1
|
Park J, Byun MS, Yi D, Ahn H, Jung JH, Kong N, Chang YY, Jung G, Lee JY, Kim YK, Lee YS, Kang KM, Sohn CH, Lee DY. The Moderating Effect of Serum Vitamin D on the Relationship between Beta-amyloid Deposition and Neurodegeneration. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:646-654. [PMID: 39420611 PMCID: PMC11494430 DOI: 10.9758/cpn.24.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 10/19/2024]
Abstract
Objective Previous studies have reported that vitamin D deficiency increased the risk of Alzheimer's disease (AD) dementia in older adults. However, little is known about how vitamin D is involved in the pathophysiology of AD. Thus, this study aimed to examine the association and interaction of serum vitamin D levels with in vivo AD pathologies including cerebral beta-amyloid (Aβ) deposition and neurodegeneration in nondemented older adults. Methods 428 Nondemented older adults were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a prospective cohort that began in 2014. All participants underwent comprehensive clinical assessments, measurement of serum 25-hydroxyvitamin D (25[OH]D), and multimodal brain imaging including Pittsburgh compound B (PiB) positron emission tomography and magnetic resonance imaging. Global PiB deposition was measured for the Aβ biomarker. Intracranial volume-adjusted hippocampal volume (HVa) was used as a neurodegeneration biomarker. Results Overall, serum 25(OH)D level was not associated with either Aβ deposition or HVa after controlling for age, sex, apolipoprotein E ε4 positivity, and vascular risk factors. However, serum 25(OH)D level had a significant moderating effect on the association between Aβ and neurodegeneration, with lower serum 25(OH)D level significantly exacerbating cerebral Aβ-associated hippocampal volume loss (B = 34.612, p = 0.008). Conclusion Our findings indicate that lower serum vitamin D levels may contribute to AD by exacerbating Aβ-associated neurodegeneration in nondemented older adults. Further studies to explore the potential therapeutic effect of vitamin D supplementation on the progression of AD pathology will be necessary.
Collapse
Affiliation(s)
- Junha Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Nayeong Kong
- Department of Psychiatry, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Yoon Young Chang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
- Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Interdisciplinary Program of Cognitive Science, College of Humanities, Seoul National University, Seoul, Korea
| | | |
Collapse
|
2
|
Walker KA, An Y, Moghekar A, Moaddel R, Duggan MR, Peng Z, Tian Q, Pilling LC, Drouin SM, Espeland MA, Rapp SR, Hayden KM, Shadyab AH, Casanova R, Thambisetty M, Rapp PR, Kapogiannis D, Ferrucci L, Resnick SM. Proteomic analysis of APOEε4 carriers implicates lipid metabolism, complement and lymphocyte signaling in cognitive resilience. Mol Neurodegener 2024; 19:81. [PMID: 39482741 PMCID: PMC11526661 DOI: 10.1186/s13024-024-00772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease (AD). This case-cohort study used targeted plasma biomarkers and large-scale proteomics to examine the biological mechanisms that allow some APOEε4 carriers to maintain normal cognitive functioning in older adulthood. METHODS APOEε4 carriers and APOEε3 homozygotes enrolled in the Women's Health Initiative Memory Study (WHIMS) from 1996 to 1999 were classified as resilient if they remained cognitively unimpaired beyond age 80, and as non-resilient if they developed cognitive impairment before or at age 80. AD pathology (Aß42/40) and neurodegeneration (NfL, tau) biomarkers, as well as 1007 proteins (Olink) were quantified in blood collected at study enrollment (on average 14 years prior) when participants were cognitively normal. We identified plasma proteins that distinguished between resilient and non-resilient APOEε4 carriers, examined whether these associations generalized to APOEε3 homozygotes, and replicated these findings in the UK Biobank. RESULTS A total of 1610 participants were included (baseline age: 71.3 [3.8 SD] years; all White; 42% APOEε4 carriers). Compared to resilient APOEε4 carriers, non-resilient APOEε4 carriers had lower Aß42/40/tau ratio and greater NfL at baseline. Proteomic analyses identified four proteins differentially expressed between resilient and non-resilient APOEε4 carriers at an FDR-corrected P < 0.05. While one of the candidate proteins, a marker of neuronal injury (NfL), also distinguished resilient from non-resilient APOEε3 homozygotes, the other three proteins, known to be involved in lipid metabolism (ANGPTL4) and immune signaling (PTX3, NCR1), only predicted resilient vs. non-resilient status among APOEε4 carriers (protein*genotype interaction-P < 0.05). Three of these four proteins also predicted 14-year dementia risk among APOEε4 carriers in the UK Biobank validation sample (N = 9420). While the candidate proteins showed little to no association with targeted biomarkers of AD pathology, protein network and enrichment analyses suggested that natural killer (NK) cell and T lymphocyte signaling (via PKC-θ) distinguished resilient from non-resilient APOEε4 carriers. CONCLUSIONS We identified and replicated a plasma proteomic signature associated with cognitive resilience among APOEε4 carriers. These proteins implicate specific immune processes in the preservation of cognitive status despite elevated genetic risk for AD. Future studies in diverse cohorts will be needed to assess the generalizability of these results.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA.
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruin Moaddel
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Qu Tian
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luke C Pilling
- Department of Clinical & Biomedical Sciences, Faculty of Health & Life Science, University of Exeter, Exeter, UK
| | - Shannon M Drouin
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Mark A Espeland
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Stephen R Rapp
- Department of Psychiatry & Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Science & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Social Science & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aladdin H Shadyab
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, and Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
3
|
Devanand DP, Lee S, Luchsinger JA, Knopman D, Vassilaki M, Motter JN. Comparison of brief olfactory and cognitive assessments to neuroimaging biomarkers in the prediction of cognitive decline and dementia in the MCSA cohort. Alzheimers Dement 2024. [PMID: 39387454 DOI: 10.1002/alz.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION We evaluated impaired odor identification and global cognition as simple, cost-effective alternatives to neuroimaging biomarkers to predict cognitive decline and dementia in the Mayo Clinic Study of Aging. METHODS Six hundred forty-seven participants (mean 8.1, standard deviation 3.4 years' follow-up) had the following baseline procedures: modified Blessed Information Memory Concentration Test (BIMCT), 12-item Brief Smell Identification Test (BSIT), structural brain magnetic resonance imaging (MRI), and positron emission tomography (PET) imaging with 11C-Pittsburgh compound B (11C-PiB) and fluorodeoxyglucose (FDG; subset). RESULTS Cognitive decline developed in 102 participants and dementia in 34 participants. In survival analyses, PiB PET showed robust prediction for cognitive decline. Impaired BSIT, impaired BIMCT, MRI, and FDG measures were also significant predictors. The combination of demographics + BSIT + BIMCT showed strong predictive utility (C-index 0.81), similar to demographics + PiB PET (C-index 0.80). Similar but stronger results were obtained for prediction of dementia. DISCUSSION Impairment in both odor identification test and global cognition was comparable to PiB PET for predicting cognitive decline and dementia. HIGHLIGHTS In 647 participants in the population-based Mayo Clinic Study of Aging, several clinical markers and biomarkers each predicted cognitive decline or dementia during an average 8 years of follow-up. The combination of the demographic variables of age, sex, and education with a brief odor identification test (BSIT) and a global cognitive test (Blessed Information Memory Concentration Test) showed strong predictive utility (C-index 0.81) for cognitive decline that was similar to the demographic variables combined with Pittsburgh Compound B amyloid imaging (C-index 0.80). Combining a brief odor identification test with a brief cognitive test needs consideration as a simple, cost-effective option in the clinical assessment of individuals at risk of cognitive decline and dementia, as well as a potential tool to identify individuals who may benefit from disease-modifying treatments and to screen participants for prevention trials.
Collapse
Affiliation(s)
- Davangere P Devanand
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, New York, USA
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey N Motter
- Department of Psychiatry, Columbia University, New York, New York, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
4
|
Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Falcon C, Fauria K, Gispert JD, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM. Sex/gender effects of glial reactivity on preclinical Alzheimer's disease pathology. Mol Psychiatry 2024:10.1038/s41380-024-02753-9. [PMID: 39384963 DOI: 10.1038/s41380-024-02753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Muge Akinci
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
| | | | - Clara Quijano-Rubio
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, Tottenham Ct Rd, W1T 7NF, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, J5/1 Mezzanine, Madison, WI, WI 53792, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain.
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Aamand R, Rasmussen PM, Andersen KS, de Paoli S, Weitzberg E, Christiansen M, Lund TE, Østergaard L. Cerebral microvascular changes in healthy carriers of the APOE-ɛ4 Alzheimer's disease risk gene. PNAS NEXUS 2024; 3:pgae369. [PMID: 39253395 PMCID: PMC11382292 DOI: 10.1093/pnasnexus/pgae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
APOE-ɛ4 is a genetic risk factor for Alzheimer's disease (AD). AD is associated with reduced cerebral blood flow (CBF) and with microvascular changes that limit the transport of oxygen from blood into brain tissue: reduced microvascular cerebral blood volume and high relative transit time heterogeneity (RTH). Healthy APOE-ɛ4 carriers reveal brain regions with elevated CBF compared with carriers of the common ɛ3 allele. Such asymptomatic hyperemia may reflect microvascular dysfunction: a vascular disease entity characterized by suboptimal tissue oxygen uptake, rather than limited blood flow per se. Here, we used perfusion MRI to show that elevated regional CBF is accompanied by reduced capillary blood volume in healthy APOE-ɛ4 carriers (carriers) aged 30-70 years compared with similarly aged APOE-ɛ3 carriers (noncarriers). Younger carriers have elevated hippocampal RTH and more extreme RTH values throughout both white matter (WM) and cortical gray matter (GM) compared with noncarriers. Older carriers have reduced WM CBF and more extreme GM RTH values than noncarriers. Across all groups, lower WM and hippocampal RTH correlate with higher educational attainment, which is associated with lower AD risk. Three days of dietary nitrate supplementation increased carriers' WM CBF but caused older carriers to score worse on two of six aggregate neuropsychological scores. The intervention improved late recall in younger carriers and in noncarriers. The APOE-ɛ4 gene is associated with microvascular changes that may impair tissue oxygen extraction. We speculate that vascular risk factor control is particularly important for APOE-ɛ4 carriers' healthy aging.
