1
|
Lundin SK, Hu X, Feng J, Lundin KK, Li L, Chen Y, Schulz PE, Tao C. Association between risk of Alzheimer's disease and related dementias and angiotensin receptor Ⅱ blockers treatment for individuals with hypertension in high-volume claims data. EBioMedicine 2024; 109:105378. [PMID: 39366251 PMCID: PMC11489044 DOI: 10.1016/j.ebiom.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Findings regarding the protective effect of Angiotensin II receptor blockers (ARBs) against Alzheimer's disease and related dementias (AD/ADRD) and cognitive decline have been inconclusive. METHODS Individuals with hypertension who do not have any prior ADRD diagnosis were included in this retrospective cohort study from Optum's de-identified Clinformatics® Data Mart. We identified antihypertensive medication (AHM) drug classes and subclassified ARBs by blood-brain barrier (BBB) permeability. We compared baseline characteristics and used the Kaplan-Meier (KM) survival curve and adjusted Cox proportional hazards (PH) model for survival analyses. FINDINGS From 6,390,826 individuals with hypertension, there were 1,839,176 ARB users, 3,366,841 non-ARB AHM users, and 1,184,809 AHM non-users. The unadjusted KM curve showed that ARB users had lower cumulative hazard than other AHM users or AHM non-users (P < 0.0001). In Cox PH analysis, ARB users showed a 20% lower adjusted hazard of developing ADRD compared to angiotensin-converting enzyme inhibitor (ACEI) users and a 29% and 18% reduced hazard when compared to non-ARB/ACEI AHM users and AHM non-users (all P < 0.0001). Consumption of BBB-crossing ARBs was linked to a lower hazard of ADRD development than non-BBB-crossing ARBs, undetermined ARBs, and non-consumption of AHMs by 11%, 25%, and 31% (all P < 0.0001). INTERPRETATION This study suggests that ARBs are superior to ACEIs, non-ARB/ACEI AHMs, or non-use of AHMs in reducing the hazard of ADRD among patients with hypertension. Also, BBB-permeability in ARBs was associated with lower ADRD incidence. There is no cure for AD, ADRD, or vascular dementia; hence, these findings are significant in preventing those disorders in an inexpensive, convenient, and safe way. Limitations in claims data should be considered when interpreting our findings. FUNDING This research was supported by the National Institute on Aging grants (R01AG084236, R01AG083039, RF1AG072799, R56AG074604).
Collapse
Affiliation(s)
- Sori Kim Lundin
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Biomedical Semantics and Data Intelligence, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xinyue Hu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jingna Feng
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karl Kristian Lundin
- Departments of Medicine and Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lu Li
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Ernest Schulz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Neurocognitive Disorders Center, The University of Texas Health Science Center at Houston Neurosciences, Houston, TX 77054, USA
| | - Cui Tao
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
3
|
Zhou Z, Orchard SG, Nelson MR, Fravel MA, Ernst ME. Angiotensin Receptor Blockers and Cognition: a Scoping Review. Curr Hypertens Rep 2024; 26:1-19. [PMID: 37733162 PMCID: PMC10796582 DOI: 10.1007/s11906-023-01266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of the association between angiotensin II receptor blocker (ARB) use and cognitive outcomes. RECENT FINDINGS ARBs have previously shown greater neuroprotection compared to other anti-hypertensive classes. The benefits are primarily attributed to the ARB's effect on modulating the renin-angiotensin system via inhibiting the Ang II/AT1R pathway and activating the Ang II/AT2R, Ang IV/AT4R, and Ang-(1-7)/MasR pathways. These interactions are associated with pleiotropic neurocognitive benefits, including reduced β-amyloid accumulation and abnormal hyperphosphorylation of tau, ameliorated brain hypo-fusion, reduced neuroinflammation and synaptic dysfunction, better neurotoxin clearing, and blood-brain barrier function restoration. While ACEis also inhibit AT1R, they simultaneously lower Ang II and block the Ang II/AT2R and Ang IV/AT4R pathways that counterbalance the potential benefits. ARBs may be considered an adjunctive approach for neuroprotection. This preliminary evidence, coupled with their underlying mechanistic pathways, emphasizes the need for future long-term randomized trials to yield more definitive results.
Collapse
Affiliation(s)
- Zhen Zhou
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Suzanne G Orchard
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Mark R Nelson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Michelle A Fravel
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa, IA, USA
| | - Michael E Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa, IA, USA.
- Department of Family Medicine, Carver College of Medicine, 01291-A PFP, The University of Iowa, 200 Hawkins Dr, Iowa, IA, 52242, USA.
| |
Collapse
|
4
|
Wang J, Wang D, Setrerrahmane S, Martinez J, Xu HM. The peptide Acein promotes dopamine secretion through clec-126 to extend the lifespan of elderly C. elegans. Aging (Albany NY) 2023; 15:14651-14665. [PMID: 38154108 PMCID: PMC10781461 DOI: 10.18632/aging.205150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Dopamine plays a crucial role in regulating brain activity and movement and modulating human behavior, cognition and mood. Regulating dopamine signaling may improve cognitive abilities and physical functions during aging. Acein, a nonapeptide of sequence H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH is able to stimulate dopamine secretion in the brain. By using genetic editing and lifespan investigation in C. elegans, we showed that the lack of the C-type lectin domain-containing protein clec-126 significantly suppressed the aging phenotype and prolonged lifespan, while overexpression of clec-126 promoted aging-related phenotypes and accelerated the aging process. We examined the aging phenotype of C. elegans and showed that Acein could induce a decrease in clec-126 expression, prolonging the lifespan of aged C. elegans. The mechanism proceeds through the Acein-induced stimulation of dopamine secretion that ameliorates motor function decline and extends the healthy lifespan of aged C. elegans. In addition, we also observed an increase in brood number. Our study has shown that Acein regulates dopamine secretion and has good antiaging activity by decreasing clec-126 expression.
Collapse
Affiliation(s)
- Jiaqi Wang
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Wang
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| | | | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, Montpellier cedex 5 34293, France
| | - Han-Mei Xu
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Ababei DC, Bild V, Macadan I, Vasincu A, Rusu RN, Blaj M, Stanciu GD, Lefter RM, Bild W. Therapeutic Implications of Renin-Angiotensin System Modulators in Alzheimer's Dementia. Pharmaceutics 2023; 15:2290. [PMID: 37765259 PMCID: PMC10538010 DOI: 10.3390/pharmaceutics15092290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Renin-Angiotensin System (RAS) has attracted considerable interest beyond its traditional cardiovascular role due to emerging data indicating its potential involvement in neurodegenerative diseases, including Alzheimer's dementia (AD). This review investigates the therapeutic implications of RAS modulators, specifically focusing on angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and renin inhibitors in AD. ACEIs, commonly used for hypertension, show promise in AD by reducing angiotensin (Ang) II levels. This reduction is significant as Ang II contributes to neuroinflammation, oxidative stress, and β-amyloid (Aβ) accumulation, all implicated in AD pathogenesis. ARBs, known for vasodilation, exhibit neuroprotection by blocking Ang II receptors, improving cerebral blood flow and cognitive decline in AD models. Renin inhibitors offer a novel approach by targeting the initial RAS step, displaying anti-inflammatory and antioxidant effects that mitigate AD degeneration. Preclinical studies demonstrate RAS regulation's favorable impact on neuroinflammation, neuronal damage, cognitive function, and Aβ metabolism. Clinical trials on RAS modulators in AD are limited, but with promising results, ARBs being more effective that ACEIs in reducing cognitive decline. The varied roles of ACEIs, ARBs, and renin inhibitors in RAS modulation present a promising avenue for AD therapeutic intervention, requiring further research to potentially transform AD treatment strategies.
Collapse
Affiliation(s)
- Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Mihaela Blaj
- Department of Anaesthesiology and Intensive Therapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Radu-Marian Lefter
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Walther Bild
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
6
|
Ahmadi S, Khaledi S. Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2. Anal Cell Pathol (Amst) 2023; 2023:8883492. [PMID: 37575318 PMCID: PMC10421715 DOI: 10.1155/2023/8883492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Shiler Khaledi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
7
|
Hu N, Ji H. Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2022; 43:5189-5199. [DOI: 10.1007/s10072-022-06131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
|
8
|
Krey L, Huber MK, Höglinger GU, Wegner F. Can SARS-CoV-2 Infection Lead to Neurodegeneration and Parkinson's Disease? Brain Sci 2021; 11:1654. [PMID: 34942956 PMCID: PMC8699589 DOI: 10.3390/brainsci11121654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV-2 pandemic has affected the daily life of the worldwide population since 2020. Links between the newly discovered viral infection and the pathogenesis of neurodegenerative diseases have been investigated in different studies. This review aims to summarize the literature concerning COVID-19 and Parkinson's disease (PD) to give an overview on the interface between viral infection and neurodegeneration with regard to this current topic. We will highlight SARS-CoV-2 neurotropism, neuropathology and the suspected pathophysiological links between the infection and neurodegeneration as well as the psychosocial impact of the pandemic on patients with PD. Some evidence discussed in this review suggests that the SARS-CoV-2 pandemic might be followed by a higher incidence of neurodegenerative diseases in the future. However, the data generated so far are not sufficient to confirm that COVID-19 can trigger or accelerate neurodegenerative diseases.
