1
|
Robertson JW, Adanyeguh I, Bender B, Boesch S, Brunetti A, Cocozza S, Coutinho L, Deistung A, Diciotti S, Dogan I, Durr A, Fernandez-Ruiz J, Göricke SL, Grisoli M, Han S, Mariotti C, Marzi C, Mascalchi M, Mochel F, Nachbauer W, Nanetti L, Nigri A, Ono SE, Onyike CU, Prince JL, Reetz K, Romanzetti S, Saccà F, Synofzik M, Ghizoni Teive HA, Thomopoulos SI, Thompson PM, Timmann D, Ying SH, Harding IH, Hernandez-Castillo CR. The Pattern and Staging of Brain Atrophy in Spinocerebellar Ataxia Type 2 (SCA2): MRI Volumetrics from ENIGMA-Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613281. [PMID: 39345594 PMCID: PMC11429976 DOI: 10.1101/2024.09.16.613281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Objective Spinocerebellar ataxia type 2 (SCA2) is a rare, inherited neurodegenerative disease characterised by progressive deterioration in both motor coordination and cognitive function. Atrophy of the cerebellum, brainstem, and spinal cord are core features of SCA2, however the evolution and pattern of whole-brain atrophy in SCA2 remain unclear. We undertook a multi-site, structural magnetic resonance imaging (MRI) study to comprehensively characterize the neurodegeneration profile of SCA2. Methods Voxel-based morphometry analyses of 110 participants with SCA2 and 128 controls were undertaken to assess groupwise differences in whole-brain volume. Correlations with clinical severity and genotype, and cross-sectional profiling of atrophy patterns at different disease stages, were also performed. Results Atrophy in SCA2 relative to controls was greatest (Cohen's d>2.5) in the cerebellar white matter (WM), middle cerebellar peduncle, pons, and corticospinal tract. Very large effects (d>1.5) were also evident in the superior cerebellar, inferior cerebellar, and cerebral peduncles. In cerebellar grey matter (GM), large effects (d>0.8) mapped to areas related to both motor coordination and cognitive tasks. Strong correlations (|r|>0.4) between volume and disease severity largely mirrored these groupwise outcomes. Stratification by disease severity showed a degeneration pattern beginning in cerebellar and pontine WM in pre-clinical subjects; spreading to the cerebellar GM and cerebro-cerebellar/corticospinal WM tracts; then finally involving the thalamus, striatum, and cortex in severe stages. Interpretation The magnitude and pattern of brain atrophy evolves over the course of SCA2, with widespread, non-uniform involvement across the brainstem, cerebellar tracts, and cerebellar cortex; and late involvement of the cerebral cortex and striatum.
Collapse
Affiliation(s)
| | - Isaac Adanyeguh
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Léo Coutinho
- Post-Graduate Program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Bologna, Italy
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU BioGeM, Department of Genetics, Paris, France
| | - Juan Fernandez-Ruiz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico
| | - Sophia L. Göricke
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shuo Han
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Chiara Marzi
- Department of Statistics, Computer Science, and Applications “Giuseppe Parenti”, University of Florence, Florence, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Fanny Mochel
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, AP-HP, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, DMU BioGeM, Department of Genetics, Paris, France
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio E. Ono
- Clínica DAPI - Diagnóstico Avançado Por Imagem, Curitiba, Brazil
| | - Chiadi U. Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Francesco Saccà
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hélio A. Ghizoni Teive
- Post-Graduate Program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, USA
| | - Dagmar Timmann
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sarah H. Ying
- Department of Radiology, Johns Hopkins University, Baltimore, USA
| | - Ian H. Harding
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | | |
Collapse
|
2
|
Coarelli G, Dubec-Fleury C, Petit E, Sayah S, Fischer C, Nassisi M, Gatignol P, Dorgham K, Daghsen L, Daye P, Cunha P, Kacher R, Hilab R, Hurmic H, Lamazière A, Lamy JC, Welter ML, Chupin M, Mangin JF, Lane R, Gaymard B, Pouget P, Audo I, Brice A, Tezenas du Montcel S, Durr A. Longitudinal Changes of Clinical, Imaging, and Fluid Biomarkers in Preataxic and Early Ataxic Spinocerebellar Ataxia Type 2 and 7 Carriers. Neurology 2024; 103:e209749. [PMID: 39133883 PMCID: PMC11361831 DOI: 10.1212/wnl.0000000000209749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Brain MRI abnormalities and increases in neurofilament light chain (NfL) have mostly been observed in cross-sectional studies before ataxia onset in polyglutamine spinocerebellar ataxias. Our study aimed to identify longitudinal changes in biological, clinical, and/or imaging biomarkers in spinocerebellar ataxia (SCA) 2 and SCA7 carriers over 1 year. METHODS We studied SCA2 and SCA7 carriers and controls (expansion-negative relatives) at the Paris Brain Institute. Inclusion criteria included Scale for the Assessment and Rating of Ataxia (SARA) scores between 0 and 15. Assessments at baseline, 6 months, and 12 months comprised neurologic, quality of life, orofacial motor, neuropsychological, and ophthalmologic examinations, along with gait and oculomotor recordings, brain MRI, CSF, and blood sampling. The primary outcome was the longitudinal change in these assessments over 1 year. RESULTS We included 15 SCA2 carriers, 15 SCA7 carriers, and 10 controls between May 2020 and April 2021. At baseline, the ages were similar (41 [37, 46] for SCA2, 38 [28.5, 39.8] for SCA7, and 39.5 [31, 54.5] for controls, p = 0.78), as well the sex (p = 0.61); SARA scores were low but different (4 [1.25, 6.5] in SCA2, 2 [0, 11.5] in SCA7, and 0 in controls, p < 0.01). Pons and medulla volumes were smaller in SCAs (p < 0.05) and cerebellum volume only in SCA2 (p = 0.01). Plasma NfL levels were higher in SCA participants (SCA2: 14.2 pg/mL [11.52, 15.89], SCA7: 15.53 [13.27, 23.23]) than in controls (4.88 [3.56, 6.17], p < 0.001). After 1-year follow-up, in SCA2, there was significant pons (-144 ± 60 mm3) and cerebellum (-1,508 ± 580 mm3) volume loss and a worsening of gait assessment; in SCA7, SARA score significantly increased (+1.3 ± 0.4) and outer retinal nuclear layer thickness decreased (-15.4 ± 1.6 μm); for both SCA groups, the orofacial motor assessment significantly worsened. For preataxic and early ataxic carriers, the strongest longitudinal deterioration on outcome measures was orofacial motility in SCA2 and retinal thickness in SCA7. DISCUSSION Despite the limitation of the small sample size, we detected annual changes in preataxic and early ataxic SCA individuals across brain MRI imaging, clinical scores, gait parameters, and retinal thickness. These parameters could serve as potential end points for future therapeutic trials in the preataxic phase. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov NCT04288128.
Collapse
Affiliation(s)
- Giulia Coarelli
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Charlotte Dubec-Fleury
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Emilien Petit
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sabrina Sayah
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Clara Fischer
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marco Nassisi
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Peggy Gatignol
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Lina Daghsen
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Daye
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Paulina Cunha
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Radhia Kacher
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Rania Hilab
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Hortense Hurmic
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Antonin Lamazière
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-Charles Lamy
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Welter
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Marie Chupin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Jean-François Mangin
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Roger Lane
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Bertrand Gaymard
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Pierre Pouget
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Isabelle Audo
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Sophie Tezenas du Montcel
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- From the Sorbonne Université (G.C., C.D.-F., E.P., S.S., L.D., P.C., R.K., R.H., H.H., J.-C.L., M.-L.W., P.P., A.B., S.T.d.M., A.D.), Paris Brain Institute, Inserm, CNRS, INRIA, APHP; CATI (C.F., M.C., J.-F.M.), US52-UAR2031, CEA, Paris Brain Institute, Sorbonne Université, CNRS, INSERM, APHP; Sorbonne Université (M.N., I.A.), Inserm, CNRS, Institut de la Vision; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts (M.N., I.A.), National Rare Disease Center REFERET and INSERM-DGOS CIC 1423; Sorbonne Université (P.G.), Inserm, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Sorbonne Université (K.D.), Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), France; P3lab (P.D.), Louvain-la-Neuve, Belgique; Clinical Metabolomic Department (A.L.), Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Saint-Antoine Research Center, Sorbonne University, France; Ionis Pharmaceuticals (R.L.), Carlsbad, CA; and Service de Neurophysiologie (B.G.), University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Ilg W, Milne S, Schmitz-Hübsch T, Alcock L, Beichert L, Bertini E, Mohamed Ibrahim N, Dawes H, Gomez CM, Hanagasi H, Kinnunen KM, Minnerop M, Németh AH, Newman J, Ng YS, Rentz C, Samanci B, Shah VV, Summa S, Vasco G, McNames J, Horak FB. Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1566-1592. [PMID: 37955812 PMCID: PMC11269489 DOI: 10.1007/s12311-023-01625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.
Collapse
Affiliation(s)
- Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany.
| | - Sarah Milne
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
- Physiotherapy Department, Monash Health, Clayton, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Frankston, VIC, Australia
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Lukas Beichert
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | | | - Helen Dawes
- NIHR Exeter BRC, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane Newman
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Clara Rentz
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Susanna Summa
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - James McNames
- APDM Precision Motion, Clario, Portland, OR, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| |
Collapse
|
4
|
Rezende TJR, Adanyaguh I, Barsottini OGP, Bender B, Cendes F, Coutinho L, Deistung A, Dogan I, Durr A, Fernandez-Ruiz J, Göricke SL, Grisoli M, Hernandez-Castillo CR, Lenglet C, Mariotti C, Martinez ARM, Massuyama BK, Mochel F, Nanetti L, Nigri A, Ono SE, Öz G, Pedroso JL, Reetz K, Synofzik M, Teive H, Thomopoulos SI, Thompson PM, Timmann D, van de Warrenburg BPC, van Gaalen J, França MC, Harding IH. Genotype-specific spinal cord damage in spinocerebellar ataxias: an ENIGMA-Ataxia study. J Neurol Neurosurg Psychiatry 2024; 95:682-690. [PMID: 38383154 PMCID: PMC11187354 DOI: 10.1136/jnnp-2023-332696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.