Collapse
Affiliation(s)
- Rasmus Aamand
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Peter M Rasmussen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Katrine Schilling Andersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Stine de Paoli
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Torben E Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, 8000 Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
6
|
Power MC, Lynch KM, Bennett EE, Ying Q, Park ES, Xu X, Smith RL, Stewart JD, Yanosky JD, Liao D, van Donkelaar A, Kaufman JD, Sheppard L, Szpiro AA, Whitsel EA. A comparison of PM 2.5 exposure estimates from different estimation methods and their associations with cognitive testing and brain MRI outcomes. ENVIRONMENTAL RESEARCH 2024; 256:119178. [PMID: 38768885 PMCID: PMC11186721 DOI: 10.1016/j.envres.2024.119178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Reported associations between particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) and cognitive outcomes remain mixed. Differences in exposure estimation method may contribute to this heterogeneity. OBJECTIVES To assess agreement between PM2.5 exposure concentrations across 11 exposure estimation methods and to compare resulting associations between PM2.5 and cognitive or MRI outcomes. METHODS We used Visit 5 (2011-2013) cognitive testing and brain MRI data from the Atherosclerosis Risk in Communities (ARIC) Study. We derived address-linked average 2000-2007 PM2.5 exposure concentrations in areas immediately surrounding the four ARIC recruitment sites (Forsyth County, NC; Jackson, MS; suburbs of Minneapolis, MN; Washington County, MD) using 11 estimation methods. We assessed agreement between method-specific PM2.5 concentrations using descriptive statistics and plots, overall and by site. We used adjusted linear regression to estimate associations of method-specific PM2.5 exposure estimates with cognitive scores (n = 4678) and MRI outcomes (n = 1518) stratified by study site and combined site-specific estimates using meta-analyses to derive overall estimates. We explored the potential impact of unmeasured confounding by spatially patterned factors. RESULTS Exposure estimates from most methods had high agreement across sites, but low agreement within sites. Within-site exposure variation was limited for some methods. Consistently null findings for the PM2.5-cognitive outcome associations regardless of method precluded empirical conclusions about the potential impact of method on study findings in contexts where positive associations are observed. Not accounting for study site led to consistent, adverse associations, regardless of exposure estimation method, suggesting the potential for substantial bias due to residual confounding by spatially patterned factors. DISCUSSION PM2.5 estimation methods agreed across sites but not within sites. Choice of estimation method may impact findings when participants are concentrated in small geographic areas. Understanding unmeasured confounding by factors that are spatially patterned may be particularly important in studies of air pollution and cognitive or brain health.
Collapse
Affiliation(s)
- Melinda C Power
- Milken Institute School of Public Health, George Washington University, 950 New Hampshire Ave, Washington, DC, 20052, USA.
| | - Katie M Lynch
- Milken Institute School of Public Health, George Washington University, 950 New Hampshire Ave, Washington, DC, 20052, USA
| | - Erin E Bennett
- Milken Institute School of Public Health, George Washington University, 950 New Hampshire Ave, Washington, DC, 20052, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, 201 Dwight Look, College Station, TX, 77840, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, Texas A&M University System, 3135 TAMU, College Station, TX, 77843, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, 212 Adriance Lab Rd, College Station, TX, 77843, USA
| | - Richard L Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 E Cameron Ave, Chapel Hill, NC, 27599, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Daur Dr, Chapel Hill, NC, 27516, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Daur Dr, Chapel Hill, NC, 27516, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, 700 HMC Cres Rd, Hershey, PA, 17033, USA
| | - Duanping Liao
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, 700 HMC Cres Rd, Hershey, PA, 17033, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental, and Chemical Engineering McKelvey School of Engineering, 1 Brookings Dr, St. Louis, MO, 63130, USA
| | - Joel D Kaufman
- Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA; Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA; Department of Biostatistics, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Daur Dr, Chapel Hill, NC, 27516, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, 321 S Columbia St, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Driscoll IF, Lose S, Ma Y, Bendlin BB, Gallagher C, Johnson SC, Asthana S, Hermann B, Sager MA, Blennow K, Zetterberg H, Carlsson C, Kollmorgen G, Quijano‐Rubio C, Dubal D, Okonkwo OC. KLOTHO KL-VS heterozygosity is associated with diminished age-related neuroinflammation, neurodegeneration, and synaptic dysfunction in older cognitively unimpaired adults. Alzheimers Dement 2024; 20:5347-5356. [PMID: 39030746 PMCID: PMC11350058 DOI: 10.1002/alz.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.
Collapse
Affiliation(s)
- Ira Frahmand Driscoll
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sarah Lose
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | - Catherine Gallagher
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | - Bruce Hermann
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongPR China
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| | | | | | - Dena Dubal
- Department of Neurology and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of GeriatricsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton VA HospitalMadisonWisconsinUSA
| |
Collapse
|
8
|
Li W, Petersen RC, Algeciras-Schimnich A, Cogswell PM, Bornhorst JA, Kremers WK, Boeve BF, Jones DT, Botha H, Ramanan VK, Knopman DS, Savica R, Josephs KA, Cliatt-Brown C, Andersen E, Day GS, Graff-Radford NR, Ertekin-Taner N, Lachner C, Wicklund M, van Harten A, Woodruff BK, Caselli RJ, Graff-Radford J. Alzheimer Disease Cerebrospinal Fluid Biomarkers in a Tertiary Neurology Practice. Mayo Clin Proc 2024; 99:1284-1296. [PMID: 38935019 DOI: 10.1016/j.mayocp.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To evaluate the performance of Alzheimer disease (AD) cerebrospinal fluid (CSF) biomarkers in a tertiary neurology clinic setting with high frequency of non-AD cases, including normal pressure hydrocephalus (NPH). METHODS There were 534 patients who underwent AD CSF biomarkers (Roche Elecsys Aβ42, p-Tau181, total-Tau) from April 1, 2020, through April 23, 2021. A behavioral neurologist blinded to CSF results assigned a clinical diagnosis retrospectively on the basis of consensus criteria, and a neuroradiologist blinded to the diagnosis and CSF studies graded brain magnetic resonance images for indicators of CSF dynamics disorders. Associations between biomarkers, diagnoses, and imaging were assessed by χ2, analysis of covariance, and linear regression methods. RESULTS Median age at time of testing was 67 years (range, 19 to 96 years), median symptom duration was 2 years (range, 0.4 to 28 years), and median Short Test of Mental Status score was 30 (range, 0 to 38). Clinical diagnoses significantly correlated with different CSF biomarker values (χ2=208.3; P=10e-4). p-Tau181/Aβ42 ratios above 0.023 positively correlated with Alzheimer dementia (more than individual measures). This ratio also had the best performance for differentiating Alzheimer dementia from NPH (area under the curve, 0.869). Imaging markers supportive of CSF dynamics disorders correlated with low Aβ42, p-Tau181, and total-Tau. CONCLUSION In a heterogeneous clinical population, abnormal p-Tau181/Aβ42 ratios (>0.023) have the strongest association with Alzheimer dementia and probably represent a comorbid AD pathologic component in persons clearly matching non-AD neurodegenerative syndromes. Altered CSF dynamics were associated with lower concentrations of AD CSF biomarkers regardless of clinical diagnosis, but the ratio compensates for these changes. In the appropriate clinical setting, an isolated abnormal Aβ42 should prompt consideration of NPH.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, Mayo Clinic, Rochester, MN; Department of Neurology, Kaiser Permanente South Sacramento, Sacramento, CA
| | | | | | | | - Joshua A Bornhorst
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | | | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, FL; Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| | | | | | - Argonde van Harten
- Department of Neurology and Alzheimer Center Amsterdam UMC, The Netherlands
| | | | | | | |
Collapse
|
9
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
10
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
11
|
Lynch KM, Bennett EE, Ying Q, Park ES, Xu X, Smith RL, Stewart JD, Liao D, Kaufman JD, Whitsel EA, Power MC. Association of Gaseous Ambient Air Pollution and Dementia-Related Neuroimaging Markers in the ARIC Cohort, Comparing Exposure Estimation Methods and Confounding by Study Site. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67010. [PMID: 38922331 PMCID: PMC11218707 DOI: 10.1289/ehp13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Evidence linking gaseous air pollution to late-life brain health is mixed. OBJECTIVE We explored associations between exposure to gaseous pollutants and brain magnetic resonance imaging (MRI) markers among Atherosclerosis Risk in Communities (ARIC) Study participants, with attention to the influence of exposure estimation method and confounding by site. METHODS We considered data from 1,665 eligible ARIC participants recruited from four US sites in the period 1987-1989 with valid brain MRI data from Visit 5 (2011-2013). We estimated 10-y (2001-2010) mean carbon monoxide (CO), nitrogen dioxide (NO 2 ), nitrogen oxides (NO x ), and 8- and 24-h ozone (O 3 ) concentrations at participant addresses, using multiple exposure estimation methods. We estimated site-specific associations between pollutant exposures and brain MRI outcomes (total and regional volumes; presence of microhemorrhages, infarcts, lacunes, and severe white matter hyperintensities), using adjusted linear and logistic regression models. We compared meta-analytically combined site-specific associations to analyses that did not account for site. RESULTS Within-site exposure distributions varied across exposure estimation methods. Meta-analytic associations were generally not statistically significant regardless of exposure, outcome, or exposure estimation method; point estimates often suggested associations between higher NO 2 and NO x and smaller temporal lobe, deep gray, hippocampal, frontal lobe, and Alzheimer disease signature region of interest volumes and between higher CO and smaller temporal and frontal lobe volumes. Analyses that did not account for study site more often yielded significant associations and sometimes different direction of associations. DISCUSSION Patterns of local variation in estimated air pollution concentrations differ by estimation method. Although we did not find strong evidence supporting impact of gaseous pollutants on brain changes detectable by MRI, point estimates suggested associations between higher exposure to CO, NO x , and NO 2 and smaller regional brain volumes. Analyses of air pollution and dementia-related outcomes that do not adjust for location likely underestimate uncertainty and may be susceptible to confounding bias. https://doi.org/10.1289/EHP13906.
