1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Park J, Choi Y, Chang PS. Interface-based kinetic model considering the integral stereoselectivity of lipases on tricapryloylglycerol in a reverse micelle system. Food Chem 2025; 465:141403. [PMID: 39546988 DOI: 10.1016/j.foodchem.2024.141403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/17/2024]
Abstract
Lipases are essential enzymes with unique selectivity, making them valuable in industrial applications. Understanding the integral stereoselectivity of lipases during triacylglycerol (TAG) hydrolysis is crucial for producing high-value products, such as structured lipids. This study developed an analytical method and an interface-based kinetic model to determine integral stereoselectivities on tricapryloylglycerol (TCG), a medium-chain TAG. The analytical method used an HPLC system that simultaneously separated TCG and its hydrolysates with resolution factors of >2.4 and relative standard deviation of retention times <0.3 % within 15 min. The interface-based kinetic model was established to determine the integral stereoselectivities according to the characteristics of the reaction system. The model provided better fitting results for TCG and trioleoylglycerol hydrolysis than a previous model, indicating the successful application in both medium- and long-chain TAGs. This study expanded our understanding of integral stereoselectivity and could facilitate the development of various structured lipid syntheses.
Collapse
Affiliation(s)
- Jaehyeon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonseok Choi
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Samões R, Cavalheiro A, Santos C, Lopes J, Teixeira C, Tavares MM, Carvalho C, Lemos C, E Costa PP, Cavaco S, Chaves J, Leal B. MicroRNAs as potential biomarkers of response to modified Atkins diet in treatment of adults with drug-resistant epilepsy: A proof-of-concept study. Epilepsy Res 2024; 208:107478. [PMID: 39536682 DOI: 10.1016/j.eplepsyres.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Accurate predictors of response to modified Atkins diet (MAD) are needed. MicroRNAs are potential biomarkers in epilepsy. This study aimed to explore the value of circulating miR-146a, miR-155, miR-22, miR-21 and miR-134 levels in predicting response to MAD. METHODS Patients who completed 3 months of MAD were selected from a prospective cohort of adults with DRE followed in a specialized MAD outpatient clinic. Patients were classified as responders if any reduction in seizure frequency at follow-up, calculated through seizure-calendars). The >50 % seizure reduction cut-off was also explored. Qualitative benefits in seizures and cognition were analysed. Blood samples were collected prior to initiate MAD and microRNAs were quantified by qRT-PCR. RESULTS Thirty-nine patients were included (56 %males, mean age=33.1±8.5yo, 62 %focal epilepsies, 59 %structural aetiology): 20(51 %) were responders [mean reduction in seizure frequency=54 %(17-100 %); 10 had ≥50 % reduction]; 25(64 %) reported qualitative benefit in seizures and 21(54 %) reported cognitive benefits. At pre-treatment baseline, a panel combining serum levels of all studied microRNAs predicted seizure reduction (AUC=0.839, p<0.0001), qualitative benefit in seizures (AUC=0.683, p=0.048) and in cognition (AUC=0.751, p<0.01) at 3months. miR-146a was the only significant microRNA when evaluated in isolation. There was no statistical correlation in the biomarkers when a ≥50 % seizure reduction was compared to <50 %. CONCLUSIONS A panel combining pre-treatment serum levels of miR-146a, miR-155, miR-134, miR-21 and miR-22 predicted any reduction in seizures with MAD in adults with DRE at 3months. This panel may be a promising biomarker and a useful tool in the selection of patients.
Collapse
Affiliation(s)
- Raquel Samões
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS Santo António, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Ana Cavalheiro
- Nutrition Service, Centro Hospitalar Universitário do Porto, ULS Santo António, Porto, Portugal
| | - Cristina Santos
- Immunogenetics Laboratory, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal
| | - Joana Lopes
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS Santo António, Porto, Portugal
| | - Catarina Teixeira
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS Santo António, Porto, Portugal
| | - Maria Manuel Tavares
- Nutrition Service, Centro Hospitalar Universitário do Porto, ULS Santo António, Porto, Portugal
| | - Cláudia Carvalho
- Immunogenetics Laboratory, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal
| | - Carolina Lemos
- ICBAS, School of Medicine and Biomedical Sciences - University of Porto, Porto, Portugal; UnIGENe, IBMC - Instituto de Biologia Celular Molecular, Portugal; i3S‑Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Paulo Pinho E Costa
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Immunogenetics Laboratory, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Sara Cavaco
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Neuropsychology Service, Centro Hospitalar Universitário de Santo António, ULS Santo António, Porto, Portugal
| | - João Chaves
- Neurology Department, Centro Hospitalar Universitário de Santo António, ULS Santo António, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Bárbara Leal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Immunogenetics Laboratory, Abel Salazar Biomedical Sciences Institute - University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Zhai J, Wang C, Jin L, Liu F, Xiao Y, Gu H, Liu M, Chen Y. Gut Microbiota Metabolites Mediate Bax to Reduce Neuronal Apoptosis via cGAS/STING Axis in Epilepsy. Mol Neurobiol 2024; 61:9794-9809. [PMID: 37605097 DOI: 10.1007/s12035-023-03545-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
The beneficial effects of gut flora on reducing nerve cell apoptosis and inflammation and improving epilepsy (EP) symptoms have been reported, but the specific mechanism of action is still unclear. A series of in vitro and in vivo experiments revealed the relationship between gut microbiota metabolites and the cGAS/STING axis and their role in EP. These results suggest that antibiotic-induced dysbiosis of gut microbiota exacerbated epileptic symptoms, probiotic supplements reduced epileptic symptoms in mice. Antibiotics and probiotics altered the diversity and composition of gut microbiota. The changes in gut bacteria composition, such as in the abundance of Firmicutes, Bacteroidetes, Lactobacillus and Ruminococcus, were associated with the production of short-chain fatty acids (SCFA) in the gut. The concentrations of propionate, butyrate and isovalerate were changed after feeding antibiotics and probiotics, and the increase in butyrate levels reduced the expression of cGAS/STING in nerve cell further reduced Bax protein expression. The reduction of Bax protein attenuated the hippocampal neuron cell apoptosis in PTZ-induced EP and EP progression. Our findings provide new insights into the roles and mechanisms of action of the gut microbiota in attenuating EP symptoms and progression.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fangtao Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yinzhu Xiao
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongfeng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
5
|
Ballesteros Tapias JK, Conde Hurtado DI, Castaño LH, Pérez AM. Ketogenic diet therapies as a non-pharmacological adjuvant in resistant epilepsy: retrospective analysis of adult outpatients in Colombia. Nutr Neurosci 2024; 27:1363-1369. [PMID: 38622918 DOI: 10.1080/1028415x.2024.2336716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Twelve patients between 18 and 53 years of age were included. MAD plus nutritional supplementation was administered to 75% (n = 10) of the participants, one (8.3%) received MAD alone, and 16.7 (n = 2) received Classic Ketogenic Diet (cKD) plus nutritional supplementation. Oral nutritional supplementation, administered in the outpatient setting, provided patients with between 31 and 55% of the total caloric value. In the first month of KDT treatment, 83.3% (n = 10) of patients reduced the number of weekly seizures by 40% (median). At six months of treatment, 75% of patients had at least halved the number of weekly seizures. At 12 months of treatment, the number of weekly seizures had been reduced by 85.7% (median). KDT was well tolerated, and there was no need to discontinue treatment. This study provides real-world information on the use of KDT, particularly MAD in adults, in developing countries. Future studies in larger cohorts will provide further information on different types of KDT, adherence, and patient-reported outcomes.
Collapse
|
6
|
Adler-Wachter M, Tsai JY, Schweitzer BN, McDonough A, Snyder JM, Barker-Haliski M, Weinstein JR. Repeated administration of pharmaceutical-grade medium chain triglycerides, a common pharmacologic excipient, confers dose-dependent toxicity by the intraperitoneal but not oral route in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625115. [PMID: 39651141 PMCID: PMC11623533 DOI: 10.1101/2024.11.24.625115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pharmaceutical-grade medium chain triglycerides (MCTs) are common excipients for in vivo pharmacological studies in laboratory animals, and as an experimental therapeutic in certain metabolic and neurological disorders. In this study, we examined the tolerability of repeated administration of a pharmaceutical-grade formulation of three MCTs-caprylic, capric, and lauric acid - in mice via the oral (PO) and intraperitoneal (IP) routes. We administered either 8 or 4 µL of 100% MCTs or saline/gram of body weight twice daily for seven days. During administration and for seven days after, we monitored weight change and clinical presentation. On day 14, or upon meeting euthanasia criteria, animals were sacrificed for gross necropsy, histology, and complete blood count. We observed significant weight loss, clinical decline and 100% mortality in animals receiving 8 µL/g of MCTs via the IP route of administration. Gross necropsy revealed serosanguinous fluid in the thoracic cavity, dark red mottled lungs, and adhesions in the abdominal cavity. Histology confirmed inflammation of the lungs, mediastinum, and peritoneum. Mild gross lesions and initial weight loss (through day 3) were also present in mice receiving 4 µL/g of MCTs IP. However, these animals regained weight by day seven and exhibited no clinical decline or mortality. None of these adverse effects were seen in animals receiving either 8 µL/g of MCTs PO or 8 µL/g of saline IP. These findings suggest repeated IP administration of MCTs may cause dose-dependent toxicity, and mortality at high doses, but confers no adverse effects when administered via the PO route. SIGNIFICANCE STATEMENT Medium chain triglycerides (MCTs) are commonly used as an excipient in pharmacological studies involving laboratory animals. Our work provides much needed safety information regarding adverse effects of repeated MCTs administration via the intraperitoneal, but not the oral, route in mice.
