1
|
Möhn N, Grote-Levi L, Wattjes MP, Bonifacius A, Holzwart D, Hopfner F, Nay S, Tischer-Zimmermann S, Saßmann ML, Schwenkenbecher P, Sühs KW, Mahmoudi N, Warnke C, Zimmermann J, Hagin D, Goudeva L, Blasczyk R, Koch A, Maecker-Kolhoff B, Eiz-Vesper B, Höglinger G, Skripuletz T. Directly Isolated Allogeneic Virus-Specific T Cells in Progressive Multifocal Leukoencephalopathy. JAMA Neurol 2024:2824325. [PMID: 39374035 PMCID: PMC11459361 DOI: 10.1001/jamaneurol.2024.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/09/2024] [Indexed: 10/08/2024]
Abstract
Importance Progressive multifocal leukoencephalopathy (PML) is a life-threatening viral infection with no approved antiviral treatment. Objective To determine whether restoring the compromised immune system of patients with PML with directly isolated allogeneic virus-specific (DIAVIS) T cells is a promising therapeutic strategy, especially if other curative options are absent. Design, Setting, and Participants A retrospective case series of patients with PML who were treated with DIAVIS T cells was conducted between March 2020 and February 2022. T cells were isolated from healthy donors within 24 hours and targeted against the BK polyomavirus. Patients with PML were treated monocentrically. Eligibility for treatment with DIAVIS T cells was assessed for patients with confirmed PML, and exclusion criteria included stable PML disease and previous treatment with natalizumab. Exposure Fresh DIAVIS T cells were administered with a maximum dose of 2 × 104 CD3+ cells/kg body weight. Remaining T cells were cryopreserved in divided doses and administered in additional treatments approximately 2 and 6 weeks later. Main Outcomes and Measures Primary outcome measures were clinical response and survival of patients, compared with the outcomes of a historical reference group of PML cases receiving best supportive treatment (BST) and with recently published real-world data of patients with PML who were treated with immune checkpoint inhibition. Results The study cohort consisted of 28 patients (median [IQR] age, 60 [51-72] years; 20 male [71.4%]). Twenty-two patients (79%) treated with DIAVIS T cells showed response, resulting in significant clinical stabilization or improvement and a reduction in viral load. Six individuals (21%) were classified as nonresponders, deteriorated rapidly, and died, as did 2 other patients during a 12-month follow-up. Older age was the only predictor of a poor treatment response. Survival analysis revealed better 12-month survival rates (hazard ratio, 0.42; 95% CI, 0.24-0.73; P =.02) from diagnosis for patients treated with DIAVIS T cells (18 of 26 [69%]; 12-mo survival rate, 69%) compared with historical controls with BST (57 of 113 [50%]; 12-mo survival rate, including censored data, 45%). Conclusion and Relevance This case series of DIAVIS T-cell therapy in PML provides first class IV evidence suggesting efficacy to reduce mortality and improve functional outcome. Further prospective studies are required to confirm these results.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Mike P. Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Dennis Holzwart
- Department of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra Nay
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | | | | | | | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Armin Koch
- Department of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover, Germany
| | - Britta Eiz-Vesper
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
2
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Roca-Pereira S, Domínguez R, Moreno León I, Colomina MJ, Martínez Yélamos A, Martínez Yélamos S, Povedano M, Andrés-Benito P. Increased CXCL12, a potential CSF biomarker for differential diagnosis of amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae271. [PMID: 39188590 PMCID: PMC11346361 DOI: 10.1093/braincomms/fcae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a debilitating and lethal neurodegenerative disorder marked by the gradual deterioration of motor neurons. Diagnosing amyotrophic lateral sclerosis is challenging due to the lack of reliable diagnostic tools, with clinical assessment being the primary criterion. Recently, increased levels of neurofilament light chain in CSF have been considered a useful biomarker in disease, correlating with disease progression but not specific for diagnosis. This study utilized enzyme-linked immunosorbent assay to measure CSF C-X-C motif chemokine ligand 12 levels in healthy controls, amyotrophic lateral sclerosis patients and patients with amyotrophic lateral sclerosis-mimic disorders, assessing its potential as a diagnostic biomarker and comparing it with neurofilament light chain levels. Our results confirmed previous findings, showing increased C-X-C motif chemokine ligand 12 levels in amyotrophic lateral sclerosis patients compared to healthy control (797.07 ± 31.84 pg/mL versus 316.15 ± 16.6 pg/mL; P = 0.000) and increased CSF neurofilament light chain levels in amyotrophic lateral sclerosis (4565.63 ± 263.77 pg/mL) compared to healthy control (847.86 ± 214.37 pg/mL; P = 0.000). Increased C-X-C motif chemokine ligand levels were specific to amyotrophic lateral sclerosis, not seen in amyotrophic lateral sclerosis-mimic conditions like myelopathies (252.20 ± 23.16 pg/mL; P = 0.000), inflammatory polyneuropathies (270.24 ± 32.23 pg/mL; P = 0.000) and other mimic diseases (228.91 ± 29.20 pg/mL; P = 0.000). In contrast, CSF neurofilament light chain levels in amyotrophic lateral sclerosis overlapped with those in myelopathies (2900.11 ± 872.20 pg/mL; P = 0.821) and other mimic diseases (3169.75 ± 1096.65 pg/mL; P = 0.63), but not with inflammatory polyneuropathies (1156.4 ± 356.6 pg/mL; P = 0.000). Receiver operating characteristic curve analysis indicated significant differences between the area under the curve values of C-X-C motif chemokine ligand and neurofilament light chain in their diagnostic capacities. C-X-C motif chemokine ligand could differentiate between amyotrophic lateral sclerosis and myelopathies (area under the curve 0.99 ± 0.005), inflammatory polyneuropathies (area under the curve 0.962 ± 0.027) and other mimic diseases (area under the curve 1.00 ± 0.00), whereas neurofilament light chain was only effective in inflammatory polyneuropathies cases (area under the curve 0.92 ± 0.048), not in myelopathies (area under the curve 0.71 ± 0.09) or other mimic diseases (area under the curve 0.69 ± 0.14). We also evaluated C-X-C motif chemokine ligand levels in plasma [amyotrophic lateral sclerosis (2022 ± 81.8 pg/mL) versus healthy control (1739.43 ± 77.3 pg/mL; P = 0.015)] but found CSF determination (area under the curve 0.97 ± 0.012) to be more accurate than plasma determination (area under the curve 0.65 ± 0.063). In plasma, single molecule array (SIMOA) neurofilament light chain determination [amyotrophic lateral sclerosis (86.00 ± 12.23 pg/mL) versus healthy control (12.69 ± 1.15 pg/mL); P = 0.000] was more accurate than plasma C-X-C motif chemokine ligand 12 (area under the curve 0.98 ± 0.01405). These findings suggest that CSF C-X-C motif chemokine ligand 12 levels can enhance diagnostic specificity in distinguishing amyotrophic lateral sclerosis from amyotrophic lateral sclerosis-mimic disorders, compared to neurofilament light chain. Larger studies are needed to validate these results, but C-X-C motif chemokine ligand 12 determination shows promising diagnostic potential.
Collapse
Affiliation(s)
- Sergio Roca-Pereira
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Raúl Domínguez
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology—Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Isabel Moreno León
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - María J Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital—University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Antonio Martínez Yélamos
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Sergio Martínez Yélamos
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Department of Neurology, Multiple Sclerosis Unit, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mónica Povedano
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology—Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Pol Andrés-Benito
- Group of Neurological diseases and Neurogenetics—Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona 08907, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
4
|
Gębka-Kępińska B, Adamczyk B, Gębka D, Czuba Z, Szczygieł J, Adamczyk-Sowa M. Cytokine Profiling in Cerebrospinal Fluid of Patients with Newly Diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS): Associations between Inflammatory Biomarkers and Disease Activity. Int J Mol Sci 2024; 25:7399. [PMID: 39000506 PMCID: PMC11242697 DOI: 10.3390/ijms25137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Cytokines regulate immune responses and are crucial to MS pathogenesis. This study evaluated pro-inflammatory and anti-inflammatory cytokine concentrations in the CSF of de novo diagnosed RRMS patients compared to healthy controls. We assessed cytokine levels in the CSF of 118 de novo diagnosed RRMS patients and 112 controls, analyzing relationships with time from symptom onset to diagnosis, MRI lesions, and serum vitamin D levels. Elevated levels of IL-2, IL-4, IL-6, IL-13, FGF-basic, and GM-CSF, and lower levels of IL-1β, IL-1RA, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, G-CSF, PDGF-bb, and VEGF were observed in RRMS patients compared to controls. IL-2, IL-4, IL-12p70, PDGF, G-CSF, GM-CSF, and FGF-basic levels increased over time, while IL-10 decreased. IL-1β, IL-1RA, IL-6, TNF-α, and PDGF-bb levels negatively correlated with serum vitamin D. TNF-α levels positively correlated with post-contrast-enhancing brain lesions. IL-15 levels negatively correlated with T2 and Gd(+) lesions in C-spine MRI, while TNF-α, PDGF-bb, and FGF-basic correlated positively with T2 lesions in C-spine MRI. IL-6 levels positively correlated with post-contrast-enhancing lesions in Th-spine MRI. Distinct cytokine profiles in the CSF of de novo diagnosed MS patients provide insights into MS pathogenesis and guide immunomodulatory therapy strategies.
