1
|
Hermann P, Zerr I. Unmet needs of biochemical biomarkers for human prion diseases. Prion 2024; 18:89-93. [PMID: 38734978 DOI: 10.1080/19336896.2024.2349017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Although the development of aggregation assays has noticeably improved the accuracy of the clinical diagnosis of prion diseases, research on biomarkers remains vital. The major challenges to overcome are non-invasive sampling and the exploration of new biomarkers that may predict the onset or reflect disease progression. This will become extremely important in the near future, when new therapeutics are clinically evaluated and eventually become available for treatment. This article aims to provide an overview of the achievements of biomarker research in human prion diseases, addresses unmet needs in the field, and points out future perspectives.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
2
|
Yang Y, Chen S, Gao Y, Huang L, Liu Z, Liu C, Fang X, Zhang Z. Complement Receptor 1 Is a Potential Extracerebral Factor Promoting α-Synuclein Pathology. Mol Neurobiol 2024:10.1007/s12035-024-04561-2. [PMID: 39467984 DOI: 10.1007/s12035-024-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
The deposition of pathological α-synuclein (α-Syn) in the central nervous system (CNS) is a hallmark of Parkinson's disease (PD). Notably, pathological α-Syn exists not only in the CNS but also in peripheral organs and body fluids in PD patients. Emerging evidence has shown the transmission of α-Syn pathology from the body to the brain. Nevertheless, the factors that drive the aggregation of peripheral α-Syn remain largely unknown. Here, we revealed that complement receptor 1 (CR1), a component of the peripheral blood system, acts as a promoter of α-Syn pathology. The transmembrane domain of CR1 (CR1-TM) exacerbates α-Syn phosphorylation and aggregation in vitro. Furthermore, intravenous injection of α-Syn fibrils induced the formation of α-Syn pathology in the brain. Co-administration of CR1-TM exacerbated α-Syn pathology induced by intravenous injection of preformed α-Syn fibrils. Our findings suggest that extracerebral factors such as CR1 can drive α-Syn pathology and serve as therapeutic targets for treating synucleinopathies.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zehua Liu
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
3
|
Kurihara M, Satoh K, Shimasaki R, Hatano K, Ohse K, Taira K, Ihara R, Higashihara M, Nishina Y, Kameyama M, Iwata A. α-synuclein seed amplification assay sensitivity may be associated with cardiac MIBG abnormality among patients with Lewy body disease. NPJ Parkinsons Dis 2024; 10:190. [PMID: 39433540 PMCID: PMC11494045 DOI: 10.1038/s41531-024-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Although α-synuclein seed amplification assays (α-syn SAA) are promising, its sensitivity may be affected by heterogeneity among patients with Lewy body disease (LBD). We evaluated whether α-syn SAA sensitivity is affected by patient heterogeneity, using 123I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in early drug-naïve patients. Thirty-four patients with clinically established or probable Parkinson's disease (PD) and seven with dementia with Lewy bodies (DLB) or prodromal DLB were included. While 85.2% of patients with abnormal cardiac MIBG were α-syn SAA positive, only 14.3% were positive among those with normal scans. Logistic regression analysis showed that MIBG positivity was the only significant variable associated with α-syn SAA positivity (odds ratio 74.2 [95% confidence interval 6.1-909]). Although α-syn SAA is sensitive for LBD in patients with abnormal MIBG, the sensitivity may be lower in those with normal MIBG. Further studies are necessary to evaluate the association between patient heterogeneity and α-syn SAA sensitivity.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryosuke Shimasaki
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kensuke Ohse
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenichiro Taira
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasushi Nishina
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masashi Kameyama
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
4
|
Bougea A. Seeding Aggregation Assays in Lewy Bodies Disorders: A Narrative State-of-the-Art Review. Int J Mol Sci 2024; 25:10783. [PMID: 39409112 PMCID: PMC11477186 DOI: 10.3390/ijms251910783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple system atrophy and Lewy body diseases (LBDs) such as Parkinson's disease, dementia with Lewy bodies, and Parkinson's disease with dementia, known as synucleinopathies, are defined neuropathologically by the accumulation and deposition of aberrant protein aggregates, primarily in neuronal cells. Seeding aggregation assays (SAA) have significant potential as biomarkers for early diagnosis, monitoring disease progression, and evaluating treatment efficacy for these diseases. Real-time quaking-induced conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) assays represent two ultrasensitive protein amplification techniques that were initially tested for the field of prion disorders. Although the fundamental idea behind the creation of these two methods is very similar, their technical differences resulted in different levels of diagnostic accuracy for the identification of prion proteins, making the RT-QuIC assay the most trustworthy and effective instrument for the detection of suspected cases of LBDs and prion-like diseases.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
5
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Robert H Edwards
- Department of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hilal A Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stella M Papa
- Department of Neurology, School of Medicine, and Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Leonidas Stefanis
- First Department of Neurology, Eginitio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Lorraine V Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Maddocks GM, Eisenstein M, Soh HT. Biosensors for Parkinson's Disease: Where Are We Now, and Where Do We Need to Go? ACS Sens 2024; 9:4307-4327. [PMID: 39189973 DOI: 10.1021/acssensors.4c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's Disease is the second most common neurological disease in the United States, yet there is no cure, no pinpointed cause, and no definitive diagnostic procedure. Parkinson's is typically diagnosed when patients present with motor symptoms such as slowness of movement and tremors. However, none of these are specific to Parkinson's, and a confident diagnosis of Parkinson's is typically only achieved when 60-80% of dopaminergic neurons are no longer functioning, at which point much of the damage to the brain is irreversible. This Perspective details ongoing efforts and accomplishments in biosensor research with the goal of overcoming these issues for Parkinson's diagnosis and care, with a focus on the potential impact of early diagnosis and associated opportunities to pinpoint a cause and a cure. We critically analyze the strengths and shortcomings of current technologies and discuss the ideal characteristics of a diagnostic technology toolbox to guide future research decisions in this space. Finally, we assess what role biosensors can play in facilitating precision medicine for Parkinson's patients.