Collapse
|
7
|
Prabhu GS, Concessao PL. Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review. Arch Physiol Biochem 2024:1-9. [PMID: 39540905 DOI: 10.1080/13813455.2024.2426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
CONTENT The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct. OBJECTIVE This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline. METHODS The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review. RESULTS AND DISCUSSION The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration. CONCLUSION Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.
Collapse
Affiliation(s)
- Gayathri S Prabhu
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Lavina Concessao
- Division of Physiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Šikić K, Peters TMA, Engelke U, Petković Ramadža D, Žigman T, Fumić K, Davidović M, Huljev Frković S, Körmendy T, Martinelli D, Novelli A, Lepri FR, Wevers RA, Barić I. Huppke-Brendel syndrome: Novel cases and a therapeutic trial with ketogenic diet and N-acetylcysteine. JIMD Rep 2024; 65:361-370. [PMID: 39512429 PMCID: PMC11540564 DOI: 10.1002/jmd2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
Huppke-Brendel syndrome (HBS) is an autosomal recessive disorder caused by SLC33A1 mutations, a gene coding for the acetyl-CoA transporter-1 (AT-1). So far it has been described in nine pediatric and one adult patient. Therapeutic trials with copper histidinate failed to achieve any clinical improvement. Here, we describe the clinical characteristics of two novel patients, one of them diagnosed by gene analysis and his sib postmortally based on clinical characteristics. We demonstrate a therapeutic trial with acetylation therapy, consisting of N-acetylcysteine and ketogenic diet, in one of them. We provide biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma before and after starting this treatment regimen. Our results indicate that ketogenic diet and N-acetylcysteine do not seem to normalize the concentrations of N-acetylated amino acids in CSF or plasma. The overall metabolic pattern shows a trend toward lowered levels of N-acetylated amino acids in CSF and to a lesser extent in plasma. Although there are some assumptions, the function of AT-1 is still not clear and further studies are needed to better understand mechanisms underlying this complex disorder.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Tessa M. A. Peters
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Udo Engelke
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Danijela Petković Ramadža
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tamara Žigman
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Ksenija Fumić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Maša Davidović
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Sanda Huljev Frković
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tibor Körmendy
- Department of Diagnostic NeuroradiologyUniversity Hospital Centre ZagrebZagrebCroatia
| | - Diego Martinelli
- Division of Metabolic Diseases, Department of Paediatric Subspecialties and Liver‐Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Antonio Novelli
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Romana Lepri
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Ron A. Wevers
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Ivo Barić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| |
Collapse
|
9
|
Edwards MGP, Furuholmen-Jenssen T, Søegaard EGI, Thapa SB, Andersen JR. Exploring diet-induced ketosis with exogenous ketone supplementation as a potential intervention in post-traumatic stress disorder: a feasibility study. Front Nutr 2024; 11:1406366. [PMID: 39588043 PMCID: PMC11586679 DOI: 10.3389/fnut.2024.1406366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 11/27/2024] Open
Abstract
Background Post-Traumatic Stress Disorder (PTSD) is a severe and pervasive mental disorder, and patients experience numerous distressing symptoms and impairments that significantly impact their lives. In addition to being a mental disorder, PTSD is strongly associated with a wide range of metabolic abnormalities that affect the entire body. Existing treatment options of psychotherapy and medications are often ineffective. Exploring other potential treatments is necessitated. The ketogenic diet has shown potential as a metabolic therapy in certain neurological and mental disorders and is a promising intervention in the treatment of PTSD. Aim This study aimed to examine if a 4-week ketogenic diet intervention supplemented with exogenous ketones (KD-KS) was feasible in adult patients with PTSD, to what extent it was possible to recruit patients, attain and maintain ketosis (plasma concentration of β-hydroxybutyrate (BHB) ≥ 0.5 mmol/L), the occurrence of serious adverse reactions and adverse reactions to KD-KS, and acceptance of treatment. Our exploratory aims were changes in PTSD symptoms and health-related quality of life (QoL) from baseline to 4 weeks. Methods Patients 18 ≤ 65 years old, diagnosed with PTSD, and receiving outpatient treatment for PTSD at Southern Oslo District Psychiatric Centre (DPC), Oslo University Hospital, Oslo, Norway, were included. The intervention consisted of a ketogenic diet supplemented with β-hydroxybutyrate salt to obtain ketosis. PTSD symptoms were measured with the PTSD Checklist for DSM-5 (PCL-5) and QoL was measured with the RAND 36-Item Health Survey 1.0. Results During a 21-week inclusion period, three of four eligible patients (75% [95% CI: 30 to 95%]) were included. Two patients (67% [95% CI: 21 to 94%]) completed the 4-week intervention and one patient (33% [95% CI: 6 to 79%]) completed 2 weeks of intervention before discontinuing. Ketosis was achieved on day 1 in one patient, and on day 2 in two patients, and was maintained in 87% of the intervention. There were no serious adverse reactions. Adverse reactions were reported in a total of 70% of intervention days, the most frequent being headache followed by fatigue. The participant-perceived degree of adverse reactions was low to moderate. The treatment was accepted by patients on all intervention days. PCL-5 decreased by 20 points (70 to 50) in patient 1 and by 10 points (50 to 40) in patient 2, from baseline to 4 weeks, which is a reliable and clinically meaningful improvement. QoL improved in six of eight RAND-36 subscales in patient 1 and three of eight in patient 2. Patient 3 did not complete assessments after week 2. Conclusion To the best of our knowledge, this feasibility study is the first study examining a ketogenic diet intervention in patients with PTSD. Three of four predefined feasibility criteria were achieved. Ketosis was attained fast and maintained, patients were compliant and there were clinically meaningful improvements in PTSD symptoms and QoL. Despite the small sample size, the knowledge obtained in this study is important for the planning of future studies with ketogenic diet interventions in this patient group. It is a first step for potential dietary and metabolic therapies in PTSD. Further feasibility and pilot studies with larger sample sizes are needed to determine feasibility and safety before planning future randomised controlled trials investigating an effect. Clinical trial registration https://ClinicalTrials.gov, identifier NCT05415982.
Collapse
Affiliation(s)
- Maria G. P. Edwards
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Furuholmen-Jenssen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik Ganesh Iyer Søegaard
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Suraj Bahadur Thapa
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Malinowska D, Żendzian-Piotrowska M. Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application. J Nutr Metab 2024; 2024:6666171. [PMID: 39463845 PMCID: PMC11511599 DOI: 10.1155/2024/6666171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The ketogenic diet (KD) is a special high-fat, very low-carbohydrate diet with the amount of protein adjusted to one's requirements. By lowering the supply of carbohydrates, this diet induces a considerable change in metabolism (of protein and fat) and increases the production of ketone bodies. The purpose of this article is to review the diversity of composition, mechanism of action, clinical application and risk associated with the KD. In the last decade, more and more results of the diet's effects on obesity, diabetes and neurological disorders, among other examples have appeared. The beneficial effects of the KD on neurological diseases are related to the reconstruction of myelin sheaths of neurons, reduction of neuron inflammation, decreased production of reactive oxygen species, support of dopamine production, repair of damaged mitochondria and formation of new ones. Minimizing the intake of carbohydrates results in the reduced absorption of simple sugars, thereby decreasing blood glucose levels and fluctuations of glycaemia in diabetes. Studies on obesity indicate an advantage of the KD over other diets in terms of weight loss. This may be due to the upregulation of the biological activity of appetite-controlling hormones, or to decreased lipogenesis, intensified lipolysis and increased metabolic costs of gluconeogenesis. However, it is important to be aware of the side effects of the KD. These include disorders of the digestive system as well as headaches, irritability, fatigue, the occurrence of vitamin and mineral deficiencies and worsened lipid profile. Further studies aimed to determine long-term effects of the KD are required.
Collapse
Affiliation(s)
- Dominika Malinowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| | - Małgorzata Żendzian-Piotrowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| |
Collapse
|
11
|
Pain E, Snowden S, Oddy J, Shinhmar S, Alhammad YMA, King JS, Müller-Taubenberger A, Williams RSB. Pharmacological inhibition of ENT1 enhances the impact of specific dietary fats on energy metabolism gene expression. Proc Natl Acad Sci U S A 2024; 121:e2321874121. [PMID: 39207736 PMCID: PMC11388398 DOI: 10.1073/pnas.2321874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid β-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.
