1
|
Long B, Brady WJ, Gottlieb M. Fibrinolytic uses in the emergency department: a narrative review. Am J Emerg Med 2024; 89:85-94. [PMID: 39700884 DOI: 10.1016/j.ajem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Several life-threatening conditions associated with thrombosis include acute ischemic stroke (AIS), acute myocardial infarction (AMI), and acute pulmonary embolism (PE). Fibrinolytics are among the treatment algorithms for these conditions. OBJECTIVE This narrative review provides emergency clinicians with an overview of fibrinolytics for AIS, AMI, and PE in the emergency department (ED) setting. DISCUSSION Pathologic thrombosis can result in vascular occlusion and embolism, ultimately leading to end-organ injury. Fibrinolytics are medications utilized to lyse a blood clot, improving vascular flow. One of the first agents utilized was streptokinase, though this is not as often used with the availability of fibrin-specific agents including alteplase (tPA), tenecteplase (TNK), and reteplase (rPA). These agents are integral components in the management of several conditions, including AIS, AMI, and PE. Patients with AIS who present within 3-4.5 h of measurable neurologic deficit with no evidence of intracerebral hemorrhage (ICH) or other contraindications may be eligible to receive tPA or TNK. In the absence of percutaneous coronary intervention (PCI), fibrinolytics should be considered in patients with AMI presenting with chest pain for at least 30 min but less than 12 h, though it may be considered up to 24 h. Unlike in AIS and PE, anticoagulation and antiplatelet medications should be administered in those with AMI receiving fibrinolytics. Following fibrinolytics, PCI is typically necessary. Fibrinolytics are recommended in patients with high-risk PE (hemodynamic instability), as they reduce the risk of mortality. The most significant complication following fibrinolytic administration includes major bleeding such as ICH, which occurs most frequently in those with AIS compared to AMI and PE. Thus, close patient monitoring is necessary following fibrinolytic administration. CONCLUSIONS An understanding of fibrinolytics in the ED setting is essential, including the indications, contraindications, and dosing.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
3
|
Sorby-Adams A, Guo J, de Havenon A, Payabvash S, Sze G, Pinter NK, Jaikumar V, Siddiqui A, Baldassano S, Garcia-Guarniz AL, Zabinska J, Lalwani D, Peasley E, Goldstein JN, Nelson OK, Schaefer PW, Wira CR, Pitts J, Lee V, Muir KW, Nimjee SM, Kirsch J, Eugenio Iglesias J, Rosen MS, Sheth KN, Kimberly WT. Diffusion-Weighted Imaging Fluid-Attenuated Inversion Recovery Mismatch on Portable, Low-Field Magnetic Resonance Imaging Among Acute Stroke Patients. Ann Neurol 2024; 96:321-331. [PMID: 38738750 PMCID: PMC11293843 DOI: 10.1002/ana.26954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE For stroke patients with unknown time of onset, mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) can guide thrombolytic intervention. However, access to MRI for hyperacute stroke is limited. Here, we sought to evaluate whether a portable, low-field (LF)-MRI scanner can identify DWI-FLAIR mismatch in acute ischemic stroke. METHODS Eligible patients with a diagnosis of acute ischemic stroke underwent LF-MRI acquisition on a 0.064-T scanner within 24 h of last known well. Qualitative and quantitative metrics were evaluated. Two trained assessors determined the visibility of stroke lesions on LF-FLAIR. An image coregistration pipeline was developed, and the LF-FLAIR signal intensity ratio (SIR) was derived. RESULTS The study included 71 patients aged 71 ± 14 years and a National Institutes of Health Stroke Scale of 6 (interquartile range 3-14). The interobserver agreement for identifying visible FLAIR hyperintensities was high (κ = 0.85, 95% CI 0.70-0.99). Visual DWI-FLAIR mismatch had a 60% sensitivity and 82% specificity for stroke patients <4.5 h, with a negative predictive value of 93%. LF-FLAIR SIR had a mean value of 1.18 ± 0.18 <4.5 h, 1.24 ± 0.39 4.5-6 h, and 1.40 ± 0.23 >6 h of stroke onset. The optimal cut-point for LF-FLAIR SIR was 1.15, with 85% sensitivity and 70% specificity. A cut-point of 6.6 h was established for a FLAIR SIR <1.15, with an 89% sensitivity and 62% specificity. INTERPRETATION A 0.064-T portable LF-MRI can identify DWI-FLAIR mismatch among patients with acute ischemic stroke. Future research is needed to prospectively validate thresholds and evaluate a role of LF-MRI in guiding thrombolysis among stroke patients with uncertain time of onset. ANN NEUROL 2024;96:321-331.
Collapse
Affiliation(s)
- Annabel Sorby-Adams
- Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Guo
- Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adam de Havenon
- Department of Neurology, Yale Center for Brain & Mind Health, Yale School of Medicine, New Haven, CT, USA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gordon Sze
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nandor K. Pinter
- Department of Radiology, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Vinay Jaikumar
- Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Adnan Siddiqui
- Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Steven Baldassano
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana-Lucia Garcia-Guarniz
- Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Zabinska
- Department of Neurology, Yale Center for Brain & Mind Health, Yale School of Medicine, New Haven, CT, USA
| | - Dheeraj Lalwani
- Department of Neurology, Yale Center for Brain & Mind Health, Yale School of Medicine, New Haven, CT, USA
| | - Emma Peasley
- Department of Neurology, Yale Center for Brain & Mind Health, Yale School of Medicine, New Haven, CT, USA
| | - Joshua N. Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia K. Nelson
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela W. Schaefer
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles R. Wira
- Department of Emergency Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, Connecticut, USA
| | - John Pitts
- Hyperfine Incorporated, Guilford, Connecticut, USA
| | - Vivien Lee
- Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Keith W. Muir
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Shahid M. Nimjee
- Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - John Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Juan Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Centre for Medical Image Computing, University College London, London, UK
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Matthew S. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale Center for Brain & Mind Health, Yale School of Medicine, New Haven, CT, USA
| | - W. Taylor Kimberly
- Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Yao Y, Wu Y, Zhang X, Liu C, Cai L, Ying Y, Yang J. Real-world data of tenecteplase vs. alteplase in the treatment of acute ischemic stroke: a single-center analysis. Front Neurol 2024; 15:1386386. [PMID: 38708004 PMCID: PMC11066233 DOI: 10.3389/fneur.2024.1386386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Background This retrospective observational cohort study aimed to evaluate whether tenecteplase's use for acute ischemic stroke (AIS) has time management advantages and clinical benefits. Methods 144 AIS patients treated with alteplase and 120 with tenecteplase were included. We compared baseline clinical characteristics, key reperfusion therapy time indices [onset-to-treatment time (OTT), door-to-needle time (DNT), and door-to-puncture time (DPT)] and clinical outcomes (24-h post-thrombolysis NIHSS improvement, and intracranial hemorrhage incidence) between the groups using univariate analysis. We assessed hospital stay durations and used binary logistic regression to examine tenecteplase's association with DNT and DPT target times, NIHSS improvement, and intracranial hemorrhage. Results Baseline characteristics showed no significant differences except hyperlipidemia and atrial fibrillation. OTT (133 vs. 163.72, p = 0.001), DNT (36.5 vs. 50, p < 0.001) and DPT (117 vs. 193, p = 0.002) were significantly faster in the tenecteplase group. The rates of DNT ≤ 45 min (65.83% vs. 40.44%, p < 0.001) and DPT ≤ 120 min (59.09% vs. 13.79%, p = 0.001) were significantly higher in the tenecteplase group. Tenecteplase was an independent predictor of achieving target DNT (OR 2.951, 95% CI 1.732-5.030; p < 0.001) and DPT (OR 7.867, 95% CI 1.290-47.991; p = 0.025). Clinically, the proportion NIHSS improvement 24 h post-thrombolysis was higher in the tenecteplase group (64.17% vs. 50%, p = 0.024). No significant differences were observed in symptomatic intracranial hemorrhage (sICH) or any intracranial hemorrhage (ICH). Patients receiving tenecteplase had shorter hospital stays (6 vs. 8 days, p < 0.001). Tenecteplase was an independent predictor of NIHSS improvement at 24 h (OR 1.715, 95% CI 1.011-2.908; p = 0.045). There was no significant association between thrombolytic choice and sICH or any ICH. Conclusion Tenecteplase significantly reduced DNT and DPT. It was associated with early neurological function improvement (at 24 h), without compromising safety compared to alteplase. The findings support tenecteplase's application in AIS.