Collapse
Affiliation(s)
- Grace M Maddocks
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - M Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Mammana A, Baiardi S, Rossi M, Quadalti C, Ticca A, Magliocchetti F, Bernhardt A, Capellari S, Parchi P. Improving protocols for α-synuclein seed amplification assays: analysis of preanalytical and analytical variables and identification of candidate parameters for seed quantification. Clin Chem Lab Med 2024; 62:2001-2010. [PMID: 38456740 DOI: 10.1515/cclm-2023-1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES The effect of preanalytical and analytical factors on the α-synuclein (α-syn) seed amplification assay's (SAA) performance has not been fully explored. Similarly, there is limited knowledge about the most suitable assay protocol and kinetic parameters for misfolded α-syn seed quantification. METHODS We studied the effect of centrifugation, repeated freeze-thaw cycles (up to seven), delayed freezing, detergent addition, and blood contamination on the performance of the cerebrospinal fluid (CSF) α-syn SAA real-time quaking-induced conversion (RT-QuIC). Moreover, we analysed the inter- and intra-plate variability, the recombinant protein batch effect, and the RT-QuIC parameters' variability when multiple samples were run in controlled conditions. Finally, we evaluated the assay potential of quantifying α-syn seed by assessing kinetic curves in serial CSF dilutions. RESULTS Among tested preanalytical variables, a ≥0.01 % blood contamination and adding detergents significantly affected the RT-QuIC kinetic parameters and the number of positive replicates. Increasing the number of replicates improved result reproducibility. The number of positive replicates in serially diluted CSF samples improved discrimination between samples with high and low seeding activity, and the time to threshold (LAG) was the most reliable kinetic parameter in multiple experiment settings. CONCLUSIONS Preanalytical variables affecting α-syn RT-QuIC performance are limited to blood contamination and detergent addition. The number of positive replicates and the LAG are the most reliable variables for quantifying α-syn seeding activity. Their consistent measurement in serial dilution experiments, especially when associated with an increased number of sample replicates, will help to develop the α-syn RT-QuIC assay further into a quantitative test.
Collapse
Affiliation(s)
- Angela Mammana
- 419170 IRCCS Istituto delle Scienze Neurologiche di Bologna , Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, 9296 University of Bologna , Bologna, Italy
| | - Marcello Rossi
- 419170 IRCCS Istituto delle Scienze Neurologiche di Bologna , Bologna, Italy
| | - Corinne Quadalti
- 419170 IRCCS Istituto delle Scienze Neurologiche di Bologna , Bologna, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, 9296 University of Bologna , Bologna, Italy
| | | | - Alexander Bernhardt
- Department of Neurology, 9183 Ludwig-Maximilians-Universität München , Munich, Germany
| | - Sabina Capellari
- 419170 IRCCS Istituto delle Scienze Neurologiche di Bologna , Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, 9296 University of Bologna , Bologna, Italy
| | - Piero Parchi
- 419170 IRCCS Istituto delle Scienze Neurologiche di Bologna , Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, 9296 University of Bologna , Bologna, Italy
| |
Collapse
|
9
|
Hopfner F, Höglinger G, Trenkwalder C. Definition and diagnosis of Parkinson's disease: guideline "Parkinson's disease" of the German Society of Neurology. J Neurol 2024:10.1007/s00415-024-12687-5. [PMID: 39297986 DOI: 10.1007/s00415-024-12687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Accurate definition and operational criteria for diagnosing Parkinson's disease (PD) are crucial for evidence-based, patient-centered care. OBJECTIVE To offer evidence-based recommendations for defining and diagnosing PD, incorporating contemporary clinical, imaging, biomarker, and genetic insights. METHODS The guideline development began with the steering committee establishing key PICO (patient, intervention, comparison, outcome) questions, which were refined by the coauthors. Systematic literature searches identified relevant studies, reviews, and meta-analyses. Recommendations were drafted, evaluated, optimized, and voted upon by the German Parkinson's Guideline Group. RESULTS Parkinson's disease (PD) is now understood to encompass a broader spectrum of etiologies than previously recognized. Advances in molecular pathogenesis, neuroimaging, and early clinical phenotypes suggest that PD is not a uniform disease entity and is often not idiopathic. This necessitates an updated framework for PD definition and diagnosis. The German Society for Neurology now endorses a broader concept of PD, incorporating both idiopathic and hereditary forms, as opposed to the previously narrower concept of "idiopathic Parkinson syndrome." The revised guidelines recommend using the 2015 Movement Disorders Society diagnostic criteria, emphasize the importance of long-term clinical follow-up for improved diagnostic accuracy, and highlight the significance of non-motor symptoms in clinical diagnosis. Specific recommendations are provided for the use of imaging and fluid biomarkers and genetic testing to support the clinical diagnosis. CONCLUSION The updated guidelines from the German Society for Neurology enhance diagnostic accuracy for PD, promoting optimized clinical care.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology with Friedrich Baur Institute, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Günter Höglinger
- Department of Neurology with Friedrich Baur Institute, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Claudia Trenkwalder
- Fachklinik Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
| |
Collapse
|
10
|
Gaetani L, Paolini Paoletti F, Mechelli A, Bellomo G, Parnetti L. Research advancement in fluid biomarkers for Parkinson's disease. Expert Rev Mol Diagn 2024:1-14. [PMID: 39262126 DOI: 10.1080/14737159.2024.2403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Diagnostic criteria for Parkinson's disease (PD) rely on clinical, mainly motor, features, implying that pre-motor phase cannot be accurately identified. To achieve a reliable early diagnosis, similar to what has been done for Alzheimer's disease (AD), a shift from clinical to biological identification of PD is being pursued. This shift has taken great advantage from the research on cerebrospinal fluid (CSF) biomarkers as they mirror the ongoing molecular pathogenic mechanisms taking place in PD, thus intercepting the disease timely with respect to clinical manifestations. AREAS COVERED CSF α-synuclein seed amplification assay (αS-SAA) has emerged as the most promising biomarker of α-synucleinopathy. CSF biomarkers reflecting AD-pathology and axonal damage (neurofilament light chain) and a novel marker of dopaminergic dysfunction (DOPA decarboxylase) add valuable diagnostic and prognostic information in the neurochemical characterization of PD. EXPERT OPINION A biological classification system of PD, encompassing pathophysiological and staging biomarkers, might ensure both early identification and prognostic characterization of the patients. This approach could allow for the best setting for disease-modifying treatments which are currently under investigation.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Alessandro Mechelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