Collapse
Affiliation(s)
- Lea Krey
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (M.K.H.); (G.U.H.); (F.W.)
| | | | | | | |
Collapse
|
9
|
Dai Y, Huang C, Ding J, Qin X. Association between use of cardiovascular medicines and risk of mild cognitive function impairment and dementia amongst people living with cardiovascular diseases: a systematic review protocol. JBI Evid Synth 2021; 19:3142-3148. [PMID: 34230444 DOI: 10.11124/jbies-20-00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this review is to investigate the association between the use of cardiovascular medicines and the risk of mild cognitive function impairment and dementia in people with cardiovascular disease. INTRODUCTION Cardiovascular disease is one of the most important modifiable factors for mild cognitive function impairment and dementia. The current evidence about the effectiveness of cardiovascular disease medicine on the risk of dementia is inconclusive; hence, it is imperative to conduct a comprehensive investigation on the effect of cardiovascular disease medicine on the risk of mild cognitive function impairment and dementia. INCLUSION CRITERIA This review will include studies involving participants (age ≥18 years) who were using cardiovascular medicine for hypertension, myocardial infarction, atrial fibrillation, stroke, or heart failure. The eligible studies will include observational studies and randomized controlled trials. METHODS MEDLINE (Ovid), Embase (Ovid), and PsycINFO (Ovid) will be searched from 2000 to the present. We will only include studies published in English. Titles, abstracts, and full texts will be screened by authors independently. The methodological quality of included studies will be assessed using the JBI critical appraisal checklist for observational studies and randomized controlled trials. The data to be extracted will include the basic study characteristics, populations, drug groups, clinical indicators, and outcomes. Studies will be pooled using statistical meta-analysis, where possible. Alternatively, the findings will be presented in narrative form where statistical pooling is not possible. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42020175386.
Collapse
Affiliation(s)
- Yunyun Dai
- School of Nursing, Guilin Medical University, Guilin, China
| | - Chongmei Huang
- Xiangya School of Nursing, Central South University, Changsha City, Hunan, China.,Xiangya Center for Evidence-Based Nursing Practice and Healthcare Innovation: A JBI Affiliated Group, Changsha City, Hunan, China
| | - Jinfeng Ding
- Xiangya School of Nursing, Central South University, Changsha City, Hunan, China.,Xiangya Center for Evidence-Based Nursing Practice and Healthcare Innovation: A JBI Affiliated Group, Changsha City, Hunan, China
| | - Xiwen Qin
- School of Population and Global Health, The University of Western Australia, Perth, WA, Australia.,Centre for Medicine Use and Safety, Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Vic, Australia.,Department of Pharmacology and Pharmacy, Faculty of Medicine, University of Hong Kong, Hong Kong.,Victorian Heart Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
10
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Neuroanesthesiology Update. J Neurosurg Anesthesiol 2021; 33:107-136. [PMID: 33480638 DOI: 10.1097/ana.0000000000000757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
This review summarizes the literature published in 2020 that is relevant to the perioperative care of neurosurgical patients and patients with neurological diseases as well as critically ill patients with neurological diseases. Broad topics include general perioperative neuroscientific considerations, stroke, traumatic brain injury, monitoring, anesthetic neurotoxicity, and perioperative disorders of cognitive function.
Collapse
|
12
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
13
|
Association between Use of Angiotensin-converting Enzyme Inhibitors or Angiotensin Receptor Blockers and Postoperative Delirium. Anesthesiology 2020; 133:119-132. [DOI: 10.1097/aln.0000000000003329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background
Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers improve cognitive function. The authors therefore tested the primary hypothesis that preoperative use of angiotensin inhibitors is associated with less delirium in critical care patients. Post hoc, the association between postoperative use of angiotensin system inhibitors and delirium was assessed.
Methods
The authors conducted a single-site cohort study of adults admitted to Cleveland Clinic critical care units after noncardiac procedures between 2013 and 2018 who had at least one Confusion Assessment Method delirium assessment. Patients with preexisting dementia, Alzheimer’s disease or other cognitive decline, and patients who had neurosurgical procedures were excluded. For the primary analysis, the confounder-adjusted association between preoperative angiotensin inhibitor use and the incidence of postoperative delirium was assessed. Post hoc, the confounder-adjusted association between postoperative angiotensin system inhibitor use and the incidence of delirium was assessed.
Results
The incidence of delirium was 39% (551 of 1,396) among patients who were treated preoperatively with angiotensin system inhibitors and 39% (1,344 of 3,468) in patients who were not. The adjusted odds ratio of experiencing delirium during critical care was 0.98 (95% CI, 0.86 to 1.10; P = 0.700) for preoperative use of angiotensin system inhibitors versus control. Delirium was observed in 23% (100 of 440) of patients who used angiotensin system inhibitors postoperatively before intensive care discharge, and in 41% (1,795 of 4,424) of patients who did not (unadjusted P < 0.001). The confounder-adjusted odds ratio for experiencing delirium in patients who used angiotensin system inhibitors postoperatively was 0.55 (95% CI, 0.43 to 0.72; P < 0.001).
Conclusions
Preoperative use of angiotensin system inhibitors is not associated with reduced postoperative delirium. In contrast, treatment during intensive care was associated with lower odds of delirium. Randomized trials of postoperative angiotensin-converting enzymes inhibitors and angiotensin receptor blockers seem justified.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
14
|
Barthold D, Joyce G, Diaz Brinton R, Wharton W, Kehoe PG, Zissimopoulos J. Association of combination statin and antihypertensive therapy with reduced Alzheimer's disease and related dementia risk. PLoS One 2020; 15:e0229541. [PMID: 32130251 PMCID: PMC7055882 DOI: 10.1371/journal.pone.0229541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperlipidemia and hypertension are modifiable risk factors for Alzheimer's disease and related dementias (ADRD). Approximately 25% of adults over age 65 use both antihypertensives (AHTs) and statins for these conditions. While a growing body of evidence found statins and AHTs are independently associated with lower ADRD risk, no evidence exists on simultaneous use for different drug class combinations and ADRD risk. Our primary objective was to compare ADRD risk associated with concurrent use of different combinations of statins and antihypertensives. METHODS In a retrospective cohort study (2007-2014), we analyzed 694,672 Medicare beneficiaries in the United States (2,017,786 person-years) who concurrently used both statins and AHTs. Using logistic regression adjusting for age, socioeconomic status and comorbidities, we quantified incident ADRD diagnosis associated with concurrent use of different statin molecules (atorvastatin, pravastatin, rosuvastatin, and simvastatin) and AHT drug classes (two renin-angiotensin system (RAS)-acting AHTs, angiotensin converting enzyme inhibitors (ACEIs) or angiotensin-II receptor blockers (ARBs), vs non-RAS-acting AHTs). FINDINGS Pravastatin or rosuvastatin combined with RAS-acting AHTs reduce risk of ADRD relative to any statin combined with non-RAS-acting AHTs: ACEI+pravastatin odds ratio (OR) = 0.942 (CI: 0.899-0.986, p = 0.011), ACEI+rosuvastatin OR = 0.841 (CI: 0.794-0.892, p<0.001), ARB+pravastatin OR = 0.794 (CI: 0.748-0.843, p<0.001), ARB+rosuvastatin OR = 0.818 (CI: 0.765-0.874, p<0.001). ARBs combined with atorvastatin and simvastatin are associated with smaller reductions in risk, and ACEI with no risk reduction, compared to when combined with pravastatin or rosuvastatin. Among Hispanics, no combination of statins and RAS-acting AHTs reduces risk relative to combinations of statins and non-RAS-acting AHTs. Among blacks using ACEI+rosuvastatin, ADRD odds were 33% lower compared to blacks using other statins combined with non-RAS-acting AHTs (OR = 0.672 (CI: 0.548-0.825, p<0.001)). CONCLUSION Among older Americans, use of pravastatin and rosuvastatin to treat hyperlipidemia is less common than use of simvastatin and atorvastatin, however, in combination with RAS-acting AHTs, particularly ARBs, they may be more effective at reducing risk of ADRD. The number of Americans with ADRD may be reduced with drug treatments for vascular health that also confer effects on ADRD.