Collapse
Affiliation(s)
- Erwann Pain
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Yousef M A Alhammad
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Annette Müller-Taubenberger
- Department of Cell Biology, Biomedical Center, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Germany
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| |
Collapse
|
12
|
Meng Y, Sun J, Zhang G. Take the bull by the horns and tackle the potential downsides of the ketogenic diet. Nutrition 2024; 125:112480. [PMID: 38788511 DOI: 10.1016/j.nut.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
13
|
Ezaki O. Possible Extracellular Signals to Ameliorate Sarcopenia in Response to Medium-Chain Triglycerides (8:0 and 10:0) in Frail Older Adults. Nutrients 2024; 16:2606. [PMID: 39203743 PMCID: PMC11357358 DOI: 10.3390/nu16162606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In frail older adults (mean age 85 years old), a 3-month supplementation with a low dose (6 g/day) of medium-chain triglycerides (MCTs; C8:0 and C10:0) given at a meal increased muscle mass and function, relative to supplementation with long-chain triglycerides (LCTs), but it decreased fat mass. The reduction in fat mass was partly due to increased postprandial energy expenditure by stimulation of the sympathetic nervous system (SNS). However, the extracellular signals to ameliorate sarcopenia are unclear. The following three potential extracellular signals to increase muscle mass and function after MCT supplementation are discussed: (1) Activating SNS-the hypothesis for this is based on evidence that a beta2-adrenergic receptor agonist acutely (1-24 h) markedly upregulates isoforms of peroxisomal proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNAs, promotes mitochondrial biogenesis, and chronically (~1 month) induces muscle hypertrophy. (2) An increased concentration of plasma acyl-ghrelin stimulates growth hormone secretion. (3) A nitrogen-sparing effect of ketone bodies, which fuel skeletal muscle, may promote muscle protein synthesis and prevent muscle protein breakdown. This review will help guide clinical trials of using MCTs to treat primary (age-related) sarcopenia.
Collapse
Affiliation(s)
- Osamu Ezaki
- Institute of Women's Health Science, Showa Women's University, Tokyo 154-8533, Japan
| |
Collapse
|
14
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2024:nuae106. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
15
|
Rong L, Peng Y, Shen Q, Chen K, Fang B, Li W. Effects of ketogenic diet on cognitive function of patients with Alzheimer's disease: a systematic review and meta-analysis. J Nutr Health Aging 2024; 28:100306. [PMID: 38943982 DOI: 10.1016/j.jnha.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Ketogenic diets (KD) have shown remarkable effects in many disease areas. It has been demonstrated in numerous animal experiments that KD is effective in the treatment of Alzheimer's disease (AD). But the clinical effect of treating AD is uncertain. OBJECTIVE To systematically review the impact of KD on cognitive function in AD. METHODS We conducted a search of three international databases-PubMed, Cochrane Library, and Embase-to retrieve RCTs on the KD intervention for AD from the inception of the databases through October 2023. Two reviewers searched and screened the literature, extracted and checked relevant data independently, and assessed the risk of bias of the included studies. The meta-analysis was carried out utilizing RevMan 5.3 software. RESULTS A total of 10 RCTS involving 691 patients with AD were included. There were 357 participants in the intervention group and 334 participants in the control group. The duration of the KD intervention ranged from a minimum of 3 months to a maximum of 15 months. Meta-analysis results showed that KD could effectively improve the mental state of the elderly (NM scale) [MD = 7.56, 95%CI (3.02, 12.10), P = 0.001], MMSE [MD = 1.25, 95%CI (0.46, 2.04), P = 0.002], and ADAS-Cog [MD = -3.43, 95%CI (-5.98, -0.88), P = 0.008]. The elevation of ketone body (β-hydroxybutyric) [MD = 118.84, 95%CI (15.20, 222.48), P = 0.02] may also lead to the elevation of triglyceride [MD = 0.19, 95%CI (0.03, 0.35), P = 0.02] and low density lipoprotein [MD = 0.31, 95%CI (0.04, 0.58), P = 0.02]. CONCLUSION Research conducted has indicated that the KD can enhance the mental state and cognitive function of those with AD, albeit potentially leading to an elevation in blood lipid levels. In summary, the good intervention effect and safety of KD are worthy of promotion and application in clinical treatment of AD.
Collapse
Affiliation(s)
- Liyang Rong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Sanya Hospital of Traditional Chinese Medicine, Sanya, China
| | - Yating Peng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
16
|
Zhan W, Peng H, Xie S, Deng Y, Zhu T, Cui Y, Cao H, Tang Z, Jin M, Zhou Q. Dietary lauric acid promoted antioxidant and immune capacity by improving intestinal structure and microbial population of swimming crab (Portunus trituberculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109739. [PMID: 38960108 DOI: 10.1016/j.fsi.2024.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P < 0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P < 0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P < 0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P < 0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.
Collapse
Affiliation(s)
- Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuhui Cui
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Xu W, Borges K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 2024; 65:2213-2226. [PMID: 38767952 DOI: 10.1111/epi.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
In glucose transporter 1 deficiency syndrome (Glut1DS), glucose transport into brain is reduced due to impaired Glut1 function in endothelial cells at the blood-brain barrier. This can lead to shortages of glucose in brain and is thought to contribute to seizures. Ketogenic diets are the first-line treatment and, among many beneficial effects, provide auxiliary fuel in the form of ketone bodies that are largely metabolized by neurons. However, Glut1 is also the main glucose transporter in astrocytes. Here, we review data indicating that glucose shortage may also impact astrocytes in addition to neurons and discuss the expected negative biochemical consequences of compromised astrocytic glucose transport for neurons. Based on these effects, auxiliary fuels are needed for both cell types and adding medium chain triglycerides (MCTs) to ketogenic diets is a biochemically superior treatment for Glut1DS compared to classical ketogenic diets. MCTs provide medium chain fatty acids (MCFAs), which are largely metabolized by astrocytes and not neurons. MCFAs supply energy and contribute carbons for glutamine and γ-aminobutyric acid synthesis, and decanoic acid can also block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. MCTs do not compete with metabolism of ketone bodies mostly occurring in neurons. Triheptanoin, an anaplerotic but also gluconeogenic uneven MCT, may be another potential addition to ketogenic diets, although maintenance of "ketosis" can be difficult. Gene therapy has also targeted both endothelial cells and astrocytes. Other approaches to increase fuel delivery to the brain currently investigated include exchange of Glut1DS erythrocytes with healthy cells, infusion of lactate, and pharmacological improvement of glucose transport. In conclusion, although it remains difficult to assess impaired astrocytic energy metabolism in vivo, astrocytic energy needs are most likely not met by ketogenic diets in Glut1DS. Thus, we propose prospective studies including monitoring of blood MCFA levels to find optimal doses for add-on MCT to ketogenic diets and assessing of short- and long-term outcomes.
Collapse
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Karin Borges
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
18
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
21
|
Nukaga S, Fujiwara-Tani R, Nishida R, Miyagawa Y, Goto K, Kawahara I, Nakashima C, Fujii K, Ogata R, Ohmori H, Kuniyasu H. Caprylic Acid Inhibits High Mobility Group Box-1-Induced Mitochondrial Damage in Myocardial Tubes. Int J Mol Sci 2024; 25:8081. [PMID: 39125651 PMCID: PMC11311531 DOI: 10.3390/ijms25158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (S.N.); (R.N.); (Y.M.); (K.G.); (I.K.); (C.N.); (K.F.); (R.O.); (H.O.)
| | | | | | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan; (S.N.); (R.N.); (Y.M.); (K.G.); (I.K.); (C.N.); (K.F.); (R.O.); (H.O.)
| |
Collapse
|
22
|
Rojas R, Griñán-Ferré C, Castellanos A, Griego E, Martínez M, Navarro-López JDD, Jiménez-Díaz L, Rodríguez-Álvarez J, Del Cerro DS, Castillo PE, Pallàs M, Fadó R, Casals N. BETA-HYDROXYBUTYRATE COUNTERACTS THE DELETERIOUS EFFECTS OF A SATURATED HIGH-FAT DIET ON SYNAPTIC AMPA RECEPTORS AND COGNITIVE PERFORMANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576931. [PMID: 39091837 PMCID: PMC11291009 DOI: 10.1101/2024.01.23.576931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The ketogenic diet, characterized by high fat and low carbohydrates, has gained popularity not only as a strategy for managing body weight but also for its efficacy in delaying cognitive decline associated with neurodegenerative diseases and the aging process. Since this dietary approach stimulates the liver's production of ketone bodies, primarily β-hydroxybutyrate (BHB), which serves as an alternative energy source for neurons, we investigated whether BHB could mitigate impaired AMPA receptor trafficking, synaptic dysfunction, and cognitive decline induced by metabolic challenges such as saturated fatty acids. Here, we observe that, in cultured primary cortical neurons, exposure to palmitic acid (200μM) decreased surface levels of glutamate GluA1-containing AMPA receptors, whereas unsaturated fatty acids, such as oleic acid and ω-3 docosahexaenoic acid (200μM), and BHB (5mM) increased them. Furthermore, BHB countered the adverse effects of palmitic acid on synaptic GluA1 levels in hippocampal neurons, as well as excitability and plasticity in hippocampal slices. Additionally, daily intragastric administration of BHB (100 mg/kg/day) for two months reversed cognitive impairment induced by a saturated high-fat diet (49% of calories from fat) in a mouse experimental model of obesity. In summary, our findings underscore the significant impact of fatty acids and ketone bodies on AMPA receptors abundance, synaptic function and neuroplasticity, shedding light on the potential use of BHB to delay cognitive impairments associated with metabolic diseases.