11
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024. [PMID: 39291779 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bingxu Zhu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- Department of Neurology, Affiliated Dalian Municipal Friendship Hospital of Dalian Medical University, Dalian, China
| | - Fulong Xiao
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Lau D, Tang Y, Kenche V, Copie T, Kempe D, Jary E, Graves NJ, Biro M, Masters CL, Dzamko N, Gambin Y, Sierecki E. Single-Molecule Fingerprinting Reveals Different Growth Mechanisms in Seed Amplification Assays for Different Polymorphs of α-Synuclein Fibrils. ACS Chem Neurosci 2024; 15:3270-3285. [PMID: 39197832 PMCID: PMC11413846 DOI: 10.1021/acschemneuro.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/01/2024] Open
Abstract
α-Synuclein (αSyn) aggregates, detected in the biofluids of patients with Parkinson's disease (PD), have the ability to catalyze their own aggregation, leading to an increase in the number and size of aggregates. This self-templated amplification is used by newly developed assays to diagnose Parkinson's disease and turns the presence of αSyn aggregates into a biomarker of the disease. It has become evident that αSyn can form fibrils with slightly different structures, called "strains" or polymorphs, but little is known about their differential reactivity in diagnostic assays. Here, we compared the properties of two well-described αSyn polymorphs. Using single-molecule techniques, we observed that one of the polymorphs had an increased tendency to undergo secondary nucleation and we showed that this could explain the differences in reactivity observed in in vitro seed amplification assay and cellular assays. Simulations and high-resolution microscopy suggest that a 100-fold difference in the apparent rate of growth can be generated by a surprisingly low number of secondary nucleation "points" (1 every 2000 monomers added by elongation). When both strains are present in the same seeded reaction, secondary nucleation displaces proportions dramatically and causes a single strain to dominate the reaction as the major end product.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Tang
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Vijaya Kenche
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Copie
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Eve Jary
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Noah J. Graves
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Colin L. Masters
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Dzamko
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Yann Gambin
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Paulėkas E, Vanagas T, Lagunavičius S, Pajėdienė E, Petrikonis K, Rastenytė D. Navigating the Neurobiology of Parkinson's: The Impact and Potential of α-Synuclein. Biomedicines 2024; 12:2121. [PMID: 39335634 PMCID: PMC11429448 DOI: 10.3390/biomedicines12092121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide; therefore, since its initial description, significant progress has been made, yet a mystery remains regarding its pathogenesis and elusive root cause. The widespread distribution of pathological α-synuclein (αSyn) aggregates throughout the body raises inquiries regarding the etiology, which has prompted several hypotheses, with the most prominent one being αSyn-associated proteinopathy. The identification of αSyn protein within Lewy bodies, coupled with genetic evidence linking αSyn locus duplication, triplication, as well as point mutations to familial Parkinson's disease, has underscored the significance of αSyn in initiating and propagating Lewy body pathology throughout the brain. In monogenic and sporadic PD, the presence of early inflammation and synaptic dysfunction leads to αSyn aggregation and neuronal death through mitochondrial, lysosomal, and endosomal functional impairment. However, much remains to be understood about αSyn pathogenesis, which is heavily grounded in biomarkers and treatment strategies. In this review, we provide emerging new evidence on the current knowledge about αSyn's pathophysiological impact on PD, and its presumable role as a specific disease biomarker or main target of disease-modifying therapies, highlighting that this understanding today offers the best potential of disease-modifying therapy in the near future.
Collapse
Affiliation(s)
- Erlandas Paulėkas
- Department of Neurology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (T.V.); (S.L.); (E.P.); (K.P.); (D.R.)
| | | | | | | | | | | |
Collapse
|
14
|
Zhou Y, Liu X, Xu B. Research Progress on the Relationship between Parkinson's Disease and REM Sleep Behavior Disorder. J Integr Neurosci 2024; 23:166. [PMID: 39344226 DOI: 10.31083/j.jin2309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 10/01/2024] Open
Abstract
An individual's quality of life is greatly affected by Parkinson's disease (PD), a prevalent neurological degenerative condition. Rapid eye movement (REM) sleep behavior disorder (RBD) is a prominent non-motor symptom commonly associated with PD. Previous studies have shown a close relationship between PD and RBD. In addition to being a prodromal symptom of PD, RBD has a major negative impact on the prognosis of PD patients. This intrinsic connection indicates that there is a bidirectional relationship between PD and RBD. This paper provides a comprehensive review of the pathological mechanism related to PD and RBD, including the α-synuclein pathological deposition, abnormal iron metabolism, neuroinflammation, glymphatic system dysfunction and dysbiosis of the gut microbiota. Increasing evidence has shown that RBD patients have the same pathogenic mechanisms that underlie PD, but relatively little research has been done on how RBD contributes to PD progression. Therefore, a more thorough investigation is warranted to characterise how RBD affects the course of PD, in order to prepare for future therapeutic trials.