Collapse
Affiliation(s)
- Katie M. Lynch
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Erin E. Bennett
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Qi Ying
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Eun Sug Park
- Texas A&M Transportation Institute, Texas A&M University System, College Station, Texas, USA
| | - Xiaohui Xu
- Department of Epidemiology & Biostatistics, Texas A&M Health Science Center School of Public Health, College Station, Texas, USA
| | - Richard L. Smith
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Duanping Liao
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda C. Power
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Chen Z, Liu Y, Zhang Y, Zhu J, Li Q, Wu X. Shared Manifold Regularized Joint Feature Selection for Joint Classification and Regression in Alzheimer's Disease Diagnosis. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:2730-2745. [PMID: 38578858 DOI: 10.1109/tip.2024.3382600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
In Alzheimer's disease (AD) diagnosis, joint feature selection for predicting disease labels (classification) and estimating cognitive scores (regression) with neuroimaging data has received increasing attention. In this paper, we propose a model named Shared Manifold regularized Joint Feature Selection (SMJFS) that performs classification and regression in a unified framework for AD diagnosis. For classification, unlike the existing works that build least squares regression models which are insufficient in the ability of extracting discriminative information for classification, we design an objective function that integrates linear discriminant analysis and subspace sparsity regularization for acquiring an informative feature subset. Furthermore, the local data relationships are learned according to the samples' transformed distances to exploit the local data structure adaptively. For regression, in contrast to previous works that overlook the correlations among cognitive scores, we learn a latent score space to capture the correlations and employ the latent space to design a regression model with l2,1 -norm regularization, facilitating the feature selection in regression task. Moreover, the missing cognitive scores can be recovered in the latent space for increasing the number of available training samples. Meanwhile, to capture the correlations between the two tasks and describe the local relationships between samples, we construct an adaptive shared graph to guide the subspace learning in classification and the latent cognitive score learning in regression simultaneously. An efficient iterative optimization algorithm is proposed to solve the optimization problem. Extensive experiments on three datasets validate the discriminability of the features selected by SMJFS.
Collapse
|
13
|
Nabizadeh F, Zafari R. Progranulin and neuropathological features of Alzheimer's disease: longitudinal study. Aging Clin Exp Res 2024; 36:55. [PMID: 38441695 PMCID: PMC10914850 DOI: 10.1007/s40520-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Progranulin is an anti-inflammatory protein that plays an essential role in the synapse function and the maintenance of neurons in the central nervous system (CNS). It has been shown that the CSF level of progranulin increases in Alzheimer's disease (AD) patients and is associated with the deposition of amyloid-beta (Aβ) and tau in the brain tissue. In this study, we aimed to assess the longitudinal changes in cerebrospinal fluid (CSF) progranulin levels during different pathophysiological stages of AD and investigate associated AD pathologic features. METHODS We obtained the CSF and neuroimaging data of 1001 subjects from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A + /TN + , A + /TN-, A-/TN + , and A-/TN-. RESULTS Based on our analysis there was a significant difference in CSF progranulin (P = 0.001) between ATN groups. Further ANOVA analysis revealed that there was no significant difference in the rate of change of CSF-progranulin ATN groups. We found that the rate of change of CSF progranulin was associated with baseline Aβ-PET only in the A-/TN + group. A significant association was found between the rate of change of CSF progranulin and the Aβ-PET rate of change only in A-/TN + CONCLUSION: Our findings revealed that an increase in CSF progranulin over time is associated with faster formation of Aβ plaques in patients with only tau pathology based on the A/T/N classification (suspected non-Alzheimer's pathology). Together, our findings showed that the role of progranulin-related microglial activity on AD pathology can be stage-dependent, complicated, and more prominent in non-AD pathologic changes. Thus, there is a need for further studies to consider progranulin-based therapies for AD treatment.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
15
|
Ramos-Cejudo J, Scott MR, Tanner JA, Pase MP, McGrath ER, Ghosh S, Osorio RS, Thibault E, El Fakhri G, Johnson KA, Beiser A, Seshadri S. Associations of Plasma Tau with Amyloid and Tau PET: Results from the Community-Based Framingham Heart Study. J Alzheimers Dis 2024; 100:487-494. [PMID: 38875034 DOI: 10.3233/jad-231320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Associations of plasma total tau levels with future risk of AD have been described. Objective To examine the extent to which plasma tau reflects underlying AD brain pathology in cognitively healthy individuals. Methods We examined cross-sectional associations of plasma total tau with 11C-Pittsburgh Compound-B (PiB)-PET and 18F-Flortaucipir (FTP)-PET in middle-aged participants at the community-based Framingham Heart Study. Results Our final sample included 425 participants (mean age 57.6± 9.9, 50% F). Plasma total tau levels were positively associated with amyloid-β deposition in the precuneus region (β±SE, 0.11±0.05; p = 0.025). A positive association between plasma total tau and tau PET in the rhinal cortex was suggested in participants with higher amyloid-PET burden and in APOEɛ4 carriers. Conclusions Our study highlights that plasma total tau is a marker of amyloid deposition as early as in middle-age.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jeremy A Tanner
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emer R McGrath
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
- The Framingham Study, Boston, MA, USA
- School of Medicine, University of Galway, Galway, Ireland
| | | | - Ricardo S Osorio
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Emma Thibault
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Keith A Johnson
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Stricker NH, Christianson TJ, Pudumjee SB, Polsinelli AJ, Lundt ES, Frank RD, Kremers WK, Machulda MM, Fields JA, Jack CR, Knopman DS, Graff-Radford J, Vemuri P, Mielke MM, Petersen RC. Mayo Normative Studies: Amyloid and Neurodegeneration Negative Normative Data for the Auditory Verbal Learning Test and Sex-Specific Sensitivity to Mild Cognitive Impairment/Dementia. J Alzheimers Dis 2024; 100:879-897. [PMID: 38995784 PMCID: PMC11307010 DOI: 10.3233/jad-240081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
Background Conventional normative samples include individuals with undetected Alzheimer's disease neuropathology, lowering test sensitivity for cognitive impairment. Objective We developed Mayo Normative Studies (MNS) norms limited to individuals without elevated amyloid or neurodegeneration (A-N-) for Rey's Auditory Verbal Learning Test (AVLT). We compared these MNS A-N- norms in female, male, and total samples to conventional MNS norms with varying levels of demographic adjustments. Methods The A-N- sample included 1,059 Mayo Clinic Study of Aging cognitively unimpaired (CU) participants living in Olmsted County, MN, who are predominantly non-Hispanic White. Using a regression-based approach correcting for age, sex, and education, we derived fully-adjusted T-score formulas for AVLT variables. We validated these A-N- norms in two independent samples of CU (n = 261) and mild cognitive impairment (MCI)/dementia participants (n = 392) > 55 years of age. Results Variability associated with age decreased by almost half in the A-N- norm sample relative to the conventional norm sample. Fully-adjusted MNS A-N- norms showed approximately 7- 9% higher sensitivity to MCI/dementia compared to fully-adjusted MNS conventional norms for trials 1- 5 total and sum of trials. Among women, sensitivity to MCI/dementia increased with each normative data refinement. In contrast, age-adjusted conventional MNS norms showed greatest sensitivity to MCI/dementia in men. Conclusions A-N- norms show some benefits over conventional normative approaches to MCI/dementia sensitivity, especially for women. We recommend using these MNS A-N- norms alongside MNS conventional norms. Future work is needed to determine if normative samples that are not well characterized clinically show greater benefit from biomarker-refined approaches.
Collapse
Affiliation(s)
- Nikki H. Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Angelina J. Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, IN, USA
| | - Emily S. Lundt
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ryan D. Frank
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Walter K. Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Michelle M. Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
17
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
18
|
Patow G, Stefanovski L, Ritter P, Deco G, Kobeleva X. Whole-brain modeling of the differential influences of amyloid-beta and tau in Alzheimer's disease. Alzheimers Res Ther 2023; 15:210. [PMID: 38053164 PMCID: PMC10696890 DOI: 10.1186/s13195-023-01349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative condition associated with the accumulation of two misfolded proteins, amyloid-beta (A[Formula: see text]) and tau. We study their effect on neuronal activity, with the aim of assessing their individual and combined impact. METHODS We use a whole-brain dynamic model to find the optimal parameters that best describe the effects of A[Formula: see text] and tau on the excitation-inhibition balance of the local nodes. RESULTS We found a clear dominance of A[Formula: see text] over tau in the early disease stages (MCI), while tau dominates over A[Formula: see text] in the latest stages (AD). We identify crucial roles for A[Formula: see text] and tau in complex neuronal dynamics and demonstrate the viability of using regional distributions to define models of large-scale brain function in AD. CONCLUSIONS Our study provides further insight into the dynamics and complex interplay between these two proteins, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.
Collapse
Affiliation(s)
- Gustavo Patow
- ViRVIG, Universitat de Girona, Girona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain.
| | - Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future Berlin, Berlin, Germany
| | - Gustavo Deco
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Xenia Kobeleva
- Computational Neurology Research Group, Ruhr University Bochum, Bochum, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Insel PS, Kumar A, Hansson O, Mattsson-Carlgren N. Genetic Moderation of the Association of β-Amyloid With Cognition and MRI Brain Structure in Alzheimer Disease. Neurology 2023; 101:e20-e29. [PMID: 37085326 PMCID: PMC10351305 DOI: 10.1212/wnl.0000000000207305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There is considerable heterogeneity in the association between increasing β-amyloid (Aβ) pathology and early cognitive dysfunction in preclinical Alzheimer disease (AD). At this stage, some individuals show no signs of cognitive dysfunction, while others show clear signs of decline. The factors explaining this heterogeneity are particularly important for understanding progression in AD but remain largely unknown. In this study, we examined an array of genetic variants that may influence the relationships among Aβ, brain structure, and cognitive performance in 2 large cohorts. METHODS In 2,953 cognitively unimpaired participants from the Anti-Amyloid Treatment in Asymptomatic Alzheimer disease (A4) study, interactions between genetic variants and 18F-Florbetapir PET standardized uptake value ratio (SUVR) to predict the Preclinical Alzheimer Cognitive Composite (PACC) were assessed. Genetic variants identified in the A4 study were evaluated in the Alzheimer Disease Neuroimaging Initiative (ADNI, N = 527) for their association with longitudinal cognition and brain atrophy in both cognitively unimpaired participants and those with mild cognitive impairment. RESULTS In the A4 study, 4 genetic variants significantly moderated the association between Aβ load and cognition. Minor alleles of 3 variants were associated with additional decreases in PACC scores with increasing Aβ SUVR (rs78021285, β = -2.29, SE = 0.40, p FDR = 0.02, nearest gene ARPP21; rs71567499, β = -2.16, SE = 0.38, p FDR = 0.02, nearest gene PPARD; and rs10974405, β = -1.68, SE = 0.29, p FDR = 0.02, nearest gene GLIS3). The minor allele of rs7825645 was associated with less decrease in PACC scores with increasing Aβ SUVR (β = 0.71, SE = 0.13, p FDR = 0.04, nearest gene FGF20). The genetic variant rs76366637, in linkage disequilibrium with rs78021285, was available in both the A4 and ADNI. In the A4, rs76366637 was strongly associated with reduced PACC scores with increasing Aβ SUVR (β = -1.01, SE = 0.21, t = -4.90, p < 0.001). In the ADNI, rs76366637 was associated with accelerated cognitive decline (χ2 = 15.3, p = 0.004) and atrophy over time (χ2 = 26.8, p < 0.001), with increasing Aβ SUVR. DISCUSSION Patterns of increased cognitive dysfunction and accelerated atrophy due to specific genetic variation may explain some of the heterogeneity in cognition in preclinical and prodromal AD. The genetic variant near ARPP21 associated with lower cognitive scores in the A4 and accelerated cognitive decline and brain atrophy in the ADNI may help to identify those at the highest risk of accelerated progression of AD.