Collapse
Affiliation(s)
- Yu Yao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Ningbo University, Ningbo, China
| | - Chang Liu
- Department of Pharmacology, Ningbo University, Ningbo, China
| | - Lingling Cai
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yisha Ying
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Aziz YN, Sucharew H, Reeves MJ, Broderick JP. Factors Associated With Premature Termination of Hyperacute Stroke Trials: A Review. J Am Heart Assoc 2024; 13:e034115. [PMID: 38606770 PMCID: PMC11262524 DOI: 10.1161/jaha.124.034115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND We performed a review of acute stroke trials to determine features associated with premature termination of trial enrollment, defined by the authors as not meeting preplanned sample size. METHODS AND RESULTS MEDLINE was searched for randomized clinical stroke trials published in 9 major clinical journals between 2013 and 2022. We included randomized clinical trials that were phase 2 or 3 with a preplanned sample size ≥100 and a time-to-treatment within 24 hours of onset for transient ischemic attack, ischemic stroke, or intracerebral hemorrhage. Data were abstracted on trial features including trial design, inclusion criteria, imaging, location and number of sites, masking, treatment complexity, control group (standard therapy, placebo), industry involvement, and preplanned stopping rules (futility and efficacy). Least absolute shrinkage and selection operator regression was used to select the most important factors associated with premature termination; then, a multivariable logistic regression was fit including only the least absolute shrinkage and selection operator selected variables. Of 1475 studies assessed, 98 trials met eligibility criteria. Forty-five (46%) trials were prematurely terminated, of which 27% were stopped for benefit/efficacy, 20% for lack of money/slow enrollment, 18% for futility, 16% for newly available evidence, 17% for other reasons, and 4% due to harm. Complex trials (adjusted odds ratio [aOR], 2.76 [95% CI, 1.13-7.49]), presence of a futility rule (aOR, 4.43 [95% CI, 1.62-17.91]), and exclusion of prestroke dependency (none/slight disability only; aOR, 2.19 [95% CI, 0.84-6.72] versus dependency allowed) were identified as the strongest predictors. CONCLUSIONS Nearly half of acute stroke trials were terminated prematurely. Broadening inclusion criteria and simplifying trial design may decrease the likelihood of unplanned termination, whereas planned futility analyses may appropriately terminate trials early, saving money and resources.
Collapse
Affiliation(s)
- Yasmin N. Aziz
- Department of Neurology and Rehabilitation MedicineUniversity of CincinnatiCincinnatiOHUSA
| | - Heidi Sucharew
- Department of Emergency MedicineUniversity of CincinnatiCincinnatiOHUSA
| | - Mathew J. Reeves
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMIUSA
| | - Joseph P. Broderick
- Department of Neurology and Rehabilitation MedicineUniversity of CincinnatiCincinnatiOHUSA
| |
Collapse
|
6
|
Ringleb P, Bauer G, Purrucker J. [Intravenous thrombolysis of ischemic stroke-Current status]. DER NERVENARZT 2023:10.1007/s00115-023-01500-9. [PMID: 37249597 DOI: 10.1007/s00115-023-01500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Intravenous thrombolysis (IVT) treatment with alteplase (rtPA) is an essential part of the routine treatment of patients with ischemic stroke since its introduction in the late 1990s. Rapid treatment is of essential importance. For patients with an unclear time window, various mismatch concepts have been established to identify salvageable brain tissue prior to IVT. Numerous official contraindications for rtPA are not evidence-based; for example, current data from observational studies show that systemic thrombolytic treatment is possible even in patients receiving direct oral anticoagulant (DOAC) treatment. Tenecteplase (TNK) is an alternative thrombolytic agent with some pharmacologic advantages. The most recent guidelines indicate that TNK is particularly advantageous over rtPA in patients treated in combination with endovascular stroke therapy (EST). The combination of IVT and EST should primarily be performed in the 4.5‑h time window in patients without contraindications; in the later time window EST alone is conceivable if it can be performed without delay.
Collapse
Affiliation(s)
- Peter Ringleb
- Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - Gregor Bauer
- Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - Jan Purrucker
- Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| |
Collapse
|
7
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
8
|
Thrombolysis for acute ischaemic stroke: current status and future perspectives. Lancet Neurol 2023; 22:418-429. [PMID: 36907201 DOI: 10.1016/s1474-4422(22)00519-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 03/14/2023]
Abstract
Alteplase is currently the only approved thrombolytic agent for treatment of acute ischaemic stroke, but interest is burgeoning in the development of new thrombolytic agents for systemic reperfusion with an improved safety profile, increased efficacy, and convenient delivery. Tenecteplase has emerged as a potential alternative thrombolytic agent that might be preferred over alteplase because of its ease of administration and reported efficacy in patients with large vessel occlusion. Ongoing research efforts are also looking at potential improvements in recanalisation with the use of adjunct therapies to intravenous thrombolysis. New treatment strategies are also emerging that aim to reduce the risk of vessel reocclusion after intravenous thrombolysis administration. Other research endeavors are looking at the use of intra-arterial thrombolysis after mechanical thrombectomy to induce tissue reperfusion. The growing implementation of mobile stroke units and advanced neuroimaging could boost the number of patients who can receive intravenous thrombolysis by shortening onset-to-treatment times and identifying patients with salvageable penumbra. Continued improvements in this area will be essential to facilitate the ongoing research endeavors and to improve delivery of new interventions.
Collapse
|
9
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
Piechowski-Jozwiak B, Abidi E, El Nekidy WS, Bogousslavsky J. Clinical Pharmacokinetics and Pharmacodynamics of Desmoteplase. Eur J Drug Metab Pharmacokinet 2022; 47:165-176. [PMID: 34893967 PMCID: PMC8664670 DOI: 10.1007/s13318-021-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/20/2022]
Abstract
Desmoteplase is a bat (Desmodus rotundus) saliva-derived fibrinolytic enzyme resembling a urokinase and tissue plasminogen activator. It is highly dependent on fibrin and has some neuroprotective attributes. Intravenous administration of desmoteplase is safe and well tolerated in healthy subjects. Plasma fibrinolytic activity is linearly related to its blood concentration, its terminal elimination half-life ranges from 3.8 to 4.92 h (50 vs. 90 μg/kg dose). Administration of desmoteplase leads to transitory derangement of fibrinogen, D-dimer, alpha2-antiplasmin, and plasmin and antiplasmin complex which normalize within 4-12 h. It does not alter a prothrombin test, international normalized ratio, activated partial thromboplastin time, and prothrombin fragment 1.2. Desmoteplase was tested in myocardial infarction and pulmonary embolism and showed promising results versus alteplase. In ischemic stroke trials, desmoteplase was linked to increased rates of symptomatic intracranial hemorrhages and case fatality. However, data from "The desmoteplase in Acute Ischemic Stroke" Trials, DIAS-3 and DIAS-J, suggest that the drug is well tolerated and its safety profile is comparable to placebo. Desmoteplase is theoretically a superior thrombolytic because of high fibrin specificity, no activation of beta-amyloid, and lack of neurotoxicity. It was associated with better outcomes in patients with significant stenosis or occlusion of a proximal precerebral vessels. However, DIAS-4 was stopped as it might have not reached its primary endpoint. Due to its promising properties, desmoteplase may be added into treatment of ischemic stroke with extension of the time window and special emphasis on patients presenting outside the 4.5-h thrombolysis window, with wake-up strokes and strokes of unknown onset.
Collapse
Affiliation(s)
- Bartlomiej Piechowski-Jozwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, OH, USA
- Department of Neurology, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Emna Abidi
- Department of Pharmacy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE.
| | - Wasim S El Nekidy
- Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, OH, USA
- Department of Pharmacy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Julien Bogousslavsky
- Center for Brain and Nervous System Diseases (Neurocenter), Genolier Swiss Medical Network (Geneva, Lausanne, Glion, Genolier, Fribourg, Zurich), Clinique Valmont, 1823, Glion/Montreux, Switzerland
| |
Collapse
|
11
|
Jiang L, Chen W, Ye J, Wang Y. Potential Role of Exosomes in Ischemic Stroke Treatment. Biomolecules 2022; 12:115. [PMID: 35053263 PMCID: PMC8773818 DOI: 10.3390/biom12010115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is a life-threatening cerebral vascular disease and accounts for high disability and mortality worldwide. Currently, no efficient therapeutic strategies are available for promoting neurological recovery in clinical practice, except rehabilitation. The majority of neuroprotective drugs showed positive impact in pre-clinical studies but failed in clinical trials. Therefore, there is an urgent demand for new promising therapeutic approaches for ischemic stroke treatment. Emerging evidence suggests that exosomes mediate communication between cells in both physiological and pathological conditions. Exosomes have received extensive attention for therapy following a stroke, because of their unique characteristics, such as the ability to cross the blood brain-barrier, low immunogenicity, and low toxicity. An increasing number of studies have demonstrated positively neurorestorative effects of exosome-based therapy, which are largely mediated by the microRNA cargo. Herein, we review the current knowledge of exosomes, the relationships between exosomes and stroke, and the therapeutic effects of exosome-based treatments in neurovascular remodeling processes after stroke. Exosomes provide a viable and prospective treatment strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Jinyi Ye
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (L.J.); (W.C.); (J.Y.)