Collapse
Affiliation(s)
- Yu Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, 310000 Hangzhou, Zhejiang, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital Affiliated to Zhejiang University, 310000 Hangzhou, Zhejiang, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Srivastava A, Wang Q, Orrù CD, Fernandez M, Compta Y, Ghetti B, Zanusso G, Zou WQ, Caughey B, Beauchemin CAA. Enhanced quantitation of pathological α-synuclein in patient biospecimens by RT-QuIC seed amplification assays. PLoS Pathog 2024; 20:e1012554. [PMID: 39302978 PMCID: PMC11451978 DOI: 10.1371/journal.ppat.1012554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Disease associated pathological aggregates of alpha-synuclein (αSynD) exhibit prion-like spreading in synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Seed amplification assays (SAAs) such as real-time quaking-induced conversion (RT-QuIC) have shown high diagnostic sensitivity and specificity for detecting proteopathic αSynD seeds in a variety of biospecimens from PD and DLB patients. However, the extent to which relative proteopathic seed concentrations are useful as indices of a patient's disease stage or prognosis remains unresolved. One feature of current SAAs that complicates attempts to correlate SAA results with patients' clinical and other laboratory findings is their quantitative imprecision, which has typically been limited to discriminating large differences (e.g. 5-10 fold) in seed concentration. We used end-point dilution (ED) RT-QuIC assays to determine αSynD seed concentrations in patient biospecimens and tested the influence of various assay variables such as serial dilution factor, replicate number and data processing methods. The use of 2-fold versus 10-fold dilution factors and 12 versus 4 replicate reactions per dilution reduced ED-RT-QuIC assay error by as much as 70%. This enhanced assay format discriminated as little as 2-fold differences in αSynD seed concentration besides detecting ~2-16-fold seed reductions caused by inactivation treatments. In some scenarios, analysis of the data using Poisson and midSIN algorithms provided more consistent and statistically significant discrimination of different seed concentrations. We applied our improved assay strategies to multiple diagnostically relevant PD and DLB antemortem patient biospecimens, including cerebrospinal fluid, skin, and brushings of the olfactory mucosa. Using ED αSyn RT-QuIC as a model SAA, we show how to markedly improve the inter-assay reproducibility and quantitative accuracy. Enhanced quantitative SAA accuracy should facilitate assessments of pathological seeding activities as biomarkers in proteinopathy diagnostics and prognostics, as well as in patient cohort selection and assessments of pharmacodynamics and target engagement in drug trials.
Collapse
Affiliation(s)
- Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Christina D. Orrù
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Manel Fernandez
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Bernardino Ghetti
- Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Catherine A. A. Beauchemin
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) at RIKEN, Wako, Japan
| |
Collapse
|
16
|
Ying C, Zhang H, Wang T, Li Y, Mao W, Hu S, Zhao L, Cai Y. Plasma level of alpha-synuclein oligomers as a biomarker for isolated rapid eye movement sleep behavior disorder diagnosis and progression: a prospective cohort study. Front Neurol 2024; 15:1442173. [PMID: 39246606 PMCID: PMC11377258 DOI: 10.3389/fneur.2024.1442173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alpha-synuclein oligomers (o-α-syn) are pivotal in the pathogenesis of α-synucleinopathy. Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) serves as an early indicator of the disease, offering insights into disease mechanisms and early intervention. Nevertheless, the diagnostic and predictive potential of o-α-syn in iRBD remains largely unexplored. This study aimed to evaluate the plasma levels of o-α-syn in patients and investigate their utility as biomarkers for diagnosis of and predicting phenoconversion in iRBD. Methods A total of 143 participants, including 77 polysomnography-confirmed iRBD patients and 66 normal controls (NC), were recruited for this longitudinal observational study. Baseline clinical assessments and plasma collection were conducted for all iRBD patients, with 72 of them undergoing regularly prospective follow-up assessments for parkinsonism or dementia. Plasma levels of o-α-syn were quantified using enzyme-linked immunosorbent assay, and were compared between groups using a general linear model adjusted for age and sex. The diagnostic performance of plasma o-α-syn in iRBD was evaluated by area under the receiver operating characteristic curve (AUC) with 95% CI. Cox regression analysis and Kaplan-Meier survival curves were employed to assess the predictive value of plasma o-α-syn for phenoconversion in iRBD. Results Plasma o-α-syn levels did not exhibit statistically significant differences among iRBD converter patients, iRBD nonconverter patients, and NC. The AUC for distinguishing NC from iRBD was 0.52 (95% CI: 0.42-0.62, p = 0.682). Spearman correlation analysis revealed a significant positive correlation between plasma o-α-syn levels and MOCA scores in the iRBD group (p < 0.001). Subgroup analyses indicated that iRBD patients with cognitive decline (p = 0.058) and depressive symptoms (p = 0.017) had notably lower o-α-syn levels compared to those without such symptoms. Over a median follow-up period of 5.83 years, 26 iRBD patients developed neurodegenerative synucleinopathies. Cox regression and Kaplan-Meier survival curve analyses indicated that plasma level of o-α-syn lacked a predictive value for disease conversion in iRBD patients. Conclusion Despite a potential role in the pathophysiology of iRBD, o-α-syn are not appropriate biomarkers for diagnosing or predicting disease progression. While this study offers insights into the pathogenesis of iRBD and neurodegenerative synucleinopathies, further large-scale longitudinal studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lifang Zhao
- Beijing Geriatric Medical Research Center, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Muñoz-Lopetegi A, Baiardi S, Balasa M, Mammana A, Mayà G, Rossi M, Serradell M, Zenesini C, Ticca A, Santamaria J, Dellavalle S, Gaig C, Iranzo A, Parchi P. CSF markers of neurodegeneration Alzheimer's and Lewy body pathology in isolated REM sleep behavior disorder. NPJ Parkinsons Dis 2024; 10:157. [PMID: 39147825 PMCID: PMC11327307 DOI: 10.1038/s41531-024-00770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
We investigated the biomarker profile of neurodegeneration, Alzheimer's and Lewy body pathology in the CSF of 148 polysomnography-confirmed patients with isolated REM sleep behavior disorder (IRBD), a condition that precedes Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We assessed misfolded α-synuclein (AS) by RT-QuIC assay, amyloid-beta peptides (Aβ42 and Aβ40), phosphorylated tau (p-tau), and total tau (t-tau) by CLEIA and neurofilament light chain (NfL) by ELISA. We detected AS in 75.3% of patients, pathologically decreased Aβ42/Aβ40 ratio in 22.5%, increased p-tau in 15.5%, increased t-tau in 14.9%, and elevated NfL in 14.7%. After a mean follow-up of 2.48 ± 2.75 years, 47 (38.1%) patients developed PD (n = 24) or DLB (n = 23). At CSF collection, AS positivity [HR 4.05 (1.26-12.99), p = 0.019], mild cognitive impairment [3.86 (1.96-7.61), p < 0.001], and abnormal DAT-SPECT [2.31 (1.09-4.91), p < 0.030] were independent predictors of conversion to PD and DLB. Among the other CSF markers, only elevated p-tau/Aβ42 was predictive of conversion, although only to DLB and not as an independent variable. In IRBD, CSF AS assessment by RT-QuIC provides an added value in defining the risk of short-term conversion to PD and DLB independent of clinical and instrumental investigations. Positive Alzheimer's disease (AD) pathology markers and elevated NfL occur in a subgroup of patients, but p-tau/Aβ42 is the only marker that predicts short-term conversion to DLB. Longer follow-up is needed to assess if AD biomarkers predict the later development of PD and DLB in IRBD.