Collapse
|
23
|
Yu F, Zong B, Ji L, Sun P, Jia D, Wang R. Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function. Int J Mol Sci 2024; 25:7853. [PMID: 39063095 PMCID: PMC11277118 DOI: 10.3390/ijms25147853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The metabolic network's primary sources of free fatty acids (FFAs) are long- and medium-chain fatty acids of triglyceride origin and short-chain fatty acids produced by intestinal microorganisms through dietary fibre fermentation. Recent studies have demonstrated that FFAs not only serve as an energy source for the body's metabolism but also participate in regulating arterial function. Excess FFAs have been shown to lead to endothelial dysfunction, vascular hypertrophy, and vessel wall stiffness, which are important triggers of arterial hypertension and atherosclerosis. Nevertheless, free fatty acid receptors (FFARs) are involved in the regulation of arterial functions, including the proliferation, differentiation, migration, apoptosis, inflammation, and angiogenesis of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). They actively regulate hypertension, endothelial dysfunction, and atherosclerosis. The objective of this review is to examine the roles and heterogeneity of FFAs and FFARs in the regulation of arterial function, with a view to identifying the points of intersection between their actions and providing new insights into the prevention and treatment of diseases associated with arterial dysfunction, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Fengzhi Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lili Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; (B.Z.); (P.S.)
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (L.J.)
| |
Collapse
|
24
|
Tidman MM, White DR, White TA. Impact of a keto diet on symptoms of Parkinson's disease, biomarkers, depression, anxiety and quality of life: a longitudinal study. Neurodegener Dis Manag 2024; 14:97-110. [PMID: 38869924 PMCID: PMC11457624 DOI: 10.1080/17582024.2024.2352394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: Evidence suggests low-carbohydrate diets (LCHF) may assist in treating neurodegenerative diseases such as Parkinson's disease (PD); however, gaps exist in the literature.Patients & methods: We conducted a small 24-week pilot study to investigate the effects of an LCHF diet on motor and nonmotor symptoms, health biomarkers, anxiety, and depression in seven people with PD. We also captured patient experiences during the process (quality of life [QoL]).Results: Participants reported improved biomarkers, enhanced cognition, mood, motor and nonmotor symptoms, and reduced pain and anxiety. Participants felt improvements enhanced their QoL.Conclusion: We conclude that an LCHF intervention is safe, feasible, and potentially effective in mitigating the symptoms of this disorder. However, more extensive randomized controlled studies are needed to create generalizable recommendations.
Collapse
Affiliation(s)
- Melanie M Tidman
- College of Graduate Health Studies, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
- Doctor of Health Science Program, School of Health Sciences, Liberty University, 1971 University Blvd Lynchburg, VA 24515, USA
- PhD in Occupational Therapy Program, Dr. Pallavi Patel College of Health Care Sciences, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL33328-2004, USA
| | - Dawn Reid White
- College of Graduate Health Studies, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
- Benard College, University of the Pacific, 3601 Pacific Ave, Stockton, CA95211, USA
- Research Fellow, Evidence Synthesis Group, EBHC South America: A JBI Affiliated Group, Calle Cartavio 406 Lima, Lima, 15023, Peru
| | - Tim A White
- Benard College, University of the Pacific, 3601 Pacific Ave, Stockton, CA95211, USA
- School of Health Sciences, Department of Healthcare Administration, American Public University Systems, Full-time faculty, 111 West Congress Street, Charles Town, WV25414, USA
- Department of Global Health Services & Administration, School of Business, University of Maryland Global Campus, 3501 University Blvd E, Adelphi, MD20783, USA
| |
Collapse
|
25
|
Lopes Neri LDC, Guglielmetti M, Fiorini S, Pasca L, Zanaboni MP, de Giorgis V, Tagliabue A, Ferraris C. Adherence to ketogenic dietary therapies in epilepsy: A systematic review of literature. Nutr Res 2024; 126:67-87. [PMID: 38631175 DOI: 10.1016/j.nutres.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Treatment adherence, defined as the degree to which the patient actively follows the plan of care, is very difficult for subjects undergoing ketogenic dietary therapies (KDTs). This is a relevant issue because adherence to dietary therapies is considered 1 of the primary determinants of the treatment's success. This paper aimed to review the literature evidence about KDT adherence according to age and diagnosis of patients. Performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method, this systematic review included clinical trials and observational studies. The risk of bias was assessed by the RoB 2.0 Cochrane tool and the quality of evidence according to the Mixed Methods Appraisal Tool system. Twenty-two articles were included, with more than half (n = 12) having average quality (2-3 stars). The studies' heterogeneity in measuring adherence and diagnosis made it difficult to compare results. Mean adherence rates were 71.5%, 66%, and 63.9% for children, adolescents, and adults, respectively. Adherence and compliance rates varied according to the follow-up period (79.7%, 66.7%, and 37.7% at 6, 24, and 36 months, respectively). The most frequent reasons for low adherence were linked to inefficacy in seizure control, adverse effects, food refusal, difficulty in preparing KDT meals or diet restrictiveness, lack of motivation, poor parental compliance, or cost of the diet. To conclude, there is a lack of standardized tools to measure adherence. Several studies highlighted the families' challenges in adhering to KDTs. These factors should be considered when creating strategies and resources on family education.
Collapse
Affiliation(s)
- Lenycia de Cassya Lopes Neri
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Monica Guglielmetti
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| | - Simona Fiorini
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy, member of ERN-Epicare; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Martina Paola Zanaboni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy, member of ERN-Epicare
| | - Valentina de Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy, member of ERN-Epicare; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Anna Tagliabue
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Ferraris
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Wang Q, Liu Q, Zhong G, Xu T, Zhang X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal Chem 2024; 96:8713-8720. [PMID: 38745346 DOI: 10.1021/acs.analchem.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 μA mM-1 cm-2 and a low limit detection of 1.21 μM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Geng Zhong
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tailin Xu
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Institute for Advanced Study, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
27
|
Borowicz-Reutt K, Krawczyk M, Czernia J. Ketogenic Diet in the Treatment of Epilepsy. Nutrients 2024; 16:1258. [PMID: 38732505 PMCID: PMC11085120 DOI: 10.3390/nu16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Epilepsy is one of the most disabling neurological diseases. Despite proper pharmacotherapy and the availability of 2nd and 3rd generation antiepileptic drugs, deep brain stimulation, and surgery, up to 30-40% of epilepsy patients remain drug-resistant. Consequences of this phenomenon include not only decreased a quality of life, and cognitive, behavioral, and personal disorders, but also an increased risk of death, i.e., in the mechanism of sudden unexpected death in epilepsy patients (SUDEP). The main goals of epilepsy treatment include three basic issues: achieving the best possible seizure control, avoiding the undesired effects of treatment, and maintaining/improving the quality of patients' lives. Therefore, numerous attempts are made to offer alternative treatments for drug-resistant seizures, an example of which is the ketogenic diet. It is a long-known but rarely used dietary therapy for intractable seizures. One of the reasons for this is the unpalatability of the classic ketogenic diet, which reduces patient compliance and adherence rates. However, its antiseizure effects are often considered to be worth the effort. Until recently, the diet was considered the last-resort treatment. Currently, it is believed that a ketogenic diet should be used much earlier in patients with well-defined indications. In correctly qualified patients, seizure activity may be reduced by over 90% or even abolished for long periods after the diet is stopped. A ketogenic diet can be used in all age groups, although most of the available literature addresses pediatric epilepsy. In this article, we focus on the mechanisms of action, effectiveness, and adverse effects of different variants of the ketogenic diet, including its classic version, a medium-chain triglyceride diet, a modified Atkins diet, and a low glycemic index treatment.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland; (M.K.); (J.C.)
| | | | | |
Collapse
|
28
|
Meer N, Fischer T. Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of Dementia-Related Diseases: A Systematic Review. J Nutr Metab 2024; 2024:9672969. [PMID: 38715705 PMCID: PMC11074881 DOI: 10.1155/2024/9672969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Pathomechanisms of dementias involve increasing damage to neuronal energy metabolism, resulting in degeneration-related insulin resistance and glucose hypometabolism. In this case, ketone bodies can provide an alternative energy source. Supplementation with medium-chain triglycerides (MCTs), which can induce ketogenesis, may alleviate brain energy deficits and improve neuronal function. This review aims to determine the effectiveness of MCT as a symptomatic treatment approach. The systematic literature search was conducted in April 2023 following the Cochrane Handbook and PRISMA guidelines. A total of 21 studies were included, comprising eight uncontrolled trials and 13 RCTs investigating the effects of MCT on Alzheimer's disease (AD) and mild cognitive impairment (MCI). A substantial increase in plasma ketone levels and brain metabolic rates was observed. Cognitive assessments showed only occasional or domain-specific performance improvements. The effects on functional abilities or psychological outcomes have been inadequately studied. Besides gastrointestinal side effects, no harmful effects were observed. However, the evidence was severely weakened by heterogeneous and poorly designed study protocols, bias, and conflicts of interest. In conclusion, the ketogenic properties of MCTs may have beneficial effects on brain metabolism in AD and MCI but do not always result in measurable clinical improvement. Current evidence is insufficient to recommend MCT as a comparable symptomatic treatment option.