- Chinese Institute for Brain Research, Beijing 102206, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
| |
Collapse
|
12
|
Mechanisms of Thrombosis and Thrombolysis. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Lansberg MG, Wintermark M, Kidwell CS, Albers GW. Magnetic Resonance Imaging of Cerebrovascular Diseases. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Fischer T, Riedl R. Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins. Drug Discov Today 2021; 27:567-575. [PMID: 34678490 DOI: 10.1016/j.drudis.2021.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Given the vast number of venomous and poisonous animals, it is surprising that only relatively few animal-derived toxins have been explored and made their way into marketed drugs or are being investigated in ongoing clinical trials. In this review, we highlight marketed drugs deriving from animal toxins as well as ongoing clinical trials and preclinical investigations in the field. We emphasize that more attention should be paid to the rich supply of candidates that nature provides as valuable starting points for addressing serious unmet medical needs.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
15
|
Zhang R, Wei H, Ren Y, Wu Y, Luo Y, Zhang L, Huo Y, Feng J, Monnier PP, Qin X. Outcomes and Treatment Complications of Intravenous Urokinase Thrombolysis in Acute Ischemic Stroke in China. Front Neurol 2021; 12:685454. [PMID: 34322082 PMCID: PMC8311518 DOI: 10.3389/fneur.2021.685454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Intravenous thrombolysis with alteplase benefits eligible patients with acute ischemic stroke. However, in some countries such as China, alteplase may be too expensive for low-income patients, and also for regions with low economic development. Urokinase is much less expensive than alteplase. This study aimed to assess the outcomes and treatment complications of urokinase in acute ischemic stroke patients, which are poorly understood. Methods: This multicenter retrospective study included acute ischemic stroke patients who received intravenous urokinase or alteplase from January 2014 to January 2018 at 21 centers in China. Outcomes and treatment complications were analyzed by univariate and multivariate analyses. Results: Among the 618 patients included in this study, 489 were treated with urokinase and 129 were treated with alteplase. Functional independence, no/minimal disability, mortality, intracranial hemorrhage (ICH), and symptomatic ICH did not significantly differ between the urokinase and alteplase groups in the univariate and multivariate analyses. However, the patients who received alteplase had a lower odds ratio (OR) of extracranial bleeding in the univariate analysis and a lower adjusted OR (aOR) in the multivariate analysis than the patients who received urokinase (OR = 0.410 [95% CI, 0.172–0.977], p = 0.038; aOR = 0.350 [95% CI, 0.144–0.854], p = 0.021). Furthermore, in patients treated with urokinase, the patients who received high-dose urokinase had a higher OR of extracranial bleeding in the univariate analysis and a higher aOR of extracranial bleeding in the multivariate analysis than patients who received low-dose urokinase (OR = 3.046 [95% CI, 1.696–5.470], p < 0.001; aOR = 3.074 [95% CI, 1.627–5.807], p = 0.001). Moreover, patients who received low-dose urokinase had similar outcomes and complications compared to patients treated with alteplase. Conclusions: Patients treated with urokinase had similar outcomes but a higher risk of extracranial bleeding compared to patients treated with alteplase. The risk of extracranial bleeding was higher in the patients treated with high-dose urokinase than in the patients treated with low-dose urokinase. Patients who received low-dose urokinase had similar outcomes and complications compared to patients treated with alteplase. In countries such as China where some acute ischemic stroke patients cannot afford alteplase, urokinase may be a good alternative to alteplase for intravenous thrombolysis.
Collapse
Affiliation(s)
- Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingchao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philippe P Monnier
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Strong B, Pudar J, Thrift AG, Howard VJ, Hussain M, Carcel C, de Los Campos G, Reeves MJ. Sex Disparities in Enrollment in Recent Randomized Clinical Trials of Acute Stroke: A Meta-analysis. JAMA Neurol 2021; 78:666-677. [PMID: 33900363 DOI: 10.1001/jamaneurol.2021.0873] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Importance The underenrollment of women in randomized clinical trials represents a threat to the validity of the evidence supporting clinical guidelines and potential disparities in access to novel treatments. Objective To determine whether women were underenrolled in contemporary randomized clinical trials of acute stroke therapies published in 9 major journals after accounting for their representation in underlying stroke populations. Data Sources MEDLINE was searched for acute stroke therapeutic trials published between January 1, 2010, and June 11, 2020. Study Selection Eligible articles reported the results of a phase 2 or 3 randomized clinical trial that enrolled patients with stroke and/or transient ischemic attack and examined a therapeutic intervention initiated within 1 month of onset. Data Extraction Data extraction was performed by 2 independent authors in duplicate. Individual trials were matched to estimates of the proportion of women in underlying stroke populations using the Global Burden of Disease database. Main Outcomes and Measures The primary outcome was the enrollment disparity difference (EDD), the absolute difference between the proportion of trial participants who were women and the proportion of strokes in the underlying disease populations that occurred in women. Random-effects meta-analyses of the EDD were performed, and multivariable metaregression was used to explore the associations of trial eligibility criteria with disparity estimates. Results The search returned 1529 results, and 115 trials (7.5%) met inclusion criteria. Of 121 105 randomized patients for whom sex was reported, 52 522 (43.4%) were women. The random-effects summary EDD was -0.053 (95% CI, -0.065 to -0.040), indicating that women were underenrolled by 5.3 percentage points. This disparity persisted across virtually all geographic regions, intervention types, and stroke types, apart from subarachnoid hemorrhage (0.117 [95% CI, 0.084 to 0.150]). When subarachnoid hemorrhage trials were excluded, the summary EDD was -0.067 (95% CI, -0.078 to -0.057). In the multivariable metaregression analysis, an upper age limit of 80 years as an eligibility criterion was associated with a 6-percentage point decrease in the enrollment of women. Conclusions and Relevance Further research is needed to understand the causes of the underenrollment of women in acute stroke trials. However, to maximize representation, investigators should avoid imposing age limits on enrollment.
Collapse
Affiliation(s)
- Brent Strong
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Julia Pudar
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Amanda G Thrift
- Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham
| | - Murtaza Hussain
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Cheryl Carcel
- George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| | - Mathew J Reeves
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing
| |
Collapse
|
17
|
Coulter-Parkhill A, McClean S, Gault VA, Irwin N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin Med Insights Endocrinol Diabetes 2021; 14:11795514211006071. [PMID: 34621137 PMCID: PMC8491154 DOI: 10.1177/11795514211006071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of venom-derived drugs is evident today. Currently, several significant drugs are FDA approved for human use that descend directly from animal venom products, with others having undergone, or progressing through, clinical trials. In addition, there is growing awareness of the important cosmeceutical application of venom-derived products. The success of venom-derived compounds is linked to their increased bioactivity, specificity and stability when compared to synthetically engineered compounds. This review highlights advancements in venom-derived compounds for the treatment of diabetes and related disorders. Exendin-4, originating from the saliva of Gila monster lizard, represents proof-of-concept for this drug discovery pathway in diabetes. More recent evidence emphasises the potential of venom-derived compounds from bees, cone snails, sea anemones, scorpions, snakes and spiders to effectively manage glycaemic control. Such compounds could represent exciting exploitable scaffolds for future drug discovery in diabetes, as well as providing tools to allow for a better understanding of cell signalling pathways linked to insulin secretion and metabolism.
Collapse
Affiliation(s)
| | | | - Victor A Gault
- Diabetes Research Group, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, UK
| |
Collapse
|
18
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
19
|
Abstract
The introduction of thrombolytic therapy in the 1990s has transformed acute ischemic stroke treatment. Thus far, intravenous recombinant tissue plasminogen activator (rt-PA) also known as alteplase is the only thrombolytic proven to be efficacious and approved by the United States Food and Drug Administration. But the thrombolytic agent tenecteplase (TNK) is emerging as a potential replacement for rt-PA. TNK has greater fibrin specificity, slower clearance, and higher resistance to plasminogen activator inhibitor-1 than rt-PA. Hence, TNK has the potential to provide superior lysis with fewer hemorrhagic complications. Also, easier bolus-only administration makes TNK a very practical rt-PA alternative. In several clinical trials, TNK has shown similar efficacy and safety to rt-PA, and the potential to be at least noninferior to rt-PA in some settings. TNK may be superior to rt-PA for reperfusing large vessel occlusions in patients with salvageable penumbra, although this has not yet translated to improved clinical outcomes. Further phase 3 studies are in progress comparing rt-PA with TNK for acute ischemic stroke during the first 4.5 hours. Studies are also in progress to evaluate the use of TNK for extended applications, such as wake-up stroke.
Collapse
Affiliation(s)
| | | | - Weijun Jin
- SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
20
|
Kannan A, Delgardo M, Pennington-FitzGerald W, Jiang EX, Christophe BR, Connolly ES. Pharmacological management of cerebral ischemia in the elderly. Expert Opin Pharmacother 2020; 22:897-906. [PMID: 33382005 DOI: 10.1080/14656566.2020.1856815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: For elderly adults in the United States, stroke is the fifth leading cause of death of which ischemic strokes comprise a vast majority. Optimal pharmacological management of elderly ischemic stroke patients involves both reperfusion and supportive care. Recent research into pharmacological management has focused on vascular, immunomodulatory, cytoprotective, and alternative agents, some of which have shown limited success in clinical trials. However, no treatments have been established as a reliable mode for management of cerebral ischemia for elderly adults beyond acute thrombolysis.Areas covered: The authors conducted a literature search for ischemic stroke management in the elderly and a search for human drug studies for managing ischemic stroke on clinicaltrials.gov. Here, they describe recent progress in the pharmacological management of cerebral ischemia in the elderly.Expert opinion: Many drug classes (antihypertensive, cytoprotective and immunomodulatory, and alternative agents) have been explored with limited success in managing ischemic stroke, though some have shown preventative benefits. We generally observed a broad gap in evidence on elderly patients from studies across all drug classes, necessitating further studies to gain an understanding of effective management of ischemic stroke in this large demographic of patients.