Collapse
Affiliation(s)
- Philip S Insel
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden.
| | - Atul Kumar
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| |
Collapse
|
20
|
Gonzalez J, Wilson A, Byrd D, Cortes EP, Crary JF, Morgello S. Neuronal accumulation of hyperphosphorylated tau protein predicts stable memory impairment in people living with HIV. AIDS 2023; 37:1247-1256. [PMID: 36988209 PMCID: PMC10539475 DOI: 10.1097/qad.0000000000003556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
OBJECTIVES As lifespans increase in people with HIV (PWH), there is concern that age-related neurodegenerative disorders may contribute to cognitive decline. We asked whether brain accumulation of Alzheimer's disease (AD)-associated proteins amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau) predicted cognitive performance in middle-aged PWH. METHODS In a prospectively followed, cognitively-characterized autopsy sample of 135 PWH, we used immunohistochemistry to assess Aβ plaques and neuronal p-tau in medial temporal and lateral frontal lobes. These pathologies were tested for associations with cognitive performance in seven domains: motor, speed of information processing, working memory, memory encoding, memory retrieval, verbal fluency, and abstraction/executive function. Univariate and multivariate analyses accounting for HIV-associated variables, reading level, and comorbidities were conducted. Longitudinal trajectories of memory functions were evaluated in 60 individuals with a median follow-up of 6.0 years. RESULTS In this population with mean age 51.4 ± 0.9 years, 58% displayed neuronal p-tau and 29% Aβ plaques. Neuronal p-tau, but not Aβ, predicted worse memory encoding and retrieval, but not other cognitive functions. With an ordinal hierarchy of neuronal p-tau locations (entorhinal, hippocampal, neocortical), decreased memory performance correlated with neocortical distribution. Memory function trajectories could not be distinguished between individuals with and without neuronal p-tau, and over 80% of the sample showed no change over time. CONCLUSION In this middle-aged sample, neuronal p-tau accumulation contributes to memory deficits, but is not associated with accelerated decline in function over time. In the absence of AD-like deterioration, other etiologies for neuronal p-tau in cognitively impaired PWH must be considered.
Collapse
Affiliation(s)
| | - Alyssa Wilson
- Department of Neurology
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Desiree Byrd
- Department of Neurology
- Department of Psychology, Queens College and the Graduate Center, City University of New York
| | | | - John F Crary
- Department of Pathology
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Morgello
- Department of Neurology
- Department of Pathology
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Byun MS, Chang M, Yi D, Ahn H, Han D, Jeon S, Jang H, Lee DY, Oh SH. Association of Central Auditory Processing Dysfunction With Preclinical Alzheimer's Disease. Otolaryngol Head Neck Surg 2023; 169:112-119. [PMID: 36939433 PMCID: PMC10846842 DOI: 10.1002/ohn.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate whether central auditory processing dysfunction measured by the dichotic digit test-1 digit (DDT1) is present in preclinical Alzheimer's disease (AD) individuals who are cognitively normal (CN) older adults with the cerebral beta-amyloid (Aβ) deposition and to explore the potential of the DDT1 as a screening test for preclinical AD. STUDY DESIGN Cross-sectional design. SETTING A prospective observational cohort study. METHODS CN older adults with a global clinical dementia rating score of 0 were included. The hearing test battery including pure-tone audiometry, speech audiometry, distortion product otoacoustic emission, and DDT1 was administered to participants. RESULTS Fifty CN older adults were included. Among them, 38 individuals were included in the Aβ deposition negative (AN) group and 12 were included in the Aβ deposition positive (AP) group. The DDT1 scores of both the better and worse ears were significantly lower in the AP group than in the AN group (p = .008 and p = .015, respectively). No significant differences were observed between the groups in tests of the peripheral auditory pathways. In multivariable logistic regression analysis adjusted for apolipoprotein E4 positivity, the DDT1 better ear score predicted the AP group (p = .036, odds ratio = 0.892, 95% confidence interval: 0.780-0.985) with relatively high diagnostic accuracy. CONCLUSION Our findings suggest that Aβ deposition may affect the central auditory pathway even before cognitive decline appears. DDT1, which can easily be applied to the old-age population, may have the potential as a screening tool for preclinical AD.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Munyoung Chang
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, South Korea
| | - Dongkyun Han
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Seulki Jeon
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyunsook Jang
- Division of Speech Pathology and Audiology, Research Institute of Audiology & Speech Pathology, Hallym University, Chuncheon-si, Gangwon-do, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
- Institute of Human Behavioral Medicine, Medical Research Centre, Seoul National University, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otolaryngology–Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
22
|
Fernandez-Alvarez M, Atienza M, Cantero JL. Cortical amyloid-beta burden is associated with changes in intracortical myelin in cognitively normal older adults. Transl Psychiatry 2023; 13:115. [PMID: 37024484 PMCID: PMC10079650 DOI: 10.1038/s41398-023-02420-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Amyloid-beta (Aβ) aggregates and myelin breakdown are among the earliest detrimental effects of Alzheimer's disease (AD), likely inducing abnormal patterns of neuronal communication within cortical networks. However, human in vivo evidence linking Aβ burden, intracortical myelin, and cortical synchronization is lacking in cognitively normal older individuals. Here, we addressed this question combining 18F-Florbetaben-PET imaging, cortical T1-weigthed/T2-weighted (T1w/T2w) ratio maps, and resting-state functional connectivity (rs-FC) in cognitively unimpaired older adults. Results showed that global Aβ burden was both positively and negatively associated with the T1w/T2w ratio in different cortical territories. Affected cortical regions were further associated with abnormal patterns of rs-FC and with subclinical cognitive deficits. Finally, causal mediation analysis revealed that the negative impact of T1w/T2w ratio in left posterior cingulate cortex on processing speed was driven by Aβ burden. Collectively, these findings provide novel insights into the relationship between initial Aβ plaques and intracortical myelin before the onset of cognitive decline, which may contribute to monitor the efficacy of novel disease-modifying strategies in normal elderly individuals at risk for cognitive impairment.
Collapse
Affiliation(s)
- Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
23
|
Moon SW, Byun MS, Yi D, Kim MJ, Jung JH, Kong N, Jung G, Ahn H, Lee JY, Kang KM, Sohn CH, Kim YK, Lee DY. Low Ankle-Brachial Index Relates to Alzheimer-Signature Cerebral Glucose Metabolism in Cognitively Impaired Older Adults. J Alzheimers Dis 2023; 93:87-95. [PMID: 36938732 DOI: 10.3233/jad-220911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Ankle-brachial index (ABI), an indicator of atherosclerosis or arterial stiffness, has been associated with Alzheimer's disease (AD) dementia and related cognitive impairment. Nevertheless, only limited information is available regarding its contribution to brain alterations leading to cognitive decline in late-life. OBJECTIVE We aimed to investigate the relationship of ABI with in vivo AD pathologies and cerebrovascular injury in cognitively impaired older adults. METHODS Total 127 cognitively impaired (70 mild cognitive impairment and 57 AD dementia) individuals, who participated in an ongoing prospective cohort study, were included. All participants underwent comprehensive clinical and neuropsychological assessment, ABI measurement, apolipoprotein E (APOE) ɛ4 genotyping, and multi-modal brain imaging including [11C] Pittsburgh Compound B (PiB)-positron emission tomography (PET) and [18F] fludeoxyglucose (FDG)-PET, and MRI. RESULTS General linear model analysis showed significant relationship between ABI strata (low ABI: <1.00, normal ABI: 1.00-1.29, and high ABI: ≥1.30) and AD-signature region cerebral glucose metabolism (AD-CM), even after controlling age, sex, clinical dementia rating-sum of box, and APOE ɛ4 positivity (p = 0.029). Post hoc comparison revealed that low ABI had significantly lower AD-CM than middle and high ABI, while no difference of AD-CM was found between middle and high ABI. There was no significant difference of global Aβ deposition, AD-signature region cortical thickness, and white matter hyperintensity volume between the three ABI strata. CONCLUSION Our findings suggest that lower ABI, likely related to atherosclerosis, may contribute to the aggravation of AD-related regional neurodegeneration in cognitively impaired older adults.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry & Research Institute of Medical Science, Konkuk University School of Medicine, Chungju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nayeong Kong
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gijung Jung
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyejin Ahn
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
24
|
Hirose T, Takayama T, Shibata N, Murakami K, Arai H. A Pilot Study on Cerebral Blood Flow and Mini-Mental State Examination to Predict Amyloid Deposition in Preclinical Alzheimer's Disease. PSYCHIAT CLIN PSYCH 2023; 33:1-7. [PMID: 38764533 PMCID: PMC11082584 DOI: 10.5152/pcp.2023.22524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/04/2023] [Indexed: 05/21/2024] Open
Abstract
Background Earlier differential diagnosis of dementia remains a major challenge. Although amyloid deposition by positron emission tomography is an emerging standard for the diagnosis of Alzheimer's disease, it is too expensive for routine use in clinical settings. We conducted a pilot study on the potential usefulness of single-photon emission computed tomography and the Mini-Mental State Examination to predict amyloid positron emission tomography positivity in preclinical Alzheimer's disease. Methods Eighteen subjects, including 11 with mild cognitive impairment and 7 with subjective cognitive decline, underwent 18F-florbetapir positron emission tomography, 99mTc-ethylcysteinate dimer cerebral perfusion single-photon emission computed tomography, and the Mini-Mental State Examination. For the assessment of amyloid deposition, visual judgment as a qualitative method and a semiautomatic software analysis as a quantitative method were used. Results Six subjects were judged as amyloid positive, including 4 mild cognitive impairment and 2 subjective cognitive decline subjects. Compared to the amyloid positron emission tomography-negative group, this group showed a statistically significant difference in the Mini-Mental State Examination recall score [2 (1 : 3) vs. 3 (2 : 3), P = .041] and single-photon emission computed tomography findings from the amyloid-negative group. In the mild cognitive impairment subgroup, correlations were found between amyloid deposition and single-photon emission computed tomography indicators, while in the subjective cognitive decline subgroup, only the Mini-Mental State Examination recall score correlated with amyloid deposition. Conclusion The Mini-Mental State Examination recall score and single-photon emission computed tomography indicators may be worthwhile for further evaluation as predictors of amyloid deposition in the preclinical stage.