Collapse
Affiliation(s)
- Douglas Barthold
- Department of Pharmacy, The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Geoffrey Joyce
- School of Pharmacy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, United States of America
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tuscon, AZ, United States of America
| | - Whitney Wharton
- School of Nursing, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrick Gavin Kehoe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Julie Zissimopoulos
- Price School of Public Policy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Wright JW, Harding JW. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer's Disease. J Alzheimers Dis 2020; 67:469-480. [PMID: 30664507 DOI: 10.3233/jad-181035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| | - Joseph W Harding
- Department of Psychology, Washington State University, Pullman, WA, USA.,Department of Integrative Physiology and Neuroscience, and Program in Biotechnology, Washington State University, Pullman, WA, USA.,M3 Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
16
|
Galal SM, Hasan HF, Abdel-Rafei MK, El Kiki SM. Synergistic effect of cranberry extract and losartan against aluminium chloride-induced hepatorenal damage associated cardiomyopathy in rats. Arch Physiol Biochem 2019; 125:357-366. [PMID: 29685075 DOI: 10.1080/13813455.2018.1465437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was designed to evaluate the effect of cranberry extract (CRAN) and/or losartan (LOS) against aluminium chloride (AlCl3) induced hepatorenal damage associated cardiomyopathy in rats. To induce hepatorenal and cardiotoxicity, animals were received (AlCl3; 70 mg/kg i.p.) for 8 weeks day after day and treated with CRAN (100 mg/kg b.wt.) orally daily for 4 weeks started after 4 weeks from AlCl3 injection accompanied with an administration of LOS (5 mg/kg i.p.) three times weekly for 4 weeks. Our data revealed that, compared to AlCl3, administration of CRAN extract and LOS produced a significant improvement which was evidenced by a significant amelioration in myocardial and vascular indices, kidney and liver markers, lipid profile and oxidative stress indices. Furthermore, histopathological and immunohistochemical examination reinforced the previous results. It could be concluded that combination of CRAN extract and LOS hindered AlCl3 induced hepatorenal damage complicated cardiomyopathy in rats.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Hesham Farouk Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Mohamed Khairy Abdel-Rafei
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| | - Shereen Mohamed El Kiki
- a Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo , Egypt
| |
Collapse
|
17
|
Sharifi F, Reisi P, Malek M. Angiotensin 1 receptor antagonist attenuates acute kidney injury-induced cognitive impairment and synaptic plasticity via modulating hippocampal oxidative stress. Life Sci 2019; 234:116775. [DOI: 10.1016/j.lfs.2019.116775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/13/2023]
|
18
|
Muñoz A, Corrêa CL, Lopez-Lopez A, Costa-Besada MA, Diaz-Ruiz C, Labandeira-Garcia JL. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J Gerontol A Biol Sci Med Sci 2019; 73:1594-1601. [PMID: 29659739 DOI: 10.1093/gerona/gly072] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of tissue renin-angiotensin system (RAS) is involved in oxidative and inflammatory processes observed in major aging-related diseases, including neurodegenerative diseases such as Parkinson's disease (PD). Physical exercise has beneficial effects against aging-related changes, dopaminergic neuron vulnerability, and PD progression. The present study indicates that sedentary aged rats have an increase in activity of the nigral angiotensin (Ang) II/Ang type 1 receptor (AT1) axis (ie, the pro-oxidative pro-inflammatory arm), and a decrease in the activity of the RAS protective arm (ie, Ang II/AT2 and Ang 1-7/Mas receptor axis) in comparison with young rats. In addition, sedentary aged rats showed a decrease in levels of nigral IGF-1, SIRT1, SIRT3, and VEGF. Treadmill running induced a significant increase in levels of IGF-1, SIRT1, SIRT3, and VEGF, as well as an increase in expression of the protective Ang 1-7/Mas axis and inhibition of the Ang II/AT1 axis. The exercise-induced increase in IGF-1 and sirtuins may mediate the effects of exercise on the nigral RAS. However, exercise may induce the increase in VEGF and modulation of RAS activity by different pathways. Exercise, via RAS, contributes to inhibition of the pro-oxidative and proinflammatory state that increase dopaminergic neuron vulnerability and risk of PD with aging.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Clynton L Corrêa
- Faculty of Medicine, Master Program of Physical Education - Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Lopez-Lopez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
19
|
Fernández MJF, Valero-Cases E, Rincon-Frutos L. Food Components with the Potential to be Used in the Therapeutic Approach of Mental Diseases. Curr Pharm Biotechnol 2019; 20:100-113. [PMID: 30255749 DOI: 10.2174/1389201019666180925120657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neurological disorders represent a high influence in our society throughout the world. Although the symptoms arising from those diseases are well known, the causes and mechanisms are complex and depending on multiple factors. Some food components consumed as part of our diet have been studied regarding their incidence in different common neurological diseases such as Alzheimer disease, major depression, Parkinson disease, autism and schizophrenia among others. OBJECTIVE In this review, information has been gathered on the main evidences arising from studies on the most promising food components, related to their therapeutic potential, as part of dietary supplements or through the diet, as an alternative or a complement of the traditional drug treatments. Those food components include vitamins, minerals, fatty acids, carotenoids, polyphenols, bioactive peptides, probiotics, creatine and saponins. RESULTS Many in vitro and in vivo animal studies, randomized and placebo control trials, and systematic reviews on the scientific results published in the literature, have been discussed, highlighting the more recent advances, also with the aim to explore the main research needs. Particular attention has been paid to the mechanisms of action of the compounds regarding their anti-inflammatory, antioxidative properties and neuronal protection. CONCLUSION More research is needed to prove the therapeutic potential of the food components based on scientific evidence, also on intervention studies to demonstrate the improvement of neuronal and cognitive impairments.
Collapse
Affiliation(s)
- María J F Fernández
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Estefanía Valero-Cases
- Agro-food Technology Department, High Polytechnic School, Miguel Hernandez University, Orihuela, Alicante, Spain
| | - Laura Rincon-Frutos
- Ocular Neurobiology Group, Instituto de Neurociencias de Alicante UMH-CSIC, San Juan, Alicante, Spain
| |
Collapse
|
20
|
Telmisartan Protects Against Aluminum-Induced Alzheimer-like Pathological Changes in Rats. Neurotox Res 2019; 37:275-285. [PMID: 31332715 DOI: 10.1007/s12640-019-00085-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Currently, there is no effective mean for treatment or prevention of Alzheimer's disease (AD). Commonly used AD drugs have a moderate effect and treat only the associated symptoms, therefore there is a strong need to search for more effective agents. Our goal is to examine telmisartan neuroprotective effect in aluminum-induced cognitive impairment in rats. Aluminum chloride (10 mg/kg, i.p) was administered for 2 months then behavioral tests (Y-maze and Morris water maze) were done. Hippocampal biochemical and histological analysis were then carried out. AD-like histological, biochemical, and behavioral alterations appeared in aluminum-treated rats. Telmisartan improved rats' condition on behavioral and histological levels. It reversed the increase in hippocampal amyloid beta protein, phosphorylated tau protein contents together with augmentation of neprilysin level, it also diminished levels of nuclear factor kappa-B, FAS ligand, tumor necrosis factor-alpha, malondialdehyde, and acetylcholinesterase content.These findings show the protective action of telmisartan against AD-like pathological alterations.
Collapse
|
21
|
Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis 2019; 62:1443-1466. [PMID: 29562545 PMCID: PMC5870007 DOI: 10.3233/jad-171119] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide recognition of a complex association between midlife hypertension and cardiovascular disease and later development of Alzheimer’s disease (AD) and cognitive impairment. While significant progress has been made in reducing rates of mortality and morbidity due to cardiovascular disease over the last thirty years, progress towards effective treatments for AD has been slower. Despite the known association between hypertension and dementia, research into each disease has largely been undertaken in parallel and independently. Yet over the last decade and a half, the emergence of converging findings from pre-clinical and clinical research has shown how the renin angiotensin system (RAS), which is very important in blood pressure regulation and cardiovascular disease, warrants careful consideration in the pathogenesis of AD. Numerous components of the RAS have now been found to be altered in AD such that the multifunctional and potent vasoconstrictor angiotensin II, and similarly acting angiotensin III, are greatly altered at the expense of other RAS signaling peptides considered to contribute to neuronal and cognitive function. Collectively these changes may contribute to many of the neuropathological hallmarks of AD, as well as observed progressive deficiencies in cognitive function, while also linking elements of a number of the proposed hypotheses for the cause of AD. This review discusses the emergence of the RAS and its likely importance in AD, not only because of the multiple facets of its involvement, but also perhaps fortuitously because of the ready availability of numerous RAS-acting drugs, that could be repurposed as interventions in AD.