Collapse
Affiliation(s)
- Barbara Gębka-Kępińska
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Dorota Gębka
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| |
Collapse
|
5
|
Beydoun MA, Noren Hooten N, Georgescu MF, Beydoun HA, Eid SM, Fanelli-Kuczmarski MT, Evans MK, Zonderman AB. Serum neurofilament light chain as a prognostic marker of all-cause mortality in a national sample of US adults. Eur J Epidemiol 2024; 39:795-809. [PMID: 38771439 PMCID: PMC11343803 DOI: 10.1007/s10654-024-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Neurofilament light chain (NfL) is a neuron-specific structural protein released into the extracellular space, including body fluids, upon neuroaxonal damage. Despite evidence of a link in neurological disorders, few studies have examined the association of serum NfL with mortality in population-based studies. Data from the National Health and Nutrition Survey were utilized including 2,071 Non-Hispanic White, Non-Hispanic Black and Hispanic adult participants and adult participants of other ethnic groups (20-85 years) with serum NfL measurements who were followed for ≤ 6 years till 2019. We tested the association of serum NfL with mortality in the overall population and stratified by sex with the addition of potential interactive and mediating effects of cardio-metabolic risk factors and nutritional biomarkers. Elevated serum NfL levels (above median group) were associated with mortality risk compared to the below median NfL group in the overall sample (P = 0.010), with trends observed within each sex group (P < 0.10). When examining Loge NfL as a continuum, one standard deviation of Loge NfL was associated with an increased mortality risk (HR = 1.88, 95% CI 1.60-2.20, P < 0.001) in the reduced model adjusted for age, sex, race, and poverty income ratio; a finding only slightly attenuated with the adjustment of lifestyle and health-related factors. Four-way decomposition indicated that there was, among others, mediated interaction between NfL and HbA1c and a pure inconsistent mediation with 25(OH)D3 in predicting all-cause mortality, in models adjusted for all other covariates. Furthermore, urinary albumin-to-creatinine ratio interacted synergistically with NfL in relation to mortality risk both on the additive and multiplicative scales. These data indicate that elevated serum NfL levels were associated with all-cause mortality in a nationally representative sample of US adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
- NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Shaker M Eid
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
6
|
Brown Q, Nicholson E, Wang C, Greenlee J, Seger H, Veneziano S, Cassmann E. Temporal serum neurofilament light chain concentrations in sheep inoculated with the agent of classical scrapie. PLoS One 2024; 19:e0299038. [PMID: 38394122 PMCID: PMC10889644 DOI: 10.1371/journal.pone.0299038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep. METHODS Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations. RESULTS Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present. CONCLUSION Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.
Collapse
Affiliation(s)
- Quazetta Brown
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Christensen, Ames, United States of America
| | - Eric Nicholson
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Justin Greenlee
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Hannah Seger
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Susan Veneziano
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Eric Cassmann
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
7
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Beydoun MA, Noren Hooten N, Beydoun HA, Weiss J, Maldonado AI, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light and brain volumetric outcomes among middle-aged urban adults. Neurobiol Aging 2023; 129:28-40. [PMID: 37257406 PMCID: PMC10524231 DOI: 10.1016/j.neurobiolaging.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Elevated plasma neurofilament light chain (NfL) is associated with dementia though underlying mechanisms remain unknown. We examined cross-sectional relationships of time-dependent plasma NfL with selected brain structural magnetic resonance imaging (sMRI) prognostic markers of dementia. The sample was drawn from the Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study, selecting participants with complete v1 (2004-2009) and v2 (2009-2013) plasma NfL exposure and ancillary sMRI data at vscan (2011-2015, n = 179, mean v1 to vscan time: 5.4 years). Multivariable-adjusted linear regression models were conducted, overall, by sex, and race, correcting for multiple testing with q-values. NfL(v1) was associated with larger WMLV (both Loge transformed), after 5-6 years' follow-up, overall (β = +2.131 ± 0.660, b = +0.29, p = 0.001, and q = 0.0029) and among females. NfLv2 was linked to a 125 mm3 lower left hippocampal volume (p = 0.004 and q = 0.015) in reduced models, mainly among males, as was observed for annualized longitudinal change in NfL (δNfLbayes). Among African American adults, NfLv1 was inversely related to total, gray and white matter volumes. Plasma NfL may reflect future brain pathologies in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California Berkeley, Berkeley, CA, USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA; Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Leslie I Katzel
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA; Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA; Division of Gerontology, Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Beydoun MA, Noren Hooten N, Weiss J, Maldonado AI, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Plasma neurofilament light as blood marker for poor brain white matter integrity among middle-aged urban adults. Neurobiol Aging 2023; 121:52-63. [PMID: 36371816 PMCID: PMC9733693 DOI: 10.1016/j.neurobiolaging.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Plasma neurofilament light chain (NfL)'s link to dementia may be mediated through white matter integrity (WMI). In this study, we examined plasma NfL's relationships with diffusion tensor magnetic resonance imaging markers: global and cortical white matter fractional anisotropy (FA) and trace (TR). Plasma NfL measurements at 2 times (v1: 2004-2009 and v2: 2009-2013) and ancillary dMRI (vscan: 2011-2015) were considered (n = 163, mean time v1 to vscan = 5.4 years and v2 to vscan: 1.1 years). Multivariable-adjusted regression models, correcting for multiple-testing revealed that, overall, higher NfLv1 was associated with greater global TR (β ± SE: +0.0000560 ± 0.0000186, b = 0.27, p = 0.003, q = 0.012), left frontal WM TR (β ± SE: + 0.0000706 ± 0.0000201, b ± 0.30, p = 0.001, q = 0.0093) and right frontal WM TR (β ± SE: + 0.0000767 ± 0.000021, b ± 0.31, p < 0.001, q = 0.0093). These associations were mainly among males and White adults. Among African American adults only, NfLv2 was associated with greater left temporal lobe TR. "Tracking high" in NfL was associated with reduced left frontal FA (Model 2, body mass index-adjusted: β ± SE:-0.01084 ± 0.00408, p = 0.009). Plasma NfL is a promising biomarker predicting future brain white matter integrity (WMI) in middle-aged adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Maryland, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Leslie I Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Catonsville, MD, USA; Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Maria E, Das S, Varghese AM, Thangheswaran H, John M. Differentially Expressed Erythrocyte Proteins in Neuromyelitis Optica Spectrum Disorders and Their Functional Annotation Using DAVID Bioinformatics Tool. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Papa L, Walter AE, Wilkes JR, Clonts HS, Johnson B, Slobounov SM. Effect of Player Position on Serum Biomarkers during Participation in a Season of Collegiate Football. J Neurotrauma 2022; 39:1339-1348. [PMID: 35615873 PMCID: PMC9529311 DOI: 10.1089/neu.2022.0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This prospective cohort study examined the relationship between a panel of four serum proteomic biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], total Tau, and neurofilament light chain polypeptide [NF-L]) in 52 players from two different cohorts of male collegiate student football athletes from two different competitive seasons of Division I National Collegiate Athletic Association Football Bowl Subdivision. This study evaluated changes in biomarker concentrations (as indicators of brain injury) over the course of the playing season (pre- and post-season) and also assessed biomarker concentrations by player position using two different published classification systems. Player positions were divided into: 1) speed (quarterbacks, running backs, halfbacks, fullbacks, wide receivers, tight ends, defensive backs, safety, and linebackers) versus non-speed (offensive and defensive linemen), and 2) "Profile 1" (low frequency/high strain magnitudes positions including quarterbacks, wide receivers, and defensive backs), "Profile 2" (mid-range impact frequency and strain positions including linebackers, running backs, and tight ends), and "Profile 3" (high frequency/low strains positions including defensive and offensive linemen). There were significant increases in GFAP 39.3 to 45.6 pg/mL and NF-L 3.5 to 5.4 pg/mL over the course of the season (p < 0.001) despite only five players being diagnosed with concussion. UCH-L1 decreased significantly, and Tau was not significantly different. In both the pre- and post-season blood samples Tau and NF-L concentrations were significantly higher in speed versus non-speed positions. Concentrations of GFAP, Tau, and NF-L increased incrementally from "Profile 3," to "Profile 2" to "Profile 1" in the post-season. UCH-L1 did not. GFAP increased (by Profiles 3, 2, 1) from 42.4 to 49.6 to 78.2, respectively (p = 0.051). Tau increased from 0.37 to 0.61 to 0.67, respectively (p = 0.024). NF-L increased from 3.5 to 4.9 to 8.2, respectively (p < 0.001). Although GFAP and Tau showed similar patterns of elevations by profile in the pre-season samples they were not statistically significant. Only NF-L showed significant differences between profiles 2.7 to 3.1 to 4.2 in the pre-season (p = 0.042). GFAP, Tau, and NF-L concentrations were significantly associated with different playing positions with the highest concentrations in speed and "Profile 1" positions and the lowest concentrations were in non-speed and "Profile 3" positions. Blood-based biomarkers (GFAP, Tau, NF-L) provide an additional layer of injury quantification that could contribute to a better understanding of the risks of playing different positions.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexa E. Walter
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James R. Wilkes
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hunter S. Clonts
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida, USA