Collapse
Affiliation(s)
- Amaia Muñoz-Lopetegi
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Simone Baiardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona, Spain
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Gerard Mayà
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Mónica Serradell
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Corrado Zenesini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Joan Santamaria
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Sofia Dellavalle
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Carles Gaig
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Alex Iranzo
- Neurology Service, Sleep Unit, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
Arnaldi D, Iranzo A, Nobili F, Postuma RB, Videnovic A. Developing disease-modifying interventions in idiopathic REM sleep behavior disorder and early synucleinopathy. Parkinsonism Relat Disord 2024; 125:107042. [PMID: 38943771 DOI: 10.1016/j.parkreldis.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
Alpha-synucleinopathies are prevalent neurological disorders that cause significant disability, leading to progressive clinical deterioration that is currently managed solely through symptomatic treatment. Efforts to evaluate disease-modifying therapies during the established stage of the disease have not yielded positive outcomes in terms of clinical or imaging efficacy endpoints. However, alpha-synucleinopathies have a long prodromal phase that presents a promising opportunity for intervention with disease-modifying therapies. The presence of polysomnography-confirmed REM sleep behavior disorder (RBD) is the most reliable risk factor for identifying individuals in the prodromal stage of alpha-synucleinopathy. This paper discusses the rationale behind targeting idiopathic/isolated RBD in disease-modifying trials and outlines possible study designs, including strategies for patient stratification, selection of biomarkers to assess disease progression and patient eligibility, as well as the identification of suitable endpoints. Additionally, the potential targets for disease-modifying treatment in alpha-synucleinopathies are summarized.
Collapse
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Alex Iranzo
- Neurology Service, Sleep Disorder Centre, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Ronald B Postuma
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, Canada; Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Wolff A, Demleitner AF, Feneberg E, Lingor P. [Smell the smoke before one sees the fire-The oligosymptomatic prodromal phase of neurodegenerative diseases]. DER NERVENARZT 2024; 95:689-696. [PMID: 38630299 DOI: 10.1007/s00115-024-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND With the increasing development of disease-modifying causative treatment, the importance of early diagnosis and detection of asymptomatic or oligosymptomatic early stages of neurodegenerative diseases is increasing. OBJECTIVE Presentation of early stages of neurodegenerative diseases, diagnostic procedures for the early detection and possible treatment consequences. MATERIAL AND METHODS Selective literature search, discussion of basic research and expert recommendations. RESULTS Many neurodegenerative diseases have a prodromal phase preceding the manifest disease that can be diagnosed with current criteria. In this prodromal phase, those affected are often oligosymptomatic but in some cases can already be identified using biomarkers. These developments are already taken into account in diagnostic criteria for some of these prodromal phases. The prodromal phase, in turn, is preceded by an asymptomatic phase which, however, already shows molecular changes and can be identified by biomarkers in some diseases. The early identification and stratification of patients is particularly important when planning studies for disease-modifying treatment, and biomarkers are already being used in clinical trials for this purpose. DISCUSSION Biomarker-based identification of individuals in the prodromal phase of neurodegenerative diseases is already possible for some entities. People who show the first signs of a neurodegenerative disease can be referred to centers for clinical trials and observational studies.
Collapse
Affiliation(s)
| | | | | | - Paul Lingor
- Klinik und Poliklinik für Neurologie, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland.
- Munich Cluster for Systems Neurology (SyNergy), München, Deutschland.