Collapse
Affiliation(s)
- Patrick Gavin Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| |
Collapse
|
22
|
Barthold D, Joyce G, Wharton W, Kehoe P, Zissimopoulos J. The association of multiple anti-hypertensive medication classes with Alzheimer's disease incidence across sex, race, and ethnicity. PLoS One 2018; 13:e0206705. [PMID: 30383807 PMCID: PMC6211717 DOI: 10.1371/journal.pone.0206705] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antihypertensive treatments have been shown to reduce the risk of Alzheimer's disease (AD). The renin-angiotensin system (RAS) has been implicated in AD, and thus RAS-acting AHTs (angiotensin converting enzyme inhibitors (ACEIs), and angiotensin-II receptor blockers (ARBs)) may offer differential and additional protective benefits against AD compared with other AHTs, in addition to hypertension management. METHODS In a retrospective cohort design, we examined the medical and pharmacy claims of a 20% sample of Medicare beneficiaries from 2007 to 2013, and compared rates of AD diagnosis for 1,343,334 users of six different AHT drug treatments, 65 years of age or older (4,215,338 person-years). We compared AD risk between RAS and non-RAS AHT drug users, and between ACEI users and ARB users, by sex and race/ethnicity. Models adjusted for age, socioeconomic status, underlying health, and comorbidities. FINDINGS RAS-acting AHTs were slightly more protective against onset of AD than non-RAS-acting AHTs for males, (male OR = 0.931 (CI: 0.895-0.969)), but not so for females (female OR = 0.985 (CI: 0.963-1.007)). Relative to other AHTs, ARBs were superior to ACEIs for both men (male ARB OR = 0.834 (CI: 0.788-0.884); male ACEI OR = 0.978 (CI: 0.939-1.019)) and women (female ARB OR = 0.941 (CI: 0.913-0.969); female ACEI OR = 1.022 (CI: 0.997-1.048)), but only in white men and white and black women. No association was shown for Hispanic men and women. CONCLUSION Hypertension management treatments that include RAS-acting ARBs may, in addition to lowering blood pressure, reduce AD risk, particularly for white and black women and white men. Additional studies and clinical trials that include men and women from different racial and ethnic groups are needed to confirm these findings. Understanding the potentially beneficial effects of certain RAS-acting AHTs in high-risk populations is of great importance.
Collapse
Affiliation(s)
- Douglas Barthold
- Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, Department of Pharmacy, University of Washington, Seattle, Washington, United States of America
| | - Geoffrey Joyce
- School of Pharmacy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, United States of America
| | - Whitney Wharton
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Patrick Kehoe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Julie Zissimopoulos
- Price School of Public Policy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
23
|
Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017; 46:1-8. [PMID: 28890045 DOI: 10.1016/j.jocn.2017.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The traditional renin-angiotensin system (RAS) is indispensable system in adjusting sodium homeostasis, body fluid volume, and controlling arterial blood pressure. The key elements are renin splitting inactive angiotensinogen to yield angiotensin (Ang-I). Ang-1 is then changed by angiotensin-1 converting enzyme (ACE) into angiotensin II (Ang-II). Using PubMed, Google Scholar, and other means, we searched the peer-reviewed literature from 1990 to 2013 for articles on newly discovered findings related to the RAS, especially focusing on how the system influences the central nervous system (CNS). The classical RAS is now considered to be only part of the picture; the discovery of additional RAS pathways in the brain and elsewhere has yielded a vastly improved understanding of how the RAS influences the CNS. Newly discovered effects of the RAS on brain tissue include neuroprotection, cognition, and cerebral vasodilation. A number of brain biochemical pathways are influenced by the brain RAS. Within various pathways, there are potential opportunities for classical pharmacologic interventions as well as the possibility of controlling gene expression.
Collapse
Affiliation(s)
- Ehab Farag
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA. http://www.OR.org/
| | - Daniel I Sessler
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeyd Ebrahim
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Kurz
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Morgan
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sanchit Ahuja
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamal Maheshwari
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D John Doyle
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Luan M, Shang Z, Teng Y, Chen X, Zhang M, Lv H, Zhang R. The shared and specific mechanism of four autoimmune diseases. Oncotarget 2017; 8:108355-108374. [PMID: 29312536 PMCID: PMC5752449 DOI: 10.18632/oncotarget.19383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Interaction between genetic and epigenetic mechanisms may lead to autoimmune diseases. The features of these diseases show familial aggregation. The generality and specificity are keys to studying pathogenesis and etiology of them. This research integrated data of genetics and epigenetics, to find disease-related genes based on the levels of expression and regulation, and explored then to the shared and specific mechanism of them by analyzing shared and specific pathways of common four autoimmune diseases, including Type 1 Diabetes Mellitus (T1D), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). The results showed that Lysosome and Fc gamma R-mediated phagocytosis are shared pathways of the four diseases. It means that the occurrence and development of them may associate with lysosomes and phagocytosis. And there were 2 pathways are shared pathways of three diseases, ribosome pathway associated with susceptibility to MS, RA and SLE, and Pathogenic Escherichia coli infection associated with susceptibility to T1D, MS and RA; 9 pathways are shared pathways of two diseases. The corporate underlying causes of these diseases may be these shared pathways activated. Furthermore, we found that T1D-related specific pathways (Insulin signaling,etc.) were 9, MS (Proteasome,etc.) is also 9, RA and SLE is 10 and 6 respectively. These pathways could help us to reveal shared and specific mechanisms of the four diseases.
Collapse
Affiliation(s)
- Meiwei Luan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanbo Teng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinren Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Haithem H, Ons A, Salma N, Jihène R, Mariam A, Mariem M, Mariem N, Nabila BR, Asma O, Sana BA, Sofien B, Ali B. Association between dementia and vascular disease-associated polymorphisms in a Tunisian population. Int J Neurosci 2017; 128:32-41. [PMID: 28657841 DOI: 10.1080/00207454.2017.1348353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Dementia is a multifactorial idiopathic pathology caused by clinical, eDementia is a multifactorial idiopathic pathology caused by clinical, environmental and genetic factors. Hence, its etiology is still unknown. We aimed to evaluate the association between five genetic risk factors for vascular diseases and dementia individually and when gathered in haplotypes. MATERIALS AND METHOD We enrolled 200 dementia patients and 300 controls. All subjects were genotyped for vascular diseaseassociated polymorphisms in the genes coding for Apolipoprotein-E (ApoE), angiotensin converting enzyme (ACE) and Paraoxonase-1 (PON1). RESULTS The association between dementia risk and all the studied polymorphisms except of PON1-Q192R was found to be significant. Carrying the ApoE e4 allele seems to increase dementia risk by 4.32 fold (p = 0.001). The risk associated with ACE I and PON1-L55M T alleles were lower (2.58 and 2.11 fold, p < 0.001 and p = 0.015, respectively). When combined in haplotypes, these polymorphisms showed a cumulative and synergetic effect. GTICC haplotype appears to be associated with 9-fold dementia risk (p < 0.001), whereas AADTT seems to reduce dementia risk by 80% (p = 0.003). CONCLUSION Our results suggest that, ApoE ε4, ACE I and PON1-L55M T alleles are associated with dementia risk whether these polymorphisms were studied separately or gathered in haplotypes. Still, the contribution of each gene to the pathophysiological development of dementia must be more investigated.