Collapse
Affiliation(s)
- Nike Meer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| | - Tobias Fischer
- FH Muenster-University of Applied Sciences, Department of Food, Nutrition, and Facilities, Corrensstraße 25, Muenster 48149, Germany
| |
Collapse
|
29
|
Griffen C, Schoeler NE, Browne R, Cameron T, Kirkpatrick M, Thowfeek S, Munn J, Champion H, Mills N, Phillips S, Air L, Devlin A, Nicol C, Macfarlane S, Bittle V, Thomas P, Cooke L, Ackril J, Allford A, Appleyard V, Szwec C, Atwal K, Hubbard GP, Stratton RJ. Tolerance, adherence, and acceptability of a ketogenic 2.5:1 ratio, nutritionally complete, medium chain triglyceride-containing liquid feed in children and adults with drug-resistant epilepsy following a ketogenic diet. Epilepsia Open 2024; 9:727-738. [PMID: 38411329 PMCID: PMC10984290 DOI: 10.1002/epi4.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To investigate incorporating a ready-to-use 2.5:1 ratio liquid feed into a ketogenic diet (KD) in children and adults with drug-resistant epilepsy. METHODS Following a three-day baseline, patients (n = 19; age: 19 years [SD 13], range: 8-46 years) followed a KD for 28 days (control period), then incorporated ≥200 mL/day of a ready-to-use liquid feed, made with a ratio of 2.5 g of fat to 1 g of protein plus carbohydrate and including medium chain triglycerides ([MCTs]; 25.6% of total fat/100 mL) for 28 days as part of their KD (intervention period). Outcome measures (control vs intervention period) included gastrointestinal (GI) tolerance, adherence to KD and intervention feed, dietary intake, blood ß-hydroxybutyrate (BHB) concentration, seizure outcomes, health-related quality of life (HRQoL), acceptability and safety. RESULTS Compared to the control period, during the intervention period, the percentage of patients reporting no GI symptoms increased (+5% [SD 5], p = 0.02); adherence to the KD prescription was similar (p = 0.92) but higher in patients (n = 5) with poor adherence (<50%) to KD during the control period (+33% [SD 26], p = 0.049); total MCT intake increased (+12.1 g/day [SD 14.0], p = 0.002), driven by increases in octanoic (C8; +8.3 g/day [SD 6.4], p < 0.001) and decanoic acid (C10; +5.4 g/day [SD 5.4], p < 0.001); KD ratio decreased (p = 0.047), driven by a nonsignificant increase in protein intake (+11 g/day [SD 44], p = 0.29); seizure outcomes were similar (p ≥ 0.63) but improved in patients (n = 6) with the worst seizure outcomes during the control period (p = 0.04); and HRQoL outcomes were similar. The intervention feed was well adhered to (96% [SD 8]) and accepted (≥88% of patients confirmed). SIGNIFICANCE These findings provide an evidence-base to support the effective management of children and adults with drug-resistant epilepsy following a KD with the use of a ready-to-use, nutritionally complete, 2.5:1 ratio feed including MCTs. PLAIN LANGUAGE SUMMARY This study examined the use of a ready-to-use, nutritionally complete, 2.5:1 ratio (2.5 g of fat to 1 g of protein plus carbohydrate) liquid feed, including medium chain triglycerides (MCTs), into a ketogenic diet (KD) in children and adults with drug-resistant epilepsy. The results show that the 2.5:1 ratio feed was well tolerated, adhered to, and accepted in these patients. Increases in MCT intake (particularly C8 and C10) and improvements in seizure outcomes (reduced seizure burden and intensity) and KD adherence also occurred with the 2.5:1 ratio feed in patients with the worst seizures and adherence, respectively.
Collapse
Affiliation(s)
| | - Natasha E. Schoeler
- UCL Great Ormond Street Institute of Child HealthLondonUK
- Great Ormond Street Hospital for ChildrenLondonUK
| | | | - Tracy Cameron
- Tayside Children's HospitalDundeeUK
- Royal Aberdeen Children's HospitalAberdeenUK
| | | | - Seema Thowfeek
- The Barberry, Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
| | - Judith Munn
- The Barberry, Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
| | - Helena Champion
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Nicole Mills
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Siân Phillips
- Southampton Children's Hospital, Southampton General HospitalSouthamptonUK
| | - Linda Air
- Great North Children's HospitalNewcastle Upon TyneUK
| | - Anita Devlin
- Great North Children's HospitalNewcastle Upon TyneUK
| | - Claire Nicol
- Great North Children's HospitalNewcastle Upon TyneUK
| | | | | | | | - Lisa Cooke
- Bristol Royal Hospital for ChildrenBristolUK
| | - Julia Ackril
- Birmingham Women's and Children's NHS TrustBirminghamUK
| | | | | | - Clare Szwec
- Clinical Research, Nutricia Ltd.TrowbridgeUK
| | | | | | - Rebecca J. Stratton
- Clinical Research, Nutricia Ltd.TrowbridgeUK
- University of SouthamptonSouthamptonUK
| |
Collapse
|
30
|
Edwards MGP, Andersen JR, Curtis DJ, Riberholt CG, Poulsen I. Diet-induced ketosis in adult patients with subacute acquired brain injury: a feasibility study. Front Med (Lausanne) 2024; 10:1305888. [PMID: 38571572 PMCID: PMC10990248 DOI: 10.3389/fmed.2023.1305888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 04/05/2024] Open
Abstract
Background Research in animal models on cerebral metabolism after brain injury highlights the potential benefits of ketosis in reducing secondary brain injury, but studies in humans are lacking. Aim This study aimed to examine if a 6-week ketogenic diet intervention with added medium-chain triglycerides (MCT) was feasible in adult patients with acquired brain injury in the subacute phase, whether ketosis could be achieved and maintained, and to what extent serious adverse reactions, adverse reactions, serious adverse events, and adverse events occured. Methods Patients ≥18 years of age diagnosed with subacute acquired brain injury and an expectation of hospitalisation ≥6 weeks were included in the intervention group. Patients not included in the intervention group were included in a standard care reference group. The intervention consisted of a ketogenic diet supplemented with MCT to obtain a plasma concentration of β-hydroxybutyrate (BHB) ≥0.5 mmol/L. Patients who were enterally fed were given KetoCal® 2.5:1 LQ MCT Multi Fiber (Nutricia A/S, Allerød, Denmark), supplemented with Liquigen® (Nutricia A/S, Allerød, Denmark). Patients consuming oral nutrition were given KetoCal® 2.5:1 LQ MCT Multi Fiber supplemented with Liquigen®, in addition to ketogenic meals. Results During a 13-week inclusion period, 12 of 13 eligible patients (92% [95% CI: 67% to 99%]) were included in the intervention group, and 17 of 18 excluded patients (94% [95% CI: 74% to 99%]) were included in the reference group. Eight patients (67%) completed the 6-week intervention. It took a median of 1 day to achieve ketosis from starting a 100% MCT ketogenic diet, and it was maintained for 97% of the intervention period after ketosis was obtained. There were no serious adverse reactions to the MCT ketogenic diet, and patients experienced adverse reactions not considered serious in 9.5% of days with the intervention. The MCT ketogenic diet was accepted by patients on all intervention days, and in the two patients transitioning from enteral feeding to oral intake, there were no complications related to transitioning. Conclusion Intervention with MCT ketogenic diet is feasible and tolerated for 6 weeks in hospitalised adult patients with subacute acquired brain injury. Randomised controlled trials are needed to assess the benefits and harms of the MCT ketogenic diet and the effect on patients' recovery.Clinical trial registration: ClinicalTrials.gov, identifier [NCT04308577].