Collapse
Affiliation(s)
- Thiago Junqueira Ribeiro Rezende
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Isaac Adanyaguh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Fernando Cendes
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Leo Coutinho
- Graduate program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Paris, France
| | - Juan Fernandez-Ruiz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marina Grisoli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alberto R M Martinez
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Breno K Massuyama
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fanny Mochel
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio E Ono
- Clínica DAPI - Diagnóstico Avançado Por Imagem, Curitiba, Brazil
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich GmbH, Jülich, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Helio Teive
- Graduate program of Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Ian H Harding
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Uebachs M, Wegner P, Schaaf S, Kugai S, Jacobi H, Kuo SH, Ashizawa T, Fluck J, Klockgether T, Faber J. SCAview: an Intuitive Visual Approach to the Integrative Analysis of Clinical Data in Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:887-895. [PMID: 37002505 PMCID: PMC10544694 DOI: 10.1007/s12311-023-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
With SCAview, we present a prompt and comprehensive tool that enables scientists to browse large datasets of the most common spinocerebellar ataxias intuitively and without technical effort. Basic concept is a visualization of data, with a graphical handling and filtering to select and define subgroups and their comparison. Several plot types to visualize all data points resulting from the selected attributes are provided. The underlying synthetic cohort is based on clinical data from five different European and US longitudinal multicenter cohorts in spinocerebellar ataxia type 1, 2, 3, and 6 (SCA1, 2, 3, and 6) comprising > 1400 patients with overall > 5500 visits. First, we developed a common data model to integrate the clinical, demographic, and characterizing data of each source cohort. Second, the available datasets from each cohort were mapped onto the data model. Third, we created a synthetic cohort based on the cleaned dataset. With SCAview, we demonstrate the feasibility of mapping cohort data from different sources onto a common data model. The resulting browser-based visualization tool with a thoroughly graphical handling of the data offers researchers the unique possibility to visualize relationships and distributions of clinical data, to define subgroups and to further investigate them without any technical effort. Access to SCAview can be requested via the Ataxia Global Initiative and is free of charge.
Collapse
Affiliation(s)
- Mischa Uebachs
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- DRK Kamillus Klinik, Asbach, Germany
| | - Philipp Wegner
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), St. Augustin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sebastian Schaaf
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Simon Kugai
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), St. Augustin, Germany
- Institute of General Practice and Family Medicine, University Hospital Bonn, Bonn, Germany
| | - Heike Jacobi
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Juliane Fluck
- ZB Med, Information Centre for Life Sciences, Cologne, Germany
- Department of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
6
|
Seemann J, Daghsen L, Cazier M, Lamy JC, Welter ML, Giese MA, Synofzik M, Durr A, Ilg W, Coarelli G. Digital Gait Measures Capture 1-Year Progression in Early-Stage Spinocerebellar Ataxia Type 2. Mov Disord 2024; 39:788-797. [PMID: 38419144 DOI: 10.1002/mds.29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jens Seemann
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Lina Daghsen
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Matthieu Cazier
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Jean-Charles Lamy
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Marie-Laure Welter
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Martin A Giese
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| |
Collapse
|
7
|
Shah VV, Muzyka D, Jagodinsky A, McNames J, Casey H, El-Gohary M, Sowalsky K, Safarpour D, Carlson-Kuhta P, Schmahmann JD, Rosenthal LS, Perlman S, Horak FB, Gomez CM. Digital Measures of Postural Sway Quantify Balance Deficits in Spinocerebellar Ataxia. Mov Disord 2024; 39:663-673. [PMID: 38357985 DOI: 10.1002/mds.29742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Maintaining balance is crucial for independence and quality of life. Loss of balance is a hallmark of spinocerebellar ataxia (SCA). OBJECTIVE The aim of this study was to identify which standing balance conditions and digital measures of body sway were most discriminative, reliable, and valid for quantifying balance in SCA. METHODS Fifty-three people with SCA (13 SCA1, 13 SCA2, 14 SCA3, and 13 SCA6) and Scale for Assessment and Rating of Ataxia (SARA) scores 9.28 ± 4.36 and 31 healthy controls were recruited. Subjects stood in six test conditions (natural stance, feet together and tandem, each with eyes open [EO] and eyes closed [EC]) with an inertial sensor on their lower back for 30 seconds (×2). We compared test completion rate, test-retest reliability, and areas under the receiver operating characteristic curve (AUC) for seven digital sway measures. Pearson's correlations related sway with the SARA and the Patient-Reported Outcome Measure of Ataxia (PROM ataxia). RESULTS Most individuals with SCA (85%-100%) could stand for 30 seconds with natural stance EO or EC, and with feet together EO. The most discriminative digital sway measures (path length, range, area, and root mean square) from the two most reliable and discriminative conditions (natural stance EC and feet together EO) showed intraclass correlation coefficients from 0.70 to 0.91 and AUCs from 0.83 to 0.93. Correlations of sway with SARA were significant (maximum r = 0.65 and 0.73). Correlations with PROM ataxia were mild to moderate (maximum r = 0.56 and 0.34). CONCLUSION Inertial sensor measures of extent of postural sway in conditions of natural stance EC and feet together stance EO were discriminative, reliable, and valid for monitoring SCA. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vrutangkumar V Shah
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Muzyka
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
| | - Adam Jagodinsky
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
| | - James McNames
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon, USA
| | - Hannah Casey
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Mahmoud El-Gohary
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
| | - Kristen Sowalsky
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
| | - Delaram Safarpour
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Jeremy D Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Fay B Horak
- Precision Motion, APDM Wearable Technologies-A Clario Company, Portland, Oregon, USA
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
8
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Nakayama K, Nemoto K, Arai T. Nucleus accumbens degeneration in spinocerebellar ataxia type 2: a preliminary study. Psychogeriatrics 2024; 24:345-354. [PMID: 38243757 DOI: 10.1111/psyg.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) exhibits mainly cerebellar and oculomotor dysfunctions but also, frequently, cognitive impairment and neuropsychological symptoms. The mechanism of the progression of SCA2 remains unclear. This study aimed to evaluate longitudinal structural changes in the brains of SCA2 patients based on atrophy rate. METHODS The OpenNeuro Dataset ds001378 was used. It comprises the demographic data and two magnetic resonance images each of nine SCA2 patients and 16 healthy controls. All structural images were preprocessed using FreeSurfer software, and each region's bilateral volume was summed. Atrophy rates were calculated based on the concept of symmetrised percent change and compared between SCA2 patients and healthy controls using non-parametric statistics. As post hoc analysis, correlation analysis was performed between infratentorial volume ratio and the accumbens area atrophy rates in SCA2 patients. RESULTS There were no significant differences between groups for age, gender, and the time between scans. Statistical analysis indicated a significantly larger atrophy rate of the accumbens area in SCA2 patients than in controls. Additionally, the infratentorial volume ratio and accumbens area atrophy rates showed moderate negative correlation. CONCLUSIONS This study found that nucleus accumbens (NAc) atrophy was significantly accelerated in SCA2 patients. Anatomically, the NAc is densely connected with infratentorial brain regions, so it is reasonable to posit that degeneration propagates from the cerebellum and brainstem to the NAc and other supratentorial areas. Functionally, the NAc is essential for appropriate behaviour, so NAc degeneration might contribute to neuropsychological symptoms in SCA2 patients.
Collapse
Affiliation(s)
- Kenjiro Nakayama
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Tejwani L, Ravindra NG, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison LM, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva RM, Bae E, Kim K, Martuscello RT, Orr HT, Zoghbi HY, McLoughlin HS, Ranum LPW, Shakkottai VG, Faust PL, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2024; 112:362-383.e15. [PMID: 38016472 PMCID: PMC10922326 DOI: 10.1016/j.neuron.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Billy Nguyen
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan M Morrison
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Hannah Ro
- Yale College, New Haven, CT 06510, USA
| | | | - Rosalie M Grijalva
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Kristen Kim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Garces P, Antoniades CA, Sobanska A, Kovacs N, Ying SH, Gupta AS, Perlman S, Szmulewicz DJ, Pane C, Németh AH, Jardim LB, Coarelli G, Dankova M, Traschütz A, Tarnutzer AA. Quantitative Oculomotor Assessment in Hereditary Ataxia: Discriminatory Power, Correlation with Severity Measures, and Recommended Parameters for Specific Genotypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:121-135. [PMID: 36640220 PMCID: PMC10864420 DOI: 10.1007/s12311-023-01514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes.
Collapse
Affiliation(s)
- Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Norbert Kovacs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Sarah H Ying
- Department of Otology and Laryngology and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Perlman
- University of California Los Angeles, Los Angeles, CA, USA
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victoria Eye and Ear Hospital, East Melbourne, Melbourne, VIC, 3002, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giulia Coarelli
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Department of Genetics, Neurogene National Reference Centre for Rare Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Michaela Dankova
- Department of Neurology, Centre of Hereditary Ataxias, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Alexander A Tarnutzer
- Cantonal Hospital of Baden, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Jacobi H, Schaprian T, Schmitz‐Hübsch T, Schmid M, Klockgether T. Disease progression of spinocerebellar ataxia types 1, 2, 3 and 6 before and after ataxia onset. Ann Clin Transl Neurol 2023; 10:1833-1843. [PMID: 37592453 PMCID: PMC10578893 DOI: 10.1002/acn3.51875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE Our aim was to study the evolution of ataxia and neurological symptoms before and after ataxia onset in the most common spinocerebellar ataxias (SCAs), SCA1, SCA2, SCA3 and SCA6. We therefore jointly analysed the data of the EUROSCA and RISCA studies, which recruited ataxic and non-ataxic mutation carriers. METHODS We used mixed effect models to analyse the evolution of Scale for the Rating and Assessment of Ataxia (SARA) scores, SCA Functional Index (SCAFI) and Inventory of Non-Ataxia Signs (INAS) counts. We applied multivariable modelling to identify factors associated with SARA progression. In the time interval 5 years prior to and after ataxia onset, we calculated sensitivity to change ratios (SCS) of SARA, SCAFI and INAS. RESULTS 2740 visits of 677 participants were analysed. All measures showed non-linear progression that was best fitted by linear mixed models with linear, quadratic and cubic time effects. R2 values indicating quality of the fit ranged from 0.70 to 0.97. CAG repeat was associated with faster progression in SCA1, SCA2 and SCA3, but not SCA6. 5 years prior to and after ataxia onset, SARA had the highest SCS of all measures with a mean of 1.21 (95% CI: 1.20, 1.21) in SCA1, 0.94 (0.93, 0.94) in SCA2 and 1.23 (1.22, 1.23) in SCA3. INTERPRETATION Our data have important implications for the understanding of disease progression in SCA1, SCA2, SCA3 and SCA6 across the lifespan. Furthermore, our study provides information for the design of interventional trials, especially in pre-ataxic mutation carriers close to ataxia onset and patients in early disease stages.