| |
Collapse
|
20
|
Kluge A, Schaeffer E, Bunk J, Sommerauer M, Röttgen S, Schulte C, Roeben B, von Thaler AK, Welzel J, Lucius R, Heinzel S, Xiang W, Eschweiler GW, Maetzler W, Suenkel U, Berg D. Detecting Misfolded α-Synuclein in Blood Years before the Diagnosis of Parkinson's Disease. Mov Disord 2024; 39:1289-1299. [PMID: 38651526 DOI: 10.1002/mds.29766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Identifying individuals with Parkinson's disease (PD) already in the prodromal phase of the disease has become a priority objective for opening a window for early disease-modifying therapies. OBJECTIVE The aim was to evaluate a blood-based α-synuclein seed amplification assay (α-syn SAA) as a novel biomarker for diagnosing PD in the prodromal phase. METHODS In the TREND study (University of Tuebingen) biennial blood samples of n = 1201 individuals with/without increased risk for PD were taken prospectively over 4 to 10 years. We retrospectively analyzed blood samples of 12 participants later diagnosed with PD during the study to detect and amplify pathological α-syn conformers derived from neuronal extracellular vesicles using (1) immunoblot analyses with an antibody against these conformers and (2) an α-syn-SAA. Additionally, blood samples of n = 13 healthy individuals from the TREND cohort and n = 20 individuals with isolated rapid eye movement sleep behavior disorder (iRBD) from the University Hospital Cologne were analyzed. RESULTS All individuals with PD showed positive immunoblots and a positive α-syn SAA at the time of diagnosis. Moreover, all PD patients showed a positive α-syn SAA 1 to 10 years before clinical diagnosis. In the iRBD cohort, 30% showed a positive α-syn SAA. All healthy controls had a negative SAA. CONCLUSIONS We here demonstrate the possibility to detect and amplify pathological α-syn conformers in peripheral blood up to 10 years before the clinical diagnosis of PD in individuals with and without iRBD. The findings of this study indicate that this blood-based α-syn SAA assay has the potential to serve as a diagnostic biomarker for prodromal PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Michael Sommerauer
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Sinah Röttgen
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Anna-Katharina von Thaler
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Sebastian Heinzel
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard W Eschweiler
- Geriatric Center, University Hospital Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ulrike Suenkel
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Stoessl AJ. Editor's Note. Mov Disord 2024; 39:1255. [PMID: 39172210 DOI: 10.1002/mds.29926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Mao H, Kuang Y, Feng D, Chen X, Lu L, Xia W, Gan T, Huang W, Guo W, Yi H, Yang Y, Wu Z, Dai W, Sun H, Wu J, Zhang R, Zhang S, Lin X, Yong Y, Yang X, Li H, Wu W, Huang X, Bian Z, Wong HLX, Wang XL, Poppell M, Ren Y, Liu C, Zou WQ, Chen S, Xu PY. Ultrasensitive detection of aggregated α-synuclein using quiescent seed amplification assay for the diagnosis of Parkinson's disease. Transl Neurodegener 2024; 13:35. [PMID: 39049095 PMCID: PMC11267792 DOI: 10.1186/s40035-024-00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation. METHODS We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023. RESULTS QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples. CONCLUSION We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.
Collapse
Affiliation(s)
- Hengxu Mao
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yaoyun Kuang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Du Feng
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang Chen
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lin Lu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Tingting Gan
- Deptartment of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Weimeng Huang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hancun Yi
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yirong Yang
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Dai
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Sun
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jieyuan Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui Zhang
- Deptartment of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiuli Lin
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuxuan Yong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Hongyan Li
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, 830054, China
| | - Wenjun Wu
- Department of Neurology, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Xiaoyun Huang
- Dongguan Songshan Lake Central Hospital, Dongguan, 523000, China
| | - Zhaoxiang Bian
- Jockey Club School of Chinese Medicine, Baptist University Road, Hong Kong, 999077, China
| | - Hoi Leong Xavier Wong
- Jockey Club School of Chinese Medicine, Baptist University Road, Hong Kong, 999077, China
| | - Xin-Lu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Michael Poppell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, 32306, USA
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, 32306, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wen-Quan Zou
- Institute of Neurology, Jiangxi Academy of Medical Clinical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Shengdi Chen
- Department of Neurology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ping-Yi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
23
|
Zhang L, Illes-Toth E, Cryar A, Drinkwater G, Di Vagno L, Pons ML, Mateyka J, McCullough B, Achtar E, Clarkson C, Göschel L, Körtvélyessy P, Mussell C, Hopley CJ, Flöel A, Hirtz C, Lehmann S, Quaglia M. A candidate reference measurement procedure for the quantification of α-synuclein in cerebrospinal fluid using an SI traceable primary calibrator and multiple reaction monitoring. Analyst 2024. [PMID: 39041602 DOI: 10.1039/d4an00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
α-synuclein aggregation is an important hallmark of neurodegenerative diseases such as Parkinson's disease (PD) and Lewy body dementia. α-synuclein has been increasingly used as a diagnostic biomarker in PD and other synucleinopathies. Current clinical assays rely on antibody-based immunoassays to detect α-synuclein, which possess high sensitivity, afford high throughput and require small sample volumes. The utility of these assays, however, may be compounded by the specificity, selectivity and batch-to-batch heterogeneity of the antibody used, which can lead to deviations in the total amount of the protein measured when comparing results among different laboratories. Similarly, current mass spectrometry-based quantification methods for α-synuclein lack well-defined, value assigned calibrators to ensure comparability of measurements. Therefore, there is still an unmet need for the standardisation of clinical measurements for α-synuclein that can be achieved by the development of reference measurement procedures (RMPs) utilising calibrators traceable to the SI (International System of Units). Here, we report a candidate RMP for α-synuclein, using an SI traceable primary calibrator and an isotope dilution mass spectrometry (IDMS) approach to address this need. The gravimetrically prepared primary calibrator was traceably quantified utilising a combination of amino acid analysis (AAA) and quantitative nuclear magnetic resonance (qNMR) for value assignment. An optimised targeted sample clean-up procedure involving a non-denaturing Lys-C digestion and solid-phase extraction strategy was devised, followed by the development of a targeted multiple reaction monitoring (MRM) method for the quantification of α-synuclein in cerebrospinal fluid (CSF). This candidate RMP was then deployed for the sensitive detection and accurate quantification of multiple proteotypic α-synuclein peptides in patient derived CSF samples. The LC-MS based results were subsequently compared to immunoassay data to assess the overall performance of our approach. The development and adoption of this candidate RMP, along with the availability of the SI traceable primary calibrator will allow for reliable quantifications of α-synuclein in CSF by an LC-MS based assay. The RMP will potentially contribute towards the standardisation of this important biomarker and may lead to future interlaboratory comparisons.