Collapse
Affiliation(s)
- Hamdouni Haithem
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Achour Ons
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Naija Salma
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Rejeb Jihène
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia
| | - Aounallah Mariam
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia
| | - Mhiri Mariem
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Noureddine Mariem
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Ben Rejeb Nabila
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Omezzine Asma
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Ben Amor Sana
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Benammou Sofien
- b Neurology Department , Sahloul University Hospital , Sousse , Tunisia
| | - Bouslama Ali
- a Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,c Biochemistry Department , Sahloul University Hospital , Sousse , Tunisia.,d Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| |
Collapse
|
26
|
Wiesmann M, Roelofs M, van der Lugt R, Heerschap A, Kiliaan AJ, Claassen JAHR. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:2396-2413. [PMID: 27596834 PMCID: PMC5531339 DOI: 10.1177/0271678x16667364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Wiesmann
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Monica Roelofs
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Robert van der Lugt
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology & Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Jurgen AHR Claassen
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Packer M, McMurray JJV. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet 2017; 389:1831-1840. [PMID: 27919443 DOI: 10.1016/s0140-6736(16)30969-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The magnitude of the clinical benefits produced by inhibitors of the renin-angiotensin system in heart failure has been modest, possibly because of the ability of renin-angiotensin activity to escape from suppression during long-term treatment. Efforts to intensify pharmacological blockade by use of dual inhibitors that interfere with the renin-angiotensin system at multiple sites have not yielded consistent incremental clinical benefits, but have been associated with serious adverse reactions. By contrast, potentiation of endogenous compensatory vasoactive peptides can act to enhance the survival effects of inhibitors of the renin-angiotensin system, as evidenced by trials that have compared angiotensin-converting enzyme inhibitors with drugs that inhibit both the renin-angiotensin system and neprilysin. Several endogenous vasoactive peptides act as adaptive mechanisms, and their augmentation could help to broaden the benefits of renin-angiotensin system inhibitors for patients with heart failure.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Center, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
29
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
30
|
Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice. PLoS One 2017; 12:e0171515. [PMID: 28158298 PMCID: PMC5291428 DOI: 10.1371/journal.pone.0171515] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/03/2017] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in identifying natural food ingredients that may serve to prevent dementia such as that due to Alzheimer disease (AD). Peptides derived from food proteins have been demonstrated to have various physiological activities such as a hypotensive action. Recent findings have indicated possible associations of hypertension with AD progression, and suggest that angiotensin converting enzyme (ACE) inhibitors with potential to pass through the blood brain barrier (BBB) may reduce the risk of AD. In this study, we investigated the effect of milk peptide (CH-3) on cognitive function in AD model mice. CH-3 contains a tripeptide (methionine-lysine-proline, MKP) that has been found to have a strong ACE inhibitory effect and the potential to pass through the BBB. Adult male ddY mice were used in this study, and an animal model of AD was induced by intracerebroventricular (ICV) injection of Aβ1-42. CH-3 (250 mg/kg/day) or MKP (0.5 mg/kg/day) was orally administered every day starting 2 days before ICV injection. At 3 weeks after ICV injection, cognitive function was evaluated by the Morris water maze test. Brain samples were obtained after behavioral testing, and expression of inflammatory cytokines and NADPH oxidase subunits was measured by real-time quantitative RT-PCR. ICV injection of Aβ1-42 significantly impaired cognitive function compared with that in PBS-injected mice. Daily administration of CH-3 markedly attenuated this Aβ1-42-induced cognitive decline. Aβ1-42 injection significantly enhanced the expression of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and p22phox in the mouse hippocampus compared with PBS injection, and showed a tendency to increase the expression of monocyte chemoattractant protein-1 (MCP-1), p47phox and gp91phox, whereas CH-3 treatment markedly reduced Aβ1-42-induced TNF-α, MCP-1, iNOS, p47phox and gp91phox expression. Finally, administration of MKP also attenuated Aβ1-42-induced cognitive impairment with an increase in cerebral blood flow. The present study demonstrated that repeated oral administration of CH-3 to AD model mice not only improved cognitive function but also suppressed the expression of inflammatory cytokines and production of oxidative stress, and suggests its therapeutic potential for preventing cognitive impairment in AD.
Collapse
|
31
|
Lv YB, Zhu PF, Yin ZX, Kraus VB, Threapleton D, Chei CL, Brasher MS, Zhang J, Qian HZ, Mao C, Matchar DB, Luo JS, Zeng Y, Shi XM. A U-shaped Association Between Blood Pressure and Cognitive Impairment in Chinese Elderly. J Am Med Dir Assoc 2017; 18:193.e7-193.e13. [PMID: 28126139 PMCID: PMC5294228 DOI: 10.1016/j.jamda.2016.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Higher or lower blood pressure may relate to cognitive impairment, whereas the relationship between blood pressure and cognitive impairment among the elderly is not well-studied. The study objective was to determine whether blood pressure is associated with cognitive impairment in the elderly, and, if so, to accurately describe the association. DESIGN Cross-sectional data from the sixth wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) conducted in 2011. SETTING Community-based setting in longevity areas in China. PARTICIPANTS A total of 7144 Chinese elderly aged 65 years and older were included in the sample. MEASURES Systolic blood pressures (SBP) and diastolic blood pressures (DBP) were measured, pulse pressure (PP) was calculated as (SBP) - (DBP) and mean arterial pressures (MAP) was calculated as 1/3(SBP) + 2/3(DBP). Cognitive function was assessed via a validated Mini-Mental State Examination (MMSE). RESULTS Based on the results of generalized additive models (GAMs), U-shaped associations were identified between cognitive impairment and SBP, DBP, PP, and MAP. The cutpoints at which risk for cognitive impairment (MMSE <24) was minimized were determined by quadratic models as 141 mm Hg, 85 mm Hg, 62 mm Hg, and 103 mm Hg, respectively. In the logistic models, U-shaped associations remained for SBP, DBP, and MAP but not PP. Below the identified cutpoints, each 1-mm Hg decrease in blood pressure corresponded to 0.7%, 1.1%, and 1.1% greater risk in the risk of cognitive impairment, respectively. Above the cutpoints, each 1-mm Hg increase in blood pressure corresponded to 1.2%, 1.8%, and 2.1% greater risk of cognitive impairment for SBP, DBP, and MAP, respectively. CONCLUSION A U-shaped association between blood pressure and cognitive function in an elderly Chinese population was found. Recognition of these instances is important in identifying the high-risk population for cognitive impairment and to individualize blood pressure management for cognitive impairment prevention.
Collapse
Affiliation(s)
- Yue-Bin Lv
- Institute of Environmental Health and Related Products Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng-Fei Zhu
- Institute of Environmental Health and Related Products Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhao-Xue Yin
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Diane Threapleton
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Choy-Lye Chei
- Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Melanie Sereny Brasher
- Department of Sociology and Anthropology, Department of Human Development and Family Studies, University of Rhode Island, Kingston, RI
| | - Juan Zhang
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han-Zhu Qian
- Vanderbilt Institute for Global Health, Division of Epidemiology, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Chen Mao
- Division of Epidemiology, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - David Bruce Matchar
- Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore; Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Jie-Si Luo
- Division of Non-Communicable Disease Control and Community Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and the Geriatric Division of School of Medicine, Duke University, Durham, NC; Center for Study of Healthy Aging and Development Studies, Peking University, Beijing, China
| | - Xiao-Ming Shi
- Institute of Environmental Health and Related Products Safety, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
32
|
Müller J, Chan K, Myers JN. Association Between Exercise Capacity and Late Onset of Dementia, Alzheimer Disease, and Cognitive Impairment. Mayo Clin Proc 2017; 92:211-217. [PMID: 28082018 DOI: 10.1016/j.mayocp.2016.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To address the association between exercise capacity and the onset of dementia, Alzheimer disease, and cognitive impairment. PATIENTS AND METHODS For 6104 consecutive veteran patients (mean ± SD age: 59.2±11.4 years) referred for treadmill exercise testing, the combined end point of dementia, Alzheimer disease, and cognitive impairment was abstracted from the Veterans Affairs computerized patient record system. RESULTS After mean ± SD follow-up of 10.3±5.5 years, 353 patients (5.8%) developed the composite end point at a mean ± SD age of 76.7±10.3 years. After correction for confounders in multivariate Cox proportional hazards regression, higher age at exercise testing (hazard ratio [HR]=1.08; 95% CI, 1.07-1.09; P<.001), current smoking (HR=1.44; 95% CI, 1.08-1.93; P=.01), and exercise capacity (HR=0.92; 95% CI, 0.89-0.96; P<.001) emerged as predictors of cognitive impairment. Each 1-metabolic equivalent increase in exercise capacity conferred a nearly 8% reduction in the incidence of cognitive impairment. Meeting the recommendations for daily activity was not associated with a delay in onset of cognitive impairment (HR=1.07; 95% CI, 0.86-1.32; P=.55). CONCLUSION Exercise capacity is strongly associated with cognitive function; the inverse association between fitness and cognitive impairment provides an additional impetus for health care providers to promote physical activity.
Collapse
Affiliation(s)
- Jan Müller
- Institute of Preventive Pediatrics, Technische Universität München, München, Germany; Division of Cardiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Stanford University School of Medicine, Stanford, CA.
| | - Khin Chan
- Division of Cardiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Jonathan N Myers
- Division of Cardiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA; Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
33
|
Nakagawa T, Hasegawa Y, Uekawa K, Senju S, Nakagata N, Matsui K, Kim-Mitsuyama S. Transient Mild Cerebral Ischemia Significantly Deteriorated Cognitive Impairment in a Mouse Model of Alzheimer's Disease via Angiotensin AT1 Receptor. Am J Hypertens 2017; 30:141-150. [PMID: 27572961 DOI: 10.1093/ajh/hpw099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ischemic stroke is suggested to be potentially associated with cognitive impairment in Alzheimer's disease (AD). We hypothesized that cerebral ischemia deteriorates cognitive impairment in AD, through angiotensin II. METHODS We used 5XFAD mouse, a model of AD with vascular and cerebral amyloid-β deposition. Transient cerebral ischemia of mice was induced by bilateral common carotid artery occlusion (BCCAO) for 17 minutes. The posttreatment with olmesartan, an ARB, or vehicle was started at 24 hours after BCCAO and was performed for 5 weeks. Experimental mice consisted of 5 groups: (i) wild-type mice, (ii) wild-type mice with BCCAO, (iii) 5XFAD mice, (iv) 5XFAD mice with BCCAO, (v) 5XFAD mice with BCCAO and olmesartan postadministration. RESULTS BCCAO in 5XFAD caused greater escape latency (P < 0.01) on water maze test than that in wild type, indicating that transient brief cerebral ischemia enhanced cognitive decline in 5XFAD mice. Posttreatment with olmesartan significantly reduced escape latency (P < 0.01) on water maze test, retention trial latency (P < 0.05) on passive avoidance test, and retention time of outer zone (P < 0.01) on open-field test in 5XFAD subjected to BCCAO. This protective effect of olmesartan against cognitive impairment in 5XFAD with BCCAO was associated with the protection of neuron and attenuation of oxidative stress in hippocampus and the suppression of blood-brain barrier disruption. CONCLUSIONS We obtained the evidence that transient brief cerebral ischemia deteriorated cognitive impairment in AD model through AT1 receptor.