Collapse
Affiliation(s)
- Heike Jacobi
- Department of NeurologyUniversity Hospital HeidelbergHeidelbergGermany
| | | | - Tanja Schmitz‐Hübsch
- Experimental and Clinical Research Center, a cooperation of Max‐Delbrueck Center for Molecular Medicine and Charité – Univeristätsmedizin BerlinBerlinGermany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Medical Biometry, Informatics and Epidemiology, Medical FacultyUniversity of BonnBonnGermany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of NeurologyUniversity Hospital of BonnBonnGermany
| | | |
Collapse
|
13
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
14
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
15
|
Osório C, White JJ, Lu H, Beekhof GC, Fiocchi FR, Andriessen CA, Dijkhuizen S, Post L, Schonewille M. Pre-ataxic loss of intrinsic plasticity and motor learning in a mouse model of SCA1. Brain 2023; 146:2332-2345. [PMID: 36352508 PMCID: PMC10232256 DOI: 10.1093/brain/awac422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 12/29/2023] Open
Abstract
Spinocerebellar ataxias are neurodegenerative diseases, the hallmark symptom of which is the development of ataxia due to cerebellar dysfunction. Purkinje cells, the principal neurons of the cerebellar cortex, are the main cells affected in these disorders, but the sequence of pathological events leading to their dysfunction is poorly understood. Understanding the origins of Purkinje cells dysfunction before it manifests is imperative to interpret the functional and behavioural consequences of cerebellar-related disorders, providing an optimal timeline for therapeutic interventions. Here, we report the cascade of events leading to Purkinje cells dysfunction before the onset of ataxia in a mouse model of spinocerebellar ataxia 1 (SCA1). Spatiotemporal characterization of the ATXN1[82Q] SCA1 mouse model revealed high levels of the mutant ATXN1[82Q] weeks before the onset of ataxia. The expression of the toxic protein first caused a reduction of Purkinje cells intrinsic excitability, which was followed by atrophy of Purkinje cells dendrite arborization and aberrant glutamatergic signalling, finally leading to disruption of Purkinje cells innervation of climbing fibres and loss of intrinsic plasticity of Purkinje cells. Functionally, we found that deficits in eyeblink conditioning, a form of cerebellum-dependent motor learning, precede the onset of ataxia, matching the timeline of climbing fibre degeneration and reduced intrinsic plasticity. Together, our results suggest that abnormal synaptic signalling and intrinsic plasticity during the pre-ataxia stage of spinocerebellar ataxias underlie an aberrant cerebellar circuitry that anticipates the full extent of the disease severity. Furthermore, our work indicates the potential for eyeblink conditioning to be used as a sensitive tool to detect early cerebellar dysfunction as a sign of future disease.
Collapse
Affiliation(s)
- Catarina Osório
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Heiling Lu
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Gerrit C Beekhof
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | | | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Center, Rotterdam 3015CN, The Netherlands
| |
Collapse
|
16
|
Faber J, Berger M, Carlo W, Hübener-Schmid J, Schaprian T, Santana MM, Grobe-Einsler M, Onder D, Koyak B, Giunti P, Garcia-Moreno H, Gonzalez-Robles C, Lima M, Raposo M, Melo ARV, de Almeida LP, Silva P, Pinto MM, van de Warrenburg BP, van Gaalen J, de Vries J, Jeroen, Oz G, Joers JM, Synofzik M, Schöls L, Riess O, Infante J, Manrique L, Timmann D, Thieme A, Jacobi H, Reetz K, Dogan I, Onyike C, Povazan M, Schmahmann J, Ratai EM, Schmid M, Klockgether T. Stage-dependent biomarker changes in spinocerebellar ataxia type 3. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23287817. [PMID: 37163081 PMCID: PMC10168503 DOI: 10.1101/2023.04.21.23287817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.
Collapse
Affiliation(s)
- Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Wilke Carlo
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Dement Onder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Berkan Koyak
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Cristina Gonzalez-Robles
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Mafalda Raposo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Patrick Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria M Pinto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center for Innovative in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center
- Department of Neurology, Rinjstate Hospital, Arnhem, The Netherlands
| | | | - Jeroen
- University Medical Center Groningen, Neurology
| | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Jon Infante
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Centro de investigación biomédica en red de enfermedades neurodegenerativas (CIBERNED), Universidad de Cantabria, Santander, Spain
| | - Leire Manrique
- University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen
| | - Heike Jacobi
- Department of Neurology, University Hospital of Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Chiadikaobi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Michal Povazan
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School
| | - Eva-Maria Ratai
- Massachusetts General Hospital, Department of Radiology, A. A. Martinos Center for Biomedical Imaging and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn, Medical Faculty, Institute for Medical Biometry, Informatics and Epidemiology
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Tezenas du Montcel S, Petit E, Olubajo T, Faber J, Lallemant-Dudek P, Bushara K, Perlman S, Subramony SH, Morgan D, Jackman B, Figueroa KP, Pulst SM, Fauret-Amsellem AL, Dufke C, Paulson HL, Öz G, Klockgether T, Durr A, Ashizawa T. Baseline Clinical and Blood Biomarkers in Patients With Preataxic and Early-Stage Disease Spinocerebellar Ataxia 1 and 3. Neurology 2023; 100:e1836-e1848. [PMID: 36797067 PMCID: PMC10136009 DOI: 10.1212/wnl.0000000000207088] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In spinocerebellar ataxia, ataxia onset can be preceded by mild clinical manifestation, cerebellar and/or brainstem alterations, or biomarker modifications. READISCA is a prospective, longitudinal observational study of patients with spinocerebellar ataxia type 1 (SCA1) and 3 (SCA3) to provide essential markers for therapeutic interventions. We looked for clinical, imaging, or biological markers that are present at an early stage of the disease. METHODS We enrolled carriers of a pathologic ATXN1 or ATXN3 expansion and controls from 18 US and 2 European ataxia referral centers. Clinical, cognitive, quantitative motor, neuropsychological measures and plasma neurofilament light chain (NfL) measurements were compared between expansion carriers with and without ataxia and controls. RESULTS We enrolled 200 participants: 45 carriers of a pathologic ATXN1 expansion (31 patients with ataxia [median Scale for the Assessment and Rating of Ataxia: 9; 7-10] and 14 expansion carriers without ataxia [1; 0-2]) and 116 carriers of a pathologic ATXN3 expansion (80 patients with ataxia [7; 6-9] and 36 expansion carriers without ataxia [1; 0-2]). In addition, we enrolled 39 controls who did not carry a pathologic expansion in ATXN1 or ATXN3. Plasma NfL levels were significantly higher in expansion carriers without ataxia than controls, despite similar mean age (controls: 5.7 pg/mL, SCA1: 18.0 pg/mL [p < 0.0001], SCA3: 19.8 pg/mL [p < 0.0001]). Expansion carriers without ataxia differed from controls by significantly more upper motor signs (SCA1 p = 0.0003, SCA3 p = 0.003) and by the presence of sensor impairment and diplopia in SCA3 (p = 0.0448 and 0.0445, respectively). Functional scales, fatigue and depression scores, swallowing difficulties, and cognitive impairment were worse in expansion carriers with ataxia than those without ataxia. Ataxic SCA3 participants showed extrapyramidal signs, urinary dysfunction, and lower motor neuron signs significantly more often than expansion carriers without ataxia. DISCUSSION READISCA showed the feasibility of harmonized data acquisition in a multinational network. NfL alterations, early sensory ataxia, and corticospinal signs were quantifiable between preataxic participants and controls. Patients with ataxia differed in many parameters from controls and expansion carriers without ataxia, with a graded increase of abnormal measures from control to preataxic to ataxic cohorts. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov NCT03487367.
Collapse
Affiliation(s)
- Sophie Tezenas du Montcel
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis.
| | - Emilien Petit
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Titilayo Olubajo
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Jennifer Faber
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Pauline Lallemant-Dudek
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Khalaf Bushara
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Susan Perlman
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Sub H Subramony
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - David Morgan
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Brianna Jackman
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Karla P. Figueroa
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Stefan M. Pulst
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Anne-Laure Fauret-Amsellem
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Claudia Dufke
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Henry Lauris Paulson
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Gülin Öz
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Thomas Klockgether
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Alexandra Durr
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| | - Tetsuo Ashizawa
- From the Sorbonne Universite (S.T.d.M., E.P., P.L.-D., A.D.), Paris Brain Institute, Inserm, INRIA, CNRS, APHP, France; The Houston Methodist Research Institute (T.O., T.A.), TX; Department of Neurology (J.F., T.K.), University Hospital of Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., T.K.), Bonn, Germany; Department of Neurology (K.B.), University of Minnesota, Minneapolis; University of California, Los Angeles (S.P.); Norman Fixel Center for Neurological Disorders (S.H.S.), College of Medicine, University of Florida, Gainesville; Department of Translational Neuroscience (D.M., B.J.), Michigan State University, Grand Rapids; Department of Neurology (K.P.F., S.M.P.), University of Utah, Salt Lake City; Functional Unit of Cellular and Molecular Neurogenetics (A.-L.F.-A.), Genetic Department, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France; Institute of Medical Genetics and Applied Genomics (C.D.), University of Tubingen, Tübingen, Germany; Department of Neurology (H.L.P.), University of Michigan, Ann Arbor; and Center for Magnetic Resonance Research (G.O.), Department of Radiology, University of Minnesota, Minneapolis
| |
Collapse
|
18
|
van Prooije T, Ruigrok S, van den Berkmortel N, Maas RPPWM, Wijn S, van Roon-Mom WMC, van de Warrenburg B, Grutters JPC. The potential value of disease-modifying therapy in patients with spinocerebellar ataxia type 1: an early health economic modeling study. J Neurol 2023:10.1007/s00415-023-11704-3. [PMID: 37076599 DOI: 10.1007/s00415-023-11704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE There currently is no disease-modifying therapy for spinocerebellar ataxia type 1 (SCA1). Genetic interventions, such as RNA-based therapies, are being developed but those currently available are very expensive. Early evaluation of costs and benefits is, therefore, crucial. By developing a health economic model, we aimed to provide first insights into the potential cost-effectiveness of RNA-based therapies for SCA1 in the Netherlands. METHODS We simulated disease progression of individuals with SCA1 using a patient-level state-transition model. Five hypothetical treatment strategies with different start and endpoints and level of effectiveness (5-50% reduction in disease progression) were evaluated. Consequences of each strategy were measured in terms of quality-adjusted life years (QALYs), survival, healthcare costs, and maximum costs to be cost effective. RESULTS Most QALYs (6.68) are gained when therapy starts during the pre-ataxic stage and continues during the entire disease course. Incremental costs are lowest (- €14,048) if therapy is stopped when the severe ataxia stage is reached. The maximum costs per year to be cost-effective are €19,630 in the "stop after moderate ataxia stage" strategy at 50% effectiveness. DISCUSSION Our model indicates that the maximum price for a hypothetical therapy to be cost-effective is considerably lower than currently available RNA-based therapies. Most value for money can be gained by slowing progression in the early and moderate stages of SCA1 and by stopping therapy upon entering the severe ataxia stage. To allow for such a strategy, it is crucial to identify individuals in early stages of disease, preferably just before symptom onset.