| | - Brian Johnson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Semyon M. Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Beydoun MA, Noren Hooten N, Weiss J, Beydoun HA, Hossain S, Evans MK, Zonderman AB. Plasma neurofilament light and its association with all-cause mortality risk among urban middle-aged men and women. BMC Med 2022; 20:218. [PMID: 35692046 PMCID: PMC9190073 DOI: 10.1186/s12916-022-02425-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is released into the blood during neuronal damage. NfL is linked to mortality in neurological disorders, remaining unexplored in population studies. We investigated whether initial (v1) and annualized change (δ) in plasma NfL can predict all-cause mortality in middle-aged dementia-free urban adults. METHODS Longitudinal data were from 694 participants in the Healthy Aging in Neighborhoods of Diversity Across the Life Span study (HANDLS, mean agev1: 47.8 years, 42% male, 55.8% African American). Plasma NfL was measured prospectively at three visits. Analyses included Cox proportional hazards models for all-cause mortality risk and 4-way decomposition testing for interaction and mediation. RESULTS Unlike men, women exhibited a direct association between δNfL (above vs. below median) and all-cause mortality risk in both the minimally (HR = 3.91, 95% CI 1.10-13.9, p = 0.036) and fully adjusted models (HR = 4.92, 95% CI 1.26-19.2, p = 0.022), and for δNfL (per unit increase) in the full model (HR = 1.65, 95% CI 1.04-2.61, p = 0.034). In both models, and among women, 1 standard deviation of NfLv1 was associated with an increased all-cause mortality risk (reduced model: HR = 2.01, 95% CI 1.24-3.25, p = 0.005; full model: HR = 1.75, 95% CI 1.02-2.98, p = 0.041). Only few interactions were detected for cardio-metabolic risk factors. Notably, NfLv1 was shown to be a better prognostic indicator at normal hsCRP values among women, while HbA1c and δNfL interacted synergistically to determine mortality risk, overall. CONCLUSIONS These findings indicate that plasma NfL levels at baseline and over time can predict all-cause mortality in women and interacts with hsCRP and HbA1c to predict that risk.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| |
Collapse
|
13
|
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23115877. [PMID: 35682558 PMCID: PMC9180348 DOI: 10.3390/ijms23115877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Maysa Hamade
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qi Wu
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qin Wang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Robert Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Yang Mao-Draayer
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-615-5635
| |
Collapse
|
14
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
15
|
Mashayekhi F, Sadigh-Eteghad S, Naseri A, Asadi M, Abbasi Garravnd N, Talebi M. ApoE4-positive multiple sclerosis patients are more likely to have cognitive impairment: a cross-sectional study. Neurol Sci 2022; 43:1189-1196. [PMID: 34120271 DOI: 10.1007/s10072-021-05383-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) presents with a wide variety of symptoms, including cognitive dysfunction. Previous studies in terms of the possible function of the ApoE4 allele as a risk factor for cognitive dysfunction in MS patients were associated with conflicting results. The role of the ε4 isoform of apolipoprotein (ApoE4) was investigated in this study as a risk factor for cognitive dysfunction in MS patients. METHODS Mildly disabled relapsing-remitting MS (RRMS) patients were involved in this study. The neurocognitive assessment is conducted by the Minimal Assessment of Cognitive Function in MS (MACFIMS) battery. After determining the genotype, patients were divided into two groups of ApoE4-positive and ApoE4-negative groups, and cognitive findings were compared. RESULTS Seventy-one patients with a mean age of 31.43 ± 8.75 were involved in this study. Eleven out of 17 (64.70%) patients in the ApoE4-positive group had at least one impaired test, while this rate was 16 out of 54 (29.62%) in the ApoE4-negative group (p < 0.01). The rate of overall cognitive impairment (failure in ≥ 2 tests) was not statistically different between groups of the study (p = 0.75). Impairment in Paced Auditory Serial Addition Test (PASAT) task and also the mean score of Brief Visuospatial Memory Test-Revised (BVMT-R) tests were different between two groups (p = 0.01 and 0.02, respectively). CONCLUSION MS ApoE4-positive patients are more likely to have at least one impaired cognitive test, but there is a need for more studies with larger sample sizes and based on MS-specific cognitive tests to confirm these findings.
Collapse
Affiliation(s)
- Farshid Mashayekhi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.
| |
Collapse
|
16
|
Li M, Chen H, Yin P, Song J, Jiang F, Tang Z, Fan X, Xu C, Wang Y, Xue Y, Han B, Wang H, Li G, Zhong D. Identification and Clinical Validation of Key Extracellular Proteins as the Potential Biomarkers in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2021; 12:753929. [PMID: 34950135 PMCID: PMC8688859 DOI: 10.3389/fimmu.2021.753929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers. Methods MS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs. Results We screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival. Conclusion IL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongping Chen
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Pengqi Yin
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jihe Song
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fangchao Jiang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhanbin Tang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chen Xu
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yingju Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Xue
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Baichao Han
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haining Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guozhong Li
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Di Zhong
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Kanhai KMS, Goulooze SC, van der Grond J, Harms AC, Hankemeier T, Verma A, Dent G, Chavez J, Meijering H, Groeneveld GJ. Kinetics of myelin breakdown products: A labeling study in patients with progressive multiple sclerosis. Clin Transl Sci 2021; 15:638-648. [PMID: 34799987 PMCID: PMC8932820 DOI: 10.1111/cts.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
The majority of disease modifying therapies for multiple sclerosis (MS) reduce inflammation, but do no’t target remyelination. Development of remyelinating therapies will benefit from a method to quantify myelin kinetics in patients with MS. We labeled myelin in vivo with deuterium, and modeled kinetics of myelin breakdown products β‐galactosylceramide (β‐GalC) and N‐Octadecanoyl‐sulfatide (NO‐Sulf). Five patients with MS received 120 ml 70% D2O daily for 70 days and were compared with six healthy subjects who previously received the same procedure. Mass spectrometry and compartmental modeling were used to quantify the turnover rate of β‐GalC and NO‐Sulf in cerebrospinal fluid (CSF). Turnover rate constants of the fractions of β‐GalC and NO‐Sulf with non‐negligible turnover were 0.00186 and 0.00714, respectively, in both healthy subjects and patients with MS. The turnover half‐life of β‐GalC and NO‐Sulf was calculated as 373 days and 96.5 days, respectively. The effect of MS on the NO‐Sulf (49.4% lower fraction with non‐negligible turnover) was more pronounced compared to the effect on β‐GalC turnover (18.3% lower fraction with non‐negligible turnover). Kinetics of myelin breakdown products in the CSF are different in patients with MS compared with healthy subjects. This may be caused by slower myelin production in these patients, by a higher level of degradation of a more stable component of myelin, or, most likely, by a combination of these two processes. Labeling myelin breakdown products is a useful method that can be used to quantify myelin turnover in patients with progressive MS and can therefore be used in proof‐of‐concept studies with remyelination therapies.
Collapse
Affiliation(s)
- Kawita M S Kanhai
- Centre for Human Drug Research, Leiden, The Netherlands.,Prothya Biosolutions, Amsterdam, The Netherlands
| | - Sebastiaan C Goulooze
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Amy C Harms
- Prothya Biosolutions, Amsterdam, The Netherlands.,Radiology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Ajay Verma
- Yumanity Pharmaceuticals, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
18
|
Beydoun MA, Noren Hooten N, Maldonado AI, Beydoun HA, Weiss J, Evans MK, Zonderman AB. BMI and Allostatic Load Are Directly Associated with Longitudinal Increase in Plasma Neurofilament Light among Urban Middle-Aged Adults. J Nutr 2021; 152:535-549. [PMID: 34718678 PMCID: PMC8826916 DOI: 10.1093/jn/nxab381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a novel biomarker for age-related neurodegenerative disease. We tested whether NfL may be linked to cardiometabolic risk factors, including BMI, the allostatic load (AL) total score (ALtotal), and related AL continuous components (ALcomp). We also tested whether these relations may differ by sex or by race. METHODS We used data from the HANDLS (Healthy Aging in Neighborhoods of Diversity across the Life Span) study [n = 608, age at visit 1 (v1: 2004-2009): 30-66 y, 42% male, 58% African American] to investigate associations of initial cardiometabolic risk factors and time-dependent plasma NfL concentrations over 3 visits (2004-2017; mean ± SD follow-up time: 7.72 ± 1.28 y), with outcomes being NfLv1 and annualized change in NfL (δNfL). We used mixed-effects linear regression and structural equations modeling (SM). RESULTS BMI was associated with lower initial (γ01 = -0.014 ± 0.002, P < 0.001) but faster increase in plasma NfL over time (γ11 = +0.0012 ± 0.0003, P < 0.001), a pattern replicated for ALtotal. High-sensitivity C-reactive protein (hsCRP), serum total cholesterol, and resting heart rate at v1 were linked with faster plasma NfL increase over time, overall, while being uncorrelated with NfLv1 (e.g., hsCRP × Time, full model: γ11 = +0.004 ± 0.002, P = 0.015). In SM analyses, BMI's association with δNfL was significantly mediated through ALtotal among women [total effect (TE) = +0.0014 ± 0.00038, P < 0.001; indirect effect = +0.00042 ± 0.00019, P = 0.025; mediation proportion = 30%], with only a direct effect (DE) detected among African American adults (TE = +0.0011 ± 0.0004, P = 0.015; DE = +0.0010 ± 0.00048, P = 0.034). The positive associations between ALtotal/BMI and δNfL were mediated through increased glycated hemoglobin (HbA1c) concentrations, overall. CONCLUSIONS Cardiometabolic risk factors, particularly elevated HbA1c, should be screened and targeted for neurodegenerative disease, pending comparable longitudinal studies. Other studies examining the clinical utility of plasma NfL as a neurodegeneration marker should account for confounding effects of BMI and AL.