Collapse
Affiliation(s)
- Takashi Nakagawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yu Hasegawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ken Uekawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Kunihiko Matsui
- Department of General and Community Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan;
| |
Collapse
|
34
|
Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Imboden H, Hamel E. Enalapril Alone or Co-Administered with Losartan Rescues Cerebrovascular Dysfunction, but not Mnemonic Deficits or Amyloidosis in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:1183-95. [PMID: 26923013 DOI: 10.3233/jad-150868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The co-administration of angiotensin converting enzyme inhibitors (ACEi) and angiotensin II (AngII) receptor blockers (ARB) that bind angiotensin type 1 receptors (AT1R) may protect from Alzheimer's disease (AD) better than each treatment taken alone. We tested the curative potential of the non brain-penetrant ACEi enalapril (3 mg/kg/day) administered for 3 months either alone or in combination with the brain penetrant ARB losartan (10 mg/kg/day) in aged (∼15 months) transgenic mice overexpressing a mutated form of the human amyloid-β protein precursor (AβPP, thereafter APP mice). We studied cerebrovascular function, protein levels of oxidative stress markers (superoxide dismutases SOD1, SOD2 and the NADPH oxidase subunit p67phox), amyloid-β (Aβ) pathology, astrogliosis, cholinergic innervation, AT1R and angiotensin IV receptor (AT4R) levels, together with cognitive performance. Both treatments normalized cerebrovascular reactivity and p67phox protein levels, but they did not reduce the cerebrovascular levels of SOD1. Combined treatment normalized cerebrovascular SOD2 levels, significantly attenuated astrogliosis, but did not reduce the increased levels of cerebrovascular AT1R. Yet, combined therapy enhanced thioflavin-S labeled Aβ plaque burden, a tendency not significant when Aβ1 - 42 plaque load was considered. None of the treatments rescued cognitive deficits, cortical AT4R or cholinergic innervation. We conclude that both treatments normalized cerebrovascular function by inhibiting the AngII-induced oxidative stress cascade, and that the positive effects of the combined therapy on astrogliosis were likely due to the ability of losartan to enter brain parenchyma. However, enalapril did not potentiate, and may even dampen, the reported cognitive benefits of losartan, raising caution when selecting the most appropriate antihypertensive therapy in AD patients.
Collapse
Affiliation(s)
- Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Nektaria Nicolakakis
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Xing-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Tahar Aboulkassim
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Hans Imboden
- Institute of Cell Biology, University of Bern, Switzerland
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
35
|
Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood pressure management for this global burden. BMC Cardiovasc Disord 2016; 16:208. [PMID: 27809779 PMCID: PMC5093934 DOI: 10.1186/s12872-016-0386-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Arterial hypertension and stroke are strong independent risk factors for the development of cognitive impairment and dementia. Persistently elevated blood pressure (BP) is known to impair cognitive function, however onset of new cognitive decline is common following a large and multiple mini strokes. Among various forms of dementia the most prevalent include Alzheimer’s disease (AD) and vascular dementia (VaD) which often present with similar clinical symptoms and challenging diagnosis. While hypertension is the most important modifiable vascular risk factor with antihypertensive therapy reducing the risk of stroke and potentially slowing cognitive decline, optimal BP levels for maintaining an ideal age-related mental performance are yet to be established. Cognition has improved following the use of at least one representative agent of the major drug classes with further neuroprotection with renin angiotensin inhibitors and calcium channel blockers in the hypertensive elderly. However, a reduction in BP may worsen cerebral perfusion causing an increased risk of CV complications due to the J-curve phenomenon. Given the uncertainties and conflicting results from randomized trials regarding the hypertension management in the elderly, particularly octogenarians, antihypertensive approaches are primarily based on expert opinion. Herein, we summarize available data linking arterial hypertension to cognitive decline and antihypertensive approach with potential benefits in improving cognitive function in elderly hypertensive patients.
Collapse
Affiliation(s)
- Marijana Tadic
- University Clinical Hospital Centre "Dr. Dragisa Misovic", Heroja Milana Tepica 1, 11000, Belgrade, Serbia.
| | - Cesare Cuspidi
- University of Milan-Bicocca and Istituto Auxologico Italiano, Clinical Research Unit, Viale della Resistenza 23, 20036, Meda, Italy
| | - Dagmara Hering
- Dobney Hypertension Centre, School of Medicine and Pharmacology-Royal Perth, Hospital Unit, The University of Western Australia, Rear 50 Murray Street, 6000, Perth, Australia
| |
Collapse
|
36
|
Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, Rossi F, Rosano G, Capuano A. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2016; 227:734-742. [PMID: 27823897 DOI: 10.1016/j.ijcard.2016.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
Abstract
It is commonly accepted that the renin-angiotensin-aldosterone system (RAAS) is a cardiovascular circulating hormonal system that plays also an important role in the modulation of several patterns in the brain. The pathway of the RAAS can be divided into two classes: the traditional pathway of RAAS, also named classic RAAS, and the non-classic RAAS. Both pathways play a role in both cardiovascular and neurological diseases through a peripheral or central control. In this regard, renewed interest is growing in the last years for the consideration that the brain RAAS could represent a new important therapeutic target to regulate not only the blood pressure via central nervous control, but also neurological diseases. However, the development of compounds able to cross the blood-brain barrier and to act on the brain RAAS is challenging, especially if the metabolic stability and the half-life are taken into consideration. To date, two drug classes (aminopeptidase type A inhibitors and angiotensin IV analogues) acting on the brain RAAS are in development in pre-clinical or clinical stages. In this article, we will present an overview of the biological functions played by peripheral and brain classic and non-classic pathways of the RAAS in several clinical conditions, focusing on the brain RAAS and on the new pharmacological targets of the RAAS.
Collapse
Affiliation(s)
- A Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy.