Collapse
Affiliation(s)
- Teije van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne Ruigrok
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels van den Berkmortel
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan Wijn
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Janneke P C Grutters
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Chandrasekaran J, Petit E, Park YW, Tezenas du Montcel S, Joers JM, Deelchand DK, Považan M, Banan G, Valabregue R, Ehses P, Faber J, Coupé P, Onyike CU, Barker PB, Schmahmann JD, Ratai EM, Subramony SH, Mareci TH, Bushara KO, Paulson H, Durr A, Klockgether T, Ashizawa T, Lenglet C, Öz G. Clinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3. Ann Neurol 2023; 93:686-701. [PMID: 36511514 PMCID: PMC10261544 DOI: 10.1002/ana.26573] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2023;93:686-701.
Collapse
Affiliation(s)
- Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emilien Petit
- Sorbonne Université, Paris Brain Institute, Inserm, INRIA, CNRS, APHP, 75013 Paris, France
| | - Young-Woo Park
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michal Považan
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guita Banan
- Norman Fixel Center for Neurological Disorders, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Romain Valabregue
- Sorbonne Université, Paris Brain Institute, Inserm, INRIA, CNRS, APHP, 75013 Paris, France
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, 33405 France
| | - Chiadi U. Onyike
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter B. Barker
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy D. Schmahmann
- Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - S. H. Subramony
- Norman Fixel Center for Neurological Disorders, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas H. Mareci
- Norman Fixel Center for Neurological Disorders, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Khalaf O. Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, Inserm, INRIA, CNRS, APHP, 75013 Paris, France
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tetsuo Ashizawa
- The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
20
|
Qiu H, Wu C, Liang J, Hu M, Chen Y, Huang Z, Yang Z, Zhao J, Chu J. Structural alterations of spinocerebellar ataxias type 3: from pre-symptomatic to symptomatic stage. Eur Radiol 2023; 33:2881-2894. [PMID: 36370172 DOI: 10.1007/s00330-022-09214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To investigate and characterize the structural alterations of the brain in SCA3, and their correlations with the scale for the assessment and rating of ataxia (SARA) and normal brain ATXN3 expression. METHODS We performed multimodal analyses in 52 SCA3 (15 pre-symptomatic) and healthy controls (HCs) (n = 35) to assess the abnormalities of gray and white matter (WM) of the cerebrum, brainstem, and cerebellum via FreeSurfer, SUIT, and TBSS, and their associations with disease severity. Twenty SCA3 patients (5 pre- and 15 symptomatic) were followed for at least a year. Besides, we uncovered the normal pattern of brain ATXN3 spatial distribution. RESULTS Pre-symptomatic patients showed only WM damage, mainly in the cerebellar peduncles, compared to HCs. In the advanced stage, the WM damage followed a caudal-rostral pattern. Meanwhile, continuous nonlinear structure damage was characterized by brainstem volumetric reduction and relatively symmetric cerebellar and basal ganglia atrophy but spared the cerebral cortex, partially explained by the ATXN3 overexpression. The bilateral pallidum, brainstem, and cerebellar peduncles demonstrated a very large effect size. Besides, all these alterations were significantly correlated with SARA; the pons (r = -0.65) and superior cerebellar peduncle (r = -0.68) volume demonstrated a higher correlation than the cerebellum with SARA. The longitudinal study further uncovered progressive atrophy of pons in symptomatic SCA3. CONCLUSIONS Significant WM damage starts before the ataxia onset. The bilateral pallidum, brainstem, and cerebellar peduncles are the most vulnerable targets. The volume of pons appears to be the most promising imaging biomarker for a longitudinal study. TRIAL REGISTRATION ClinicalTrial ID: ChiCTR2100045857 ( http://www.chictr.org.cn/edit.aspx?pid=55652&htm=4 ) KEY POINTS: • Pre- SCA3 showed WM damage mainly in cerebellar peduncles. Continuous brain damage was characterized by brainstem, widespread, and relatively symmetric cerebellar and basal ganglia atrophy. • Volumetric abnormalities were most evident in the bilateral pallidum, brainstem, and cerebellar peduncles in SCA3. • The volume of pons might identify the disease progression longitudinally.
Collapse
Affiliation(s)
- Haishan Qiu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiahui Liang
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Manshi Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Yingqian Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Zihuan Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China.
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Eklund NM, Ouillon J, Pandey V, Stephen CD, Schmahmann JD, Edgerton J, Gajos KZ, Gupta AS. Real-life ankle submovements and computer mouse use reflect patient-reported function in adult ataxias. Brain Commun 2023; 5:fcad064. [PMID: 36993945 PMCID: PMC10042315 DOI: 10.1093/braincomms/fcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Novel disease-modifying therapies are being evaluated in spinocerebellar ataxias and multiple system atrophy. Clinician-performed disease rating scales are relatively insensitive for measuring disease change over time, resulting in large and long clinical trials. We tested the hypothesis that sensors worn continuously at home during natural behaviour and a web-based computer mouse task performed at home could produce interpretable, meaningful and reliable motor measures for potential use in clinical trials. Thirty-four individuals with degenerative ataxias (spinocerebellar ataxia types 1, 2, 3 and 6 and multiple system atrophy of the cerebellar type) and eight age-matched controls completed the cross-sectional study. Participants wore an ankle and wrist sensor continuously at home for 1 week and completed the Hevelius computer mouse task eight times over 4 weeks. We examined properties of motor primitives called 'submovements' derived from the continuous wearable sensors and properties of computer mouse clicks and trajectories in relationship to patient-reported measures of function (Patient-Reported Outcome Measure of Ataxia) and ataxia rating scales (Scale for the Assessment and Rating of Ataxia and the Brief Ataxia Rating Scale). The test-retest reliability of digital measures and differences between ataxia and control participants were evaluated. Individuals with ataxia had smaller, slower and less powerful ankle submovements during natural behaviour at home. A composite measure based on ankle submovements strongly correlated with ataxia rating scale scores (Pearson's r = 0.82-0.88), strongly correlated with self-reported function (r = 0.81), had high test-retest reliability (intraclass correlation coefficient = 0.95) and distinguished ataxia and control participants, including preataxic individuals (n = 4) from controls. A composite measure based on computer mouse movements and clicks strongly correlated with ataxia rating scale total (r = 0.86-0.88) and arm scores (r = 0.65-0.75), correlated well with self-reported function (r = 0.72-0.73) and had high test-retest reliability (intraclass correlation coefficient = 0.99). These data indicate that interpretable, meaningful and highly reliable motor measures can be obtained from continuous measurement of natural movement, particularly at the ankle location, and from computer mouse movements during a simple point-and-click task performed at home. This study supports the use of these two inexpensive and easy-to-use technologies in longitudinal natural history studies in spinocerebellar ataxias and multiple system atrophy of the cerebellar type and shows promise as potential motor outcome measures in interventional trials.
Collapse
Affiliation(s)
- Nicole M Eklund
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessey Ouillon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vineet Pandey
- School of Engineering and Applied Sciences, Harvard University, Allston, MA 02138, USA
| | - Christopher D Stephen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Krzysztof Z Gajos
- School of Engineering and Applied Sciences, Harvard University, Allston, MA 02138, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
22
|
Rosa JG, Hamel K, Soles A, Sheeler C, Borgenheimer E, Gilliat S, Sbrocco K, Ghanoum F, Handler HP, Forster C, Rainwater O, Cvetanovic M. BDNF is altered in a brain-region specific manner and rescues deficits in Spinocerebellar Ataxia Type 1. Neurobiol Dis 2023; 178:106023. [PMID: 36724861 PMCID: PMC9969743 DOI: 10.1016/j.nbd.2023.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, dominantly inherited neurodegenerative disease caused by the expanded polyQ tract in the protein ATAXIN1 (ATXN1) and characterized by progressive motor and cognitive impairments. There are no disease-modifying treatments or cures for SCA1. Brain-derived neurotrophic factor (BDNF) plays important role in cerebellar physiology and has shown therapeutic potential for cerebellar pathology in the transgenic mouse model of SCA1, ATXN1[82Q] line that overexpress mutant ATXN1 under a cerebellar Purkinje-cell-specific promoter. Here we demonstrate decreased expression of brain derived neurotrophic factor (BDNF) in the cerebellum and medulla of patients with SCA1. Early stages of disease seem most amenable to therapy. Thus, we next quantified Bdnf expression in Atxn1154Q/2Q mice, a knock-in mouse model of SCA1, during the early symptomatic disease stage in four clinically relevant brain regions: cerebellum, medulla, hippocampus and motor cortex. We found that during the early stages of disease, Bdnf mRNA expression is reduced in the hippocampus and cerebellum, while it is increased in the cortex and brainstem. Importantly, we observed that pharmacological delivery of recombinant BDNF improved motor and cognitive performance, and mitigated pathology in the cerebellum and hippocampus of Atxn1154Q/2Q mice. Our findings demonstrate brain-region specific deficiency of BDNF in SCA1 and show that reversal of low BDNF levels offers the potential for meaningful treatment of motor and cognitive deficits in SCA1.
Collapse
Affiliation(s)
- Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Alyssa Soles
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Ferris Ghanoum
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| | - Hillary P Handler
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America; Department of Lab Medicine and Pathology, United States of America.
| | | | - Orion Rainwater
- Department of Lab Medicine and Pathology, United States of America.