Collapse
Affiliation(s)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Ana I Maldonado
- Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging/NIH/Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
19
|
Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int J Mol Sci 2021; 22:ijms221910323. [PMID: 34638664 PMCID: PMC8508638 DOI: 10.3390/ijms221910323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS) that involves an intricate and aberrant interaction of immune cells leading to inflammation, demyelination, and neurodegeneration. Due to the heterogeneity of clinical subtypes, their diagnosis becomes challenging and the best treatment cannot be easily provided to patients. Biomarkers have been used to simplify the diagnosis and prognosis of MS, as well as to evaluate the results of clinical treatments. In recent years, research on biomarkers has advanced rapidly due to their ability to be easily and promptly measured, their specificity, and their reproducibility. Biomarkers are classified into several categories depending on whether they address personal or predictive susceptibility, diagnosis, prognosis, disease activity, or response to treatment in different clinical courses of MS. The identified members indicate a variety of pathological processes of MS, such as neuroaxonal damage, gliosis, demyelination, progression of disability, and remyelination, among others. The present review analyzes biomarkers in cerebrospinal fluid (CSF) and blood serum, the most promising imaging biomarkers used in clinical practice. Furthermore, it aims to shed light on the criteria and challenges that a biomarker must face to be considered as a standard in daily clinical practice.
Collapse
|
20
|
Li D, Zhang L, Nelson NW, Mielke MM, Yu F. Plasma Neurofilament Light and Future Declines in Cognition and Function in Alzheimer's Disease in the FIT-AD Trial. J Alzheimers Dis Rep 2021; 5:601-611. [PMID: 34514342 PMCID: PMC8385429 DOI: 10.3233/adr-210302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Utilities of blood-based biomarkers in Alzheimer’s disease (AD) clinical trials remain unknown. Objective: To evaluate the ability of plasma neurofilament light chain (NfL) to predict future declines in cognition and activities of daily living (ADL) outcomes in 26 older adults with mild-to-moderate AD dementia from the FIT-AD Trial. Methods: Plasma NfL was measured at baseline and 3 and 6 months. Cognition and ADL were assessed using the AD Assessment Scale-Cognition (ADAS-Cog) and AD Uniform Dataset Instruments and Disability Assessment for Dementia (DAD), respectively, at baseline, 3, 6, 9, and 12 months. Linear mixed effects models were used to examine the associations between baseline or change in plasma NfL and changes in outcomes. Results: Higher baseline plasma NfL was associated with greater rate of decline in ADAS-Cog from baseline to 6 months (standardized estimate of 0.00462, p = 0.02853) and in ADL from baseline to 12 months (standardized estimate of –0.00284, p = 0.03338). Greater increase in plasma NfL in short term from baseline to 3 months was associated with greater rate of decline in memory and ADL from 3 to 6 months (standardized estimate of –0.04638 [0.003], p = 0.01635; standardized estimate of –0.03818, p = 0.0435) and greater rate of decline in ADL from 3 to 12 month (standardized estimate of –0.01492, p = 0.01082). Conclusion: This study demonstrated that plasma NfL might have the potential to predict cognitive and function decline up to 12 months. However, future studies with bigger sample sizes need to confirm the findings.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lin Zhang
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel W Nelson
- Graduate School of Professional Psychology, University of St. Thomas, Minnesota, St. Paul, MN, USA
| | - Michelle M Mielke
- Departments of Health Sciences Research and Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
21
|
Beydoun MA, Noren Hooten N, Beydoun HA, Maldonado AI, Weiss J, Evans MK, Zonderman AB. Plasma neurofilament light as a potential biomarker for cognitive decline in a longitudinal study of middle-aged urban adults. Transl Psychiatry 2021; 11:436. [PMID: 34420032 PMCID: PMC8380245 DOI: 10.1038/s41398-021-01563-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Plasma neurofilament light (NfL) is a marker for neurodegenerative diseases. Few studies have examined the association of NfL with middle-aged changes in cognitive performance, and no studies have examined differential NfL effects by race. Using data from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study (n = 625, Agev1: 30-66 y, 41.6% male, 56.3% African American, 27.8% below poverty), we investigated the associations of initial NfL levels and annualized change with cognitive performance over time in global mental status, verbal and visual memory, fluency, attention, and executive function. We used ordinary least squares and mixed-effects regressions stratified by race, while exploring differential associations by age group, sex, and poverty status. Over a mean follow-up of 4.3 years, we found initial NfL level was associated with a faster decline on normalized mental status scores in Whites only and in those >50 years old. Annualized increase in NfL was associated with a greater decline in verbal fluency in men. In other exploratory analyses, annualized increase in NfL was associated with a slower decline in verbal memory among individuals living above poverty; in the older group (>50 years), first-visit NfL was linked with better performance at baseline in global mental status and verbal memory. In summary, first-visit NfL was primarily associated with the global mental status decline among Whites, while exhibiting inconsistent relationships in some exploratory analyses. Plasma NfL levels can be detected and quantified in non-demented middle-aged adults and changes can be analyzed over time. More longitudinal studies are needed to address the clinical utility of this biomarker for early cognitive defects.
Collapse
Affiliation(s)
- May A. Beydoun
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Nicole Noren Hooten
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Hind A. Beydoun
- grid.413661.70000 0004 0595 1323Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA USA
| | - Ana I. Maldonado
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA ,grid.266673.00000 0001 2177 1144Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD USA
| | - Jordan Weiss
- grid.47840.3f0000 0001 2181 7878Department of Demography, University of California, Berkeley, Berkeley, CA USA
| | - Michele K. Evans
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| | - Alan B. Zonderman
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD USA
| |
Collapse
|
22
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
23
|
Qu Y, Tan CC, Shen XN, Li HQ, Cui M, Tan L, Dong Q, Yu JT. Association of Plasma Neurofilament Light With Small Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke 2021; 52:896-904. [PMID: 33517704 DOI: 10.1161/strokeaha.120.030302] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Neurofilament light chain (NfL) is a promising predictive biomarker of active axonal injury and neuronal degeneration diseases. We aimed to evaluate if an increase in plasma NfL levels could play a monitoring role in the progression of cerebral small vessel disease (CSVD) among the nondemented elders, which are highly prevalent in elderly individuals and associated with an increased risk of stroke and dementia. METHODS The study included 496 nondemented participants from the Alzheimer disease neuroimaging initiative database. All participants underwent plasma NfL measurements and 3.0-Tesla magnetic resonance imaging of the brain; 387 (78.0%) underwent longitudinal measurements. The number of cerebral microbleeds, lacunar infarcts, and volumetric white matter hyperintensities, as well as Fazekas scores, were measured. Cross-sectional and longitudinal associations between CSVD burden and NfL levels were evaluated using multivariable-adjusted models. RESULTS Plasma NfL was higher in the moderate-severe CSVD burden group (45.2±16.0 pg/mL) than in the nonburden group (34.3±15.1 pg/mL; odds ratio [OR]=1.71 [95% CI, 1.24-2.35]) at baseline. NfL was positively associated with the presence of cerebral microbleeds (OR=1.29 [95% CI, 1.01-1.64]), lacunar infarcts (OR=1.43 [95% CI, 1.06-1.93]), and moderate-severe white matter hyperintensities (OR=1.67 [95% CI, 1.24-2.25]). Longitudinally, a higher change rate of NfL could predict more progression of CSVD burden (OR=1.38 [95% CI, 1.08-1.76]), white matter hyperintensities (OR=1.41 [95% CI, 1.10-1.79]), and lacunar infarcts (OR=1.99 [95% CI, 1.42-2.77]). CONCLUSIONS Plasma NfL level is a valuable noninvasive biomarker that supplements magnetic resonance imaging scans and possibly reflects the severity of CSVD burden. Furthermore, high plasma NfL levels tend to represent an increased CSVD risk, and dynamic increases in NfL levels might predict a greater progression of CSVD.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | | |
Collapse
|
24
|
Wentz E, Dobrescu SR, Dinkler L, Gillberg C, Gillberg C, Blennow K, Råstam M, Zetterberg H. Thirty years after anorexia nervosa onset, serum neurofilament light chain protein concentration indicates neuronal injury. Eur Child Adolesc Psychiatry 2021; 30:1907-1915. [PMID: 33040187 PMCID: PMC8563534 DOI: 10.1007/s00787-020-01657-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Little is known about the long-term consequences of anorexia nervosa (AN) in terms of possible brain neuronal injury. We aimed at investigating whether women with adolescent-onset AN exhibit increased serum levels of neurofilament light chain protein (NfL), a biomarker for neuronal injury, compared with matched controls at 30-year follow-up. Blood samples were collected from 34 women with adolescent-onset AN and 38 matched healthy comparison women (COMP), at a mean age of 44 years (range 38-48 years). NfL was measured in serum using the in-house single molecule array (Simoa) method. The individuals were asked whether they or their parents had been diagnosed with dementia. The Swedish National Patient Register was searched for diagnoses related to dementia. Serum NfL concentrations were significantly higher in the AN group (AN 27.7 pg/ml; COMP 19.0 pg/ml; p = 0.041). When individuals with medical/neurological disorders in the AN and COMP groups were excluded, there was a statistically non-significant trend towards higher concentrations in the AN group (AN 27.4 pg/ml; COMP 18.8 pg/ml; p = 0.060). None of the participants had been diagnosed with dementia. There was no significant correlation between serum NfL and AN duration (r = 0.15). There was a moderate negative correlation between the serum NfL concentration and the current BMI in the AN group (r = 0.44). This is the first time that serum NfL has been assessed in middle-aged women with a history of adolescent-onset AN. The results suggest that there might be increased axonal degeneration as a sequel of AN. Individuals remaining underweight had higher serum NfL concentrations than those with a normal/high BMI. Additional studies are needed to confirm increased serum NfL concentrations in individuals recovered from AN. There is a need for further study of axonal degeneration as a consequence of AN.