Collapse
Affiliation(s)
- Maria G. P. Edwards
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Derek J. Curtis
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Christian G. Riberholt
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Ingrid Poulsen
- Department of Brain and Spinal Cord Injury, Neuroscience Centre, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
31
|
Nabatame S, Kishimoto K, Mano T. Introduction and modification of the ketogenic diet in an adult patient with glucose transporter 1 deficiency syndrome. Epileptic Disord 2024. [PMID: 38491976 DOI: 10.1002/epd2.20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Affiliation(s)
- Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Kanako Kishimoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Epilepsy Center, Osaka University Hospital, Suita, Japan
| | | |
Collapse
|
32
|
Tagliabue A, Armeno M, Berk KA, Guglielmetti M, Ferraris C, Olieman J, van der Louw E. Ketogenic diet for epilepsy and obesity: Is it the same? Nutr Metab Cardiovasc Dis 2024; 34:581-589. [PMID: 38326186 DOI: 10.1016/j.numecd.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The term "ketogenic diet" (KD) is used for a wide variety of diets with diverse indications ranging from obesity to neurological diseases, as if it was the same diet. This terminology is confusing for patients and the medical and scientific community. The term "ketogenic" diet implies a dietary regimen characterized by increased levels of circulating ketone bodies that should be measured in blood (beta-hydroxybutyrate), urine (acetoacetate) or breath (acetone) to verify the "ketogenic metabolic condition". Our viewpoint highlights that KDs used for epilepsy and obesity are not the same; the protocols aimed at weight loss characterized by low-fat, low-CHO and moderate/high protein content are not ketogenic by themselves but may become mildly ketogenic when high calorie restriction is applied. In contrast, there are standardized protocols for neurological diseases treatment for which ketosis has been established to be part of the mechanism of action. Therefore, in our opinion, the term ketogenic dietary therapy (KDT) should be reserved to the protocols considered for epilepsy and other neurological diseases, as suggested by the International Study Group in 2018. We propose to adjust the abbreviations in VLCHKD for Very Low CarboHydrate Ketogenic Diet and VLEKD for Very Low Energy Ketogenic Diet, to clarify the differences in dietary composition. We recommend that investigators describe the researchers describing efficacy or side effects of KDs, to clearly specify the dietary protocol used with its unique acronym and level of ketosis, when ketosis is considered as a component of the diet's mechanism of action.
Collapse
Affiliation(s)
- A Tagliabue
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Armeno
- Ketogenic Diet Team Unit, Clinical Nutrition Department, Hospital Pediatría Prof Dr JP Garrahan, Buenos Aires, Argentina
| | - K A Berk
- Department of Internal Medicine, Division of Dietetics, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - M Guglielmetti
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health Experimental and Forensic Medicine, University of Pavia, Italy.
| | - C Ferraris
- Ketogenic Metabolic Therapy Laboratory, Department of Public Health Experimental and Forensic Medicine, University of Pavia, Italy
| | - J Olieman
- Department of Internal Medicine, Division of Dietetics, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - E van der Louw
- Department of Internal Medicine, Division of Dietetics, Erasmus MC University Medical Centre Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
33
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
34
|
Oyetoro RO, Conners KM, Joo J, Turecamo S, Sampson M, Wolska A, Remaley AT, Otvos JD, Connelly MA, Larson NB, Bielinski SJ, Hashemian M, Shearer JJ, Roger VL. Circulating ketone bodies and mortality in heart failure: a community cohort study. Front Cardiovasc Med 2024; 11:1293901. [PMID: 38327494 PMCID: PMC10847221 DOI: 10.3389/fcvm.2024.1293901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background The relationship between ketone bodies (KB) and mortality in patients with heart failure (HF) syndrome has not been well established. Objectives The aim of this study is to assess the distribution of KB in HF, identify clinical correlates, and examine the associations between plasma KB and all-cause mortality in a population-based HF cohort. Methods The plasma KB levels were measured by nuclear magnetic resonance spectroscopy. Multivariable linear regression was used to examine associations between clinical correlates and KB levels. Proportional hazard regression was employed to examine associations between KB (represented as both continuous and categorical variables) and mortality, with adjustment for several clinical covariates. Results Among the 1,382 HF patients with KB measurements, the median (IQR) age was 78 (68, 84) and 52% were men. The median (IQR) KB was found to be 180 (134, 308) μM. Higher KB levels were associated with advanced HF (NYHA class III-IV) and higher NT-proBNP levels (both P < 0.001). The median follow-up was 13.9 years, and the 5-year mortality rate was 51.8% [95% confidence interval (CI): 49.1%-54.4%]. The risk of death increased when KB levels were higher (HRhigh vs. low group 1.23; 95% CI: 1.05-1.44), independently of a validated clinical risk score. The association between higher KB and mortality differed by ejection fraction (EF) and was noticeably stronger among patients with preserved EF. Conclusions Most patients with HF exhibited KB levels that were consistent with those found in healthy adults. Elevated levels of KB were observed in patients with advanced HF. Higher KB levels were found to be associated with an increased risk of death, particularly in patients with preserved EF.
Collapse
Affiliation(s)
- Rebecca O. Oyetoro
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine M. Conners
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - James D. Otvos
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Nicholas B. Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Suzette J. Bielinski
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joseph J. Shearer
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Véronique L. Roger
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Hu M, Liang C, Wang D. Implantable bioelectrodes: challenges, strategies, and future directions. Biomater Sci 2024; 12:270-287. [PMID: 38175154 DOI: 10.1039/d3bm01204b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implantable bioelectrodes for regulating and monitoring biological behaviors have become indispensable medical devices in modern healthcare, alleviating pathological symptoms such as epilepsy and arrhythmia, and assisting in reversing conditions such as deafness and blindness. In recent years, developments in the fields of materials science and biomedical engineering have contributed to advances in research on implantable bioelectrodes. However, the foreign body reaction (FBR) is still a major constraint for the long-term application of electrodes. In this paper, four types of commonly used implantable bioelectrodes are reviewed, concentrating on their background, development, and a series of complications caused by FBR after long-term implantation. Strategies for resisting FBRs are then devised in terms of physics, chemistry, and nanotechnology. We analyze the major trends in the future development of implantable bioelectrodes and outline some promising research to optimize the long-term operational stability of electrodes. Although current implantable bioelectrodes have been able to achieve good biocompatibility, low impedance, and low mechanical mismatch and trauma, these devices still face the challenge of FBR. Resistance to FBR is still the key for the long-term effectiveness of bioelectrodes, and a better understanding of the mechanisms of FBR, as well as miniaturization, long-term passivation, and coupling with gene therapy may be the way forward for the next generation of implantable bioelectrodes.
Collapse
Affiliation(s)
- Mengyuan Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
36
|
Fan L, Zhu X, Chen Q, Huang X, Steinwandel MD, Shrubsole MJ, Dai Q. Dietary medium-chain fatty acids and risk of incident colorectal cancer in a predominantly low-income population: a report from the Southern Community Cohort Study. Am J Clin Nutr 2024; 119:7-17. [PMID: 37898435 PMCID: PMC10808834 DOI: 10.1016/j.ajcnut.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND No prospective observational study has specifically examined the associations between dietary intakes of medium-chain fatty acids and risk of colorectal cancer. OBJECTIVES This study examined the association between dietary intakes of medium-chain fatty acids and colorectal cancer risk overall and by racial subgroups in a predominantly low-income United States population. METHODS This prospective study included 71,599 eligible participants aged 40 to 79 who were enrolled in the Southern Community Cohort Study between 2002 and 2009 in 12 southeastern United States states. Incident colorectal cancer cases were ascertained via linkage to state cancer registries, which was completed through 31 December, 2016. The dietary intakes of medium-chain fatty acids were assessed using a validated 89-item food frequency questionnaire. Multivariable Cox proportional hazards regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between intakes of medium-chain fatty acids and risk for incident colorectal cancer. RESULTS Among 71,599 participants, 48,008 (67.3%) were Black individuals and 42,260 (59.0%) were female. A total of 868 incident colorectal cancer cases occurred during a median follow-up of 13.7 y. Comparing the highest to the lowest quartile, high intake of dodecanoic acid/lauric acid (C12:0) was associated with reduced risk of colorectal cancer among White participants (HR: 0.52; 95% CI: 0.30, 0.91; P-trend = 0.05), but not in Black individuals (HR: 0.92; 95% CI, 0.68, 1.24; P-trend = 0.80) in multivariable-adjusted models. No associations were found between intakes of hexanoic acid/caproic acid (C6:0), octanoic acid/caprylic acid (C8:0), or decanoic acid/capric acid (C10:0) and risk of incident colorectal cancer overall or within racial subgroups. CONCLUSIONS In a predominantly low-income United States population, an increased dietary C12:0 intake was associated with a substantially reduced risk of colorectal cancer only among White individuals, but not in Black individuals.