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America; Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
23
|
Garofalo M, Vansenne F, Verbeek DS, Sival DA. The pathogenetic basis for a disease continuum in early- and late-onset ataxia-dystonia supports a unified genetic diagnostic approach. Eur J Paediatr Neurol 2023; 43:44-51. [PMID: 36905829 DOI: 10.1016/j.ejpn.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Genetically inherited ataxic disorders are classified by their age of disease presentation into early- and late-onset ataxia (EOA and LOA, presenting before or after the 25th year-of-life). In both disease groups, comorbid dystonia co-occurs frequently. Despite overlapping genes and pathogenetic features, EOA, LOA and dystonia are considered as different genetic entities with a separate diagnostic approach. This often leads to diagnostic delay. So far, the possibility of a disease continuum between EOA, LOA and mixed ataxia-dystonia has not been explored in silico. In the present study, we analyzed the pathogenetic mechanisms underlying EOA, LOA and mixed ataxia-dystonia. METHODS We analyzed the association of 267 ataxia genes with comorbid dystonia and anatomical MRI lesions in literature. We compared anatomical damage, biological pathways, and temporal cerebellar gene expression between EOA, LOA and mixed ataxia-dystonia. RESULTS The majority (≈65%) of ataxia genes were associated with comorbid dystonia in literature. Both EOA and LOA gene groups with comorbid dystonia were significantly associated with lesions in the cortico-basal-ganglia-pontocerebellar network. EOA, LOA and mixed ataxia-dystonia gene groups were enriched for biological pathways related to nervous system development, neural signaling and cellular processes. All genes revealed similar cerebellar gene expression levels before and after 25 years of age and during cerebellar development. CONCLUSION In EOA, LOA and mixed ataxia-dystonia gene groups, our findings show similar anatomical damage, underlying biological pathways and temporal cerebellar gene expression patterns. These findings may suggest the existence of a disease continuum, supporting the diagnostic use of a unified genetic approach.
Collapse
Affiliation(s)
- M Garofalo
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F Vansenne
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D A Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Grobe-Einsler M, Schmidt A, Schaprian T, Vogt IR, Klockgether T. Scale for the assessment and rating of ataxia: Age-dependent performance of healthy adults. Eur J Neurol 2023; 30:548-551. [PMID: 36214603 DOI: 10.1111/ene.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE The Scale for Assessment and Rating of Ataxia (SARA) is a widely used clinical scale. The objective was to study the age dependence of SARA in healthy adults and to define age-specific cut-off values to differentiate healthy from ataxic individuals. METHODS Data from 390 healthy individuals and 119 spinocerebellar ataxia patients were analyzed. SARA scores were mapped on functional SARA (fSARA). Age-adjusted cut-off values were determined by receiver operating characteristic curve analysis. RESULTS The cut-off value was 3 for SARA and 1.5 for fSARA. Older patients had higher SARA cut-off values (4.5 for 60-69 years and 6.5 for 70-79 years). Age-adjusted cut-off values for fSARA are 1 for 18-29, 30-39 and 50-59 years, 2 for 40-49 and 60-69 years and 3 for 70-79 years. Sensitivity and specificity were higher for SARA than for fSARA. CONCLUSION In this study, age-dependent cut-off values were defined for SARA and fSARA. The results may be relevant for the design of future preventive trials in spinocerebellar ataxias that use conversion to ataxia as an outcome.
Collapse
Affiliation(s)
- Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Alina Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina R Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Lee SU, Kim JS, Yoo D, Kim A, Kim HJ, Choi JY, Park JY, Jeong SH, Kim JM, Park KW. Ocular Motor Findings Aid in Differentiation of Spinocerebellar Ataxia Type 17 from Huntington's Disease. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1-13. [PMID: 34993890 DOI: 10.1007/s12311-021-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 02/01/2023]
Abstract
Differentiation of spinocerebellar ataxia type 17 (SCA17) from Huntington's disease (HD) is often challenging since they share the clinical features of chorea, parkinsonism, and dystonia. The ocular motor findings remain to be elucidated in SCA17, and may help differentiating SCA17 from HD. We retrospectively compared the ocular motor findings of 11 patients with SCA17 with those of 10 patients with HD. In SCA17, abnormal ocular motor findings included impaired smooth pursuit (9/11, 82%), dysmetric saccades (9/11, 82%), central positional nystagmus (CPN, 7/11, 64%), abnormal head-impulse tests (4/11, 36%), and horizontal gaze-evoked nystagmus (GEN, 3/11, 27%). Among these, CPN was more frequently observed in SCA17 than in HD (7/11 (64%) vs. 0/10 (0%), p = 0.004) while saccadic slowing was more frequently observed in HD than in SCA17 (8/10 (80%) vs. 2/11 (18%), p = 0.009). Of six patients with follow-up evaluation, five later developed bilateral saccadic hypermetria (n = 4), GEN (n = 1), CPN (n = 1), bilaterally abnormal smooth pursuit (n = 1), and hyperactive head-impulse responses (n = 1) along with a clinical decline. Ocular motor abnormalities can be utilized as a diagnostic marker for differentiation of SCA17 from HD as well as a surrogate marker for clinical decline in SCA17.
Collapse
Affiliation(s)
- Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea.,Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea. .,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Dallah Yoo
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Movement Disorder Center, Department of Neurology, Kyung Hee University Hospital, Gangdong-gu, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jeong-Yoon Choi
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Yun Park
- Deparment of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Seong-Hae Jeong
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, Republic of Korea.,Clinical Neuroscience Center, Dizziness Center, and Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
26
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
27
|
Moulaire P, Poulet PE, Petit E, Klockgether T, Durr A, Ashisawa T, du Montcel ST. Temporal Dynamics of the Scale for the Assessment and Rating of Ataxia in Spinocerebellar Ataxias. Mov Disord 2023; 38:35-44. [PMID: 36273394 PMCID: PMC9851985 DOI: 10.1002/mds.29255] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The Scale for the Assessment and Rating of Ataxia (SARA) is the reference clinical scale to assess the severity of cerebellar ataxia. In the context of upcoming therapeutic trials, a reliable clinical outcome is needed to assess the efficiency of treatments. OBJECTIVE The aim is to precisely assess and compare temporal dynamics of SARA and a new f-SARA. METHODS We analyzed data from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) comprising 1210 participants and 4092 visits. The linearity of the progression and the variability were assessed using an ordinal Bayesian mixed-effect model (Leaspy). We performed sample size calculations for therapeutic trials with different scenarios to improve the responsiveness of the scale. RESULTS Seven of the eight different items had a nonlinear progression. The speed of progression was different between most of the items, with an average time for a one-point increase from 3.5 years [3.4; 3.6] (median, 95% credible interval) for the fastest item to 11.4 [10.9; 12.0] years. The total SARA score had a linear progression with an average time for a one-point increase of 0.95 [0.92; 0.98] years. After removing the four last items and rescaling all items from 0 to 4, variability increased and progression was slower and thus would require a larger sample size in a future therapeutic trial. CONCLUSION Despite a heterogeneous temporal dynamics at the item level, the global progression of SARA was linear. Changing the initial scale deteriorates the responsiveness. This new information about the temporal dynamics of the scale should help design the outcome of future clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Paul Moulaire
- Sorbonne Université, Paris Brain Institute, INSERM,
INRIA, CNRS, APHP, 75013 Paris, France
| | - Pierre Emmanuel Poulet
- Sorbonne Université, Paris Brain Institute, INSERM,
INRIA, CNRS, APHP, 75013 Paris, France
| | - Emilien Petit
- Sorbonne Université, Paris Brain Institute, INSERM,
INRIA, CNRS, APHP, 75013 Paris, France
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), 53127
Bonn, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, INSERM,
INRIA, CNRS, APHP, 75013 Paris, France
| | - Tetsuo Ashisawa
- Weill Cornell Medicine at The Houston Methodist Research
Institute, Houston, TX 77030, USA
| | | | | |
Collapse
|
28
|
Targeting mGlu1 Receptors in the Treatment of Motor and Cognitive Dysfunctions in Mice Modeling Type 1 Spinocerebellar Ataxia. Cells 2022; 11:cells11233916. [PMID: 36497172 PMCID: PMC9738505 DOI: 10.3390/cells11233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.
Collapse
|
29
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Spatial and Temporal Diversity of Astrocyte Phenotypes in Spinocerebellar Ataxia Type 1 Mice. Cells 2022; 11:cells11203323. [PMID: 36291186 PMCID: PMC9599982 DOI: 10.3390/cells11203323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
While astrocyte heterogeneity is an important feature of the healthy brain, less is understood about spatiotemporal heterogeneity of astrocytes in brain disease. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a CAG repeat expansion in the gene Ataxin1 (ATXN1). We characterized astrocytes across disease progression in the four clinically relevant brain regions, cerebellum, brainstem, hippocampus, and motor cortex, of Atxn1154Q/2Q mice, a knock-in mouse model of SCA1. We found brain region-specific changes in astrocyte density and GFAP expression and area, early in the disease and prior to neuronal loss. Expression of astrocytic core homeostatic genes was also altered in a brain region-specific manner and correlated with neuronal activity, indicating that astrocytes may compensate or exacerbate neuronal dysfunction. Late in disease, expression of astrocytic homeostatic genes was reduced in all four brain regions, indicating loss of astrocyte functions. We observed no obvious correlation between spatiotemporal changes in microglia and spatiotemporal astrocyte alterations, indicating a complex orchestration of glial phenotypes in disease. These results support spatiotemporal diversity of glial phenotypes as an important feature of the brain disease that may contribute to SCA1 pathogenesis in a brain region and disease stage-specific manner.
Collapse
|
31
|
Inagaki T, Hashizume A, Hijikata Y, Yamada S, Ito D, Kishimoto Y, Torii R, Sato H, Hirakawa A, Katsuno M. Development of a functional composite for the evaluation of spinal and bulbar muscular atrophy. Sci Rep 2022; 12:17443. [PMID: 36261455 PMCID: PMC9581920 DOI: 10.1038/s41598-022-22322-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/12/2022] [Indexed: 01/12/2023] Open
Abstract
This study aimed to develop a functional measurement that combines quantitative motor evaluation index of various body regions in patients with spinal and bulbar muscular atrophy (SBMA). We assessed subjects with SBMA and healthy controls with quantitative muscle strength measurements and functional scales. We selected tongue pressure, grip power, % peak expiratory flow (%PEF), timed walking test, and % forced vital capacity (%FVC) as components. By combining these values with Z-score, we created a functional composite (SBMA functional composite: SBMAFC). We also calculated the standardized response mean to compare the sensitivity of SBMAFC with that of existing measurements. A total of 97 genetically confirmed patients with SBMA and 36 age- and sex-matched healthy controls were enrolled. In the longitudinal analysis, the standardized response mean of SBMAFC was larger than that of existing rating scales. Receiver operating characteristic (ROC) analysis demonstrated that the SBMAFC is capable of distinguishing between subjects with early-stage SBMA and healthy controls. SBMAFC is more sensitive to disease progression than existing functional rating scales and is a potential outcome measure in clinical trials of SBMA.