Collapse
Affiliation(s)
- Elisabet Wentz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden. .,Högsbo Hospital, House B4, Tunnlandsgatan 2A, 421 38, Västra Frölunda, Sweden.
| | - Sandra Rydberg Dobrescu
- grid.8761.80000 0000 9919 9582Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Dinkler
- grid.8761.80000 0000 9919 9582Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Carina Gillberg
- grid.8761.80000 0000 9919 9582Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- grid.8761.80000 0000 9919 9582Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.8756.c0000 0001 2193 314XDepartment of Child and Adolescent Psychiatry, University of Glasgow, Glasgow, UK
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Råstam
- grid.8761.80000 0000 9919 9582Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
25
|
Pietroboni AM, Colombi A, Carandini T, Scarpini E, Galimberti D, Bozzali M. The Role of Amyloid-β in White Matter Damage: Possible Common Pathogenetic Mechanisms in Neurodegenerative and Demyelinating Diseases. J Alzheimers Dis 2020; 78:13-22. [PMID: 32925075 DOI: 10.3233/jad-200868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Just as multiple sclerosis (MS) has long been primarily considered a white matter (WM) disease, Alzheimer's disease (AD) has for decades been regarded only as a grey matter disorder. However, convergent evidences have suggested that WM abnormalities are also important components of AD, at the same extent as axonal and neuronal loss is critically involved in MS pathophysiology since early clinical stages. These observations have motivated a more thorough investigation about the possible mechanisms that could link neuroinflammation and neurodegeneration, focusing on amyloid-β (Aβ). Neuroimaging studies have found that patients with AD have widespread WM abnormalities already at the earliest disease stages and prior to the presence of Aβ plaques. Moreover, a correlation between cerebrospinal fluid (CSF) Aβ levels and WM lesion load was found. On the other hand, recent studies suggest a predictive role for CSF Aβ levels in MS, possibly due in the first instance to the reduced capacity for remyelination, consequently to a higher risk of WM damage progression, and ultimately to neuronal loss. We undertook a review of the recent findings concerning the involvement of CSF Aβ levels in the MS disease course and of the latest evidence of AD related WM abnormalities, with the aim to discuss the potential causes that may connect WM damage and amyloid pathology.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | | | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,University of Milan, Dino Ferrari Centre, Milan, Italy
| | - Marco Bozzali
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Turin, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
26
|
Carlström KE, Zhu K, Ewing E, Krabbendam IE, Harris RA, Falcão AM, Jagodic M, Castelo-Branco G, Piehl F. Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis. Nat Commun 2020; 11:4071. [PMID: 32792491 PMCID: PMC7426940 DOI: 10.1038/s41467-020-17871-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/23/2020] [Indexed: 01/20/2023] Open
Abstract
Arrest of oligodendrocyte (OL) differentiation and remyelination following myelin damage in multiple sclerosis (MS) is associated with neurodegeneration and clinical worsening. We show that Glutathione S-transferase 4α (Gsta4) is highly expressed during adult OL differentiation and that Gsta4 loss impairs differentiation into myelinating OLs in vitro. In addition, we identify Gsta4 as a target of both dimethyl fumarate, an existing MS therapy, and clemastine fumarate, a candidate remyelinating agent in MS. Overexpression of Gsta4 reduces expression of Fas and activity of the mitochondria-associated Casp8-Bid-axis in adult oligodendrocyte precursor cells, leading to improved OL survival during differentiation. The Gsta4 effect on apoptosis during adult OL differentiation was corroborated in vivo in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis models, where Casp8 activity was reduced in Gsta4-overexpressing OLs. Our results identify Gsta4 as an intrinsic regulator of OL differentiation, survival and remyelination, as well as a potential target for future reparative MS therapies.
Collapse
Affiliation(s)
- Karl E Carlström
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden.
| | - Keying Zhu
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Inge E Krabbendam
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Ana Mendanha Falcão
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Minho, Portugal
| | - Maja Jagodic
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, 17177, Stockholm, Sweden
| |
Collapse
|
27
|
Liu HC, Lin WC, Chiu MJ, Lu CH, Lin CY, Yang SY. Development of an assay of plasma neurofilament light chain utilizing immunomagnetic reduction technology. PLoS One 2020; 15:e0234519. [PMID: 32530970 PMCID: PMC7292381 DOI: 10.1371/journal.pone.0234519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Axonal damage leads to the release of neurofilament light chain (NFL), which enters the CSF or blood. In this work, an assay kit for plasma NFL utilizing immunomagnetic reduction (IMR) was developed. Antibodies against NFL were immobilized on magnetic nanoparticles to develop an IMR NFL kit. The preclinical properties, such as the standard curve, limit of detection (LoD), and dynamic range, were characterized. Thirty-one normal controls (NC), fifty-two patients with Parkinson's disease (PD) or PD dementia (PDD) and thirty-one patients with Alzheimer's disease (AD) were enrolled in the study evaluating the plasma NFL assay using an IMR kit. T-tests and receiver operating characteristic (ROC) curve analysis were performed to investigate the capability for discrimination among the clinical groups according to plasma NFL levels. The LoD of the NFL assay using the IMR kit was found to be 0.18 fg/ml. The dynamic range of the NFL assay reached 1000 pg/ml. The NC group showed a plasma NFL level of 7.70 ± 4.00 pg/ml, which is significantly lower than that of the PD/PDD (15.85 ± 7.82 pg/ml, p < 0.001) and AD (19.24 ± 8.99 pg/ml, p < 0.001) groups. A significant difference in plasma NFL levels was determined between the PD and AD groups (p < 0.01). Through ROC curve analysis, the cut-off value of the plasma NFL concentration for differentiating NCs from dementia patients (AD and PD/PDD) was found to be 12.71 pg/ml, with a clinical sensitivity and specificity of 73.5% and 90.3%, respectively. The AUC was 0.868. Furthermore, the cut-off value of the plasma NFL concentration for discriminating AD from PD/PDD was found to be 18.02 pg/ml, with a clinical sensitivity and specificity of 61.3% and 65.4%, respectively. The AUC was 0.630. An ultrasensitive assay for measuring plasma NFL utilizing IMR technology was developed. Clear differences in plasma NFL concentrations were observed among NCs and PD and AD patients. These results imply that the determination of plasma NFL is promising not only for screening dementia but also for differential diagnosis.
Collapse
Affiliation(s)
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsien Lu
- Department of Diagnostic Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Shieh-Yueh Yang
- MagQu Co., Ltd., New Taipei City, Taiwan
- MagQu LLC, Surprise, Arizona, United States of America
| |
Collapse
|
28
|
Hasslacher J, Rass V, Beer R, Ulmer H, Humpel C, Schiefecker A, Lehner G, Bellmann R, Joannidis M, Helbok R. Serum tau as a predictor for neurological outcome after cardiopulmonary resuscitation. Resuscitation 2020; 148:207-214. [DOI: 10.1016/j.resuscitation.2020.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
|
29
|
Mirzaii-Dizgah MH, Mirzaii-Dizgah MR, Mirzaii-Dizgah I. Serum and saliva total tau protein as a marker for relapsing-remitting multiple sclerosis. Med Hypotheses 2020; 135:109476. [DOI: 10.1016/j.mehy.2019.109476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023]
|
30
|
Abstract
The development of blood-based biomarkers of Alzheimer's disease (AD) pathology as tools for screening the general population, and as the first step in a multistep process to determine which non-demented individuals are at greatest risk of developing AD dementia, is essential. Proteins that are reflective of AD pathology, such as amyloid beta 42 (Aβ42), tau proteins [total tau (T-tau) and phosphorylated tau (P-tau)], and neurofilament light chain (NfL), are detectable in the blood. However, a major challenge in measuring these blood-based proteins is that their concentrations are much lower in plasma or serum than in the cerebrospinal fluid. Single molecule array (SiMoA) is an ultrasensitive technology that can detect proteins in blood at sub-femtomolar concentrations (i.e., 10-16 M). In this review, we focus on the utility of SiMoA assays for the measurement of plasma or serum Aβ42, P-tau, T-tau, and NfL levels and discuss future directions.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
31
|
Nystad AE, Lereim RR, Wergeland S, Oveland E, Myhr KM, Bø L, Torkildsen Ø. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. J Neuroimmunol 2019; 339:577091. [PMID: 31739156 DOI: 10.1016/j.jneuroim.2019.577091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
Abstract
Fingolimod is used to treat patients with relapsing-remitting multiple sclerosis; it crosses the blood-brain barrier and modulates sphingosine-1-phosphate receptors (S1PRs). Oligodendrocytes, astrocytes, microglia, and neuronal cells express S1PRs, and fingolimod could potentially improve remyelination and be neuroprotective. We used the cuprizone animal model, histo-, immunohistochemistry, and quantitative proteomics to study the effect of fingolimod on remyelination and axonal damage. Fingolimod was functionally active during remyelination by downregulating S1PR1 brain levels, and fingolimod-treated mice had more oligodendrocytes in the secondary motor cortex after three weeks of remyelination. However, there were no differences in remyelination or axonal damage compared to placebo. Thus, fingolimod does not seem to directly promote remyelination or protect against axonal injury or loss when given after cuprizone-induced demyelination.