Collapse
Affiliation(s)
- Takumi Hirose
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiki Takayama
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobuto Shibata
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Murakami
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Alzclinic Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Ren S, Li J, Huang L, Huang Q, Chen K, Hu J, Jessen F, Hu X, Jiang D, Zhu L, Wang X, Guan Y, Hua F, Guo Q, Xie F. Brain Functional Alterations and Association with Cognition in People with Preclinical Subjective Cognitive Decline and Objective Subtle Cognitive Difficulties. Neuroscience 2023; 513:137-144. [PMID: 36634906 DOI: 10.1016/j.neuroscience.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Subjective cognitive decline (SCD) and objective subtle cognitive difficulties (Obj-SCD) are considered the initial stages of aberrant cognition prior to mild cognitive impairment (MCI) due to Alzheimer's disease (AD). We aimed to determine the difference of brain function of SCD and Obj-SCD, furthermore, to figure out which one could be the marker of early AD. One hundred and eighty-five participants were enrolled in this study to determine the amyloid pathology and glucose metabolism changes in SCD and Obj-SCD. The association of amyloid deposition and glucose metabolism with cognitive domains were also investigated. Obj-SCD displayed significantly increased amyloid deposition in frontal and temporal lobes compared to SCD and normal cognitive control (NCC). No difference of amyloid deposition between SCD and NCC, and no difference of glucose metabolism among the three groups were observed. Amyloid deposition was associated with function of memory, language and executive domains, and glucose metabolism was only associated with executive function in Obj-SCD. Amyloid deposition was only associated with executive function in SCD. Obj-SCD could be the early stage of AD, which displayed significant increased amyloid deposition, and the increased amyloid deposition was associated with cognitive function in different domains.
Collapse
Affiliation(s)
- Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, University of Arizona and Arizona Alzheimer's Consortium, USA
| | - Jingchao Hu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China; School of Nursing, Shanghai Jiaotong University, 200025 Shanghai, China
| | - Frank Jessen
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany; German Center for Neurodegenerative Disorder (DZNE), Bonn, Germany
| | - Xiaochen Hu
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Donglang Jiang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaomin Wang
- Department of Physiology, Capital Medical University, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, No. 10 Xitoutiao, Youanmen, 100069 Beijing, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| | - Fengchun Hua
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China; Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| |
Collapse
|
26
|
Ren S, Pan Y, Li J, Huang L, Cui L, Jiang D, Huang Q, Guan Y, Guo Q, Shen D, Xie F. The necessary of ternary amyloid classification for clinical practice: An alternative to the binary amyloid definition. VIEW 2023. [DOI: 10.1002/viw.20220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Affiliation(s)
- Shuhua Ren
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| | - Yongsheng Pan
- School of Biomedical Engineering ShanghaiTech University Shanghai China
| | - Junpeng Li
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| | - Lin Huang
- Department of Gerontology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Liang Cui
- Department of Gerontology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Donglang Jiang
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| | - Qi Huang
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| | - Qihao Guo
- Department of Gerontology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Dinggang Shen
- School of Biomedical Engineering ShanghaiTech University Shanghai China
- Department of Research and Development Shanghai United Imaging Intelligence Co., Ltd. Shanghai China
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
27
|
Umfleet LG, Bilder RM, Loring DW, Thames A, Hampstead BM, Bauer RM, Drane DL, Cavanagh L. The Future of Cognitive Screening in Neurodegenerative Diseases. J Alzheimers Dis 2023; 93:47-59. [PMID: 36970899 DOI: 10.3233/jad-221077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cognitive screening instruments (CSI) have variable sensitivity and specificity to the cognitive changes associated with dementia syndromes, and the most recent systematic review found insufficient evidence to support the benefit of cognitive screening tools in older adults residing within the community. Consequently, there is a critical need to improve CSI methods, which have not yet incorporated advances in psychometrics, neuroscience, and technology. The primary goal of this article is to provide a framework for transitioning from legacy CSIs to advanced dementia screening measurement. In line with ongoing efforts in neuropsychology and the call for next-generation digital assessment for early detection of AD, we propose a psychometrically advanced (including application of item response theory methods), automated selective assessment model that provides a framework to help propel an assessment revolution. Further, we present a three-phase model for modernizing CSIs and discuss critical diversity and inclusion issues, current challenges in differentiating normal from pathological aging, and ethical considerations.
Collapse
Affiliation(s)
| | - Robert M Bilder
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - David W Loring
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - April Thames
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin M Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucia Cavanagh
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Lorenzo EC, Kuchel GA, Kuo CL, Moffitt TE, Diniz BS. Major depression and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101805. [PMID: 36410621 PMCID: PMC9772222 DOI: 10.1016/j.arr.2022.101805] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is characterized by psychological and physiological manifestations contributing to the disease severity and outcome. In recent years, several lines of evidence have suggested that individuals with MDD have an elevated risk of age-related adverse outcomes across the lifespan. This review provided evidence of a significant overlap between the biological abnormalities in MDD and biological changes commonly observed during the aging process (i.e., hallmarks of biological aging). Based on such evidence, we formulate a mechanistic model showing how abnormalities in the hallmarks of biological aging can be a common denominator and mediate the elevated risk of age-related health outcomes commonly observed in MDD. Finally, we proposed a roadmap for novel studies to investigate the intersection between the biology of aging and MDD, including the use of geroscience-guided interventions, such as senolytics, to delay or improve major depression by targeting biological aging.
Collapse
Affiliation(s)
- Erica C Lorenzo
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Chia-Ling Kuo
- Department of Public Health Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, United Kingdom; PROMENTA Center, University of Oslo, Oslo, Norway
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
29
|
Han G, Kim JS, Park YH, Kang SH, Kim HR, Hwangbo S, Chung TY, Shin HY, Na DL, Seo SW, Lim DH, Kim HJ. Decreased visual acuity is related to thinner cortex in cognitively normal adults: cross-sectional, single-center cohort study. Alzheimers Res Ther 2022; 14:99. [PMID: 35879770 PMCID: PMC9310451 DOI: 10.1186/s13195-022-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Decreased visual acuity (VA) is reported to be a risk factor for dementia. However, the association between VA and cortical thickness has not been established. We investigated the association between VA and cortical thickness in cognitively normal adults.
Method
We conducted a cross-sectional, single-center cohort study with cognitively normal adults (aged ≥ 45) who received medical screening examinations at the Health Promotion Center at Samsung Medical Center. Subjects were categorized as bad (VA ≤ 20/40), fair (20/40 < VA ≤ 20/25), and good (VA > 20/25) VA group by using corrected VA in the Snellen system. Using 3D volumetric brain MRI, cortical thickness was calculated using the Euclidean distance between the linked vertices of the inner and outer surfaces. We analyzed the association between VA and cortical thickness after controlling for age, sex, hypertension, diabetes, dyslipidemia, intracranial volume, and education level.
Results
A total of 2756 subjects were analyzed in this study. Compared to the good VA group, the bad VA group showed overall thinner cortex (p = 0.015), especially in the parietal (p = 0.018) and occipital (p = 0.011) lobes. Topographical color maps of vertex-wise analysis also showed that the bad VA group showed a thinner cortex in the parieto-temporo-occipital area. These results were more robust in younger adults (aged 45 to 65) as decreased VA was associated with thinner cortex in more widespread regions in the parieto-temporo-occipital area.
Conclusion
Our results suggest that a thinner cortex in the visual processing area of the brain is related to decreased visual stimuli.
Collapse
|
30
|
Toledo JB, Rashid T, Liu H, Launer L, Shaw LM, Heckbert SR, Weiner M, Seshadri S, Habes M. SPARE-Tau: A flortaucipir machine-learning derived early predictor of cognitive decline. PLoS One 2022; 17:e0276392. [PMID: 36327215 PMCID: PMC9632811 DOI: 10.1371/journal.pone.0276392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Recently, tau PET tracers have shown strong associations with clinical outcomes in individuals with cognitive impairment and cognitively unremarkable elderly individuals. flortaucipir PET scans to measure tau deposition in multiple brain areas as the disease progresses. This information needs to be summarized to evaluate disease severity and predict disease progression. We, therefore, sought to develop a machine learning-derived index, SPARE-Tau, which successfully detects pathology in the earliest disease stages and accurately predicts progression compared to a priori-based region of interest approaches (ROI). METHODS 587 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort had flortaucipir scans, structural MRI scans, and an Aβ biomarker test (CSF or florbetapir PET) performed on the same visit. We derived the SPARE-Tau index in a subset of 367 participants. We evaluated associations with clinical measures for CSF p-tau, SPARE-MRI, and flortaucipir PET indices (SPARE-Tau, meta-temporal, and average Braak ROIs). Bootstrapped multivariate adaptive regression splines linear regression analyzed the association between the biomarkers and baseline ADAS-Cog13 scores. Bootstrapped multivariate linear regression models evaluated associations with clinical diagnosis. Cox-hazards and mixed-effects models investigated clinical progression and longitudinal ADAS-Cog13 changes. The Aβ positive cognitively unremarkable participants, not included in the SPARE-Tau training, served as an independent validation group. RESULTS Compared to CSF p-tau, meta-temporal, and averaged Braak tau PET ROIs, SPARE-Tau showed the strongest association with baseline ADAS-cog13 scores and diagnosis. SPARE-Tau also presented the strongest association with clinical progression in cognitively unremarkable participants and longitudinal ADAS-Cog13 changes. Results were confirmed in the Aβ+ cognitively unremarkable hold-out sample participants. CSF p-tau showed the weakest cross-sectional associations and longitudinal prediction. DISCUSSION Flortaucipir indices showed the strongest clinical association among the studied biomarkers (flortaucipir, florbetapir, structural MRI, and CSF p-tau) and were predictive in the preclinical disease stages. Among the flortaucipir indices, the machine-learning derived SPARE-Tau index was the most sensitive clinical progression biomarker. The combination of different biomarker modalities better predicted cognitive performance.