Collapse
Affiliation(s)
- Tomonori Inagaki
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Atsushi Hashizume
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan ,grid.27476.300000 0001 0943 978XDepartment of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Yasuhiro Hijikata
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Shinichiro Yamada
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Daisuke Ito
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Yoshiyuki Kishimoto
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Ryota Torii
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Hiroyuki Sato
- grid.265073.50000 0001 1014 9130Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Akihiro Hirakawa
- grid.265073.50000 0001 1014 9130Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 Japan
| | - Masahisa Katsuno
- grid.27476.300000 0001 0943 978XDepartment of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan ,grid.27476.300000 0001 0943 978XDepartment of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| |
Collapse
|
32
|
Guo J, Jiang Z, Liu X, Li H, Biswal BB, Zhou B, Sheng W, Gao Q, Chen H, Fan Y, Zhu W, Wang J, Chen H, Liu C. Cerebello-cerebral resting-state functional connectivity in spinocerebellar ataxia type 3. Hum Brain Mapp 2022; 44:927-936. [PMID: 36250694 PMCID: PMC9875927 DOI: 10.1002/hbm.26113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by progressive motor and nonmotor deficits concomitant with degenerative pathophysiological changes within the cerebellum. The cerebellum is topographically organized into cerebello-cerebral circuits that create distinct functional networks regulating movement, cognition, and affect. SCA3-associated motor and nonmotor symptoms are possibly related not only to intracerebellar changes but also to disruption of the connectivity within these cerebello-cerebral circuits. However, to date, no comprehensive investigation of cerebello-cerebral connectivity in SCA3 has been conducted. The present study aimed to identify cerebello-cerebral functional connectivity alterations and associations with downstream clinical phenotypes and upstream topographic markers of cerebellar neurodegeneration in patients with SCA3. This study included 45 patients with SCA3 and 49 healthy controls. Voxel-based morphometry and resting-state functional magnetic resonance imaging (MRI) were performed to characterize the cerebellar atrophy and to examine the cerebello-cerebral functional connectivity patterns. Structural MRI confirmed widespread gray matter atrophy in the motor and cognitive cerebellum of patients with SCA3. We found reduced functional connectivity between the cerebellum and the cerebral cortical networks, including the somatomotor, frontoparietal, and default networks; however, increased connectivity was observed between the cerebellum and the dorsal attention network. These abnormal patterns correlated with the CAG repeat expansion and deficits in global cognition. Our results indicate the contribution of cerebello-cerebral networks to the motor and cognitive impairments in patients with SCA3 and reveal that such alterations occur in association with cerebellar atrophy. These findings add important insights into our understanding of the role of the cerebellum in SCA3.
Collapse
Affiliation(s)
- Jing Guo
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Zhouyu Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xinyuan Liu
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Haoru Li
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bo Zhou
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Yunshuang Fan
- The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenyan Zhu
- Data Processing DepartmentYidu Cloud Technology, Inc.BeijingChina
| | - Jian Wang
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Huafu Chen
- The Center of Psychosomatic MedicineSichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina,The Clinical Hospital of Chengdu Brain Science InstituteSchool of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina,Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of RadiologySouthwest Hospital, Army Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
33
|
Maas RPPWM, Teerenstra S, Lima M, Pires P, Pereira de Almeida L, van Gaalen J, Timmann D, Infante J, Onyike C, Bushara K, Jacobi H, Reetz K, Santana MM, Afonso Ribeiro J, Hübener-Schmid J, de Vries JJ, Synofzik M, Schöls L, Garcia-Moreno H, Giunti P, Faber J, Klockgether T, van de Warrenburg BPC. Differential Temporal Dynamics of Axial and Appendicular Ataxia in SCA3. Mov Disord 2022; 37:1850-1860. [PMID: 35808813 PMCID: PMC9540189 DOI: 10.1002/mds.29135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Background Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. Objectives To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. Methods In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow‐up assessment after 1 year. Results An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose‐finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow‐up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. Conclusion Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology‐specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steven Teerenstra
- Department for Health Evidence, Biostatistics Section, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Azores, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Paula Pires
- Department of Neurology, Hospital Santo Espírito da ilha Terceira, Azores, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jon Infante
- Neurology Service, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CINERNED), University Hospital Marques de Valdecilla-IDIVAL, University of Cantabria-UC, Santander, Spain
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Khalaf Bushara
- Ataxia Center, Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heike Jacobi
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joana Afonso Ribeiro
- Department of Neurology, Child Development Centre, Coimbra's Hospital and University Centre, Coimbra, Portugal
| | | | - Jeroen J de Vries
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurogenetics, National Hospital for Neurology and Neurosurgery, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Jennifer Faber
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Wilke C, Mengel D, Schöls L, Hengel H, Rakowicz M, Klockgether T, Durr A, Filla A, Melegh B, Schüle R, Reetz K, Jacobi H, Synofzik M. Levels of Neurofilament Light at the Preataxic and Ataxic Stages of Spinocerebellar Ataxia Type 1. Neurology 2022; 98:e1985-e1996. [PMID: 35264424 PMCID: PMC9162044 DOI: 10.1212/wnl.0000000000200257] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Neurofilament light (NfL) appears to be a promising fluid biomarker in repeat-expansion spinocerebellar ataxias (SCAs), with piloting studies in mixed SCA cohorts suggesting that NfL might be increased at the ataxic stage of SCA type 1 (SCA1). We here hypothesized that NfL is increased not only at the ataxic stage of SCA1, but also at its (likely most treatment-relevant) preataxic stage. METHODS We assessed serum NfL (sNfL) and CSF NfL (cNfL) levels in both preataxic and ataxic SCA1, leveraging a multicentric cohort recruited at 6 European university centers, and clinical follow-up data, including actually observed (rather than only predicted) conversion to the ataxic stage. Levels of sNfL and cNfL were assessed by single-molecule array and ELISA technique, respectively. RESULTS Forty individuals with SCA1 (23 preataxic, 17 ataxic) and 89 controls were enrolled, including 11 preataxic individuals converting to the ataxic stage. sNfL levels were increased at the preataxic (median 15.5 pg/mL [interquartile range 10.5-21.1 pg/mL]) and ataxic stage (31.6 pg/mL [26.2-37.7 pg/mL]) compared to controls (6.0 pg/mL [4.7-8.6 pg/mL]), yielding high age-corrected effect sizes (preataxic: r = 0.62, ataxic: r = 0.63). sNfL increases were paralleled by increases of cNfL at both the preataxic and ataxic stage. In preataxic individuals, sNfL levels increased with proximity to predicted ataxia onset, with significant sNfL elevations already 5 years before onset, and confirmed in preataxic individuals with actually observed ataxia onset. sNfL increases were detected already in preataxic individuals with SCA1 without volumetric atrophy of cerebellum or pons, suggesting that sNfL might be more sensitive to early preataxic neurodegeneration than the currently known most change-sensitive regions in volumetric MRI. Using longitudinal sNfL measurements, we estimated sample sizes for clinical trials with the reduction of sNfL as the endpoint. DISCUSSION sNfL levels might provide easily accessible peripheral biomarkers in both preataxic and ataxic SCA1, allowing stratification of preataxic individuals regarding proximity to onset, early detection of neurodegeneration even before volumetric MRI alterations, and potentially capture of treatment response in clinical trials. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT01037777. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that NfL levels are increased in both ataxic and preataxic SCA1 and are associated with ataxia onset.
Collapse
Affiliation(s)
- Carlo Wilke
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - David Mengel
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Ludger Schöls
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Holger Hengel
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Maria Rakowicz
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Thomas Klockgether
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Alexandra Durr
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Alessandro Filla
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Bela Melegh
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Rebecca Schüle
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Kathrin Reetz
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Heike Jacobi
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| | - Matthis Synofzik
- From the Division Translational Genomics of Neurodegenerative Diseases (C.W., D.M., M.S.) and Department of Neurodegenerative Diseases (L.S., H.H., R.S.), Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen; German Center for Neurodegenerative Diseases (DZNE) (C.W., D.M., L.S., H.H., R.S., M.S.), Tübingen, Germany; First Department of Neurology (M.R.), Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Neurology (T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (T.K., H.J.), Bonn, Germany; Sorbonne Université (A.D.), Paris Brain Institute, APHP, INSERM, CNRS, France; Department of Neuroscience and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Department of Medical Genetics and Szentagothai Research Center (B.M.), University of Pécs Medical School, Hungary; Department of Neurology (K.R.), RWTH Aachen University; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging (K.R.), Forschungszentrum Jülich, RWTH Aachen; and Department of Neurology (H.J.), University Hospital of Heidelberg, Germany
| |
Collapse
|
35
|
Klockgether T, Ashizawa T, Brais B, Chuang R, Durr A, Fogel B, Greenfield J, Hagen S, Jardim LB, Jiang H, Onodera O, Pedroso JL, Soong BW, Szmulewicz D, Graessner H, Synofzik M. Paving the Way Toward Meaningful Trials in Ataxias: An Ataxia Global Initiative Perspective. Mov Disord 2022; 37:1125-1130. [PMID: 35475582 DOI: 10.1002/mds.29032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tetsuo Ashizawa
- Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist, Houston, Texas, USA
| | | | | | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, Paris Brain Institute - ICM, INSERM, CNRS, APHP, University Hospital de la Pitié-Salpêtrière Paris, Paris, France
| | - Brent Fogel
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Sue Hagen
- National Ataxia Foundation, Minneapolis, Minnesota, USA
| | - Laura Bannach Jardim
- Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hong Jiang
- Xiangya Hospital, Central South University, Changsha, China
| | - Osamu Onodera
- Brain Research Institute, Niigata University, Niigata, Japan
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bin-Weng Soong
- National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Taipei Neurologic Institute, Taipei Medical University, Taipei, Taiwan
| | | | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | |
Collapse
|
36
|
Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. CEREBELLUM (LONDON, ENGLAND) 2022; 22:394-430. [PMID: 35414041 DOI: 10.1007/s12311-022-01373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Collapse
Affiliation(s)
- Pierre Cabaraux
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.
| | | | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Loic Damm
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Sarah Doss
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Christophe Habas
- Université Versailles Saint-Quentin, Versailles, France.,Service de NeuroImagerie, Centre Hospitalier National des 15-20, Paris, France
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig Maximilians-University Munich, Munich, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Petracca
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Programs in Physical Therapy), Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy.,Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Susanna Summa
- MARlab, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians-University Munich, Munich, Germany
| | - Olivia Surgent
- Neuroscience Training Program and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
| | - Shuai Tao
- Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, 116622, China
| | - Hiroo Terasi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Diego Torres-Russotto
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Brittany Travers
- Department of Kinesiology and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, UMons, Mons, Belgium
| |
Collapse
|
37
|
Jacobi H, Schaprian T, Beyersmann J, Tezenas du Montcel S, Schmid M, Klockgether T. Evolution of disability in spinocerebellar ataxias type 1, 2, 3, and 6. Ann Clin Transl Neurol 2022; 9:286-295. [PMID: 35188716 PMCID: PMC8935317 DOI: 10.1002/acn3.51515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Objective The aim was to study the evolution of disability in spinocerebellar ataxias (SCAs) type 1, 2, 3, and 6 (SCA1, 2, 3, 6). Methods We analyzed data of two longitudinal cohorts (RISCA, EUROSCA) which recruited ataxic and non‐ataxic SCA1, SCA2, SCA3, and SCA6 mutation carriers. To study disability, we used a five‐stage system for ataxia defined by walking ability (stages 0–3) and death (stage 4). Transitions were analyzed using a multi‐state model with proportional transition hazards. Based on the hazard estimates, transition probabilities and the expected lengths of stay in each stage were calculated. We further studied the effect of sex and CAG repeat length on progression. Results Data of 3138 visits in 677 participants were analyzed. Median SARA scores for SCA1, SCA2, SCA3, and SCA6 ranged from 1.5 (interquartile range [IQR] = 0.0–3.5) to 3.5 (IQR = 1.4–6.1) in stage 0, 11.5 (IQR = 9.6–14.0) to 13.8 (IQR = 11.0–16.0) in stage 1, 19.0 (IQR = 17.0–21.0) to 23.8 (IQR = 19.5–27.0) in stage 2, and 28.5 (IQR = 26.0–32.5) to 34.0 (IQR = 32.6–37.1) in stage 3. Modeling allowed to calculate the subtype‐specific probability to be in a certain stage at a given age and duration of each stage. CAG repeat length was associated with faster progression in SCA1 (HR, 95% CI: 1.1, 1.1–1.2), SCA2 (1.2, 1.1–1.3), and SCA3 (1.1, 1.0–1.2). In SCA6, female sex was associated with faster progression (1.7, 1.1–2.6). Interpretation Our data are important for counselling of patients, assessment of the relevance of outcome markers, and design of clinical trials.
Collapse
Affiliation(s)
- Heike Jacobi
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, Germany
| | - Tamara Schaprian
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, Germany
| | - Jan Beyersmann
- Institute of Statistics, Ulm University, Helmholtzstr. 20, Ulm, 89081, Germany
| | - Sophie Tezenas du Montcel
- INSERM, Institute Pierre Louis de Santé Publique, AP-HP, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, Germany.,Department of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, Bonn, D-53127, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, Germany.,Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
38
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
39
|
Thierfelder A, Seemann J, John N, Harmuth F, Giese M, Schüle R, Schöls L, Timmann D, Synofzik M, Ilg W. Real-Life Turning Movements Capture Subtle Longitudinal and Preataxic Changes in Cerebellar Ataxia. Mov Disord 2022; 37:1047-1058. [PMID: 35067979 DOI: 10.1002/mds.28930] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Clinical and regulatory acceptance of upcoming molecular treatments in degenerative ataxias might greatly benefit from ecologically valid endpoints that capture change in ataxia severity in patients' real life. OBJECTIVES This longitudinal study aimed to unravel quantitative motor biomarkers in degenerative ataxias in real-life turning movements that are sensitive for changes both longitudinally and at the preataxic stage. METHODS Combined cross-sectional (n = 30) and longitudinal (n = 14, 1-year interval) observational study in degenerative cerebellar disease (including eight preataxic mutation carriers) compared to 23 healthy controls. Turning movements were assessed by three body-worn inertial sensors in three conditions: (1) instructed laboratory assessment, (2) supervised free walking, and (3) unsupervised real-life movements. RESULTS Measures that quantified dynamic balance during turning-lateral velocity change (LVC) and outward acceleration-but not general turning measures such as speed, allowed differentiating ataxic against healthy subjects in real life (effect size δ = 0.68), with LVC also differentiating preataxic against healthy subjects (δ = 0.53). LVC was highly correlated with clinical ataxia severity (scale for the assessment and rating of ataxia [SARA] score, effect size ρ = 0.79) and patient reported balance confidence (activity-specific balance confidence scale [ABC] score, ρ = 0.66). Moreover, LVC in real life-but not general turning measures or the SARA score-allowed detecting significant longitudinal change in 1-year follow-up with high effect size (rprb = 0.66). CONCLUSIONS Measures of turning allow capturing specific changes of dynamic balance in degenerative ataxia in real life, with high sensitivity to longitudinal differences in ataxia severity and to the preataxic stage. They thus present promising ecologically valid motor biomarkers, even in the highly treatment-relevant early stages of degenerative cerebellar disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annika Thierfelder
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,Centre for Integrative Neuroscience (CIN), Otfried-Müller-Straße 25, Tübingen, 72076, Germany
| | - Jens Seemann
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,Centre for Integrative Neuroscience (CIN), Otfried-Müller-Straße 25, Tübingen, 72076, Germany
| | - Natalie John
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Otfried-Müller-Straße 27, Tübingen, 72076, Germany
| | - Florian Harmuth
- Department of Medical Genetics, University of Tübingen, Calwerstr. 7, Tübingen, 72076, Germany
| | - Martin Giese
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,Centre for Integrative Neuroscience (CIN), Otfried-Müller-Straße 25, Tübingen, 72076, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Ludger Schöls
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Hufelandstrasse 55, Essen, 45147, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, Tübingen, 72076, Germany.,Centre for Integrative Neuroscience (CIN), Otfried-Müller-Straße 25, Tübingen, 72076, Germany
| |
Collapse
|
40
|
Coarelli G, Heinzmann A, Ewenczyk C, Fischer C, Chupin M, Monin ML, Hurmic H, Calvas F, Calvas P, Goizet C, Thobois S, Anheim M, Nguyen K, Devos D, Verny C, Ricigliano VAG, Mangin JF, Brice A, Tezenas du Montcel S, Durr A. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2022; 21:225-233. [DOI: 10.1016/s1474-4422(21)00457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
|
41
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
42
|
Li M, Chen X, Xu HL, Huang Z, Chen N, Tu Y, Gan S, Hu J. Brain structural abnormalities in the preclinical stage of Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3): evaluation by MRI morphometry, diffusion tensor imaging and neurite orientation dispersion and density imaging. J Neurol 2021; 269:2989-2998. [PMID: 34783886 DOI: 10.1007/s00415-021-10890-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate whether neurite orientation dispersion and density imaging (NODDI) could provide the added value for detecting brain microstructural alterations in the preclinical stage of Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3) compared with MRI morphometry and diffusion tensor imaging (DTI). METHODS Twenty preclinical MJD/SCA3 patients and 21 healthy controls were enrolled. Three b values DWI and 3D T1-weighted images were acquired at 3.0 T. Tract-based spatial statistics (TBSS) approach was used to investigate the white matter (WM) alterations in the DTI metrics and NODDI metrics. Gray matter-based spatial statistics (GBSS) approach was used to investigate the grey matter (GM) alterations in the NODDI metrics. Voxel-based morphometry (VBM) approach was performed on the 3D T1-weighted images. The relationship between the cytosine-adenine-guanine (CAG) repeat length and brain microstructural alterations of preclinical MJD/SCA3 was identified. RESULTS Compared with healthy controls, the preclinical MJD/SCA3 patients showed decreased FA and NDI as well as increased MD, AD, and RD in the WM of cerebellum and brainstem (corrected P < 0.05), and decreased NDI in the GM of cerebellar vermis (corrected P < 0.05). The CAG repeat length in preclinical MJD/SCA3 patients was negatively correlated with the reduced FA and NDI of the infratentorial WM and the reduced NDI of the cerebellum, and positively with the increased MD and RD of the infratentorial WM. CONCLUSIONS NOODI can provide novel quantitative microstructural changes in MJD/SCA3 carriers, expanding our understanding of the gray and white matter (axons and dendrites) degeneration in this frequent ataxia syndrome.
Collapse
Affiliation(s)
- Mengcheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Xinyuan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Hao-Ling Xu
- Department of Neurology, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ziqiang Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Naping Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Yuqing Tu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Shirui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China. .,Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China.
| | - Jianping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China.