Collapse
Affiliation(s)
- Leran Zhang
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | - Adam Cryar
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | | | - Marie-Laure Pons
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | | | | | - Eli Achtar
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | - Laura Göschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Clinical Research Center, 10117 Berlin, Germany
| | - Peter Körtvélyessy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
- Labor Berlin, Innovations, Sylter Strasse 2, 13353 Berlin, Germany
| | | | | | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Christophe Hirtz
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | | |
Collapse
|
24
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
26
|
Kuang Y, Mao H, Gan T, Guo W, Dai W, Huang W, Wu Z, Li H, Huang X, Yang X, Xu PY. A skin-specific α-Synuclein seeding amplification assay for diagnosing Parkinson's disease. NPJ Parkinsons Dis 2024; 10:129. [PMID: 38961119 PMCID: PMC11222486 DOI: 10.1038/s41531-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.
Collapse
Affiliation(s)
- Yaoyun Kuang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hengxu Mao
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tingting Gan
- Department of Neurology, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Wenyuan Guo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Dai
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, 830054, Urumqi, Xinjiang, China
| | - Weimeng Huang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhuohua Wu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongyan Li
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, 830054, Urumqi, Xinjiang, China
| | - Xiaoyun Huang
- Dongguan Songshan Lake Central Hospital, 523000, Donggguan, China.
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, Xinjiang, China.
| | - Ping-Yi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
28
|
Akowuah PK, Owusu E, Totoe D. Tear α-synuclein as a biomarker for Parkinson's disease: A systematic review and meta-analysis. Optom Vis Sci 2024; 101:485-492. [PMID: 39094023 DOI: 10.1097/opx.0000000000002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Parkinson's disease symptoms mostly manifest after significant and irreversible neuropathology. Hence, there is a need to identify biomarkers that can provide indications of disease before significant neuronal degeneration occurs. OBJECTIVE To estimate the difference in the concentration of α-synuclein protein in tears between individuals with Parkinson's disease and healthy controls. DATA SOURCES PubMed, Scopus, and Web of Science. The last database search was on December 20, 2023. STUDY ELIGIBILITY CRITERIA Primary prospective studies in humans measuring the level of α-synuclein in tears and clinical outcomes reported using mean or median. PARTICIPANTS AND INTERVENTIONS Individuals with Parkinson's disease and healthy controls. STUDY APPRAISAL AND SYNTHESIS METHODS The risk of bias was assessed using the Newcastle-Ottawa Scale. The I2 statistic was used to estimate heterogeneity. The outcome measure was the difference in tear total and oligomeric α-synuclein. Mean difference (MD) was used to assess the outcome. The certainty of evidence was rated following the Grading of Recommendations Assessment and Development and Evaluation (GRADE) system. RESULTS Three hundred twenty-seven Parkinson's disease and 312 healthy control subjects from five studies and 177 Parkinson's disease and 166 healthy control subjects from two studies were included in total α-synuclein levels and oligomeric α-synuclein levels analysis, respectively. Total α-synuclein level was not different between Parkinson's disease and healthy controls (MD = 0.02 ng/mL [95% confidence interval {CI}: 0.00 to 0.05 ng/mL; I2 = 90%; Z = 1.79; p=0.07; number of studies = 5; GRADE rating = very low]). Stratifying the data based on disease duration, total α-synuclein was higher in subjects with Parkinson's disease duration ≥7 years compared with healthy controls (MD = 0.04 ng/mL [95% CI: 0.03 to 0.05 ng/mL; I2 = 0%; Z = 8.24, p<0.00001; number of studies = 2; GRADE rating = low]) but not different between the two groups (MD = -0.12 ng/mL (95% CI: -0.38 to 0.15 ng/mL; I2 = 93%; Z = 0.84, p=0.40; number of studies = 3; GRADE rating = very low]). Oligomeric α-synuclein level was higher in Parkinson's disease compared with controls (MD = 6.50 ng/mL [95% CI: 2.79 to 10.20 ng/mL; I2 = 94%; Z = 3.44; p=0.0006; number of studies = 2; GRADE rating = very low]). LIMITATIONS High heterogeneity between studies. Potential sources of heterogeneity could not be explored due to the limited number of studies. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Tear α-synuclein has the potential to be a noninvasive biomarker for Parkinson's disease. Studies are, however, needed to increase certainty in the biomarker and establish how the protein's changes in tears correlate with Parkinson's disease progression and severity.
Collapse
Affiliation(s)
| | - Ebenezer Owusu
- College of Optometry, University of Houston, Houston, Texas
| | | |
Collapse
|
29
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Ophey A, Röttgen S, Pauquet J, Weiß KL, Scharfenberg D, Doppler CEJ, Seger A, Hansen C, Fink GR, Sommerauer M, Kalbe E. Cognitive training and promoting a healthy lifestyle for individuals with isolated REM sleep behavior disorder: study protocol of the delayed-start randomized controlled trial CogTrAiL-RBD. Trials 2024; 25:428. [PMID: 38943191 PMCID: PMC11214208 DOI: 10.1186/s13063-024-08265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Isolated REM sleep behavior disorder (iRBD) is an early α-synucleinopathy often accompanied by incipient cognitive impairment. As executive dysfunctions predict earlier phenotypic conversion from iRBD to Parkinson's disease and Lewy body dementia, cognitive training focusing on executive functions could have disease-modifying effects for individuals with iRBD. METHODS The study CogTrAiL-RBD investigates the short- and long-term effectiveness and the feasibility and underlying neural mechanisms of a cognitive training intervention for individuals with iRBD. The intervention consists of a 5-week digital cognitive training accompanied by a module promoting a healthy, active lifestyle. In this monocentric, single-blinded, delayed-start randomized controlled trial, the intervention's effectiveness will be evaluated compared to an initially passive control group that receives the intervention in the second, open-label phase of the study. Eighty individuals with iRBD confirmed by polysomnography will be consecutively recruited from the continuously expanding iRBD cohort at the University Hospital Cologne. The evaluation will focus on cognition and additional neuropsychological and motor variables. Furthermore, the study will examine the feasibility of the intervention, effects on physical activity assessed by accelerometry, and interrogate the intervention's neural effects using magnetic resonance imaging and polysomnography. Besides, a healthy, age-matched control group (HC) will be examined at the first assessment time point, enabling a cross-sectional comparison between individuals with iRBD and HC. DISCUSSION This study will provide insights into whether cognitive training and psychoeducation on a healthy, active lifestyle have short- and long-term (neuro-)protective effects for individuals with iRBD. TRIAL REGISTRATION The study was prospectively registered in the German Clinical Trial Register (DRKS00024898) on 2022-03-11, https://drks.de/search/de/trial/DRKS00024898 . PROTOCOL VERSION V5 2023-04-24.
