visual score median 25, IQR 15-40, vs. 30, IQR 15-50, age- and sex-adjusted p = 0.017) and respiratory involvement (PaO2/FiO2 median 288, IQR 237-338, vs. 233, IQR 121-326 mmHg, age- and sex-adjusted p < 0.001) than first wave patients. Hospital mortality was lower (19% vs. 36%, p < 0.001), but not for subjects over 75 years old (46 vs. 49%). Age, number of chronic illnesses, PCT levels, CT visual score [Odds Ratio (OR) 1.022, 95% confidence interval (CI) 1.009-1.036, p < 0.001] and PaO2/FiO2 (OR 0.991, 95% CI 0.988-0.994, p < 0.001), but not the pandemic wave, were associated with mortality on stepwise multivariate logistic regression analysis. Conclusion Despite the higher virulence of B.1.1.7 lineage, we detected milder clinical presentation and improved mortality in patients hospitalized during the third COVID-19 wave, with involvement of younger subjects. The reasons of this discrepancy are unclear, but could involve the population effect of vaccination campaigns, that were being conducted primarily in older frail subjects during the third wave.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy,*Correspondence: Andrea Ticinesi, ✉
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Angela Guerra
- Department of Medicine and Surgery, University of Parma, Parma, Italy,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Domenico Tuttolomondo
- Department of Medicine and Surgery, University of Parma, Parma, Italy,Cardiology Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Gaibazzi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
40
|
Zamai L. Hypothesis: Efficacy of early treatments with some NSAIDs in COVID-19: Might it also depend on their direct and/or indirect zinc chelating ability? Br J Pharmacol 2023; 180:279-286. [PMID: 36482040 PMCID: PMC9877557 DOI: 10.1111/bph.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
The present work argues for the involvement of the zinc chelating ability of some non-steroidal anti-inflammatory drugs as an additive mechanism able to increase their efficacy against COVID-19.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly,National Institute for Nuclear Physics (INFN)—Gran Sasso National Laboratory (LNGS)L'AquilaItaly
| |
Collapse
|
41
|
Fazio S, Affuso F. Opinion on double strategy to fight against COVID-19: Vaccination and home treatment with non-steroidal anti-inflammatory drugs. World J Meta-Anal 2023; 11:1-4. [DOI: 10.13105/wjma.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The goals of global vaccination are to control, eliminate, or eradicate infectious diseases in a sustainable way that strengthens public health systems. Although the use of vaccines is essential for the control of epidemics, the vaccines against coronavirus disease 2019 (COVID-19) proved to be inadequate to end the pandemic and thus are considered incomplete. These vaccines failed to prevent infection, so their primary purpose has been shifted to prevent severe disease and reduce hospitalizations and deaths. Therefore, we believe that all the strategies available to reduce transmission, hospitalizations and deaths due to COVID-19 will be put in place. It is reported that uncontrolled inflammation and thrombosis are the principal mechanisms for aggravation and death in patients with COVID-19. Unlike corticosteroids that should not be administered at the beginning of the symptoms for their immunosuppressive action, which could worsen the evolution of the disease, the usefulness of non-steroidal anti-inflammatory drugs in the early at-home treatment of the disease is becoming evident.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine, Federico II University of Naples, Napoli 80100, Italy
| | - Flora Affuso
- Independent Researcher, Home, Gallipoli 73014, Lecce, Italy
| |
Collapse
|
42
|
Mariniello DF, Allocca V, D’Agnano V, Villaro R, Lanata L, Bagnasco M, Aronne L, Bianco A, Perrotta F. Strategies Tackling Viral Replication and Inflammatory Pathways as Early Pharmacological Treatment for SARS-CoV-2 Infection: Any Potential Role for Ketoprofen Lysine Salt? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248919. [PMID: 36558048 PMCID: PMC9782495 DOI: 10.3390/molecules27248919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 is an infective disease resulting in widespread respiratory and non-respiratory symptoms prompted by SARS-CoV-2 infection. Interaction between SARS-CoV-2 and host cell receptors prompts activation of pro-inflammatory pathways which are involved in epithelial and endothelial damage mechanisms even after viral clearance. Since inflammation has been recognized as a critical step in COVID-19, anti-inflammatory therapies, including both steroids and non-steroids as well as cytokine inhibitors, have been proposed. Early treatment of COVID-19 has the potential to affect the clinical course of the disease regardless of underlying comorbid conditions. Non-steroidal anti-inflammatory drugs (NSAIDs), which are widely used for symptomatic relief of upper airway infections, became the mainstay of early phase treatment of COVID-19. In this review, we discuss the current evidence for using NSAIDs in early phases of SARS-CoV-2 infection with focus on ketoprofen lysine salt based on its pharmacodynamic and pharmacokinetic features.