Collapse
Affiliation(s)
- Agnes E Nystad
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Ragnhild Reehorst Lereim
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway; Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Stig Wergeland
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Gil-Perotin S, Castillo-Villalba J, Cubas-Nuñez L, Gasque R, Hervas D, Gomez-Mateu J, Alcala C, Perez-Miralles F, Gascon F, Dominguez JA, Casanova B. Combined Cerebrospinal Fluid Neurofilament Light Chain Protein and Chitinase-3 Like-1 Levels in Defining Disease Course and Prognosis in Multiple Sclerosis. Front Neurol 2019; 10:1008. [PMID: 31608004 PMCID: PMC6768010 DOI: 10.3389/fneur.2019.01008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/04/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Neurofilament light chain protein (NFL) and chitinase3-like1 (CHI3L1) have gained importance recently as prognostic biomarkers in multiple sclerosis (MS). Objectives: We aimed to investigate NFL and CHI3L1 cerebrospinal fluid (CSF) profiles in multiple sclerosis and the informative and prognostic potential of the individual and combined measures. Methods: CSF NFL and CHI3L1 levels were measured in a cross-sectional cohort of 157 MS patients [99 relapsing-remitting (RRMS), 35 secondary progressive (SPMS), and 23 primary progressive (PPMS)]. Clinical relapse and/or gadolinium-enhanced lesions (GEL) in MRI within 90 days from CSF collection by lumbar puncture (LP) were registered and considered as indicators of disease activity. Longitudinal treatment and disability data were evaluated during medical visits with a median follow-up of 50 months. Results: CSF levels of NFL and CHI3L1 were higher in MS patients compared to non-MS controls. In RRMS and SPMS patients, increased NFL levels were associated with clinical relapse, and gadolinium-enhanced lesions in MRI (p < 0.001), while high CHI3L1 levels were characteristic of progressive disease (p = 0.01). In RRMS patients, CSF NFL, and CHI3L1 levels correlated with each other (r = 0.58), and with IgM-oligoclonal bands (p = 0.02 and p = 0.004, respectively). In addition, CSF CHI3L1 concentration was a predictor for 1-point EDSS worsening {HR = 2.99 [95% CI (1.27, 7.07)]} and progression during follow-up {HR = 18 [95% CI (2.31, 141.3)]}. The pattern of combined measure of biomarkers was useful to discriminate MS phenotypes and to anticipate clinical progression: RRMS more frequently presented high NFL combined with low CHI3L1 levels, compared to SPMS (HR 0.41 [0.18-0.82]), and PPMS (HR 0.46 [0.19-0.87]), while elevation of both biomarkers preceded diagnosis of clinical progression in RRMS patients (log rank = 0.02). Conclusions: Individual measures of CSF NFL and CHI3L1 are biomarkers of disease activity and progression, respectively. The pattern of combined measure discriminates MS phenotypes. It also predicts the subset of RRMS patients that will progress clinically allowing early intervention.
Collapse
Affiliation(s)
- Sara Gil-Perotin
- Multiple Sclerosis Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Research Group in Neuroimmunology, Health Research Institute La Fe, Valencia, Spain
| | - Jessica Castillo-Villalba
- Multiple Sclerosis Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Research Group in Neuroimmunology, Health Research Institute La Fe, Valencia, Spain
| | - Laura Cubas-Nuñez
- Multiple Sclerosis Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Research Group in Neuroimmunology, Health Research Institute La Fe, Valencia, Spain
| | - Raquel Gasque
- Research Group in Neuroimmunology, Health Research Institute La Fe, Valencia, Spain
| | - David Hervas
- Biostatistics Unit, Health Research Institute La Fe, Valencia, Spain
| | - Josep Gomez-Mateu
- Neurology Department, Hospital Universitari Dr. Peset, Valencia, Spain
| | - Carmen Alcala
- Multiple Sclerosis Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Francisco Gascon
- Neuroimmunology Unit, Hospital Clínic de València, Valencia, Spain
| | | | - Bonaventura Casanova
- Multiple Sclerosis Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Research Group in Neuroimmunology, Health Research Institute La Fe, Valencia, Spain
| |
Collapse
|
34
|
Mielke MM, Syrjanen JA, Blennow K, Zetterberg H, Vemuri P, Skoog I, Machulda MM, Kremers WK, Knopman DS, Jack C, Petersen RC, Kern S. Plasma and CSF neurofilament light: Relation to longitudinal neuroimaging and cognitive measures. Neurology 2019; 93:e252-e260. [PMID: 31182505 PMCID: PMC6656645 DOI: 10.1212/wnl.0000000000007767] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE We aimed to (1) assess and compare baseline plasma and CSF neurofilament light (NfL) for cross-sectional and longitudinal associations with neuroimaging or cognition and (2) determine whether change in plasma NfL corresponded with change in these outcomes. METHODS Seventy-nine participants without dementia, median age 76 years, had plasma and CSF NfL, neuropsychological testing, and neuroimaging (MRI, amyloid PET, FDG-PET) at the same study visit, and a repeat visit (15 or 30 months later) with both plasma NfL and neuroimaging. Plasma NfL was measured on the Simoa-HD1 Platform and CSF NfL with an in-house ELISA. Linear mixed effects models were used to examine the associations between baseline plasma or CSF NfL and cognitive and neuroimaging outcomes adjusting for age, sex, and education. The relationship between change in plasma NfL and change in the outcomes was assessed using linear regression. RESULTS There were no cross-sectional associations between CSF or plasma NfL and any neuroimaging or cognitive measure. Longitudinally, higher baseline plasma NfL was associated with worsening in all neuroimaging measures, except amyloid PET, and global cognition. Higher baseline CSF NfL was associated with worsening in cortical thickness and diffusion MRI. The beta estimates for CSF NfL were similar to those for plasma NfL. Change in plasma NfL was associated with change in global cognition, attention, and amyloid PET. CONCLUSION Elevated baseline plasma NfL is a prognostic marker of cognitive decline and neuroimaging measures of neurodegeneration, and has similar effect sizes to baseline CSF NfL. Change in plasma NfL also tracked with short-term cognitive change.
Collapse
Affiliation(s)
- Michelle M Mielke
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK.
| | - Jeremy A Syrjanen
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Kaj Blennow
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Henrik Zetterberg
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Prashanthi Vemuri
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Ingmar Skoog
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Mary M Machulda
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Walter K Kremers
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - David S Knopman
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Clifford Jack
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Ronald C Petersen
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Silke Kern
- From the Departments of Health Sciences Research (M.M. Mielke, J.A.S., W.K.K., R.C.P., S.K.), Neurology (M.M. Mielke, D.S.K., R.C.P.), Radiology (P.V., C.J.), and Psychiatry and Psychology (M.M. Machulda), Mayo Clinic, Rochester, MN; Department of Psychiatry and Neurochemistry (K.B., H.Z., I.S., S.K.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute at UCL (H.Z.), London, UK
| |
Collapse
|
35
|
Wang X, Zhang J, Zhou L, Xu B, Ren X, He K, Nie L, Li X, Liu J, Yang X, Yuan J. Long-term iron exposure causes widespread molecular alterations associated with memory impairment in mice. Food Chem Toxicol 2019; 130:242-252. [PMID: 31136779 DOI: 10.1016/j.fct.2019.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Limited literature available indicates the neurotoxic effects of excessive iron, however, a deep understanding of iron neurotoxicity needs to be developed. In this study, we evaluated the toxic effects of excessive iron on learning and cognitive function in long-term iron exposure (oral, 10 mg/L, 6 months) of mice by behavioral tests including novel object recognition test, step-down passive avoidance test and Morris water maze test, and further analyzed differential expression of hippocampal proteins. The behavioral tests consistently showed that iron treatment caused cognitive defects of the mice. Proteomic analysis revealed 66 differentially expressed hippocampal proteins (30 increased and 36 decreased) in iron-treated mice as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: synapse-associated proteins (i.e. synaptosomal-associated protein 25 (SNAP25), complexin-1 (CPLX1), vesicle-associated membrane protein 2 (VAMP2), neurochondrin (NCDN)); mitochondria-related proteins (i.e. ADP/ATP translocase 1 (SLC25A4), 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. neurofilament light polypeptide (NEFL), tubulin beta-2B chain (TUBB2B), tubulin alpha-4A chain (TUBA4A)). The findings suggest that the dysregulations of synaptic, mitochondrial, and cytoskeletal proteins may be involved in iron-triggered memory impairment. This study provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Xian Wang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jiafei Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiao Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
36
|