| | - M Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - C Vitale
- IRCCS San Raffaele Pisana, Rome, Italy
| | - L Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| | - G Rosano
- IRCCS San Raffaele Pisana, Rome, Italy; Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - A Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, Naples, Italy
| |
Collapse
|
37
|
Labandeira-Garcia JL, Rodriguez-Perez AI, Valenzuela R, Costa-Besada MA, Guerra MJ. Menopause and Parkinson's disease. Interaction between estrogens and brain renin-angiotensin system in dopaminergic degeneration. Front Neuroendocrinol 2016; 43:44-59. [PMID: 27693730 DOI: 10.1016/j.yfrne.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
38
|
Love S, Miners J. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease. Brain Pathol 2016; 26:607-17. [PMID: 27327656 PMCID: PMC8028913 DOI: 10.1111/bpa.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
There is a perfusion deficit in Alzheimer's disease (AD), commencing in the precuneus and spreading to other parts of the cerebral cortex. The deficit anticipates the development of dementia, contributes to brain damage, and is caused by both functional and structural abnormalities of the cerebral vasculature. Most of the abnormalities are probably secondary to the accumulation of Aβ but the consequent hypoperfusion may, in turn, increase Aβ production. In the early stages of disease, abnormalities that cause vasoconstriction predominate. These include cholinergic vascular denervation, inhibition of endothelial nitric oxide synthase, increased production of endothelin-1 production and possibly also of angiotensin II. Patients with AD also have an increased prevalence of structural disease of cerebral microvessels, particularly CAA and capillary damage, and particularly in the later stages of disease these are likely to make an important contribution to the cerebral hypoperfusion. The metabolic abnormalities that cause early vascular dysfunction offer several targets for therapeutic intervention. However, for intervention to be effective it probably needs to be early. Prolonged cerebral hypoperfusion may induce compensatory circulatory changes that are themselves damaging, including hypertension and small vessel disease. This has implications for the use of antihypertensive drugs once there is accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| | - J.Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| |
Collapse
|
39
|
Packer M. Kicking the tyres of a heart failure trial: physician response to the approval of sacubitril/valsartan in the USA. Eur J Heart Fail 2016; 18:1211-1219. [PMID: 27510447 DOI: 10.1002/ejhf.623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Angiotensin receptor-neprilysin inhibition has been shown to be superior to target doses of an ACE inhibitor in reducing the risk of cardiovascular death and clinical disease progression in patients with chronic heart failure and a reduced EF. Nevertheless, although sacubitril/valsartan has been available in the USA for a year, uptake of the drug by practitioners has been slow, in part because of misconceptions about the pivotal trial that demonstrated its efficacy in heart failure (PARADIGM-HF). This review addresses questions that have been raised in the USA about the design of the trial as well as the patients who were studied, the replicability and applicability of the results, and the safety of neprilysin inhibition. The totality of evidence indicates that the PARADIGM-HF trial used an appropriate comparator; enrolled patients typical of those seen in the community with mild to moderate symptoms; yielded highly persuasive and replicable results; and demonstrated benefits that are applicable to patients taking subtarget doses of ACE inhibitors and ARBs. Regulatory review in the USA concluded that the established advantages of sacubitril/valsartan on cardiovascular death and disease progression outweighed hypothetical uncertainties about the long-term effects of neprilysin inhibition in patients who might not have survived without the drug. Accordingly, both the new US and European Society of Cardiology heart failure guidelines recommend sacubitril/valsartan as the preferred approach to inhibiting the renin-angiotensin system in patients with chronic heart failure who are currently receiving an ACE inhibitor or ARB.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Chitnis AS, Aparasu RR, Chen H, Kunik ME, Schulz PE, Johnson ML. Use of Angiotensin-Converting Enzyme Inhibitors, Angiotensin Receptor Blockers, and Risk of Dementia in Heart Failure. Am J Alzheimers Dis Other Demen 2016; 31:395-404. [PMID: 26705381 PMCID: PMC10852826 DOI: 10.1177/1533317515618799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
OBJECTIVE To test the effect of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin-receptor blockers (ARBs) on reducing the risk of dementia in patients with heart failure (HF). METHODS This retrospective, longitudinal study used a cohort of HF patients identified from a local Medicare advantage prescription drug plan. Multivariable time-dependent Cox model and marginal structural model using inverse-probability-oftreatment weighting were used to estimate the risk of developing dementia. Adjusted dementia rate ratios were estimated among current and former ACEI/ARB users, as compared with nonusers. RESULTS Using the time-dependent Cox model, the adjusted dementia rate ratios (95% confidence-interval) among current and former users were 0.90(0.70-1.16) and 0.89 (0.71-1.10), respectively. Use of marginal structural model resulted in similar effect estimates for current and former users as compared with the nonusers. CONCLUSION This study found no difference in risk of dementia among the current and former users of ACEI/ARB as compared with the nonusers in an already at-risk HF population.
Collapse
Affiliation(s)
| | - Rajender R Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, USA
| | - Hua Chen
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, USA
| | - Mark E Kunik
- Houston VA Health Services Research and Development Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Baylor College of Medicine; VA South Central Mental Illness Research, Education and Clinical Center
| | - Paul E Schulz
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael L Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, USA
| |
Collapse
|
41
|
Uekawa K, Hasegawa Y, Senju S, Nakagata N, Ma M, Nakagawa T, Koibuchi N, Kim-Mitsuyama S. Intracerebroventricular Infusion of Angiotensin-(1–7) Ameliorates Cognitive Impairment and Memory Dysfunction in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2016; 53:127-33. [DOI: 10.3233/jad-150642] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ken Uekawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Yu Hasegawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Mingjie Ma
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Takashi Nakagawa
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Nobutaka Koibuchi
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
42
|
Manso-Calderón R, González-Sarmiento R. Genetic susceptibility to vascular cognitive impairment: a pathophysiological view. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneity of the vascular cognitive impairment (VCI) creates challenges for research on its genetic basis and pathophysiology. Despite well-known monogenic forms may be useful to understand some pathogenic mechanisms leading to VCI, most of VCIs are sporadic disorders resulting from the interaction between environmental, vascular and genetic factors. Genetic investigation for VCI may encompass both candidate genes that affect critical biological processes to VCI and common and rare genetic variants identified across the entire genome study technology, thereby enabling us to confirm or expose new biological mechanisms in VCI and develop new therapeutic and preventive approaches. Notwithstanding genetic susceptibility to VCI remains largely unknown owing to methodological issues. Collaborative efforts emerge as an interesting strategy to overcome these problems.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine & Institute of Molecular & Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
43
|
Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol 2016; 131:645-58. [PMID: 26711459 PMCID: PMC4835514 DOI: 10.1007/s00401-015-1522-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
Cerebrovascular disease (CVD) and Alzheimer’s disease (AD) have more in common than their association with ageing. They share risk factors and overlap neuropathologically. Most patients with AD have Aβ amyloid angiopathy and degenerative changes affecting capillaries, and many have ischaemic parenchymal abnormalities. Structural vascular disease contributes to the ischaemic abnormalities in some patients with AD. However, the stereotyped progression of hypoperfusion in this disease, affecting first the precuneus and cingulate gyrus, then the frontal and temporal cortex and lastly the occipital cortex, suggests that other factors are more important, particularly in early disease. Whilst demand for oxygen and glucose falls in late disease, functional MRI, near infrared spectroscopy to measure the saturation of haemoglobin by oxygen, and biochemical analysis of myelin proteins with differential susceptibility to reduced oxygenation have all shown that the reduction in blood flow in AD is primarily a problem of inadequate blood supply, not reduced metabolic demand. Increasing evidence points to non-structural vascular dysfunction rather than structural abnormalities of vessel walls as the main cause of cerebral hypoperfusion in AD. Several mediators are probably responsible. One that is emerging as a major contributor is the vasoconstrictor endothelin-1 (EDN1). Whilst there is clearly an additive component to the clinical and pathological effects of hypoperfusion and AD, experimental and clinical observations suggest that the disease processes also interact mechanistically at a cellular level in a manner that exacerbates both. The elucidation of some of the mechanisms responsible for hypoperfusion in AD and for the interactions between CVD and AD has led to the identification of several novel therapeutic approaches that have the potential to ameliorate ischaemic damage and slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Seth Love
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - J Scott Miners
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
44
|
Neasta J, Valmalle C, Coyne A, Carnazzi E, Subra G, Galleyrand J, Gagne D, M'Kadmi C, Bernad N, Bergé G, Cantel S, Marin P, Marie J, Banères J, Kemel M, Daugé V, Puget K, Martinez J. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016; 173:1314-28. [PMID: 27027724 PMCID: PMC4940823 DOI: 10.1111/bph.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/20/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Using an in-house bioinformatics programme, we identified and synthesized a novel nonapeptide, H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. EXPERIMENTAL APPROACH The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra-striatal injection of the peptide was investigated. A photoaffinity UV cross-linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. KEY RESULTS The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine-like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. CONCLUSION AND IMPLICATIONS The synthetic nonapeptide acein interacted with high affinity with brain membrane-bound ACE. This interaction occurs at a different site from the active site involved in the well-known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected.
Collapse
Affiliation(s)
- Jérémie Neasta
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Charlène Valmalle
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Anne‐Claire Coyne
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Eric Carnazzi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilles Subra
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Claude Galleyrand
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Didier Gagne
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Céline M'Kadmi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Nicole Bernad
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilbert Bergé
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, UMR5203, INSERM U661, Rue de la CardonilleUniversité de MontpellierMontpellierFrance
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Louis Banères
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marie‐Lou Kemel
- CIRB, Collège de France, 11, Place Marcelin BerthelotParisFrance
| | - Valérie Daugé
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Karine Puget
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean Martinez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
45
|
Abstract
Increasing life expectancy has made old age-related health problems like dementia and cognitive decline more prevalent, and these are rapidly becoming important causes of disability and poor quality of life, causing significant add-ons to health-care costs worldwide. Hypertension is the most important modifiable vascular risk factor for the development and progression of both cognitive decline and dementia. In many observational and randomized studies, antihypertensive therapies have been shown to be beneficial in slowing cognitive decline. However, due to observed discrepancies by these studies, there is a lack of consensus on the best antihypertensive strategy for the prevention or slowing of cognitive decline. It is also not clear whether the beneficial effect of antihypertensive therapy is due to the use of a specific class of agents or combination therapy. Thus, we present a comprehensive review of overall antihypertensive therapies and cognition and of the individual antihypertensive therapy classes with their specific protective mechanisms and available clinical evidence behind their effect on cognitive function.