Collapse
Affiliation(s)
- Jon B. Toledo
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Neurology Houston Methodist Hospital, Houston, Texas, United States of America
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Hangfan Liu
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan R. Heckbert
- Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
| | - Michael Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, California, United States of America
- Department of Radiology, University of California, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Department of Psychiatry, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | - Mohamad Habes
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | | |
Collapse
|
31
|
Kim JW, Byun MS, Lee JH, Yi D, Kim MJ, Jung G, Lee JY, Lee YS, Kim YK, Kang KM, Sohn CH, Lee DY. Spouse bereavement and brain pathologies: A propensity score matching study. Psychiatry Clin Neurosci 2022; 76:490-504. [PMID: 35751876 PMCID: PMC9796777 DOI: 10.1111/pcn.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
AIM Spouse bereavement is one of life's greatest stresses and has been suggested to trigger or accelerate cognitive decline and dementia. However, little information is available about the potential brain pathologies underlying the association between spouse bereavement and cognitive decline. We aimed to investigate that lifetime spouse bereavement is associated with in vivo human brain pathologies underlying cognitive decline. METHODS A total of 319 ever-married older adults between the ages of 61 and 90 years underwent comprehensive clinical assessments and multimodal brain imaging including [11 C] Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, [18 F] fluorodeoxyglucose-PET, and magnetic resonance imaging. Participants were classified as experiencing no spouse bereavement or spouse bereavement, and comparisons using propensity score matching (59 cases and 59 controls) were performed. RESULTS Spouse bereavement was significantly associated with higher cerebral white matter hyperintensity (WMH) volume compared with no spouse bereavement. Interaction and subsequent subgroup analyses showed that spouse bereavement was significantly associated with higher WMH in the older (>75 years) subgroup and among those with no- or low-skill occupations. In addition, spouse bereavement at 60 years or older affects WMH volume compared with no spouse bereavement, whereas spouse bereavement at younger than 60 years did not. No group differences were observed in other brain pathologies between spouse bereavement categories. CONCLUSIONS The findings suggest that the spouse bereavement may contribute to dementia or cognitive decline by increasing cerebrovascular injury, particularly in older individuals and those with no- or low-skill occupations.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dahyun Yi
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Psychiatry, Eulji University Nowon Eulji Medical Center, Seoul, Republic of Korea
| | - Gijung Jung
- Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Center Seoul National University, Institute of Human Behavioral Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
32
|
Hong YJ, Kim CM, Lee JH, Sepulcre J. Correlations between APOE4 allele and regional amyloid and tau burdens in cognitively normal older individuals. Sci Rep 2022; 12:14307. [PMID: 35995824 PMCID: PMC9395408 DOI: 10.1038/s41598-022-18325-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
The correlations between apolipoprotein epsilon 4 (APOE4) status and regional amyloid, tau, and cortical thickness in cognitively normal elderly are not fully understood. Our cross-sectional study aimed to compare regional amyloid/tau burden, and cortical thickness according to APOE4 carrier status and assess correlations between APOE4 and Alzheimer's disease (AD)-related biomarker burdens. We analyzed 185 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Participants aged 55-90 with normal cognitive function were divided into amyloid ß-positive (Aß+) APOE4 carriers (group 1, n = 27), Aß+ APOE4 non-carriers (group 2, n = 29), and Aß- normal controls (group 0, n = 129). We compared amyloid depositions, tau depositions, and cortical thickness among the three groups and assessed correlations between APOE4 existence and imaging biomarkers adjusted for age and sex. The participants in group 2 were older than those in the other groups. The regional amyloid/tau standardized uptake value ratios (SUVRs) did not differ between groups 1 and 2, but the amyloid/tau SUVRs in most regions were numerically higher after adjusting for age difference. APOE4 allele had robust correlations with increased amyloid burden in the fronto-temporo-parietal cortical areas after adjustment for age and sex, but it had weaker and mixed correlations with the regional tau burden and did not have significant correlation with cortical thickness. We identified that the presence of APOE4 allele might be more highly associated with amyloid deposition than with other AD-related biomarkers such as tau or cortical thickness in cognitively normal elderly.
Collapse
Affiliation(s)
- Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
33
|
Transcranial Electromagnetic Treatment Stops Alzheimer’s Disease Cognitive Decline over a 2½-Year Period: A Pilot Study. MEDICINES 2022; 9:medicines9080042. [PMID: 36005647 PMCID: PMC9416517 DOI: 10.3390/medicines9080042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background: There is currently no therapeutic that can stop or reverse the progressive memory impairment of Alzheimer’s disease (AD). However, we recently published that 2 months of daily, in-home transcranial electromagnetic treatment (TEMT) reversed the cognitive impairment in eight mild/moderate AD subjects. These cognitive enhancements were accompanied by predicted changes in AD markers within both the blood and cerebrospinal fluid (CSF). Methods: In view of these encouraging findings, the initial clinical study was extended twice to encompass a period of 2½ years. The present study reports on the resulting long-term safety, cognitive assessments, and AD marker evaluations from the five subjects who received long-term treatment. Results: TEMT administration was completely safe over the 2½-year period, with no deleterious side effects. In six cognitive/functional tasks (including the ADAS-cog13, Rey AVLT, MMSE, and ADL), no decline in any measure occurred over this 2½-year period. Long-term TEMT induced reductions in the CSF levels of C-reactive protein, p-tau217, Aβ1-40, and Aβ1-42 while modulating CSF oligomeric Aβ levels. In the plasma, long-term TEMT modulated/rebalanced levels of both p-tau217 and total tau. Conclusions: Although only a limited number of AD patients were involved in this study, the results suggest that TEMT can stop the cognitive decline of AD over a period of at least 2½ years and can do so with no safety issues.
Collapse
|
34
|
Park J, Barahona‐Torres N, Jang S, Mok KY, Kim HJ, Han S, Cho K, Zhou X, Fu AKY, Ip NY, Seo J, Choi M, Jeong H, Hwang D, Lee DY, Byun MS, Yi D, Han JW, Mook‐Jung I, Hardy J. Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201212. [PMID: 35694866 PMCID: PMC9376815 DOI: 10.1002/advs.202201212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Indexed: 05/05/2023]
Abstract
Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aβ+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aβ- and 90 Aβ+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aβ-, 5 Aβ+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.
Collapse
Affiliation(s)
- Jong‐Chan Park
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Natalia Barahona‐Torres
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - So‐Yeong Jang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kin Y. Mok
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Haeng Jun Kim
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Sun‐Ho Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Jieun Seo
- Department of Laboratory MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Murim Choi
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Hyobin Jeong
- European Molecular Biology LaboratoryGenome Biology UnitHeidelberg69117Germany
| | - Daehee Hwang
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoul03080Republic of Korea
- Department of PsychiatryCollege of medicineSeoul National UniversitySeoul03080Republic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoul03080Republic of Korea
| | - Min Soo Byun
- Department of PsychiatryPusan National University Yangsan HospitalYangsan50612Republic of Korea
| | - Dahyun Yi
- Biomedical Research InstituteSeoul National University HospitalSeoul03082Republic of Korea
| | - Jong Won Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Inhee Mook‐Jung
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - John Hardy
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| |
Collapse
|
35
|
Lal C, Ayappa I, Ayas N, Beaudin AE, Hoyos C, Kushida CA, Kaminska M, Mullins A, Naismith SL, Osorio RS, Phillips CL, Parekh A, Stone KL, Turner AD, Varga AW. The Link between Obstructive Sleep Apnea and Neurocognitive Impairment: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2022; 19:1245-1256. [PMID: 35913462 PMCID: PMC9353960 DOI: 10.1513/annalsats.202205-380st] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is emerging evidence that obstructive sleep apnea (OSA) is a risk factor for preclinical Alzheimer's disease (AD). An American Thoracic Society workshop was convened that included clinicians, basic scientists, and epidemiologists with expertise in OSA, cognition, and dementia, with the overall objectives of summarizing the state of knowledge in the field, identifying important research gaps, and identifying potential directions for future research. Although currently available cognitive screening tests may allow for identification of cognitive impairment in patients with OSA, they should be interpreted with caution. Neuroimaging in OSA can provide surrogate measures of disease chronicity, but it has methodological limitations. Most data on the impact of OSA treatment on cognition are for continuous positive airway pressure (CPAP), with limited data for other treatments. The cognitive domains improving with CPAP show considerable heterogeneity across studies. OSA can negatively influence risk, manifestations, and possibly progression of AD and other forms of dementia. Sleep-dependent memory tasks need greater incorporation into OSA testing, with better delineation of sleep fragmentation versus intermittent hypoxia effects. Plasma biomarkers may prove to be sensitive, feasible, and scalable biomarkers for use in clinical trials. There is strong biological plausibility, but insufficient data, to prove bidirectional causality of the associations between OSA and aging pathology. Engaging, recruiting, and retaining diverse populations in health care and research may help to decrease racial and ethnic disparities in OSA and AD. Key recommendations from the workshop include research aimed at underlying mechanisms; longer-term longitudinal studies with objective assessment of OSA, sensitive cognitive markers, and sleep-dependent cognitive tasks; and pragmatic study designs for interventional studies that control for other factors that may impact cognitive outcomes and use novel biomarkers.