Chatterjee M, Koel-Simmelink MJ, Verberk IM, Killestein J, Vrenken H, Enzinger C, Ropele S, Fazekas F, Khalil M, Teunissen CE. Contactin-1 and contactin-2 in cerebrospinal fluid as potential biomarkers for axonal domain dysfunction in multiple sclerosis. Mult Scler J Exp Transl Clin 2018; 4:2055217318819535. [PMID: 30627437 PMCID: PMC6305953 DOI: 10.1177/2055217318819535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Contactin-1 and contactin-2 are important for the maintenance of axonal integrity. Objective To investigate the cerebrospinal fluid levels of contactin-1 and contactin-2 in multiple sclerosis patients and controls, and their potential use as prognostic markers for neurodegeneration. Methods Cerebrospinal fluid contactin-1 and contactin-2 were measured in relapsing–remitting multiple sclerosis (n = 41), secondary progressive multiple sclerosis (n = 26) and primary progressive multiple sclerosis patients (n = 13) and controls (n = 18), and in a second cohort with clinically isolated syndrome patients (n = 88, median clinical follow-up period of 2.3 years) and controls (n = 20). Correlations/linear regressions were analysed with other baseline cerebrospinal fluid axonal damage markers and cross-sectional/longitudinal magnetic resonance imaging features. Results Contactin-1 and contactin-2 levels were up to 1.4-fold reduced in relapsing–remitting multiple sclerosis (contactin-1: p = 0.01, contactin-2: p = 0.02) and secondary progressive multiple sclerosis (contactin-1: p = 0.05, contactin-2: p = 0.02) compared to controls. In clinically isolated syndrome patients, contactin-1 tended to increase when compared to controls (p = 0.07). Both contactin-1 and contactin-2 correlated with neurofilament light, neurofilament heavy and magnetic resonance imaging metrics differently depending on the disease stage. In clinically isolated syndrome patients, baseline contactin-2 level (β = –0.42, p = 0.04) predicted the longitudinal decline in cortex volume. Conclusion Cerebrospinal fluid contactin-1 and contactin-2 reveal axonal dysfunction in various stages of multiple sclerosis and their inclusion to the biomarker panel may provide better insight into the extent of axonal damage/dysfunction.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Marleen Ja Koel-Simmelink
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Inge Mw Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Hugo Vrenken
- Department of Radiology, VU University Medical Center, Amsterdam UMC, The Netherlands
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| |
Collapse
|
37
|
Gravesteijn G, Rutten JW, Verberk IMW, Böhringer S, Liem MK, van der Grond J, Aartsma-Rus A, Teunissen CE, Lesnik Oberstein SAJ. Serum Neurofilament light correlates with CADASIL disease severity and survival. Ann Clin Transl Neurol 2018; 6:46-56. [PMID: 30656183 PMCID: PMC6331956 DOI: 10.1002/acn3.678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Objective To validate whether serum Neurofilament Light‐chain (NfL) levels correlate with disease severity in CADASIL, and to determine whether serum NfL predicts disease progression and survival. Methods Fourty‐one (pre‐) manifest individuals with CADASIL causing NOTCH3 mutations and 22 healthy controls were recruited from CADASIL families. At baseline, MRI‐lesion load and clinical severity was determined and serum was stored. Disease progression was measured in 30/41 patients at 7‐year follow‐up, and survival of all individuals was determined at 17‐year follow‐up. Serum NfL levels were quantified using an ultra‐sensitive molecule array. Generalized estimated equation regression (GEE) was used to analyze association between serum NfL, MRI‐lesion load, disease severity, and disease progression. With GEE‐based Cox regression, survival was analyzed. Results At baseline, serum NfL levels correlated with MRI‐lesion load [lacune count (s = 0.64, P = 0.002), brain atrophy (r = −0.50, P = 0.001), and microbleed count (s = 0.48, P = 0.044)], cognition [CAMCOG (s = −0.45, P = 0.010), MMSE (r = −0.61, P = 0.003), GIT (r = −0.61, P < 0.001), TMT‐A (r = 0.70, P < 0.001)) and disability (mRS (r = 0.70, P = 0.002)]. Baseline serum NfL predicted 7‐year changes in disability (B = 0.34, P < 0.001) and cognition (CAMCOG B = −4.94, P = 0.032), as well as 17‐year survival. Higher NfL levels were associated with increased mortality (HR=1.8 per twofold increase in NfL levels, P = 0.006). Interpretation Serum NfL levels correlate with disease severity, disease progression and 17‐year survival in CADASIL patients. Serum NfL is a promising biomarker to monitor and predict disease course in CADASIL, as well as potentially assessing therapeutic response in future clinical trials.
Collapse
Affiliation(s)
- Gido Gravesteijn
- Department of Clinical Genetics Leiden University Medical Center Leiden the Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics Leiden University Medical Center Leiden the Netherlands
| | - Inge M W Verberk
- Neurochemistry lab and Biobank Department of Clinical Chemistry Amsterdam Neuroscience VU University Medical Center Amsterdam the Netherlands
| | - Stefan Böhringer
- Department of Biomedical Data Sciences Leiden University Medical Center Leiden the Netherlands
| | - Michael K Liem
- Department of Radiology Leiden University Medical Center Leiden the Netherlands.,Department of Radiology Lange Land Ziekenhuis Zoetermeer the Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry lab and Biobank Department of Clinical Chemistry Amsterdam Neuroscience VU University Medical Center Amsterdam the Netherlands
| | | |
Collapse
|
38
|
Pachner AR, DiSano K, Royce DB, Gilli F. Clinical utility of a molecular signature in inflammatory demyelinating disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e520. [PMID: 30568998 PMCID: PMC6278854 DOI: 10.1212/nxi.0000000000000520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Objective We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Krista DiSano
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Darlene B Royce
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| |
Collapse
|
39
|
Lindblom RPF, Shen Q, Axén S, Landegren U, Kamali-Moghaddam M, Thelin S. Protein Profiling in Serum and Cerebrospinal Fluid Following Complex Surgery on the Thoracic Aorta Identifies Biological Markers of Neurologic Injury. J Cardiovasc Transl Res 2018; 11:503-516. [PMID: 30367354 PMCID: PMC6294830 DOI: 10.1007/s12265-018-9835-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Surgery on the arch or descending aorta is associated with significant risk of neurological complications. As a consequence of intubation and sedation, early neurologic injury may remain unnoticed. Biomarkers to aid in the initial diagnostics could prove of great value as immediate intervention is critical. Twenty-three patients operated in the thoracic aorta with significant risk of perioperative neurological injury were included. Cerebrospinal fluid (CSF) and serum were obtained preoperatively and in the first and second postoperative days and assessed with a panel of 92 neurological-related proteins. Three patients suffered spinal cord injury (SCI), eight delirium, and nine hallucinations. There were markers in both serum and CSF that differed between the affected and non-affected patients (SCI; IL6, GFAP, CSPG4, delirium; TR4, EZH2, hallucinations; NF1). The study identifies markers in serum and CSF that reflect the occurrence of neurologic insults following aortic surgery, which may aid in the care of these patients.
Collapse
Affiliation(s)
- Rickard P F Lindblom
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden. .,Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden.
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofie Axén
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Thelin
- Department of Cardiothoracic Surgery and Anesthesia, Uppsala University Hospital, SE-751 85, Uppsala, Sweden.,Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Tomar GS, Singh GP, Lahkar D, Sengar K, Nigam R, Mohan M, Anindya R. New biomarkers in brain trauma. Clin Chim Acta 2018; 487:325-329. [PMID: 30342876 DOI: 10.1016/j.cca.2018.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
Brain-specific biomolecules are being increasingly investigated as a viable alternative to the clinical scores and radiological features, on which we still rely upon for stratification, therapy and predicting outcome in traumatic brain injury (TBI). TBI generally leads to release of various chemical compound within the cerebrospinal fluid (CSF) or blood depending on the severity of injury, which were studied variedly in last decades. However, most of these compounds being non-specific to brain, their applicability was challenged further. This review encompasses the novel and promising biomarkers being studied in the present decade, with encouraging results in laboratory and animal or human models.
Collapse
Affiliation(s)
- Gaurav S Tomar
- Department of Neuroanaesthesiology and Critical Care, JPNA Trauma Centre, All IndiaInstitute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Gyaninder P Singh
- Department of Neuroanaesthesiology and Critical Care, JPNA Trauma Centre, All IndiaInstitute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Dhruba Lahkar
- Department of Neurocritical care and Neuroanesthesia, Medanta-The Medicity Hospital, Gurugram, Haryana, India
| | - Kangana Sengar
- Department of Laboratory Medicine, JPNA Trauma Centre, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Richa Nigam
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India
| | - Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology (IIT) Hyderabad, Sangareddy 502285, Telangana, India.
| |
Collapse
|
41
|
Distal Axonal Proteins and Their Related MiRNAs in Cultured Cortical Neurons. Mol Neurobiol 2018; 56:2703-2713. [PMID: 30054858 DOI: 10.1007/s12035-018-1266-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
Proteins and microRNAs (miRNAs) within the axon locally regulate axonal development. However, protein profiles of distal axons of cortical neurons have not been fully investigated. In particular, networks of genes encoding axonal proteins and their related miRNAs in sub compartments of neurons such as axons remain unknown. Using embryonic cortical neurons cultured in a microfluidic device and proteomic approaches, we found that distal axons contain 883 proteins. Bioinformatics analysis revealed that 94 out of these 883 proteins are related to regulating axonal growth. Of the 94 genes encoding these proteins, there were 56 candidate genes that can be putatively targeted by axon-enriched 62 miRNAs with 8mer sites that exactly match these target genes. Among them, we validated 11 proteins and 11 miRNAs, by means of western blot and RT-PCR, respectively. Treatment of distal axons with chondroitin sulfate proteoglycans (CSPGs) that inhibit axonal growth elevated miR-133b, -203a, -29a, and -92a, which were associated with reduced protein level of AKT, MTOR, PI3K, DPYSL2, MAP1B, and PPP2CA. In contrast, reduction of miR-128, -15b, -195, -26b, -34b, -376b, and -381 by CSPGs was accompanied by increased EZR, KIF5A, DCX, GSK3B, and ROCK2 proteins. In silico pathway analysis revealed an interconnected network of these miRNAs and protein coding genes that is highly related to regulating axonal growth. Our data provide new insights into networks of miRNAs and their related proteins in distal axons in mediating axonal growth.
Collapse
|
42
|
Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci U S A 2018; 115:E302-E309. [PMID: 29279367 PMCID: PMC5777065 DOI: 10.1073/pnas.1716032115] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.