Collapse
Affiliation(s)
- Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Valentino Allocca
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Riccardo Villaro
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Lanata
- Medical Deptartment, Dompé Farmaceutici SpA, 20122 Milan, Italy
| | | | - Luigi Aronne
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80131 Naples, Italy
- U.O.C. Clinica Pneumologica “L. Vanvitelli”, A.O. dei Colli, Ospedale Monaldi, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
43
|
Henri J, Minder L, Mohanasundaram K, Dilly S, Goupil-Lamy A, Di Primo C, Slama Schwok A. Neuropeptides, New Ligands of SARS-CoV-2 Nucleoprotein, a Potential Link between Replication, Inflammation and Neurotransmission. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228094. [PMID: 36432196 PMCID: PMC9698730 DOI: 10.3390/molecules27228094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal β-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding. The binding sites of some ligands deduced from modeling in wt N were assessed by mutation studies in surface plasmon resonance experiments. Dynamic light scattering showed that the ligands impeded RNA binding to N, which likely inhibited replication. We suggest that the physiological role of these neuropeptides in neurotransmission, pain and vasodilation for cholecystokinin and substance P could be altered by binding to N. We speculate that N may link between viral replication and multiple pathways leading to long COVID-19 symptoms. Therefore, N may constitute a "danger hub" that needs to be inhibited, even at high cost for the host. Antivirals targeted to N may therefore reduce the risk of brain fog and stroke, and improve patients' health.
Collapse
Affiliation(s)
- Julien Henri
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR-CNRS 7238, Sorbonne Université, F-75005 Paris, France
| | - Laetitia Minder
- Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM UAR 3033, US001, Univ. Bordeaux, F-33000 Bordeaux, France
| | - Kevin Mohanasundaram
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
| | - Sébastien Dilly
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
| | - Anne Goupil-Lamy
- Biovia, Dassault Systèmes, 10 Rue Marcel Dassault, CS40501, CEDEX, F-78946 Vélizy-Villacoublay, France
| | - Carmelo Di Primo
- CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, Univ. Bordeaux, F-33000 Bordeaux, France
| | - Anny Slama Schwok
- Saint Antoine Hospital, Centre de Recherche Saint Antoine, Sorbonne Université, Biology and Cancer Therapeutics, INSERM U938, F-75231 Paris, France
- Correspondence: or
| |
Collapse
|
44
|
Donzelli A. Full-dose NSAIDs at the first sign of respiratory infection? THE LANCET. INFECTIOUS DISEASES 2022; 22:1533-1534. [PMID: 36309020 PMCID: PMC9605611 DOI: 10.1016/s1473-3099(22)00649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Alberto Donzelli
- Fondazione Centro Studi Allineare Sanità e Salute, 20131 Milan, Italy
| |
Collapse
|
45
|
Ruggenenti P, Perico N, Remuzzi G. Full-dose NSAIDs at the first sign of respiratory infection? - Authors' reply. THE LANCET INFECTIOUS DISEASES 2022; 22:1534. [PMID: 36309021 PMCID: PMC9605263 DOI: 10.1016/s1473-3099(22)00646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Piero Ruggenenti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy,IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Norberto Perico
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Giuseppe Remuzzi