Collapse
Affiliation(s)
- Adithya Kannan
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Mychael Delgardo
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | | | - Enoch X Jiang
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Brandon R Christophe
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Abstract
Acute ischaemic stroke is a major public health priority and will become increasingly relevant to neurologists of the future. The cornerstone of effective stroke care continues to be timely reperfusion treatment. This requires early recognition of symptoms by the public and first responders, triage to an appropriate stroke centre and efficient assessment and investigation by the attending stroke team. The aim of treatment is to achieve recanalisation and reperfusion of the ischaemic penumbra with intravenous thrombolysis and/or endovascular thrombectomy in appropriately selected patients. All patients should be admitted directly to an acute stroke unit for close monitoring for early neurological deterioration and prevention of secondary complications. Prompt investigation of the mechanism of stroke allows patients to start appropriate secondary preventative treatment. Future objectives include improving accessibility to endovascular thrombectomy, using advanced imaging to extend therapeutic windows and developing neuroprotective agents to prevent secondary neuronal damage.
Collapse
Affiliation(s)
- Robert Hurford
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alakendu Sekhar
- Department of Neurology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Tom A T Hughes
- Department of Neurology, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Elkind MSV, Veltkamp R, Montaner J, Johnston SC, Singhal AB, Becker K, Lansberg MG, Tang W, Kasliwal R, Elkins J. Natalizumab in acute ischemic stroke (ACTION II): A randomized, placebo-controlled trial. Neurology 2020; 95:e1091-e1104. [PMID: 32591475 PMCID: PMC7668547 DOI: 10.1212/wnl.0000000000010038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Objective We evaluated the effect of 2 doses of natalizumab on functional outcomes in patients with acute ischemic stroke (AIS). Methods In this double-blind phase 2b trial, patients with AIS aged 18–80 years with NIH Stroke Scale scores of 5–23 from 53 US and European sites were randomized 1:1:1 to receive a single dose of 300 or 600 mg IV natalizumab or placebo, with randomization stratified by treatment window (≤9 or >9 to ≤24 hours from patient's last known normal state). The primary endpoint was a composite measure of excellent outcome (modified Rankin Scale score ≤1 and Barthel Index score ≥95) at day 90 assessed in all patients receiving a full dose. Sample size was estimated from a Bayesian model; p values were not used for hypothesis testing. Results An excellent outcome was less likely with natalizumab than with placebo (natalizumab 300 or 600 mg odds ratio 0.60; 95% confidence interval 0.39–0.93). There was no effect modification by time to treatment or use of thrombolysis/thrombectomy. For natalizumab 300 mg, 600 mg, or placebo, there were no differences in incidence of adverse events (90.0%, 92.1%, and 92.3%, respectively), serious adverse events (25.6%, 32.6%, and 20.9%, respectively), or deaths (6.7%, 4.5%, and 5.5%, respectively). Conclusions Natalizumab administered ≤24 hours after AIS did not improve patient outcomes. ClinicalTrials.gov identifier NCT02730455 Classification of evidence This study provides Class I evidence that for patients with AIS, an excellent outcome was less likely in patients treated with natalizumab than with placebo.
Collapse
Affiliation(s)
- Mitchell S V Elkind
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA.
| | - Roland Veltkamp
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Joan Montaner
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - S Claiborne Johnston
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Aneesh B Singhal
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Kyra Becker
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Maarten G Lansberg
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Weihua Tang
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Rachna Kasliwal
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| | - Jacob Elkins
- From Columbia University (M.S.V.E.), New York, NY; Imperial College London (R.V.), UK; Alfried-Krupp Krankenhaus (R.V.), Essen, Germany; Vall d'Hebron Research Institute (VHIR) (J.M.), Barcelona; Institute of Biomedicine of Seville (IBiS) Stroke Programme (J.M.), Spain; University of Texas (S.C.J.), Austin; Massachusetts General Hospital (A.B.S.), Boston; University of Washington (K.B.), Seattle; Stanford University Medical Center (M.G.L.), Stanford Stroke Center, CA; and Biogen (W.T., R.K., J.E.), Cambridge, MA
| |
Collapse
|
23
|
Fernandez-Ferro J, Schwamm LH, Descalzo MA, MacIsaac R, Lyden PD, Lees KR. Missing outcome data management in acute stroke trials testing iv thrombolytics. Is there risk of bias? Eur Stroke J 2020; 5:148-154. [PMID: 32637648 PMCID: PMC7313360 DOI: 10.1177/2396987320905457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Missing outcome data may undermine interpretation of randomised clinical trials by weakening power and limiting apparent effect size. We assessed bias and inefficiency of two imputation methods commonly used in stroke trials evaluating the efficacy of iv thrombolysis. PATIENTS AND METHODS We searched the virtual international stroke trials archive (VISTA)-acute for ischaemic stroke patients with 90-day modified Rankin scale as an outcome, and known thrombolysis status. We excluded any with missing 30-day modified Rankin scale. We planned two analyses; first, we calculated odds ratios for outcome in thrombolysed versus not thrombolysed from imputed-only data, (a) among patients with missing modified Rankin scale 90 and (b) among matched patients with intact data (using propensity score methods and relevant covariates). Imputation approaches were last observation carried forward (LOCF) or multiple imputation. Outcome comparisons used dichotomisation and shift analysis. Thereafter, we calculated whole-population odds ratios using LOCF and multiple imputation (also through dichotomisation and shift analysis); first with the original 1.5% missing outcome data, and then artificially increasing the burden (5%; 10%; 20%; 30%). RESULTS We considered 9657 patients from eight of the studies included in VISTA, 3034 (31%) thrombolysed. Missing data replacement by LOCF with analysis by dichotomisation gave the highest estimate of thrombolysis influence. Imputing while increasing the burden of missing data progressively raised the odds ratios estimates, though thresholds for overestimation were 10% for LOCF; 20% for multiple imputation.Discussion: Replacing missing outcome data tended to overestimate differences of thrombolysed versus non-thrombolysed patients, but had minimal impact below a 10% burden of missing data.Conclusion: In the specific context of acute stroke trials testing iv thrombolytics, replacing missing data by carrying forward the last observation tended to overestimate treatment odds ratios more than multiple imputation.
Collapse
Affiliation(s)
- Jose Fernandez-Ferro
- Department of Neurology, Hospital Universitario Rey Juan Carlos, Instituto de Investigacion Sanitaria – Hospital Universitario Fundación Jiménez Díaz, Universidad Autonóma de Madrid, Madrid, Spain
| | - Lee H Schwamm
- Department of Neurology, Comprehensive Stroke Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Miguel A Descalzo
- Fundación Piel Sana, Academia Española de Dermatología y Venereología, Madrid, Spain
| | - Rachael MacIsaac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Kennedy R Lees
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Psychogios K, Magoufis G, Safouris A, Kargiotis O, Katsanos AH, Spiliopoulos S, Papageorgiou E, Palaiodimou L, Brountzos E, Stamboulis E, Tsivgoulis G. Eligibility for intravenous thrombolysis in acute ischemic stroke patients presenting in the 4.5-9 h window. Neuroradiology 2020; 62:733-739. [PMID: 32008046 DOI: 10.1007/s00234-020-02375-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Recent randomized-controlled clinical trials have provided preliminary evidence for expanding the time window of intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients by applying certain neuroimaging criteria. We prospectively assessed the potential eligibility for IVT in the extended time window (4.5-9 h) among consecutive AIS patients treated in a comprehensive stroke center during a nine-month period. METHODS Potential eligibility for IVT in the extended time window was evaluated by using inclusion criteria from the EXTEND trial. All patients were underwent baseline emergent neurovascular imaging using either computed tomography angiography/computed tomography perfusion (CTA/CTP) or magnetic resonance angiography/magnetic resonance perfusion (MRA/MRP). Images were post processed by the automated software RAPID. RESULTS Our study population consisted of 317 AIS patients, and, among them, 31 (9.8 %) patients were presented in the time window of 4.5-9 h. Seven patients (2.2 %) fulfilled the EXTEND neuroimaging criteria. Four patients (1.3 %) were treated with IVT because they fulfilled both clinical and neuroimaging EXTEND criteria. Patients eligible for EXTEND neuroimaging criteria had no ischemic core lesion, whereas the mean volume of critical hypoperfusion was relatively small (17.0 ± 11.8 ml). There was no hemorrhagic complication in any of the patients treated with IVT. The median mRS score at three months was 0 (range: 0-3) among patients who were eligible for EXTEND neuroimaging criteria. CONCLUSION Our everyday clinical practice experience suggests 9.8 % of consecutive AIS patients present in the 4.5-9 h window and 2.2 % adhere to EXTEND neuroimaging eligibility criteria for IVT. Only 1.3% of AIS is eligible for IVT according to EXTEND neuroimaging and clinical eligibility criteria.
Collapse
Affiliation(s)
- Klearchos Psychogios
- Acute Stroke Unit, Metropolitan Hospital, Piraeus, Greece.