Collapse
|
43
|
Cerebrospinal fluid and brain extracellular fluid in severe brain trauma. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:237-258. [DOI: 10.1016/b978-0-12-804279-3.00014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Weston PSJ, Poole T, Ryan NS, Nair A, Liang Y, Macpherson K, Druyeh R, Malone IB, Ahsan RL, Pemberton H, Klimova J, Mead S, Blennow K, Rossor MN, Schott JM, Zetterberg H, Fox NC. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration. Neurology 2017; 89:2167-2175. [PMID: 29070659 PMCID: PMC5696646 DOI: 10.1212/wnl.0000000000004667] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives: To investigate whether serum neurofilament light (NfL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity. Methods: We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NfL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy. Results: Nineteen of the asymptomatic participants were mutation carriers (mean EYO −9.6); 11 were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symptomatic (p < 0.0001) and presymptomatic mutation carriers (p = 0.007). Across all mutation carriers, serum NfL correlated with EYO (ρ = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (ρ = −0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (ρ = 0.79, p < 0.0001), baseline brain volume (ρ = −0.62, p = 0.0002), and whole-brain atrophy rate (ρ = 0.53, p = 0.01). Conclusions: Serum NfL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early AD-related neurodegeneration.
Collapse
Affiliation(s)
- Philip S J Weston
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Teresa Poole
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Natalie S Ryan
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Akshay Nair
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Yuying Liang
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kirsty Macpherson
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ronald Druyeh
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ian B Malone
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - R Laila Ahsan
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hugh Pemberton
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jana Klimova
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Simon Mead
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Martin N Rossor
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan M Schott
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., I.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neurodegenerative Diseases, UCL Institute of Neurology; Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
45
|
Intan-Shameha A, Divers TJ, Morrow JK, Graves A, Olsen E, Johnson AL, Mohammed HO. Phosphorylated neurofilament H (pNF-H) as a potential diagnostic marker for neurological disorders in horses. Res Vet Sci 2017; 114:401-405. [DOI: 10.1016/j.rvsc.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
46
|
Jones A, Jarvis P. Review of the potential use of blood neuro-biomarkers in the diagnosis of mild traumatic brain injury. Clin Exp Emerg Med 2017; 4:121-127. [PMID: 29026884 PMCID: PMC5635461 DOI: 10.15441/ceem.17.226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
Head injury is a common presenting complaint amongst emergency department patients. To date, there has been no widespread utilization of neuro-biomarkers to aid the diagnosis of traumatic brain injury. This review article explores which neuro-biomarkers could be used in the emergency department in aiding the clinical diagnosis of mild traumatic brain injury. Based on the available evidence, the most promising neuro-biomarkers appear to be Glial fibrillary acidic protein (GFAP) and Ubiquitin C-Terminal Hydrolase Isozyme L1 (UCH-L1) as these show significant rises in peripheral blood levels shortly after injury and these have been demonstrated to correlate with long-term clinical outcomes. Treatment strategies for minor traumatic brain injury in the emergency department setting are not well developed. The introduction of blood neuro-biomarkers could reduce unnecessary radiation exposure and provide an opportunity to improve the care of this patient group.
Collapse
Affiliation(s)
- Alastair Jones
- Department of Emergency Medicine, Bradford Royal Infirmary, Bradford, UK
| | - Paul Jarvis
- Global Medical Affairs, Abbott Point of Care, Princeton, NJ, USA
| |
Collapse
|
47
|
D'Hooghe T, Kyriakidi K, Karassa FB, Politis D, Skamnelos A, Christodoulou DK, Katsanos KH. Biomarker Development in Chronic Inflammatory Diseases. BIOMARKERS FOR ENDOMETRIOSIS 2017. [PMCID: PMC7122305 DOI: 10.1007/978-3-319-59856-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory diseases, such as inflammatory bowel disease—namely, Crohn’s disease and ulcerative colitis—psoriasis, multiple sclerosis, rheumatoid arthritis, and many others affect millions of people worldwide, causing a high burden of disease, socioeconomic impact, and healthcare cost. These diseases have common features including autoimmune pathogenesis and frequent co morbidity. The treatment of these chronic inflammatory diseases usually requires long-term immunosuppressive therapies with undesirable side effects. The future of chronic inflammatory disease prevention, detection, and treatment will be greatly influenced by the use of more effective biomarkers with enhanced performance. Given the practical issues of collecting tissue samples in inflammatory diseases, biomarkers derived from body fluids have great potential for optimized patient management through the circumvention of the abovementioned limitations. In this chapter, peripheral blood, urine, and cerebrospinal fluid biomarkers used in chronic inflammatory conditions are reviewed. In detail, this chapter reviews biomarkers to fore used or emerging to be used in patients with chronic inflammatory conditions. Those include inflammatory bowel diseases, chronic inflammatory conditions of the liver, biliary tract, pancreas, psoriasis, atopic disease, inflammatory skin diseases, rheumatic diseases, demyelination, and also the chronic inflammatory component of various other diseases in general medicine—including diabetes, cardiovascular disease, renal disease, and chronic obstructive pulmonary disease. Development of personalized medicine is closely linked to biomarkers, which may serve as the basis for diagnosis, drug discovery, and monitoring of diseases.
Collapse
Affiliation(s)
- Thomas D'Hooghe
- 0000 0001 0668 7884grid.5596.fDepartment of Development and Regeneration Organ Systems, Group Biomedical Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Harpaz D, Eltzov E, Seet RCS, Marks RS, Tok AIY. Point-of-Care-Testing in Acute Stroke Management: An Unmet Need Ripe for Technological Harvest. BIOSENSORS 2017; 7:E30. [PMID: 28771209 PMCID: PMC5618036 DOI: 10.3390/bios7030030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Stroke, the second highest leading cause of death, is caused by an abrupt interruption of blood to the brain. Supply of blood needs to be promptly restored to salvage brain tissues from irreversible neuronal death. Existing assessment of stroke patients is based largely on detailed clinical evaluation that is complemented by neuroimaging methods. However, emerging data point to the potential use of blood-derived biomarkers in aiding clinical decision-making especially in the diagnosis of ischemic stroke, triaging patients for acute reperfusion therapies, and in informing stroke mechanisms and prognosis. The demand for newer techniques to deliver individualized information on-site for incorporation into a time-sensitive work-flow has become greater. In this review, we examine the roles of a portable and easy to use point-of-care-test (POCT) in shortening the time-to-treatment, classifying stroke subtypes and improving patient's outcome. We first examine the conventional stroke management workflow, then highlight situations where a bedside biomarker assessment might aid clinical decision-making. A novel stroke POCT approach is presented, which combines the use of quantitative and multiplex POCT platforms for the detection of specific stroke biomarkers, as well as data-mining tools to drive analytical processes. Further work is needed in the development of POCTs to fulfill an unmet need in acute stroke management.
Collapse
Affiliation(s)
- Dorin Harpaz
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- School of Material Science & Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Institute for Sports Research (ISR), Nanyang Technology University and Loughborough University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Evgeni Eltzov
- Agriculture Research Organization (ARO), Volcani Centre, Rishon LeTsiyon 15159, Israel.
| | - Raymond C S Seet
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- School of Material Science & Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
- The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Alfred I Y Tok
- School of Material Science & Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Institute for Sports Research (ISR), Nanyang Technology University and Loughborough University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
49
|
Raphael I, Webb J, Gomez-Rivera F, Chase Huizar CA, Gupta R, Arulanandam BP, Wang Y, Haskins WE, Forsthuber TG. Serum Neuroinflammatory Disease-Induced Central Nervous System Proteins Predict Clinical Onset of Experimental Autoimmune Encephalomyelitis. Front Immunol 2017; 8:812. [PMID: 28769926 PMCID: PMC5512177 DOI: 10.3389/fimmu.2017.00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
There is an urgent need in multiple sclerosis (MS) patients to develop biomarkers and laboratory tests to improve early diagnosis, predict clinical relapses, and optimize treatment responses. In healthy individuals, the transport of proteins across the blood–brain barrier (BBB) is tightly regulated, whereas, in MS, central nervous system (CNS) inflammation results in damage to neuronal tissues, disruption of BBB integrity, and potential release of neuroinflammatory disease-induced CNS proteins (NDICPs) into CSF and serum. Therefore, changes in serum NDICP abundance could serve as biomarkers of MS. Here, we sought to determine if changes in serum NDICPs are detectable prior to clinical onset of experimental autoimmune encephalomyelitis (EAE) and, therefore, enable prediction of disease onset. Importantly, we show in longitudinal serum specimens from individual mice with EAE that pre-onset expression waves of synapsin-2, glutamine synthetase, enolase-2, and synaptotagmin-1 enable the prediction of clinical disease with high sensitivity and specificity. Moreover, we observed differences in serum NDICPs between active and passive immunization in EAE, suggesting hitherto not appreciated differences for disease induction mechanisms. Our studies provide the first evidence for enabling the prediction of clinical disease using serum NDICPs. The results provide proof-of-concept for the development of high-confidence serum NDICP expression waves and protein biomarker candidates for MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Johanna Webb
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Carol A Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Rishein Gupta
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Bernard P Arulanandam
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - William E Haskins
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
50
|
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23:1442-1452. [PMID: 28537780 DOI: 10.1177/1352458517709362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration plays a key role in multiple sclerosis (MS) contributing to long-term disability in patients. The prognosis is, however, unpredictable coloured by complex disease mechanisms which can only be clearly appreciated using biomarkers specific to pathobiology of the underlying process. Here, we describe six promising neurodegenerative biomarkers in MS (neurofilament proteins, neurofilament antibodies, tau, N-acetylaspartate, chitinase and chitinase-like proteins and osteopontin), critically evaluating the evidence using a modified Bradford Hill criteria.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|