Collapse
|
36
|
Lai Y, Lin C, Lin X, Wu L, Zhao Y, Lin F. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer's disease. Front Aging Neurosci 2022; 14:932676. [PMID: 35966780 PMCID: PMC9366224 DOI: 10.3389/fnagi.2022.932676] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Alzheimer's disease is the most common dementia with clinical and pathological heterogeneity. Cuproptosis is a recently reported form of cell death, which appears to result in the progression of various diseases. Therefore, our study aimed to explore cuproptosis-related molecular clusters in Alzheimer's disease and construct a prediction model. Methods Based on the GSE33000 dataset, we analyzed the expression profiles of cuproptosis regulators and immune characteristics in Alzheimer's disease. Using 310 Alzheimer's disease samples, we explored the molecular clusters based on cuproptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were identified using the WGCNA algorithm. Subsequently, the optimal machine model was chosen by comparing the performance of the random forest model, support vector machine model, generalized linear model, and eXtreme Gradient Boosting. Nomogram, calibration curve, decision curve analysis, and three external datasets were applied for validating the predictive efficiency. Results The dysregulated cuproptosis-related genes and activated immune responses were determined between Alzheimer's disease and non-Alzheimer's disease controls. Two cuproptosis-related molecular clusters were defined in Alzheimer's disease. Analysis of immune infiltration suggested the significant heterogeneity of immunity between distinct clusters. Cluster2 was characterized by elevated immune scores and relatively higher levels of immune infiltration. Functional analysis showed that cluster-specific differentially expressed genes in Cluster2 were closely related to various immune responses. The Random forest machine model presented the best discriminative performance with relatively lower residual and root mean square error, and a higher area under the curve (AUC = 0.9829). A final 5-gene-based random forest model was constructed, exhibiting satisfactory performance in two external validation datasets (AUC = 0.8529 and 0.8333). The nomogram, calibration curve, and decision curve analysis also demonstrated the accuracy to predict Alzheimer's disease subtypes. Further analysis revealed that these five model-related genes were significantly associated with the Aβ-42 levels and β-secretase activity. Conclusion Our study systematically illustrated the complicated relationship between cuproptosis and Alzheimer's disease, and developed a promising prediction model to evaluate the risk of cuproptosis subtypes and the pathological outcome of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Lijuan Wu
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Yinan Zhao
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Fan Lin
| |
Collapse
|
37
|
Peira E, Poggiali D, Pardini M, Barthel H, Sabri O, Morbelli S, Cagnin A, Chincarini A, Cecchin D. A comparison of advanced semi-quantitative amyloid PET analysis methods. Eur J Nucl Med Mol Imaging 2022; 49:4097-4108. [PMID: 35652962 PMCID: PMC9525368 DOI: 10.1007/s00259-022-05846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To date, there is no consensus on how to semi-quantitatively assess brain amyloid PET. Some approaches use late acquisition alone (e.g., ELBA, based on radiomic features), others integrate the early scan (e.g., TDr, which targets the area of maximum perfusion) and structural imaging (e.g., WMR, that compares kinetic behaviour of white and grey matter, or SI based on the kinetic characteristics of the grey matter alone). In this study SUVr, ELBA, TDr, WMR, and SI were compared. The latter - the most complete one - provided the reference measure for amyloid burden allowing to assess the efficacy and feasibility in clinical setting of the other approaches. METHODS We used data from 85 patients (aged 44-87) who underwent dual time-point PET/MRI acquisitions. The correlations with SI were computed and the methods compared with the visual assessment. Assuming SUVr, ELBA, TDr, and WMR to be independent measures, we linearly combined them to obtain more robust indices. Finally, we investigated possible associations between each quantifier and age in amyloid-negative patients. RESULTS Each quantifier exhibited excellent agreement with visual assessment and strong correlation with SI (average AUC = 0.99, ρ = 0.91). Exceptions to this were observed for subcortical regions with ELBA and WMR (ρELBA = 0.44, ρWMR = 0.70). The linear combinations showed better performances than the individual methods. Significant associations were observed between TDr, WMR, SI, and age in amyloid-negative patients (p < 0.05). CONCLUSION Among the other methods, TDr came closest to the reference with less implementation complexity. Moreover, this study suggests that combining independent approaches gives better results than the individual procedure, so efforts should focus on multi-classifier systems for amyloid PET. Finally, the ability of techniques integrating blood perfusion to depict age-related variations in amyloid load in amyloid-negative subjects demonstrates the goodness of the estimate.
Collapse
Affiliation(s)
- Enrico Peira
- INFN - National Institute of Nuclear Physics, via Dodecaneso 33, 16146, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy.
| | - Davide Poggiali
- PNC - Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Annachiara Cagnin
- Neurology Unit, Department of Neurology, University Hospital of Padua, Padua, Italy
| | - Andrea Chincarini
- INFN - National Institute of Nuclear Physics, via Dodecaneso 33, 16146, Genoa, Italy
| | - Diego Cecchin
- PNC - Padua Neuroscience Center, University of Padua, Padua, Italy
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padua, Padua, Italy
| |
Collapse
|
38
|
McDade EM. Alzheimer Disease. Continuum (Minneap Minn) 2022; 28:648-675. [PMID: 35678397 DOI: 10.1212/con.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Alzheimer disease (AD) is the most common cause of dementia in adults (mid to late life), highlighting the importance of understanding the risk factors, clinical manifestations, and recent developments in diagnostic testing and therapeutics. RECENT FINDINGS Advances in fluid (CSF and blood-based) and imaging biomarkers are allowing for a more precise and earlier diagnosis of AD (relative to non-AD dementias) across the disease spectrum and in patients with atypical clinical features. Specifically, tau- and amyloid-related AD pathologic changes can now be measured by CSF, plasma, and positron emission tomography (PET) with good precision. Additionally, a better understanding of risk factors for AD has highlighted the need for clinicians to address comorbidities to maximize prevention of cognitive decline in those at risk or to slow decline in patients who are symptomatic. Recent clinical trials of amyloid-lowering drugs have provided not only some optimism that amyloid reduction or prevention may be beneficial but also a recognition that addressing additional targets will be necessary for significant disease modification. SUMMARY Recent developments in fluid and imaging biomarkers have led to the improved understanding of AD as a chronic condition with a protracted presymptomatic phase followed by the clinical stage traditionally recognized by neurologists. As clinical trials of potential disease-modifying therapies continue, important developments in the understanding of the disease will improve clinical care now and lead to more effective therapies in the near future.
Collapse
|
39
|
Murray J, Meloni G, Cortes EP, KimSilva A, Jacobs M, Ramkissoon A, Crary JF, Morgello S. Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV. Acta Neuropathol Commun 2022; 10:69. [PMID: 35526056 PMCID: PMC9080134 DOI: 10.1186/s40478-022-01375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are implicated in Alzheimer's Disease (AD) pathogenesis. In a middle-aged cohort enriched for neuroinflammation, we asked whether microgliosis was related to neocortical amyloid beta (A[Formula: see text]) deposition and neuronal phosphorylated tau (p-tau), and whether microgliosis predicted cognition. Frontal lobe tissue from 191 individuals autopsied with detectable (HIV-D) and undetectable (HIV-U) HIV infection, and 63 age-matched controls were examined. Immunohistochemistry (IHC) was used to evaluate A[Formula: see text] plaques and neuronal p-tau, and quantitate microgliosis with markers Iba1, CD163, and CD68 in large regions of cortex. Glia in the A[Formula: see text] plaque microenvironment were quantitated by immunofluorescence (IF). The relationship of microgliosis to cognition was evaluated. No relationship between A[Formula: see text] or p-tau accumulation and overall severity of microgliosis was discerned. Individuals with uncontrolled HIV had the greatest microgliosis, but fewer A[Formula: see text] plaques; they also had higher prevalence of APOE [Formula: see text]4 alleles, but died earlier than other groups. HIV group status was the only variable predicting microgliosis over large frontal regions. In contrast, in the A[Formula: see text] plaque microenvironment, APOE [Formula: see text]4 status and sex were dominant predictors of glial infiltrates, with smaller contributions of HIV status. Cognition correlated with large-scale microgliosis in HIV-D, but not HIV-U, individuals. In this autopsy cohort, over large regions of cortex, HIV status predicts microgliosis, whereas in the A[Formula: see text] plaque microenvironment, traditional risk factors of AD (APOE [Formula: see text]4 and sex) are stronger determinants. While microgliosis does not predict neurodegenerative protein deposition, it does predict cognition in HIV-D. Increased neuroinflammation does not initiate amyloid deposition in a younger group with enhanced genetic risk. However, once A[Formula: see text] deposits are established, APOE [Formula: see text]4 predicts increased plaque-associated inflammation.
Collapse
Affiliation(s)
- Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Gregory Meloni
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Etty P Cortes
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ariadna KimSilva
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Michelle Jacobs
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - Alyssa Ramkissoon
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA
| | - John F Crary
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Box 1137, Mount Sinai Medical Center, New York City, NY, 10029, USA.
- Department of Neuroscience, The Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
40
|
Cao C, Abulaban H, Baranowski R, Wang Y, Bai Y, Lin X, Shen N, Zhang X, Arendash GW. Transcranial Electromagnetic Treatment “Rebalances” Blood and Brain Cytokine Levels in Alzheimer’s Patients: A New Mechanism for Reversal of Their Cognitive Impairment. Front Aging Neurosci 2022; 14:829049. [PMID: 35585867 PMCID: PMC9108275 DOI: 10.3389/fnagi.2022.829049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background The immune system plays a critical role in the development and progression of Alzheimer’s disease (AD). However, there is disagreement as to whether development/progression of AD involves an over-activation or an under-activation of the immune system. In either scenario, the immune system’s cytokine levels are abnormal in AD and in need of rebalancing. We have recently published a pilot clinical trial (https://clinicaltrials.gov/ct2/show/NCT02958930) showing that 2 months of daily in-home Transcranial Electromagnetic Treatment (TEMT) was completely safe and resulted in reversal of AD cognitive impairment. Methods For the eight mild/moderate AD subjects in this published work, the present study sought to determine if their TEMT administration had immunologic effects on blood or CSF levels of 12 cytokines. Subjects were given daily in-home TEMT for 2 months by their caregivers, utilizing first-in-class MemorEM™ devices. Results For eight plasma cytokines, AD subjects with lower baseline cytokine levels always showed increases in those cytokines after both a single treatment or after 2-months of daily TEMT. By contrast, those AD subjects with higher baseline cytokine levels in plasma showed treatment-induced decreases in plasma cytokines at both time points. Thus, a gravitation to reported normal plasma cytokine levels (i.e., a “rebalancing”) occurred with both acute and long-term TEMT. In the CSF, TEMT-induced a similar rebalancing for seven measurable cytokines, the direction and extent of changes in individual subjects also being linked to their baseline CSF levels. Conclusion Our results strongly suggest that daily TEMT to AD subjects for 2-months can “rebalance” levels for 11 of 12 cytokines in blood and/or brain, which is associated with reversal of their cognitive impairment. TEMT is likely to be providing these immunoregulatory effects by affecting cytokine secretion from: (1) blood cells traveling through the head’s vasculature, and (2) the brain’s microglia/astrocytes, choroid plexus, or neurons. This rebalancing of so many cytokines, and in both brain and systemic compartments, appears to be a remarkable new mechanism of TEMT action that may contribute substantially to it’s potential to prevent, stop, or reverse AD and other diseases of aging.