- Second Department of Neurology, "Attikon University Hospital", School of Medicine, University of Athens, Athens, Greece.
| | - Georgios Magoufis
- Department of Interventional Neuroradiology, Metropolitan Hospital, Piraeus, Greece
| | - Apostolos Safouris
- Acute Stroke Unit, Metropolitan Hospital, Piraeus, Greece
- Second Department of Neurology, "Attikon University Hospital", School of Medicine, University of Athens, Athens, Greece
| | | | - Aristeidis H Katsanos
- Second Department of Neurology, "Attikon University Hospital", School of Medicine, University of Athens, Athens, Greece
| | - Stavros Spiliopoulos
- Second Department of Radiology, Interventional Radiology Unit, "ATTIKON" University General Hospital, Athens, Greece
| | | | - Lina Palaiodimou
- Second Department of Neurology, "Attikon University Hospital", School of Medicine, University of Athens, Athens, Greece
| | - Elias Brountzos
- Second Department of Radiology, Interventional Radiology Unit, "ATTIKON" University General Hospital, Athens, Greece
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon University Hospital", School of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
25
|
Shibata K, Hashimoto T, Miyazaki T, Miyazaki A, Nobe K. Thrombolytic Therapy for Acute Ischemic Stroke: Past and Future. Curr Pharm Des 2020; 25:242-250. [PMID: 30892155 DOI: 10.2174/1381612825666190319115018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thromboembolic ischemic stroke, which is mainly caused by hypertension, as well as plasma dyslipidemia, arterial fibrillation and diabetes, is a leading cause of death in the US and other countries. Numerous clinical trials for thrombolytic drugs, which aimed to pharmacologically dissolve thrombi, were conducted in the 1950s, when the first thrombolytic therapy was performed. METHODS In this study, we summarize the pathophysiologic features of ischemic stroke, and the history of thrombolytic therapy, and discuss the recent progress that has been made in the ongoing development of thrombolytic drugs. CONCLUSION Thrombolytic therapy is sometimes accompanied by harmful hemorrhagic insults; accordingly, a window of time wherein therapy can safely be performed has been established for this approach. Several basic and clinical studies are ongoing to develop next-generation thrombolytic drugs to expand the time window.
Collapse
Affiliation(s)
- Keita Shibata
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Terumasa Hashimoto
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Shinagawaku, Tokyo 142-8555, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Shinagawaku, Tokyo 142-8555, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
26
|
Kogan E, Twyman K, Heap J, Milentijevic D, Lin JH, Alberts M. Assessing stroke severity using electronic health record data: a machine learning approach. BMC Med Inform Decis Mak 2020; 20:8. [PMID: 31914991 PMCID: PMC6950922 DOI: 10.1186/s12911-019-1010-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Background Stroke severity is an important predictor of patient outcomes and is commonly measured with the National Institutes of Health Stroke Scale (NIHSS) scores. Because these scores are often recorded as free text in physician reports, structured real-world evidence databases seldom include the severity. The aim of this study was to use machine learning models to impute NIHSS scores for all patients with newly diagnosed stroke from multi-institution electronic health record (EHR) data. Methods NIHSS scores available in the Optum© de-identified Integrated Claims-Clinical dataset were extracted from physician notes by applying natural language processing (NLP) methods. The cohort analyzed in the study consists of the 7149 patients with an inpatient or emergency room diagnosis of ischemic stroke, hemorrhagic stroke, or transient ischemic attack and a corresponding NLP-extracted NIHSS score. A subset of these patients (n = 1033, 14%) were held out for independent validation of model performance and the remaining patients (n = 6116, 86%) were used for training the model. Several machine learning models were evaluated, and parameters optimized using cross-validation on the training set. The model with optimal performance, a random forest model, was ultimately evaluated on the holdout set. Results Leveraging machine learning we identified the main factors in electronic health record data for assessing stroke severity, including death within the same month as stroke occurrence, length of hospital stay following stroke occurrence, aphagia/dysphagia diagnosis, hemiplegia diagnosis, and whether a patient was discharged to home or self-care. Comparing the imputed NIHSS scores to the NLP-extracted NIHSS scores on the holdout data set yielded an R2 (coefficient of determination) of 0.57, an R (Pearson correlation coefficient) of 0.76, and a root-mean-squared error of 4.5. Conclusions Machine learning models built on EHR data can be used to determine proxies for stroke severity. This enables severity to be incorporated in studies of stroke patient outcomes using administrative and EHR databases.
Collapse
Affiliation(s)
- Emily Kogan
- Janssen Research & Development, LLC, Raritan, NJ, USA.
| | | | - Jesse Heap
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | | | | | | |
Collapse
|
27
|
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50:e344-e418. [PMID: 31662037 DOI: 10.1161/str.0000000000000211] [Citation(s) in RCA: 3676] [Impact Index Per Article: 612.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and Purpose- The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations in a single document for clinicians caring for adult patients with acute arterial ischemic stroke. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 Acute Ischemic Stroke (AIS) Guidelines and are an update of the 2018 AIS Guidelines. Methods- Members of the writing group were appointed by the American Heart Association (AHA) Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. An update of the 2013 AIS Guidelines was originally published in January 2018. This guideline was approved by the AHA Science Advisory and Coordinating Committee and the AHA Executive Committee. In April 2018, a revision to these guidelines, deleting some recommendations, was published online by the AHA. The writing group was asked review the original document and revise if appropriate. In June 2018, the writing group submitted a document with minor changes and with inclusion of important newly published randomized controlled trials with >100 participants and clinical outcomes at least 90 days after AIS. The document was sent to 14 peer reviewers. The writing group evaluated the peer reviewers' comments and revised when appropriate. The current final document was approved by all members of the writing group except when relationships with industry precluded members from voting and by the governing bodies of the AHA. These guidelines use the American College of Cardiology/AHA 2015 Class of Recommendations and Level of Evidence and the new AHA guidelines format. Results- These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. Conclusions- These guidelines provide general recommendations based on the currently available evidence to guide clinicians caring for adult patients with acute arterial ischemic stroke. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
Collapse
|
28
|
Wu S, Yuan R, Wang Y, Wei C, Zhang S, Yang X, Wu B, Liu M. Early Prediction of Malignant Brain Edema After Ischemic Stroke. Stroke 2019; 49:2918-2927. [PMID: 30571414 DOI: 10.1161/strokeaha.118.022001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Purpose- Malignant brain edema after ischemic stroke has high mortality but limited treatment. Therefore, early prediction is important, and we systematically reviewed predictors and predictive models to identify reliable markers for the development of malignant edema. Methods- We searched Medline and Embase from inception to March 2018 and included studies assessing predictors or predictive models for malignant brain edema after ischemic stroke. Study quality was assessed by a 17-item tool. Odds ratios, mean differences, or standardized mean differences were pooled in random-effects modeling. Predictive models were descriptively analyzed. Results- We included 38 studies (3278 patients) with 24 clinical factors, 7 domains of imaging markers, 13 serum biomarkers, and 4 models. Generally, the included studies were small and showed potential publication bias. Malignant edema was associated with younger age (n=2075; mean difference, -4.42; 95% CI, -6.63 to -2.22), higher admission National Institutes of Health Stroke Scale scores (n=807, median 17-20 versus 5.5-15), and parenchymal hypoattenuation >50% of the middle cerebral artery territory on initial computed tomography (n=420; odds ratio, 5.33; 95% CI, 2.93-9.68). Revascularization (n=1600, odds ratio, 0.37; 95% CI, 0.24-0.57) were associated with a lower risk for malignant edema. Four predictive models all showed an overall C statistic >0.70, with a risk of overfitting. Conclusions- Younger age, higher National Institutes of Health Stroke Scale, and larger parenchymal hypoattenuation on computed tomography are reliable early predictors for malignant edema. Revascularization reduces the risk of malignant edema. Future studies with robust design are needed to explore optimal cutoff age and National Institutes of Health Stroke Scale scores and to validate and improve existing models.
Collapse
Affiliation(s)
- Simiao Wu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Ruozhen Yuan
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Yanan Wang
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Chenchen Wei
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Shihong Zhang
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Xiaoyan Yang
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu (X.Y.)
| | - Bo Wu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Ming Liu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| |
Collapse
|
29
|
Affiliation(s)
- Enrique C. Leira
- From the Division of Cerebrovascular Diseases, University of Iowa (E.C.L.)
| | - Keith W. Muir
- Institute of Neuroscience & Psychology, University of Glasgow, United Kingdom (K.W.M.)
| |
Collapse
|
30
|
Koh CY, Kini RM. Exogenous Factors from Venomous and Hematophagous Animals in Drugs and Diagnostic Developments for Cardiovascular and Neurovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:90-94. [PMID: 31385761 DOI: 10.2174/1871529x1902190619123603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cho Yeow Koh
- Department of Medicine, National University of Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
31
|
Chang KC, Chuang IC, Huang YC, Wu CY, Lin WC, Kuo YL, Lee TH, Ryu SJ. Risk factors outperform intracranial large artery stenosis predicting unfavorable outcomes in patients with stroke. BMC Neurol 2019; 19:180. [PMID: 31370812 PMCID: PMC6670158 DOI: 10.1186/s12883-019-1408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background This study examined how intracranial large artery stenosis (ILAS), symptomatic and asymptomatic ILAS, and risk factors affect unfavorable outcome events after medical treatment in routine clinical practice. Methods This was a 24-month prospective observational study of consecutively recruited stroke patients. All participants underwent magnetic resonance angiography, and their clinical characteristics were assessed. Outcome events were vascular outcome, recurrent stroke, and death. Cox regression analyses were performed to identify potential factors associated with an unfavorable outcome, which included demographic and clinical characteristics, the risk factors, and stenosis status. Results The analysis included 686 patients; among them, 371 were assessed as ILAS negative, 231 as symptomatic ILAS, and 84 as asymptomatic ILAS. Body mass index (p < .05), hypertension (p = .01), and old infarction (p = .047) were factors relating to vascular outcomes. Hypertension was the only factor for recurrent stroke (p = .035). Poor glomerular filtration rate (< 30 mL/min/1.73 m2) (p = .011) and baseline National Institutes of Health Stroke Scale scores (p < .001) were significant predictors of death. Conclusions This study extended previous results from clinical trials to a community-based cohort study by concurrently looking at the presence/absence of stenosis and a symptomatic/asymptomatic stenotic artery. Substantiated risk factors rather than the stenosis status were predominant determinants of adverse outcome. Although the degree of stenosis is often an indicator for treatment, we suggest risk factors, such as hypertension and renal dysfunction, should be monitored and intensively treated.