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy,IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| |
Collapse
|
46
|
Farolfi F, Cavazza S, Mangiagalli A, Cavanna L. A 98-Year-Old Male With Paroxysmal Atrial Fibrillation Treated for COVID-19 at Home. Cureus 2022; 14:e30653. [PMID: 36426345 PMCID: PMC9681671 DOI: 10.7759/cureus.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
In the absence of evidenced-based guidelines for early home treatment of COVID-19, some Italian groups of volunteer physicians (both general practitioners (GPs) and hospital doctors) virtually gathered themselves to discuss the best available evidence and develop shared schemes of therapy. We present the case of a 98-year-old unvaccinated male on chronic anticoagulant therapy with dabigatran for paroxysmal atrial fibrillation (AF), who has been successfully treated for COVID-19 at home, according to one of the multidrug treatments proposed, since hospital admission was not feasible. At the very beginning of symptoms, anti-inflammatory drugs, vitamin D, and adjuvant dietary supplements (quercetin, vitamin C, zinc, and vitamin K2) were administered, followed by dexamethasone and antibiotic therapy, according to the evolving clinical conditions. Gastroprotection with omeprazole was added. Eventually, our patient fully recovered, thus suggesting that careful home assistance under strict medical supervision can be successful, even in a very old subject with comorbidities, particularly if early treatment simultaneously addressing inflammation, hypercoagulation, and viral replication is started.
Collapse
Affiliation(s)
- Fabrizia Farolfi
- General Practice, Azienda Unità Sanitaria Locale della Romagna, Solarolo, ITA
| | - Stefania Cavazza
- Internal Medicine, Arianna Anticoagulazione Foundation, Bologna, ITA
| | - Andrea Mangiagalli
- General Practice, Agenzia di Tutela della Salute Città Metropolitana di Milano, Milano, ITA
| | - Luigi Cavanna
- Onco-hematology, Hospital of Piacenza, Piacenza, ITA
| |
Collapse
|
47
|
Barbui T, Carobbio A, Ghirardi A, Iurlo A, Sobas MA, Elli EM, Rumi E, De Stefano V, Lunghi F, Marchetti M, Daffini R, Gasior Kabat M, Cuevas B, Fox ML, Andrade‐Campos MM, Palandri F, Guglielmelli P, Benevolo G, Harrison C, Foncillas M, Bonifacio M, Alvarez‐Larran A, Kiladjian J, Bolaños Calderón E, Patriarca A, Quiroz Cervantes K, Griesshammer M, Garcia‐Gutierrez V, Marin Sanchez A, Magro Mazo E, Carli G, Hernandez‐Boluda JC, Osorio S, Carreno‐Tarragona G, Sagues Serrano M, Kusec R, Navas Elorza B, Angona A, Xicoy Cirici B, Lopez Abadia E, Koschmieder S, Cattaneo D, Bucelli C, Cichocka E, de Nałęcz AK, Cavalca F, Borsani O, Betti S, Bellini M, Curto‐Garcia N, Rambaldi A, Vannucchi AM. Determinants of early triage for hospitalization in myeloproliferative neoplasm (MPN) patients with COVID-19. Am J Hematol 2022; 97:E470-E473. [PMID: 36111658 PMCID: PMC9538387 DOI: 10.1002/ajh.26732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Tiziano Barbui
- FROM Research FoundationPapa Giovanni XXIII HospitalBergamoItaly
| | | | - Arianna Ghirardi
- FROM Research FoundationPapa Giovanni XXIII HospitalBergamoItaly
| | - Alessandra Iurlo
- Hematology DivisionFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Marta Anna Sobas
- Department of Hematology, Blood Neoplasms and Bone Marrow TransplantationWroclaw Medical UniversityWrocławPoland
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Transplant Unit, San Gerardo HospitalASST MonzaMonzaItaly
| | - Elisa Rumi
- Department of molecular medicineUniversity of PaviaPaviaItaly