Collapse
|
46
|
Gadelha A, Vendramini AM, Yonamine CM, Nering M, Berberian A, Suiama MA, Oliveira V, Lima-Landman MT, Breen G, Bressan RA, Abílio V, Hayashi MAF. Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia. Transl Psychiatry 2015; 5:e691. [PMID: 26645626 PMCID: PMC5068582 DOI: 10.1038/tp.2015.181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/31/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023] Open
Abstract
In schizophrenia (SCZ), higher angiotensin I-converting enzyme (ACE) levels have been reported in patient's blood and cerebrospinal fluid (CSF). Hereby, we propose to explore whether the ACE activity levels are associated to cognitive performance in SCZ. Seventy-two patients with SCZ or schizoaffective disorder diagnosis, and 69 healthy controls (HCs) underwent a cognitive battery with parallel collection of peripheral blood samples to measure ACE activity. Significant higher ACE activity levels were confirmed in the plasma of SCZ patients compared with HCs (Student's t=-5.216; P<0.001). ACE activity significantly correlated to Hopkins delayed recall measures (r=-0.247; P=0.004) and Hopkins total (r=-0.214; P=0.012). Subjects grouped as high ACE activity (above average) had worse performance compared with low ACE activity level group for Hopkins delayed recall measure, even after correction for clinical condition, age, gender and years of education (P=0.029). The adjusted R squared for this final model was 0.343. This result was evident only comparing extreme groups for ACE activity, when splitting the sample in three groups with similar number of subjects. To clarify this finding, we performed an evaluation of the cognitive performance of transgenic mice with three copies of ACE gene in novel object recognition (NOR) test, which showed that such animals presented impairment in NOR (P<0.05) compared with two copies of wild-type animals. The results observed in SCZ patients and animal model suggest both the association of ACE to cognitive deficits in SCZ. This finding may support the evaluation of novel treatment protocols and/or of innovative drugs for specific intervention of cognitive deficits in SCZ envisioning concomitant ACE activity and behavior evaluations.
Collapse
Affiliation(s)
- A Gadelha
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A M Vendramini
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - C M Yonamine
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M Nering
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A Berberian
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Suiama
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - V Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M T Lima-Landman
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - G Breen
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - R A Bressan
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - V Abílio
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A F Hayashi
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, Rua 3 de maio 100, Ed. INFAR, 3rd floor, CEP 04044-020, São Paulo, Brazil. E-mail: or
| |
Collapse
|
47
|
Rangel-Barajas C, Coronel I, Florán B. Dopamine Receptors and Neurodegeneration. Aging Dis 2015; 6:349-68. [PMID: 26425390 DOI: 10.14336/ad.2015.0330] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/30/2015] [Indexed: 01/19/2023] Open
Abstract
Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson's disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- 1Department of Psychological and Brain Sciences Program in Neurosciences, Indiana University Bloomington, Bloomington, IN 47405, USA ; 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Israel Coronel
- 3Health Sciences Faculty, Anahuac University, Mexico Norte, State of Mexico, Mexico
| | - Benjamín Florán
- 4Department of Physiology, Biophysics and Neurosciences CINVESTAV-IPN, Mexico
| |
Collapse
|
48
|
Goh KL, Bhaskaran K, Minassian C, Evans SJW, Smeeth L, Douglas IJ. Angiotensin receptor blockers and risk of dementia: cohort study in UK Clinical Practice Research Datalink. Br J Clin Pharmacol 2015; 79:337-50. [PMID: 25223602 PMCID: PMC4309639 DOI: 10.1111/bcp.12511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/06/2014] [Indexed: 11/30/2022] Open
Abstract
Aims This was a cohort study to evaluate whether individuals exposed to angiotensin receptor blockers have a reduced risk of dementia compared with those exposed to angiotensin-converting enzyme inhibitors. Methods The study included new users of angiotensin receptor blockers or angiotensin-converting enzyme inhibitors (from 1995 to 2010) from UK primary care practices contributing to the Clinical Research Practice Datalink. The association between exposure to angiotensin receptor blockers and the risk of incident dementia was analysed using a Cox model, adjusting for age, sex, body mass index, diabetes, hypertension, heart failure, statin use, socioeconomic status, alcohol, smoking, number of consultations and calendar year. Results A total of 426 089 persons were included in the primary analysis, with 45 541 persons exposed to angiotensin receptor blockers and the remainder to angiotensin-converting enzyme inhibitors. The total number of new diagnoses of dementia was 6517. There was weak evidence of a decreased risk of dementia with exposure to angiotensin receptor blockers, with follow-up beginning at 1 year after the start of treatment (adjusted hazard ratio 0.92, 95% confidence interval 0.85–1.00). An analysis restricted to the first 12 months after the index date showed a larger effect on dementia risk (adjusted hazard ratio 0.60, 95% confidence interval 0.50–0.72). Conclusions A small reduction in dementia risk was seen with angiotensin receptor blockers in comparison to angiotensin-converting enzyme inhibitors. However, the strongest association was seen in early follow-up, suggesting that the inverse association is unlikely to be causal, but instead reflects other important but unmeasured differences between angiotensin receptor blocker and angiotensin-converting enzyme inhibitor users.
Collapse
Affiliation(s)
- Kah L Goh
- KLG Drug Safety Ltd, Walnut House, 34 Rose Street, Wokingham, RG40 1XU, UK
| | | | | | | | | | | |
Collapse
|
49
|
Kalra J, Prakash A, Kumar P, Majeed ABA. Cerebroprotective effects of RAS inhibitors: Beyond their cardio-renal actions. J Renin Angiotensin Aldosterone Syst 2015; 16:459-68. [PMID: 25944853 DOI: 10.1177/1470320315583582] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 03/22/2015] [Indexed: 01/25/2023] Open
Abstract
Work on the brain renin-angiotensin system has been explored by various researchers and has led to elucidation of its basic physiologies and behavior, including its role in reabsorption and uptake of body fluid, blood pressure maintenance with angiotensin II being its prominent effector. Currently, this system has been implicated for its newly established effects, which are far beyond its cardio-renal effects accounting for maintenance of cerebral blood flow and cerebroprotection, seizure, in the etiology of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and bipolar disorder. In this review, we have discussed the distribution of angiotensin receptor subtypes in the central nervous system (CNS) together with enzymatic pathways leading to active angiotensin ligands and its interaction with angiotensin receptor 2 (AT2) and Mas receptors. Secondly, the use of angiotensin analogues (angiotensin converting enzyme inhibitors and AT1 and/or AT2 receptor blockers) in the treatment and management of the CNS disorders mentioned above has been discussed.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India
| | - Atish Prakash
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| | - Puneet Kumar
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| |
Collapse
|
50
|
Gadelha A, Yonamine CM, Ota VK, Oliveira V, Sato JR, Belangero SI, Bressan RA, Hayashi MAF. ACE I/D genotype-related increase in ACE plasma activity is a better predictor for schizophrenia diagnosis than the genotype alone. Schizophr Res 2015; 164:109-14. [PMID: 25701466 DOI: 10.1016/j.schres.2015.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Angiotensin-I converting enzyme (ACE) is a key component of the renin-angiotensin system (RAS). Although the several contradictory data, ACE has been associated with schizophrenia (SCZ) pathophysiology. Here the ACE activity of SCZ patients and healthy controls (HCs), and its possible correlations with the ACE polymorphism genotype and symptomatic dimensions, was investigated. METHODOLOGY ACE activity of 86 SCZ patients and 100 HCs paired by age, gender and educational level was measured, using the FRET peptide substrate and the specific inhibitor lisinopril. The ACE insertion/deletion (I/D) genotypes were assessed by the restriction fragment length polymorphism (RFLP) technique. RESULTS Significantly higher ACE activity was observed in SCZ patients compared to HCs (t=-5.09; p<0.001). The area under the receiver operating characteristic (ROC) curve was 0.701. Mean ACE activity levels were higher for the D-allele carriers (F=5.570; p=0.005), but no significant difference was found among SCZ patients and HCs for genotypes frequencies (Chi-squared=2.08; df=2; p=0.35). Interestingly, we found that the difference between the measured ACE activity for each SCZ patient and the expected average mean value for each respective genotype group (for control subjects) was a better predictor of SCZ than the ACE dichotomized values (high/low) or ACE I/D. CONCLUSION Our results suggest that higher levels of ACE activity are associated with SCZ with stronger impact when the genetic background of each individual is considered. This may explain the heterogeneity of the results on ACE previously reported.
Collapse
Affiliation(s)
- Ary Gadelha
- Programa de Esquizofrenia (PROESQ) - Departamento de Psiquiatria, UNIFESP, São Paulo, Brazil
| | | | - Vanessa K Ota
- Departamento de Morfologia e Genética, UNIFESP, São Paulo, Brazil
| | | | - João Ricardo Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Sintia I Belangero
- Programa de Esquizofrenia (PROESQ) - Departamento de Psiquiatria, UNIFESP, São Paulo, Brazil; Departamento de Morfologia e Genética, UNIFESP, São Paulo, Brazil
| | - Rodrigo A Bressan
- Programa de Esquizofrenia (PROESQ) - Departamento de Psiquiatria, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|