Collapse
Affiliation(s)
- K C Chang
- Division of Cerebrovascular Diseases, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Discharge Planning Service Center, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I C Chuang
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y C Huang
- Division of Cerebrovascular Diseases, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Measurement and Statistics, Education, National University of Tainan, Tainan, Taiwan
| | - C Y Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Physical Medicine and Rehabilitation, Healthy Aging Research Center at Chang Gung University, Chang Gung Memorial Hospital at Linkou, 259 Wen-hwa 1st Road, Taoyuan, Taiwan.
| | - W C Lin
- Department of Radiology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y L Kuo
- Department of Radiology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - T H Lee
- Division of Cerebrovascular Diseases, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - S J Ryu
- Division of Cerebrovascular Diseases, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
33
|
Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, Ye G, Deng L, Peng Y, Wu X, Liu G, Ye W, Zhang D. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res 2019; 144:292-305. [PMID: 31048033 DOI: 10.1016/j.phrs.2019.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
Ischemic stroke is one of the most lethal and highly disabling diseases that seriously affects the human health and quality of life. A therapeutic angiogenic strategy has been proposed to alleviate ischemia-induced injury by promoting angiogenesis and improving cerebrovascular function in the ischemic regions. The insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF1R) axis is crucial for cerebral angiogenesis and neurogenesis. However, effective drugs that prevent cerebral ischemic injury by inducing cerebral angiogenesis via activation of the IGF1R pathway are lacking. Here, we screened a pro-angiogenic agent ginsenoside F1 (GF1), a ginseng saponin isolated from a traditional Chinese medicine that was widely used in ischemic stroke treatment. It promoted the proliferation, mobility and tube formation of human umbilical vein endothelial cells and human brain microvascular endothelial cells, as well as pericytes recruitment to the endothelial tubes. GF1 stimulated vessel sprouting in the rat arterial ring and facilitated neovascularization in chicken embryo chorioallantoic membrane (CAM). In the in vivo experiments, GF1 rescued the axitinib-induced vascular defect in zebrafish. It also increased the microvessel density (MVD) and improved focal cerebral blood perfusion in the rat middle cerebral artery occlusion (MCAO) model. Mechanism studies revealed that GF1-induced angiogenesis depended on IGF1R activation mediated by the autocrine IGF-1 loop in endothelial cells. Based on our findings, GF1-induced activation of the IGF-1/IGF1R pathway to promote angiogenesis is an effective approach to alleviate cerebral ischemia, and GF1 is a potential agent that improves cerebrovascular function and promotes recovery from ischemic stroke.
Collapse
Affiliation(s)
- Jiayan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Mingqun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Dong Zhang
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinghui Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xin Wu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Guanping Liu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Ringleb P, Bendszus M, Bluhmki E, Donnan G, Eschenfelder C, Fatar M, Kessler C, Molina C, Leys D, Muddegowda G, Poli S, Schellinger P, Schwab S, Serena J, Toni D, Wahlgren N, Hacke W. Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. Int J Stroke 2019; 14:483-490. [PMID: 30947642 DOI: 10.1177/1747493019840938] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intravenous thrombolysis with alteplase within a time window up to 4.5 h is the only approved pharmacological treatment for acute ischemic stroke. We studied whether acute ischemic stroke patients with penumbral tissue identified on magnetic resonance imaging 4.5-9 h after symptom onset benefit from intravenous thrombolysis compared to placebo. METHODS Acute ischemic stroke patients with salvageable brain tissue identified on a magnetic resonance imaging were randomly assigned to receive standard dose alteplase or placebo. The primary end point was disability at 90 days assessed by the modified Rankin scale, which has a range of 0-6 (with 0 indicating no symptoms at all and 6 indicating death). Safety end points included death, symptomatic intracranial hemorrhage, and other serious adverse events. RESULTS The trial was stopped early for slow recruitment after the enrollment of 119 (61 alteplase, 58 placebo) of 264 patients planned. Median time to intravenous thrombolysis was 7 h 42 min. The primary endpoint showed no significant difference in the modified Rankin scale distribution at day 90 (odds ratio alteplase versus placebo, 1.20; 95% CI, 0.63-2.27, P = 0.58). One symptomatic intracranial hemorrhage occurred in the alteplase group. Mortality at 90 days did not differ significantly between the two groups (11.5 and 6.8%, respectively; P = 0.53). CONCLUSIONS Intravenous alteplase administered between 4.5 and 9 h after the onset of symptoms in patients with salvageable tissue did not result in a significant benefit over placebo. (Supported by Boehringer Ingelheim, Germany; ISRCTN 71616222).
Collapse
Affiliation(s)
- Peter Ringleb
- 1 Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- 2 Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Erich Bluhmki
- 3 Medical Affairs, Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany
| | - Geoffrey Donnan
- 4 University of Melbourne, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | | - Marc Fatar
- 5 Department of Neurology, Universitätsmedizin Mannheim, University of Heidelber, Heidelberg, Germany
| | - Christof Kessler
- 6 Department ogf Neurology, Ernst Moritz Arndt-University of Greifswald, Greifswald, Germany
| | - Carlos Molina
- 7 Department of Neurology, University of Barcelona, Hospital vall d'hebron, Barcelona, Spain
| | - Didier Leys
- 8 Department of Neurology, Lille, France, Univ Lille; Inserm; CHU Lille; UMR-S
| | - Girish Muddegowda
- 9 Department of Neurology, University of Nottingham, Nottingham, United Kingdom
| | - Sven Poli
- 10 Department of Neurology, University of Tübingen, Tübingen, Germany
| | | | - Stefan Schwab
- 12 Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joaquin Serena
- 13 Department of Neurology, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
| | - Danilo Toni
- 14 Department of Neurology, Sapienza University of Rome, Rome, Italy
| | - Nils Wahlgren
- 15 Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Werner Hacke
- 16 Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
35
|
Fibrinolytic Enzymes for Thrombolytic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:345-381. [DOI: 10.1007/978-981-13-7709-9_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Tian DC, Shi K, Zhu Z, Yao J, Yang X, Su L, Zhang S, Zhang M, Gonzales RJ, Liu Q, Huang D, Waters MF, Sheth KN, Ducruet AF, Fu Y, Lou M, Shi FD. Fingolimod enhances the efficacy of delayed alteplase administration in acute ischemic stroke by promoting anterograde reperfusion and retrograde collateral flow. Ann Neurol 2018; 84:717-728. [PMID: 30295338 PMCID: PMC6282815 DOI: 10.1002/ana.25352] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The present study was undertaken to determine the efficacy of coadministration of fingolimod with alteplase in acute ischemic stroke patients in a delayed time window. METHODS This was a prospective, randomized, open-label, blinded endpoint clinical trial, enrolling patients with internal carotid artery or middle cerebral artery proximal occlusion within 4.5 to 6 hours from symptom onset. Patients were randomly assigned to receive alteplase alone or alteplase with fingolimod. All patients underwent pretreatment and 24-hour noncontrast computed tomography (CT)/perfusion CT/CT angiography. The coprimary endpoints were the decrease of National Institutes of Health Stroke Scale scores over 24 hours and the favorable shift of modified Rankin Scale score (mRS) distribution at day 90. Exploratory outcomes included vessel recanalization, anterograde reperfusion, and retrograde reperfusion of collateral flow. RESULTS Each treatment group included 23 patients. Compared with alteplase alone, patients receiving fingolimod plus alteplase exhibited better early clinical improvement at 24 hours and a favorable shift of mRS distribution at day 90. In addition, patients who received fingolimod and alteplase exhibited a greater reduction in the perfusion lesion accompanied by suppressed infarct growth by 24 hours. Fingolimod in conjunction with alteplase significantly improved anterograde reperfusion of downstream territory and prevented the failure of retrograde reperfusion from collateral circulation. INTERPRETATION Fingolimod may enhance the efficacy of alteplase administration in the 4.5- to 6-hour time window in patients with a proximal cerebral arterial occlusion and salvageable penumbral tissue by promoting both anterograde reperfusion and retrograde collateral flow. These findings are instructive for the design of future trials of recanalization therapies in extended time windows. Ann Neurol 2018;84:725-736.