Collapse
Affiliation(s)
- Lei Fan
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiangzhu Zhu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qingxia Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Xiang Huang
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qi Dai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
37
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
38
|
Björkqvist M. Centrally and peripherally altered glucose transporters: is it time to revisit energy deficiency as a potential treatment strategy in Huntington's disease? EBioMedicine 2023; 98:104882. [PMID: 37979315 PMCID: PMC10694065 DOI: 10.1016/j.ebiom.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Affiliation(s)
- Maria Björkqvist
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Science, Medical Faculty, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Price S, Ruppar TM. Ketogenic therapies in Parkinson's disease, Alzheimer's disease, and mild cognitive impairment: An integrative review. Appl Nurs Res 2023; 74:151745. [PMID: 38007248 DOI: 10.1016/j.apnr.2023.151745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Ketogenic therapies have shown benefit for seizure reduction in epilepsy but their impact on other neurologic conditions is less known. In this literature review, the efficacy of ketogenic therapies were assessed in Parkinson's disease (PD), Alzheimer's disease (AD), and mild cognitive impairment (MCI). METHODS A literature search was conducted using PubMed, Scopus, and Google Scholar focusing on ketogenic therapies in PD, AD, and MCI. RESULTS A total of 2565 records were identified with a total of 15 studies (3 for PD and 12 for MCI/AD) meeting criteria for analysis. The ketogenic diet was used in all the PD studies and did show significant improvement in motor function either through vocal quality, gait, freezing, tremor, and/or balance. A variety of ketogenic therapies were utilized in the MCI and AD groups including a ketogenic diet, low-carbohydrate diet, modified Adkins diet, Mediterranean diet with coconut oil supplementation, a ketogenic diet with a ketogenic medium chain triglyceride (kMCT) supplement, as well as ketogenic supplements including a ketogenic drink with kMCT, oral ketogenic compounds (Axona and AC-1202), and MCT oil or emulsion. The ketogenic diet independently showed a non-significant trend towards improvement in cognition. The Mediterranean diet, modified Adkins diet, and low-carbohydrate diet showed statistically significant improvements in some, although not all, of their cognitive measures. Use of ketogenic supplements, drinks, or compounds showed variable results in the AD and MCI groups. The Axona and AC-1202 compounds showed no significant improvement in cognition at the end of their respective 90-day trials. Most MCT supplements did show cognitive improvements, although only after 6 months of adherence. Adherence to the intervention was problematic in most of the diet studies. CONCLUSION Ketogenic therapies have promise in PD, AD, and MCI for symptom improvement although larger studies are needed to support their implementation in clinical practice.
Collapse
Affiliation(s)
- Susan Price
- Rush University, United States of America; Hauenstein Neuroscience Center, Trinity Health, United States of America.
| | | |
Collapse
|
40
|
Charlot A, Lernould A, Plus I, Zoll J. [Beneficial effects of ketogenic diet for Alzheimer's disease management]. Biol Aujourdhui 2023; 217:253-263. [PMID: 38018953 DOI: 10.1051/jbio/2023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 11/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects almost 1 million people in France and 55 million in the world. This pathology is a global health preoccupation because of the lack of efficient curative treatment and the increase of its prevalence. During the last decade, the comprehension of pathophysiological mechanisms involved in AD have been improved. Amyloid plaques and neurofibrillary tangles accumulation are characteristic of Alzheimer's brain patients, accompanied by increased brain inflammation and oxidative stress, impaired cerebral metabolism of glucose and mitochondrial function. Treatment of AD includes different approaches, as pharmacology, psychology support, physiotherapy, and speech therapy. However, these interventions do not have a curative effect, but only compensatory on the disease. Ketogenic diet (KD), a low-carbohydrates and high-fat diet, associated with a medium-chain triglycerides intake (MCTs) might induce benefices for Alzheimer disease patients. Carbohydrate restriction and MCTs promotes the production of ketone bodies from fatty acid degradation. These metabolites replacing glucose, serve the brain as energetic substrates, and induce neuroprotective effects. Such a nutritional support might slow down the disease progression and improve cognitive abilities of patients. This review aims to examine the neuroprotective mechanisms of KD in AD progression and describes the advantages and limitations of KD as a therapeutic strategy.
Collapse
Affiliation(s)
- Anouk Charlot
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Alix Lernould
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Irène Plus
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, CRBS, UR3072 « Mitochondrie, stress oxydant et protection musculaire », 1 rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
41
|
刘 颖, 马 良, 付 平. [Ketone Body Metabolism and Renal Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1091-1096. [PMID: 38162055 PMCID: PMC10752776 DOI: 10.12182/20231160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 01/03/2024]
Abstract
A ketogenic diet limits energy supply from glucose and stimulates lipolysis, lipid oxidation, and ketogenesis, resulting in elevated levels of ketone bodies in the bloodstream. Ketone bodies are synthesized in the mitochondrial matrix of liver cells and β-hydroxybutyric acid (BHB) is the most abundant type of ketone body. Herein, we reviewed published findings on the metabolism of ketone bodies and the role of BHB in renal diseases. Through blood circulation, ketone bodies reach metabolically active tissues and provides an alternative source of energy. BHB, being a signaling molecule, mediates various types of cellular signal transduction and participates in the development and progression of many diseases. BHB also has protective and therapeutic effects on a variety of renal diseases. BHB improves the prognosis of renal diseases, such as diabetic kidney disease, chronic kidney disease, acute kidney injury, and polycystic kidney disease, through its antioxidant, anti-inflammatory, and stress response mechanisms. Previous studies have focused on the role of ketone bodies in regulating inflammation and oxidative stress in immune cells. Investigations into the effect of elevated levels of ketone bodies on the metabolism of renal podocytes and tubular cells remain inconclusive. Further research is needed to investigate the effect of BHB on podocyte damage and podocyte senescence in renal diseases.
Collapse
Affiliation(s)
- 颖 刘
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 良 马
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 平 付
- 四川大学华西医院 肾脏内科 (成都 610041)Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 肾脏病研究所 (成都 610041)Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Ramezani M, Fernando M, Eslick S, Asih PR, Shadfar S, Bandara EMS, Hillebrandt H, Meghwar S, Shahriari M, Chatterjee P, Thota R, Dias CB, Garg ML, Martins RN. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer's disease. Front Neurosci 2023; 17:1297984. [PMID: 38033541 PMCID: PMC10687427 DOI: 10.3389/fnins.2023.1297984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.
Collapse
Affiliation(s)
- Matin Ramezani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Malika Fernando
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Shaun Eslick
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Prita R. Asih
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Heidi Hillebrandt
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Silochna Meghwar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Maryam Shahriari
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Rohith Thota
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Cintia B. Dias
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Manohar L. Garg
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
| | - Ralph N. Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
43
|
Luca AC, Pădureț IA, Țarcă V, David SG, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Nutritional Approach in Selected Inherited Metabolic Cardiac Disorders-A Concise Summary of Available Scientific Evidence. Nutrients 2023; 15:4795. [PMID: 38004189 PMCID: PMC10675151 DOI: 10.3390/nu15224795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Inborn errors of metabolism (IMDs) are a group of inherited diseases that manifest themselves through a myriad of signs and symptoms, including structural or functional cardiovascular damage. The therapy of these diseases is currently based on enzyme-replacement therapy, chaperone therapy or the administration of supplements and the establishment of personalized dietary plans. Starting from the major signs identified by the pediatric cardiologist that can indicate the presence of such a metabolic disease-cardiomyopathies, conduction disorders or valvular dysplasias-we tried to paint the portrait of dietary interventions that can improve the course of patients with mitochondrial diseases or lysosomal abnormalities. The choice of the two categories of inborn errors of metabolism is not accidental and reflects the experience and concern of the authors regarding the management of patients with such diagnoses. A ketogenic diet offers promising results in selected cases, although, to date, studies have failed to bring enough evidence to support generalized recommendations. Other diets have been successfully utilized in patients with IMDs, but their specific effect on the cardiac phenotype and function is not yet fully understood. Significant prospective studies are necessary in order to understand and establish which diet best suits every patient depending on the inherited metabolic disorder. The most suitable imagistic monitoring method for the impact of different diets on the cardiovascular system is still under debate, with no protocols yet available. Echocardiography is readily available in most hospital settings and brings important information regarding the impact of diets on the left ventricular parameters. Cardiac MRI (magnetic resonance imaging) could better characterize the cardiac tissue and bring forth both functional and structural information.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | - Ioana-Alexandra Pădureț
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (I.-A.P.); (D.E.M.); (E.V.R.)
| | | | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
44
|
Fan L, Borenstein AR, Wang S, Nho K, Zhu X, Wen W, Huang X, Mortimer JA, Shrubsole MJ, Dai Q. Associations of circulating saturated long-chain fatty acids with risk of mild cognitive impairment and Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. EBioMedicine 2023; 97:104818. [PMID: 37793213 PMCID: PMC10562835 DOI: 10.1016/j.ebiom.2023.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND No study has examined the associations between peripheral saturated long-chain fatty acids (LCFAs) and conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). This study aimed to examine whether circulating saturated LCFAs are associated with both risks of incident MCI from cognitively normal (CN) participants and incident AD progressed from MCI in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. METHODS We conducted analysis of data from older adults aged 55-90 years who were recruited at 63 sites across the USA and Canada. We examined associations between circulating saturated LCFAs (i.e., C14:0, C16:0, C18:0, C20:0) and risk for incident MCI in CN participants, and incident AD progressed from MCI. FINDINGS 829 participants who were enrolled in ADNI-1 had data on plasma saturated LCFAs, of which 618 AD-free participants were included in our analysis (226 with normal cognition and 392 with MCI; 60.2% were men). Cox proportional-hazards models were used to account for time-to-event/censor with a 48-month follow-up period for the primary analysis. Other than C20:0, saturated LCFAs were associated with an increased risk for AD among participants with MCI at baseline (Hazard ratios (HRs) = 1.3 to 2.2, P = 0.0005 to 0.003 in fully-adjusted models). No association of C20:0 with risk of AD among participants with MCI was observed. No associations were observed between saturated LCFAs and risk for MCI among participants with normal cognition. INTERPRETATION Saturated LCFAs are associated with increased risk of progressing from MCI to AD. This finding holds the potential to facilitate precision prevention of AD among patients with MCI. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Lei Fan
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy R Borenstein
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California-San Diego, La Jolla, CA 92093, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiangzhu Zhu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wanqing Wen
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiang Huang
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James A Mortimer
- College of Public Health, University of South Florida, Tampa, FL 33620, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Dai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Billamboz M, Jawhara S. Anti- Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023; 11:2599. [PMID: 37894257 PMCID: PMC10609646 DOI: 10.3390/microorganisms11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malassezia is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to Malassezia pathogenesis that triggers skin diseases. These virulence factors include Malassezia cell wall resistance, lipases, phospholipases, acid sphingomyelinases, melanin, reactive oxygen species (ROS), indoles, hyphae formation, hydrophobicity, and biofilm formation. The second section describes active compounds directed specifically against identified virulence factors. Among the strategies for controlling Malassezia spread, this review discusses the development of aryl hydrocarbon receptor (AhR) antagonists, inhibition of secreted lipase, and fighting biofilms. Overall, this review offers an updated compilation of Malassezia species, including their virulence factors, potential therapeutic targets, and strategies for controlling their spread. It also provides an update on the most active compounds used to control Malassezia species.
Collapse
Affiliation(s)
- Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, University of Lille, 1 Place Verdun, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
46
|
Gentili HG, Pignataro MF, Olmos J, Pavan MF, Ibañez LI, Santos J, Velazquez Duarte F. CRISPR/Cas9-based edition of frataxin gene in Dictyostelium discoideum. Biochem J 2023; 480:1533-1551. [PMID: 37721041 DOI: 10.1042/bcj20230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In this paper, we describe the development of a Dictyostelium discoideum strain deficient in frataxin protein (FXN). We investigated the conservation of function between humans and D. discoideum and showed that DdFXN can substitute the human version in the interaction and activation of the Fe-S assembly supercomplex. We edited the D. discoideum fxn locus and isolated a defective mutant, clone 8, which presents landmarks of frataxin deficiency, such as a decrease in Fe-S cluster-dependent enzymatic functions, growth rate reduction, and increased sensitivity to oxidative stress. In addition, the multicellular development is affected as well as growing on bacterial lawn. We also assessed the rescuing capacity of DdFXN-G122V, a version that mimics a human variant present in some FA patients. While the expression of DdFXN-G122V rescues growth and enzymatic activity defects, as DdFXN does, multicellular development defects were only partially rescued. The results of the study suggest that this new D. discoideum strain offers a wide range of possibilities to easily explore diverse FA FXN variants. This can facilitate the development of straightforward drug screenings to look for new therapeutic strategies.
Collapse
Affiliation(s)
- Hernan G Gentili
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Justo Olmos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Lorena Itatí Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Francisco Velazquez Duarte
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
47
|
Wu Z, Yang W, Li M, Li F, Gong R, Wu Y. Relationship between Dietary Decanoic Acid and Coronary Artery Disease: A Population-Based Cross-Sectional Study. Nutrients 2023; 15:4308. [PMID: 37892384 PMCID: PMC10609701 DOI: 10.3390/nu15204308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a cardiovascular disease with significant personal health and socioeconomic consequences. The biological functions of decanoic acid and the pathogenesis of CAD overlap considerably; however, studies exploring their relationship are limited. METHODS Data from 34,186 Americans from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018 were analyzed. The relationship between dietary decanoic acid (DDA) and CAD prevalence was explored using weighted multivariate logistic regression models, generalized summation models, and fitted smoothing curves. Stratified analyses and interaction tests were conducted to explore the potential modifiers between them. RESULTS DDA was negatively associated with CAD prevalence, with each 1 g/d increase in the DDA being associated with a 21% reduction in CAD prevalence (odds ratio (OR) 0.79, 95% confidence interval (CI) 0.61-1.02). This relationship persisted after log10 and trinomial transformations, respectively. The OR after log10 transformation was 0.81 (95% CI 0.69-0.96), and the OR for tertile 3 compared with tertile 1 was 0.83 (95% CI 0.69-1.00). The subgroup analyses found this relationship to be significant among males and non-Hispanic white individuals, and there was a significant interaction (interaction p-values of 0.011 and 0.012, respectively). CONCLUSIONS DDA was negatively associated with the prevalence of CAD, and both sex and race may modify this relationship.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Weichang Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Fengyuan Li
- Department of Respiratory Medicine, Nanchang First Hospital, Nanchang 330006, China;
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| |
Collapse
|
48
|
Ashton JS, Roberts JW, Wakefield CJ, MacLaren DPM, Marwood S, Malone JJ. Medium chain triglycerides with a C8:C10 ratio of 30:70 enhances cognitive performance and mitigates the cognitive decline associated with prolonged exercise in young and healthy adults. Physiol Behav 2023; 269:114284. [PMID: 37394051 DOI: 10.1016/j.physbeh.2023.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Prolonged exercise has been linked to a decline in cognitive function due to a variety of factors, such as a drop in oxygen in the prefrontal cortex and an increase in stress hormones and neurotransmitters. Medium chain triglycerides (MCTs) may possibly offset this decline as they provide energy for the brain via both direct and indirect pathways, alongside promoting chronic physiological adaptations within the brain. METHODS Participants were divided into two groups; MCT (n = 9) and Placebo (n = 10). The MCT gels contained 6 g of MCT with a C8:C10 ratio of 30:70, whereas the placebo gels contained carbohydrates of similar calorific value to the MCT gels. Participants visited the laboratory on three occasions (familiarisation/fitness test, pre-supplementation, post-supplementation), during which they performed a battery of cognitive tasks assessing domains such as processing speed, working memory, selective attention, decision making and coordination, before and after a prolonged bout of exercise (60 mins at 90% gas exchange threshold (GET). A 2-week supplementation period between visits 2 and 3 involved the ingestion of 2 gels per day. RESULTS Exercise resulted in detriments in most cognitive tasks pre-supplementation for both groups, and post-supplementation for the Placebo group (main effect ps< 0.05). Post-supplementation, the effect of exercise was mediated in the MCT group for all cognitive tasks (main effect ps< 0.05), except for the Digit and Spatial Span Backwards test phases (main effect ps> 0.05). Furthermore, MCT supplementation enhanced before-exercise cognitive performance and in some measures, such as working memory, this was maintained after-exercise (interaction effect ps> 0.05). CONCLUSIONS Chronic MCT supplementation enhanced before-exercise cognitive performance and offset the cognitive decline caused by a prolonged bout of exercise. In some cases, improvements in before-exercise cognitive performance were maintained after-exercise.
Collapse
Affiliation(s)
- Jake S Ashton
- School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK.
| | - James W Roberts
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Don P M MacLaren
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Simon Marwood
- School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - James J Malone
- School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| |
Collapse
|
49
|
Smolensky I, Zajac-Bakri K, Odermatt TS, Brégère C, Cryan JF, Guzman R, Timper K, Inta D. Sex-specific differences in metabolic hormone and adipose tissue dynamics induced by moderate low-carbohydrate and ketogenic diet. Sci Rep 2023; 13:16465. [PMID: 37777528 PMCID: PMC10542803 DOI: 10.1038/s41598-023-43587-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.
Collapse
Affiliation(s)
- Ilya Smolensky
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | | | - Catherine Brégère
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12TP07, Ireland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, 4056, Basel, Switzerland
| | - Katharina Timper
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism Clinic, University Hospital Basel, 4056, Basel, Switzerland
| | - Dragos Inta
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
50
|
Abghari M, Vu JTCM, Eckberg N, Aldana BI, Kohlmeier KA. Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2023; 13:1461. [PMID: 37892143 PMCID: PMC10604953 DOI: 10.3390/biom13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.
Collapse
|