| | - Valerio De Stefano
- Diagnostic Imaging, Oncological Radiotherapy, and Hematology DepartmentFondazione Universitaria Policlinico A. Gemelli ‐ IRCCS ‐ Catholic University of Sacred Heart of RomeRomeItaly
| | - Francesca Lunghi
- Hematology and BMT UnitUniversity Vita‐Salute San Raffaele, San Raffaele Scientific InstituteMilanItaly
| | - Monia Marchetti
- Division of HematologyAOU SS. Antonio e Biagio e C. ArrigoAlessandriaItaly
| | - Rosa Daffini
- Division of HematologyASST‐Spedali CiviliBresciaItaly
| | | | - Beatriz Cuevas
- Division of HematologyHospital Universitario de BurgosBurgosSpain
| | - Maria Laura Fox
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | | | - Francesca Palandri
- Institute of HematologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Paola Guglielmelli
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, Azienda Ospedaliera Universitaria CareggiUniversity of FlorenceFlorenceItaly
| | - Giulia Benevolo
- Hematology UnitAOU Città della Salute e della ScienzaTurinItaly
| | - Claire Harrison
- Department of HaematologyGuy's and St. Thomas' NHS Foundation TrustLondonUK
| | | | | | | | | | | | - Andrea Patriarca
- Division of Hematology, Department of Translational MedicineAOU Maggiore della CaritàNovaraItaly
| | | | - Martin Griesshammer
- University Clinic for Hematology, Oncology, Hemostaseology and Palliative CareJohannes Wesling Medical CenterMindenGermany
| | | | | | - Elena Magro Mazo
- Division of HematologyHospital Universitario Principe de AsturiasAlcalà de Henares (Madrid)Spain
| | | | | | | | | | - Miguel Sagues Serrano
- Division of HematologyICO L'Hospitalet‐Hospital Moises BroggiSant Joan Despì (Barcelona)Spain
| | - Rajko Kusec
- Department of haematology, Clinic of internal medicineUniversity Hospital Dubrava‐School of Medicine University of ZagrebZagrebCroatia
| | | | - Anna Angona
- Division of HematologyICO Girona Hospital Josep TruetaGironaSpain
| | - Blanca Xicoy Cirici
- Division of HematologyICO Hospital Germans Trias i PujolBadalona (Barcelona)Spain
| | - Emma Lopez Abadia
- Division of HematologyHospital General de ElcheElche (Alicante)Spain
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of MedicineRWTH Aachen UniversityAachenGermany
| | - Daniele Cattaneo
- Hematology DivisionFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly,Department of Oncology and HematologyUniversità degli Studi di MilanoMilanItaly
| | - Cristina Bucelli
- Hematology DivisionFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Edyta Cichocka
- Department of Hematology and Bone Marrow TransplantationNicolaus Copernicus HospitalTorunPoland
| | | | - Fabrizio Cavalca
- Hematology Division and Bone Marrow Transplant Unit, San Gerardo HospitalASST MonzaMonzaItaly
| | - Oscar Borsani
- Department of molecular medicineUniversity of PaviaPaviaItaly
| | - Silvia Betti
- Diagnostic Imaging, Oncological Radiotherapy, and Hematology DepartmentFondazione Universitaria Policlinico A. Gemelli ‐ IRCCS ‐ Catholic University of Sacred Heart of RomeRomeItaly
| | - Marta Bellini
- Hematology and Bone Marrow Transplant UnitASST Papa Giovanni XXIIIBergamoItaly
| | | | - Alessandro Rambaldi
- Department of Oncology and HematologyUniversità degli Studi di MilanoMilanItaly,Hematology and Bone Marrow Transplant UnitASST Papa Giovanni XXIIIBergamoItaly
| | - Alessandro Maria Vannucchi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, Azienda Ospedaliera Universitaria CareggiUniversity of FlorenceFlorenceItaly
| |
Collapse
|