Collapse
Affiliation(s)
- De-Cai Tian
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaibin Shi
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Zilong Zhu
- Department of Neurology, Tianjin HuanHu Hospital, Tianjin, China
| | - Jia Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Su
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Sheng Zhang
- Department of Neurology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Meixia Zhang
- Department of Neurology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ
| | - Qiang Liu
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - DeRen Huang
- Neuroscience Center, Mount Carmel Health System, Westerville, OH
| | - Michael F Waters
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Andrew F Ducruet
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Ying Fu
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Lou
- Department of Neurology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fu-Dong Shi
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
37
|
Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci 2018; 29:661-674. [PMID: 29397392 DOI: 10.1515/revneuro-2017-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Rodent and rabbit stroke models have been instrumental in our current understanding of stroke pathophysiology; however, translational failure is a significant problem in preclinical ischemic stroke research today. There are a number of different focal cerebral ischemia models that vary in their utility, pathophysiology of causing disease, and their response to treatments. Unfortunately, despite active preclinical research using these models, treatment options for ischemic stroke have not significantly advanced since the food and drug administration approval of tissue plasminogen activator in 1996. This review aims to summarize current stroke therapies, the preclinical experimental models used to help develop stroke therapies, as well as their advantages and limitations. In addition, this review discusses the potential for naturally occurring canine ischemic stroke models to compliment current preclinical models and to help bridge the translational gap between small mammal models and human clinical trials.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, Grafton, MA 01536, USA
| |
Collapse
|
38
|
Young-Saver DF, Gornbein J, Starkman S, Saver JL. Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables. J Stroke Cerebrovasc Dis 2018; 27:3662-3669. [PMID: 30297167 DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In acute stroke randomized trials, missingness of final functional outcome data reduces study power and potentially biases findings of treatment effect. Best methods for handling missing outcome data have not been well delineated for diseases with monophasic onset and subsequent improvement, like acute stroke. METHODS We simulated data missingness in the public dataset of the landmark, second NINDS-tPA trial, by randomly removing 5%-25% of actual values for the 3-month modified Rankin Scale (mRS) of global disability. We evaluated 5 missing data-handling methods: complete case analysis (CCA), worst case imputation (WCI), last observation carried forward (LOCF), multiple imputation using baseline covariates only (MI-B), and multiple imputation using baseline and postbaseline observations (MI-BP). RESULTS With the original trial's 333 patients, tissue plasminogen activator was associated with 3-month disability benefit, both for mRS dichotomized at 0-1 (P = .014) and shift analysis (P = .035). Distance (root mean square error) of imputed from actual mRS values was best for LOCF (1.17) and MI-BP (1.28), intermediate for MI-B (1.89) and worst for WCI (3.77). Directional bias (mean difference) was least for MI-BP (.01) and MI-B (-.16), intermediate for LOCF (-.37), and worst for WCI (-3.22). Preservation of formally positive results was greatest for MI-BP and LOCF (preserved at all missingness rates), intermediate for CCA and MI-B (preserved only with missingness <10%-20%), and least for WCI (preserved only with missingness <5%-20%). CONCLUSIONS For acute stroke trials, multiple imputation using baseline and postbaseline observations is an advantageous approach to missing outcome data-handling, yielding high accuracy, reduced directional bias, and greater preservation of study power.
Collapse
Affiliation(s)
- Dashiell F Young-Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at the University of California, Los Angeles, California.
| | - Jeffrey Gornbein
- Department of Biomathematics, University of California, Los Angeles, California
| | - Sidney Starkman
- Departments of Emergency Medicine and Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at the University of California, Los Angeles, California
| |
Collapse
|
39
|
Zerna C, Thomalla G, Campbell BCV, Rha JH, Hill MD. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke. Lancet 2018; 392:1247-1256. [PMID: 30319112 DOI: 10.1016/s0140-6736(18)31874-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Even though stroke presents as a variety of clinical syndromes, neuroimaging is the most important biomarker to help differentiate between stroke subtypes and assess treatment eligibility. Therapeutic advances have led to intravenous thrombolysis with tissue-type plasminogen activator and endovascular treatment for proximal vessel occlusion in the anterior cerebral circulation being standard care for acute ischaemic stroke. Providing access to this care has implications for existing systems of care for stroke and their organisation and has reintroduced the possibility of adjuvant and neuroprotective treatment strategies in acute ischaemic stroke. The use of neuroimaging for patient selection and speed of diagnosis and delivery of treatment are the dominant themes of modern ischaemic stroke care.
Collapse
Affiliation(s)
- Charlotte Zerna
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Joung-Ho Rha
- Department of Neurology, Inha University Hospital School of Medicine, Incheon, Seoul, South Korea
| | - Michael D Hill
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
40
|
Affiliation(s)
- Tudor G Jovin
- From the Stroke Institute, Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh
| |
Collapse
|
41
|
Ito Y, Noguchi K, Morishima Y, Yamaguchi K. Generation and characterization of tissue-type plasminogen activator transgenic rats. J Thromb Thrombolysis 2018; 45:77-87. [PMID: 29168147 PMCID: PMC5756269 DOI: 10.1007/s11239-017-1582-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To address a species difference in the responsiveness to human recombinant tissue-type plasminogen activator (rt-PA) between rats and humans, tPA transgenic (Tg) rats were generated and characterized. In the rats, transcriptional regulation of tPA was designed under the control of the endogenous tPA promoter. There were no significant differences in hematological parameters between the tPA Tg and non Tg rats. Plasma tPA concentration was significantly increased and serum free PAI-1 was significantly decreased in the tPA Tg rats. Significant overexpression of tPA mRNA in five major organs was also confirmed in the tPA Tg rats. In contrast, the extent of tPA mRNA induction by pathophysiological stimuli (focal cerebral ischemia) was comparable in the two strains. Earlier increase in the plasma D-Dimer level was observed in the tPA Tg rats in a model of thromboembolism compared with the non Tg rats. On the other hand, there was no statistically significant prolongation of bleeding time in a rat model of bleeding between the two strains. rt-PA showed dose-related blood flow restoration in a rat model of thromboembolic stroke in the tPA Tg rats from a dose (1 mg/kg, i.v.) similar to clinical doses for human stroke patients. In conclusion, tPA Tg rats, in which tPA is overexpressed and endogenous fibrinolytic activity is enhanced without hemostatic abnormality, were generated. tPA Tg rats would be beneficial for the pharmacological and the toxicological evaluation of rt-PA and other various fibrinolytic enhancers.
Collapse
Affiliation(s)
- Yusuke Ito
- Rare Disease & LCM Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Kengo Noguchi
- Pharmacovigilance Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Kyoji Yamaguchi
- Rare Disease & LCM Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
42
|
Coutts SB, Berge E, Campbell BCV, Muir KW, Parsons MW. Tenecteplase for the treatment of acute ischemic stroke: A review of completed and ongoing randomized controlled trials. Int J Stroke 2018; 13:885-892. [DOI: 10.1177/1747493018790024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alteplase has been the mainstay of thrombolytic treatment since the National Institutes of Neurological Disorders and Stroke trial was published in 1995. Over recent years, several trials have investigated alternative thrombolytic agents. Tenecteplase, a genetically engineered mutant tissue plasminogen activator, has a longer half-life, allowing single intravenous bolus administration without infusion, is more fibrin specific, produces less systemic depletion of circulating fibrinogen, and is more resistant to plasminogen activator inhibitor compared to alteplase. Tenecteplase is established as the first-line intravenous thrombolytic drug for myocardial infarction, where it has been shown to achieve comparable reperfusion with reduced risk of systemic bleeding in comparison to alteplase. We review the literature on tenecteplase for the treatment of acute ischemic stroke, with a focus on the major completed and ongoing trials. Overall, tenecteplase shows promise for treatment of acute ischemic stroke, both in populations currently eligible for alteplase and also in groups not currently treated with thrombolysis.
Collapse
Affiliation(s)
- Shelagh B Coutts
- Department of Clinical Neurosciences, Radiology, Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Eivind Berge
- Department of Internal Medicine, Oslo University Hospital, Oslo, and Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Bruce CV Campbell
- Departments of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Keith W Muir
- Institute of Neuroscience & Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Mark W Parsons
- Departments of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
43
|
Tsivgoulis G, Kargiotis O, Alexandrov AV. Intravenous thrombolysis for acute ischemic stroke: a bridge between two centuries. Expert Rev Neurother 2018. [PMID: 28644924 DOI: 10.1080/14737175.2017.1347039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Intravenous tissue-plasminogen activator (tPA) remains the only approved systemic reperfusion therapy suitable for most patients presenting timely with acute ischemic stroke. Accumulating real-word experience for over 20 years regarding tPA safety and effectiveness led to re-appraisal of original contraindications for intravenous thrombolysis (IVT). Areas covered: This narrative review focuses on fast yet appropriate selection of patients for safe administration of tPA per recently expanded indications. Novel strategies for rapid patient assessment will be discussed. The potential for mobile stroke units (MSU) that shorten onset-to-needle time and increase tPA treatment rates is addressed. The use of IVT in the era of non-vitamin K antagonist oral anticoagulants (NOACs) is highlighted. The continuing role of IVT in large vessel occlusion (LVO) patients eligible for mechanical thrombectomy (MT) is discussed with regards to 'drip and ship' vs. 'mothership' treatment paradigms. Promising studies of penumbral imaging to extend IVT beyond the 4.5-hour window and in wake-up strokes are summarized. Expert commentary: This review provides an update on the role of IVT in specific conditions originally considered tPA contraindications. Novel practice challenges including NOAC's, MSU proliferation and bridging therapy (IVT&MT) for LVO patients, and the potential extension of IVT time-window using penumbral imaging are emerging as safe and potentially effective IVT applications.