Collapse
Affiliation(s)
- Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Haitham Abulaban
- Axiom Clinical Research, Tampa, FL, United States
- University of South Florida Health Byrd Alzheimer’s Institute, Tampa, FL, United States
| | | | - Yanhong Wang
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Yun Bai
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Xiaoyang Lin
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Ning Shen
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Xiaolin Zhang
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- MegaNano Biotech, Inc., Tampa, FL, United States
| | - Gary W. Arendash
- NeuroEM Therapeutics, Inc., Phoenix, AZ, United States
- *Correspondence: Gary W. Arendash,
| |
Collapse
|
41
|
Studart-Neto A, Coutinho AM. From clinical phenotype to proteinopathy: molecular neuroimaging in neurodegenerative dementias. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:24-35. [PMID: 35976328 PMCID: PMC9491407 DOI: 10.1590/0004-282x-anp-2022-s138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative dementias are characterized by the abnormal accumulation of misfolded proteins. However, its diagnostic criteria are still based on the clinical phenotype. The development of biomarkers allowed in vivo detection of pathophysiological processes. This article aims to make a non-systematic review of the use of molecular neuroimaging as a biomarker. Molecular neuroimaging is based on the use of radiotracers for image acquisition. The radiotracer most used in PET is 18F-fluorodeoxyglucose (FDG), with which it is possible to study the regional brain glucose metabolism. The pattern of regional hypometabolism provides neuroanatomical information on the neurodegenerative process, which, in turn, has a good specificity for each type of proteinopathy. FDG is very useful in the differential diagnosis of neurodegenerative dementias through the regional pattern of involvement, including dementia with Lewy bodies and the spectrum of frontotemporal dementia. More recently, radiotracers with specific ligands to some of the pathological proteins have been developed. Pittsburgh compound B (PIB) labeled with 11C and the ligands that use 18F (florbetapir, florbetaben and flutemetamol) are the most used radiotracers for the detection of insoluble β-amyloid peptide in Alzheimer's disease (AD). A first generation of ligands for tau protein has been developed, but it has some affinity for other non-tau protein aggregates. A second generation has the advantage of having a higher affinity for hyperphosphorylated tau protein, including in primary tauopathies.
Collapse
Affiliation(s)
- Adalberto Studart-Neto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Divisão e Laboratório de Medicina Nuclear (LIM 43), São Paulo, SP, Brazil
| |
Collapse
|
42
|
Klyucherev TO, Olszewski P, Shalimova AA, Chubarev VN, Tarasov VV, Attwood MM, Syvänen S, Schiöth HB. Advances in the development of new biomarkers for Alzheimer's disease. Transl Neurodegener 2022; 11:25. [PMID: 35449079 PMCID: PMC9027827 DOI: 10.1186/s40035-022-00296-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Timofey O Klyucherev
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pawel Olszewski
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Alena A Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
43
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
44
|
Kagerer SM, Schroeder C, van Bergen JMG, Schreiner SJ, Meyer R, Steininger SC, Vionnet L, Gietl AF, Treyer V, Buck A, Pruessmann KP, Hock C, Unschuld PG. Low Subicular Volume as an Indicator of Dementia-Risk Susceptibility in Old Age. Front Aging Neurosci 2022; 14:811146. [PMID: 35309894 PMCID: PMC8926841 DOI: 10.3389/fnagi.2022.811146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Hippocampal atrophy is an established Alzheimer’s Disease (AD) biomarker. Volume loss in specific subregions as measurable with ultra-high field magnetic resonance imaging (MRI) may reflect earliest pathological alterations. Methods Data from positron emission tomography (PET) for estimation of cortical amyloid β (Aβ) and high-resolution 7 Tesla T1 MRI for assessment of hippocampal subfield volumes were analyzed in 61 non-demented elderly individuals who were divided into risk-categories as defined by high levels of cortical Aβ and low performance in standardized episodic memory tasks. Results High cortical Aβ and low episodic memory interactively predicted subicular volume [F(3,57) = 5.90, p = 0.018]. The combination of high cortical Aβ and low episodic memory was associated with significantly lower subicular volumes, when compared to participants with high episodic memory (p = 0.004). Discussion Our results suggest that low subicular volume is linked to established indicators of AD risk, such as increased cortical Aβ and low episodic memory. Our data support subicular volume as a marker of dementia-risk susceptibility in old-aged non-demented persons.
Collapse
Affiliation(s)
- Sonja M. Kagerer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clemens Schroeder
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | | | - Simon J. Schreiner
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Stefanie C. Steininger
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laetitia Vionnet
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Anton F. Gietl
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Paul G. Unschuld
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- *Correspondence: Paul G. Unschuld,
| |
Collapse
|
45
|
Cognitive reserve proxies, Alzheimer pathologies, and cognition. Neurobiol Aging 2022; 110:88-95. [PMID: 34879329 PMCID: PMC9234822 DOI: 10.1016/j.neurobiolaging.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 02/03/2023]
Abstract
This study aimed to explore the moderating effects of the frequently used cognitive reserve (CR) proxies [i.e., education, premorbid intelligence quotient (pIQ), occupational complexity (OC), and lifetime cognitive activity (LCA)] on the relationships between various in vivo Alzheimer's disease (AD) pathologies and cognition. In total, 351 [268 cognitively unimpaired (CU), 83 cognitive impaired (CI)] older adults underwent multi-modal brain imaging to measure AD pathologies and cognitive assessments, and information on CR proxies was obtained. For overall participants, only education moderated the relationship between Aβ deposition and cognition. Education, pIQ, and LCA, but not OC, showed moderating effect on the relationship between AD-signature cerebral hypometabolism and cognition. In contrast, only OC had a moderating effect on the relationship between cortical atrophy of the AD-signature regions and cognition. Such moderation effects of the CR proxies were similarly observed in CI individuals, but most of them were not in CU individuals. The findings suggest that the proposed CR proxies have different moderating effects on the relationships between specific AD pathologies and cognition.
Collapse
|
46
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
47
|
Sohn BK, Byun MS, Yi D, Jeon SY, Lee JH, Choe YM, Lee DW, Lee JY, Kim YK, Sohn CH, Lee DY. Late-Life Physical Activities Moderate the Relationship of Amyloid-β Pathology with Neurodegeneration in Individuals Without Dementia. J Alzheimers Dis 2022; 86:441-450. [PMID: 35068452 PMCID: PMC9210327 DOI: 10.3233/jad-215258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Physical activities (PA) have been suggested to reduce the risk of Alzheimer's disease (AD) dementia. However, information on the neuropathological links underlying the relationship is limited. OBJECTIVE We investigated the role of midlife and late-life PA with in vivo AD neuropathologies in old adults without dementia. METHODS This study included participants from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's disease (KBASE). The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging. Using the multi-modal brain imaging data, in vivo AD pathologies including global amyloid deposition, AD-signature region cerebral glucose metabolism (AD-CM), and AD-signature region cortical thickness (AD-CT) were quantified. Both midlife and late-life PA of participants were measured using the Lifetime Total Physical Activity Questionnaire. RESULTS This study was performed on 260 participants without dementia (195 with normal cognitive function and 65 with mild cognitive impairment). PA of neither midlife nor late-life showed direct correspondence with any neuroimaging biomarker. However, late-life PA moderated the relationship of brain amyloid-β (Aβ) deposition with AD-CM and AD-CT. Aβ positivity had a significant negative effect on both AD-CM and AD-CT in individuals with lower late-life PA, but those with higher late-life PA did not show such results. Midlife PA did not have such a moderation effect. CONCLUSION The findings suggest that physically active lifestyle in late-life, rather than that in midlife, may delay AD-associated cognitive decline by decreasing Aβ-induced neurodegenerative changes in old adults.
Collapse
Affiliation(s)
- Bo Kyung Sohn
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dahyun Yi
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Dong Woo Lee
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea,Correspondence to: Dong Young Lee, Department of Neuropsychiatry, Seoul National University Hospital & Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. Tel.: +82 2 2072 2205; Fax: +82 2 744 7241;
| | | |
Collapse
|
48
|
Ramanan VK, Heckman MG, Przybelski SA, Lesnick TG, Lowe VJ, Graff-Radford J, Mielke MM, Jack CR, Knopman DS, Petersen RC, Ross OA, Vemuri P. Polygenic Scores of Alzheimer's Disease Risk Genes Add Only Modestly to APOE in Explaining Variation in Amyloid PET Burden. J Alzheimers Dis 2022; 88:1615-1625. [PMID: 35811524 PMCID: PMC9534315 DOI: 10.3233/jad-220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain accumulation of amyloid-β is a hallmark event in Alzheimer's disease (AD) whose underlying mechanisms are incompletely understood. Case-control genome-wide association studies have implicated numerous genetic variants in risk of clinically diagnosed AD dementia. OBJECTIVE To test for associations between case-control AD risk variants and amyloid PET burden in older adults, and to assess whether a polygenic measure encompassing these factors would account for a large proportion of the unexplained variance in amyloid PET levels in the wider population. METHODS We analyzed data from the Mayo Clinic Study of Aging (MCSA) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Global cortical amyloid PET burden was the primary outcome. The 38 gene variants from Wightman et al. (2021) were analyzed as predictors, with PRSice-2 used to assess the collective phenotypic variance explained. RESULTS Known AD risk variants in APOE, PICALM, CR1, and CLU were associated with amyloid PET levels. In aggregate, the AD risk variants were strongly associated with amyloid PET levels in the MCSA (p = 1.51×10-50) and ADNI (p = 3.21×10-64). However, in both cohorts the non-APOE variants uniquely contributed only modestly (MCSA = 2.1%, ADNI = 4.4%) to explaining variation in amyloid PET levels. CONCLUSION Additional case-control AD risk variants added only modestly to APOE in accounting for individual variation in amyloid PET burden, results which were consistent across independent cohorts with distinct recruitment strategies and subject characteristics. Our findings suggest that advancing precision medicine for dementia may require integration of strategies complementing case-control approaches, including biomarker-specific genetic associations, gene-by-environment interactions, and markers of disease progression and heterogeneity.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Michael G. Heckman
- Department of Quantitative Health Sciences, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| |
Collapse
|
49
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
50
|
Marks JD, Syrjanen JA, Graff-Radford J, Petersen RC, Machulda MM, Campbell MR, Algeciras-Schimnich A, Lowe V, Knopman DS, Jack CR, Vemuri P, Mielke MM. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res Ther 2021; 13:199. [PMID: 34906229 PMCID: PMC8672619 DOI: 10.1186/s13195-021-00944-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jordan D Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|