| |
Collapse
|
43
|
Yang L, Shao YR, Li XY, Ma Y, Dong Y, Wu ZY. Association of the Level of Neurofilament Light With Disease Severity in Patients With Spinocerebellar Ataxia Type 2. Neurology 2021; 97:e2404-e2413. [PMID: 34706976 PMCID: PMC8673719 DOI: 10.1212/wnl.0000000000012945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Few biochemical markers have been identified in spinocerebellar ataxia type 2 (SCA2). This study aimed to determine the levels of neurofilament light (NfL) in patients with SCA2 and identify whether they were associated with disease severity. METHODS Participants were recruited from one medical center in China, and individuals with SCA2 were genetically diagnosed. NfL levels were assessed using the single molecule array method. Disease severity was evaluated using the Scale for the Assessment and Rating of Ataxia (SARA), the International Cooperative Ataxia Rating Scale (ICARS), and the Inventory of Non-Ataxia Symptoms (INAS). Cerebellum and brainstem volumes were calculated using neuroimaging measurements. We used Pearson's correlation and partial correlation for correlation analyses. RESULTS Forty-nine manifest patients with SCA2, 10 preclinical individuals with SCA2 and 92 controls were enrolled. A high consistency was identified between serum and CSF NfL (r = 0.868, p < 0.0001). In individuals with SCA2, levels of serum NfL were associated with disease severity (SARA, r = 0.425, p = 0.003; ICARS, r = 0.383, p = 0.009; INAS, r = 0.390, p = 0.007; cerebellum volume, r = - 0.393, p = 0.024) after adjustment for age. NfL levels were higher close to the expected age of onset in preclinical individuals with SCA2 (R 2 = 0.43, p = 0.04). DISCUSSION Levels of serum NfL were correlated with disease intensity in individuals with SCA2, and were higher close to the estimated age of onset in preclinical SCA2. Therefore, NfL is a potential serum biomarker of disease severity in SCA2. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that elevated NfL levels are associated with disease severity in individuals with SCA2.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Ru Shao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yan Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
44
|
Shah VV, Rodriguez-Labrada R, Horak FB, McNames J, Casey H, Hansson Floyd K, El-Gohary M, Schmahmann JD, Rosenthal LS, Perlman S, Velázquez-Pérez L, Gomez CM. Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors. Mov Disord 2021; 36:2922-2931. [PMID: 34424581 DOI: 10.1002/mds.28740] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Quantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. OBJECTIVES The aim of this study was to identify a set of gait measures from body-worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age-matched, healthy control subjects (HC) and determine how these measures relate to disease severity. METHODS One hundred and sixty-three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2-minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia. RESULTS Increased gait variability was the most discriminative gait feature of SCA; toe-out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double-support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively). CONCLUSIONS Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Roberto Rodriguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Center for Neuroscience, Havana, Cuba
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,APDM Wearable Technologies, an ERT company, Portland, Oregon, USA
| | - James McNames
- APDM Wearable Technologies, an ERT company, Portland, Oregon, USA.,Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon, USA
| | - Hannah Casey
- The University of Chicago, Chicago, Illinois, USA
| | | | | | - Jeremy D Schmahmann
- Department of Neurology, Ataxia Center, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, La Habana, Cuba
| | - Christopher M Gomez
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Quality of Life since Pre-Ataxic Phases of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease. THE CEREBELLUM 2021; 21:297-305. [PMID: 34231179 DOI: 10.1007/s12311-021-01299-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Although health-related quality of life (HRQoL) has been increasingly valued in healthcare and in clinical trials, there is scarce information about it in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). This study describes the HRQoL results obtained from ataxic SCA3/MJD subjects, and their non-ataxic offspring included in the BIGPRO (Biomarkers and genetic modifiers in a study of presymptomatic and symptomatic SCA3/MJD carriers) study. Demographic data, clinical scales, and HRQoL instruments EQ-5D-3L and SF-36 were collected. Subjects at 50% risk were genotyped in a double-blind manner. The time left until the onset of the disease was estimated for mutation carriers with a SARA < 3 and combined with disease duration of ataxic subjects (TimeToAfterOnset). Analyses were performed using PASW Statistics version 18.0, R version 4.0.0, and G*Power 3.1, and p < 0.05 was considered statistically significant. Twenty-three ataxic carriers, 33 pre-ataxic carriers, and 21 controls were enrolled. Significant differences between ataxic carriers and controls were seen in EQ-VAS, EQ-5D Index, and in some domains of EQ-5D-3L and SF-36. EQ-5D Index showed the best effect size between ataxic and controls (Cohen's d = 2.423). Stepwise changes were seen in pre-ataxic subjects, although not statistically significant. TimeToAfterOnset correlated with EQ-5D Index, EQ-VAS, and SF-36 Physical functioning, Role Physical, Pain, and General Health. EQ-5D Index and EQ-VAS correlated with clinical scales in the ataxic group. These results suggest that HRQoL worsens among carriers since pre-ataxic stages and that they might encompass the underlying disease process. In this cohort, SF-36 Physical Functioning, SF-36 General health, and especially EQ-5D Index and EQ-VAS were the best HRQoL instruments to be used as ancillary evidence to support biological and social meanings for future interventions.
Collapse
|
46
|
Shin HR, Moon J, Lee WJ, Lee HS, Kim EY, Shin S, Lee ST, Jung KH, Park KI, Jung KY, Lee SK, Chu K. Serum neurofilament light chain as a severity marker for spinocerebellar ataxia. Sci Rep 2021; 11:13517. [PMID: 34188109 PMCID: PMC8241827 DOI: 10.1038/s41598-021-92855-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Since the serum neurofilament light (NfL) chain is known as a promising biomarker in neurodegenerative diseases, we aimed to evaluate serum NfL as a biomarker indicating neuronal damage in autosomal-dominant (AD) spinocerebellar ataxia (SCA). We reviewed patients diagnosed with AD SCA in the outpatient clinic of Seoul National University Hospital's (SNUH) Department of Neurology between May and August of 2019. We reviewed the demographic data, clinical characteristics, Scale for the Assessment and Rating of Ataxia (SARA) score, and brain magnetic resonance imaging (MRI) scans. The serum NfL was measured by electrochemiluminescence (ECL) immunoassay. Forty-nine patients with AD SCA were reviewed and their serum NfL level was determined. The median serum NfL level (109.5 pg/mL) was higher than control (41.1 pg/mL) (p-value < 0.001). Among the AD SCA patients, there was a positive correlation between the serum NfL level and the trinucleotide repeat number (r = 0.47, p-value = 0.001), disease duration (r = 0.35, p-value = 0.019), disease duration/age × trinucleotide repeat number (r = 0.330, p-value = 0.021), and SARA score (n = 33; r = 0.37, p-value = 0.033). This study shows that serum NfL is elevated in AD SCA patients and correlates with clinical severity.
Collapse
Affiliation(s)
- Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan, Chungnam, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Center for Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Han Sang Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Center for Hospital Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Seoyi Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Laboratory for Neurotherapeutics, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
47
|
Nigri A, Sarro L, Mongelli A, Castaldo A, Porcu L, Pinardi C, Grisoli M, Ferraro S, Canafoglia L, Visani E, Bruzzone MG, Nanetti L, Taroni F, Mariotti C. Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers. THE CEREBELLUM 2021; 21:133-144. [PMID: 34106418 DOI: 10.1007/s12311-021-01285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Spinocerebellar ataxias type 1 (SCA1) is an autosomal dominant disease usually manifesting in adulthood. We performed a prospective 1-year longitudinal study in 14 presymptomatic mutation carriers (preSCA1), 11 ataxic patients, and 21 healthy controls. SCA1 patients had a median disease duration of 6 years (range 2-16) and SARA score of 7 points (range 3.5-20). PreSCA1 had an estimated time before disease onset of 9.7 years (range 4-30), and no signs of ataxia. At baseline, SCA1 patients significantly differed from controls in SARA score (Scale for Assessment and Rating of Ataxia), cognitive tests, and structural MRI measures. Significant volume loss was found in cerebellum, brainstem, basal ganglia, and cortical thinning in frontal, temporal, and occipital regions. PreSCA1 did not differ from controls. At 1-year follow-up, SCA1 patients showed significant increase in SARA score, and decreased volume of cerebellum (- 0.6%), pons (- 5.5%), superior cerebellar peduncles (- 10.7%), and midbrain (- 3.0%). Signs of disease progression were also observed in preSCA1 subjects, with increased SARA score and reduced total cerebellar volume. Our exploratory study suggests that clinical scores and MRI measures provide valuable data to monitor and quantify the earliest changes associated with the preclinical and the symptomatic phases of SCA1 disease.
Collapse
Affiliation(s)
- Anna Nigri
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lidia Sarro
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy.,Neurology Unit, Martini Hospital, Turin, Italy
| | - Alessia Mongelli
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Anna Castaldo
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Luca Porcu
- Methodology for Clinical Research Laboratory, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Grisoli
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Visani
- Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Lorenzo Nanetti
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Franco Taroni
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Caterina Mariotti
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
48
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
49
|
Öz G, Harding IH, Krahe J, Reetz K. MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration. Curr Opin Neurol 2021; 33:451-461. [PMID: 32657886 DOI: 10.1097/wco.0000000000000834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Degenerative ataxias are rare and currently untreatable movement disorders, primarily characterized by neurodegeneration in the cerebellum and brainstem. We highlight MRI studies with the most potential for utility in pending ataxia trials and underscore advances in disease characterization and diagnostics in the field. RECENT FINDINGS With availability of advanced MRI acquisition methods and specialized software dedicated to the analysis of MRI of the cerebellum, patterns of cerebellar atrophy in different degenerative ataxias are increasingly well defined. The field further embraced rigorous multimodal investigations to study network-level microstructural and functional brain changes and their neurochemical correlates. MRI and magnetic resonance spectroscopy were shown to be more sensitive to disease progression than clinical scales and to detect abnormalities in premanifest mutation carriers. SUMMARY Magnetic resonance techniques are increasingly well placed for characterizing the expression and progression of degenerative ataxias. The most impactful work has arguably come through multi-institutional studies that monitor relatively large cohorts, multimodal investigations that assess the sensitivity of different measures and their interrelationships, and novel imaging approaches that are targeted to known pathophysiology (e.g., iron and spinal imaging in Friedreich ataxia). These multimodal, multi-institutional studies are paving the way to clinical trial readiness and enhanced understanding of disease in degenerative ataxias.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Janna Krahe
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
50
|
Kim DH, Kim R, Lee JY, Lee KM. Clinical, Imaging, and Laboratory Markers of Premanifest Spinocerebellar Ataxia 1, 2, 3, and 6: A Systematic Review. J Clin Neurol 2021; 17:187-199. [PMID: 33835738 PMCID: PMC8053554 DOI: 10.3988/jcn.2021.17.2.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Premanifest mutation carriers with spinocerebellar ataxia (SCA) can exhibit subtle abnormalities before developing ataxia. We summarized the preataxic manifestations of SCA1, -2, -3, and -6, and their associations with ataxia onset. Methods We included studies of the premanifest carriers of SCA published between January 1998 and December 2019 identified in Scopus and PubMed by searching for terms including ‘spinocerebellar ataxia’ and several synonyms of ‘preataxic manifestation’. We systematically reviewed the results obtained in studies categorized based on clinical, imaging, and laboratory markers. Results We finally performed a qualitative analysis of 48 papers. Common preataxic manifestations appearing in multiple SCA subtypes were muscle cramps, abnormal muscle reflexes, instability in gait and posture, lower Composite Cerebellar Functional Severity scores, abnormalities in video-oculography and transcranial magnetic stimulation, and gray-matter loss and volume reduction in the brainstem and cerebellar structures. Also, decreased sensory amplitudes in nerve conduction studies were observed in SCA2. Eotaxin and neurofilament light-chain levels were revealed as sensitive blood biomarkers in SCA3. Concerning potential predictive markers, hyporeflexia and abnormalities of somatosensory evoked potentials showed correlations with the time to ataxia onset in SCA2 carriers. However, no longitudinal data were found for the other SCA gene carriers. Conclusions Our results suggest that preataxic manifestations vary among SCA1, -2, -3, and -6, with some subtypes sharing specific features. Combining various markers into a standardized index for premanifest carriers may be useful for early screening and assessing the risk of disease progression in SCA carriers.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee Young Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyoung Min Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|