Collapse
Affiliation(s)
- Georgios Tsivgoulis
- a Second Department of Neurology , National & Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital , Athens , Greece.,b Department of Neurology , University of Tennessee Health Science Center , Memphis , TN , USA
| | | | - Andrei V Alexandrov
- b Department of Neurology , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
44
|
Etherton MR, Barreto AD, Schwamm LH, Wu O. Neuroimaging Paradigms to Identify Patients for Reperfusion Therapy in Stroke of Unknown Onset. Front Neurol 2018; 9:327. [PMID: 29867736 PMCID: PMC5962731 DOI: 10.3389/fneur.2018.00327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
Despite the proven efficacy of intravenous alteplase or endovascular thrombectomy for the treatment of patients with acute ischemic stroke, only a minority receive these treatments. This low treatment rate is due in large part to delay in hospital arrival or uncertainty as to the exact time of onset of ischemic stroke, which renders patients outside the current guideline-recommended window of eligibility for receiving these therapeutics. However, recent pivotal clinical trials of late-window thrombectomy now force us to rethink the value of a simplistic chronological formulation that “time is brain.” We must recognize a more nuanced concept that the rate of tissue death as a function of time is not invariant, that still salvageable tissue at risk of infarction may be present up to 24 h after last-known well, and that those patients may strongly benefit from reperfusion. Multiple studies have sought to address this clinical dilemma using neuroimaging methods to identify a radiographic time-stamp of stroke onset or evidence of salvageable ischemic tissue and thereby increase the number of patients eligible for reperfusion therapies. In this review, we provide a critical analysis of the current state of neuroimaging techniques to select patients with unwitnessed stroke for revascularization therapies and speculate on the future direction of this clinically relevant area of stroke research.
Collapse
Affiliation(s)
- Mark R Etherton
- Department of Neurology, JPK Stroke Research Center, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, United States
| | - Andrew D Barreto
- Stroke Division, Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lee H Schwamm
- Department of Neurology, JPK Stroke Research Center, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, United States
| | - Ona Wu
- Department of Neurology, JPK Stroke Research Center, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, United States.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital (MGH), Charlestown, MA, United States
| |
Collapse
|
45
|
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018; 49:e46-e110. [PMID: 29367334 DOI: 10.1161/str.0000000000000158] [Citation(s) in RCA: 3603] [Impact Index Per Article: 514.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 guidelines and subsequent updates. METHODS Members of the writing group were appointed by the American Heart Association Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the American Heart Association conflict of interest policy was maintained. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. The members of the writing group unanimously approved all recommendations except when relations with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight Committee and Stroke Council Leadership Committee. These guidelines use the American College of Cardiology/American Heart Association 2015 Class of Recommendations and Levels of Evidence and the new American Heart Association guidelines format. RESULTS These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings. CONCLUSIONS These guidelines are based on the best evidence currently available. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke.
Collapse
|
46
|
Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol 2018; 18:8. [PMID: 29338750 PMCID: PMC5771207 DOI: 10.1186/s12883-017-1007-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Following the success of recent endovascular trials, endovascular therapy has emerged as an exciting addition to the arsenal of clinical management of patients with acute ischemic stroke (AIS). In this paper, we present an extensive overview of intravenous and endovascular reperfusion strategies, recent advances in AIS neurointervention, limitations of various treatment paradigms, and provide insights on imaging-guided reperfusion therapies. A roadmap for imaging guided reperfusion treatment workflow in AIS is also proposed. Both systemic thrombolysis and endovascular treatment have been incorporated into the standard of care in stroke therapy. Further research on advanced imaging-based approaches to select appropriate patients, may widen the time-window for patient selection and would contribute immensely to early thrombolytic strategies, better recanalization rates, and improved clinical outcomes.
Collapse
Affiliation(s)
- Sonu Bhaskar
- Western Sydney University (WSU), School of Medicine, South West Sydney Clinical School, Sydney, NSW 2170 Australia
- Liverpool Hospital, Department of Neurology & Neurophysiology, Liverpool, 2170 NSW Australia
- The Sydney Partnership for Health, Education, Research & Enterprise (SPHERE), Liverpool, NSW Australia
- Stroke & Neurology Research Group, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170 Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW Australia
- Priority Research Centre for Stroke & Brain Injury, Faculty of Health & Medicine, Hunter Medical Research institute (HMRI) and School of Medicine & Public Health, University of Newcastle, Newcastle, NSW Australia
| | - Peter Stanwell
- Priority Research Centre for Stroke & Brain Injury, Faculty of Health & Medicine, Hunter Medical Research institute (HMRI) and School of Medicine & Public Health, University of Newcastle, Newcastle, NSW Australia
| | - Dennis Cordato
- Liverpool Hospital, Department of Neurology & Neurophysiology, Liverpool, 2170 NSW Australia
- Stroke & Neurology Research Group, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170 Australia
- School of Medicine, University of New South Wales (UNSW), Sydney, NSW Australia
| | - John Attia
- Priority Research Centre for Stroke & Brain Injury, Faculty of Health & Medicine, Hunter Medical Research institute (HMRI) and School of Medicine & Public Health, University of Newcastle, Newcastle, NSW Australia
- Centre for Clinical Epidemiology & Biostatistics, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW Australia
| | - Christopher Levi
- Western Sydney University (WSU), School of Medicine, South West Sydney Clinical School, Sydney, NSW 2170 Australia
- Liverpool Hospital, Department of Neurology & Neurophysiology, Liverpool, 2170 NSW Australia
- The Sydney Partnership for Health, Education, Research & Enterprise (SPHERE), Liverpool, NSW Australia
- Stroke & Neurology Research Group, Ingham Institute for Applied Medical Research, 1 Campbell Street, Liverpool, NSW 2170 Australia
- School of Medicine, University of New South Wales (UNSW), Sydney, NSW Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW Australia
| |
Collapse
|
47
|
Affiliation(s)
- Werner Hacke
- From the Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Gusev EI, Martynov MY, Yasamanova AN, Nikonov AA, Markin SS, Semenov AM. Thrombolytic therapy of ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:4-14. [DOI: 10.17116/jnevro20181181224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Unknown onset ischemic strokes in patients last-seen-well >4.5 h: differences between wake-up and daytime-unwitnessed strokes. Acta Neurol Belg 2017; 117:637-642. [PMID: 28803427 PMCID: PMC5565646 DOI: 10.1007/s13760-017-0830-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
Patients with unknown time of stroke onset (UOS) represent around one-third of ischemic stroke patients. These are patients with wake-up stroke (WUS) or daytime-unwitnessed stroke (DUS), often presenting outside the time-window for reperfusion therapy. UOS patients presenting between 4.5 and 12 h after time of last-seen-well were included. Clinical and imaging characteristics were compared between WUS and DUS patients. Good functional outcome was defined as a modified Rankin scale of ≤2 at follow-up. Sixty-one UOS patients were included: 42 WUS and 19 DUS patients. Stroke severity at presentation was mild to moderate with a median National Institutes of Health Stroke Scale of 5 in WUS and 6 in DUS patients. Time between last-seen-well and presentation at the hospital was shorter in patients with DUS compared to WUS (506 vs 362 min, p < 0.01). CT imaging results were similar, with a median Alberta Stroke Program Early CT Score of 10 for both WUS and DUS patients. After correction for age and NIHSS at presentation, no difference in good functional outcome was found between WUS (52%) and DUS (22%). In patients with unknown onset ischemic strokes presenting between 4.5 and 12 h after time of last-seen-well, clinical and radiological features were in large part similar between WUS and DUS. The outcome in the overall cohort was rather poor despite a favorable neuroimaging profile at presentation. These findings underscore the need for clinical trials in patients in whom stroke onset time is unknown.
Collapse
|
50
|
Dong Q, Dong Y, Liu L, Xu A, Zhang Y, Zheng H, Wang Y. The Chinese Stroke Association scientific statement: intravenous thrombolysis in acute ischaemic stroke. Stroke Vasc Neurol 2017; 2:147-159. [PMID: 28989804 PMCID: PMC5628383 DOI: 10.1136/svn-2017-000074] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022] Open
Abstract
The most effective medical treatment for acute ischaemic stroke (AIS) is to offer intravenous thrombolysis during the ultra-early period of time after the onset. Even based on the Consensus of Chinese Experts on Intravenous Thrombolysis for AIS in 2012 and 2014 Chinese Guidelines on the Diagnosis and Treatment of AIS, the rate of thrombolysis for AIS in China remained around 2.4%, and the rate of intravenous tissue plasminogen activator usage was only about 1.6% in real world. The indication of thrombolysis for AIS has been expanded, and contraindications have been reduced with recently published studies. In order to facilitate the standardisation of treating AIS, improve the rate of thrombolysis and benefit patients who had a stroke, Chinese Stroke Association has organised and developed this scientific statement.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Neurology, Huashan Hospital affiliated to Fudan University, Shanghai Shi, China
| | - Yi Dong
- Department of Neurology, Huashan Hospital affiliated to Fudan University, Shanghai Shi, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Anding Xu
- Department of Neurology and Stroke Center, First Affiliated Hospital, Jinan University, Guangzhou Shi, China
| | - Yusheng Zhang
- Department of Neurology and Stroke Center, First Affiliated Hospital, Jinan University, Guangzhou Shi, China
| | - Huaguang Zheng
- Department of Neurology, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| |
Collapse
|