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.
| | - Sinah Röttgen
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Pauquet
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kim-Lara Weiß
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Daniel Scharfenberg
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christopher E J Doppler
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aline Seger
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Clint Hansen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Cognitive Neuroscience, Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center of Neurology, Department of Parkinson, Sleep and Movement Disorders, University of Bonn, Bonn, Germany
| | - Elke Kalbe
- Department of Medical Psychology | Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Pérez-Carbonell L, Iranzo A. REM sleep and neurodegeneration. J Sleep Res 2024:e14263. [PMID: 38867555 DOI: 10.1111/jsr.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Alex Iranzo
- Neurology Service, Sleep Disorders Centre, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Arnaldi D, Mattioli P, Raffa S, Pardini M, Massa F, Iranzo A, Perissinotti A, Niñerola-Baizán A, Gaig C, Serradell M, Muñoz-Lopetegi A, Mayà G, Liguori C, Fernandes M, Placidi F, Chiaravalloti A, Šonka K, Dušek P, Zogala D, Trnka J, Boeve BF, Miyagawa T, Lowe VJ, Miyamoto T, Miyamoto M, Puligheddu M, Figorilli M, Serra A, Hu MT, Klein JC, Bes F, Kunz D, De Cock VC, de Verbizier D, Plazzi G, Antelmi E, Terzaghi M, Bossert I, Kulcsárová K, Martino A, Giuliani A, Pagani M, Nobili F, Morbelli S. Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy. Ann Neurol 2024; 95:1178-1192. [PMID: 38466158 PMCID: PMC11102309 DOI: 10.1002/ana.26902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.
Collapse
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alex Iranzo
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Andres Perissinotti
- Nuclear Medicine Service, Hospital Clínic Barcelona, Biomedical Research Networking Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Aida Niñerola-Baizán
- Nuclear Medicine Service, Hospital Clínic Barcelona, Biomedical Research Networking Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Carles Gaig
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Monica Serradell
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Amaia Muñoz-Lopetegi
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Gerard Mayà
- Neurology Service, Sleep Disorder Centre, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Karel Šonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, Minnesota USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota USA
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Masayuki Miyamoto
- Center of Sleep Medicine, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Monica Puligheddu
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular Medicine, University of Cagliari, Italy
| | - Michela Figorilli
- Sleep Disorder Center, Department of Public Health and Clinical and Molecular Medicine, University of Cagliari, Italy
| | - Alessandra Serra
- Nuclear Medicine Unit, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Michele T. Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Johannes C. Klein
- Division of Neurology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Frederik Bes
- Clinic of Sleep & Chronomedicine, St. Hedwig-Hospital, Berlin Germany
- Institute of Physiology, Sleep Research & Clinical Chronobiology, Charité–Universitätsmedizin Berlin, Germany
| | - Dieter Kunz
- Clinic of Sleep & Chronomedicine, St. Hedwig-Hospital, Berlin Germany
- Institute of Physiology, Sleep Research & Clinical Chronobiology, Charité–Universitätsmedizin Berlin, Germany
| | - Valérie Cochen De Cock
- Sleep and neurology department, Beau Soleil Clinic, Montpellier, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | | | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Elena Antelmi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Terzaghi
- Sleep Medicine and Epilepsy Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Irene Bossert
- Nuclear Medicine Unit, ICS Maugeri SpA SB IRCCS, Pavia, Italy
| | - Kristína Kulcsárová
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Alessio Martino
- Department of Business and Management, LUISS University, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Kluge A, Borsche M, Streubel-Gallasch L, Gül T, Schaake S, Balck A, Prasuhn J, Campbell P, Morris HR, Schapira AH, Lohmann K, Brüggemann N, Rakovic A, Seibler P, Başak AN, Berg D, Klein C. α-Synuclein Pathology in PRKN-Linked Parkinson's Disease: New Insights from a Blood-Based Seed Amplification Assay. Ann Neurol 2024; 95:1173-1177. [PMID: 38546204 DOI: 10.1002/ana.26917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/18/2024]
Abstract
Pathogenic variants in PRKN cause early-onset Parkinson's disease (PD), while the role of alpha-synuclein in PRKN-PD remains uncertain. One study performed a blood-based alpha-synuclein seed amplification assay (SAA) in PRKN-PD, not detecting seed amplification in 17 PRKN-PD patients. By applying a methodologically different SAA focusing on neuron-derived extracellular vesicles, we demonstrated alpha-synuclein seed amplification in 8 of 13 PRKN-PD patients, challenging the view of PRKN-PD as a non-synucleinopathy. Moreover, we performed blinded replication of the neuron-derived extracellular vesicles-dependent SAA in idiopathic PD patients and healthy controls. In conclusion, blood-based neuron-derived extracellular vesicles-dependent SAA represents a promising biomarker to elucidate the underpinnings of (monogenic) PD. ANN NEUROL 2024;95:1173-1177.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein Campus Kiel and Kiel University, Kiel, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein Campus Lübeck and University of Lübeck, Lübeck, Germany
| | | | - Tuğçe Gül
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), University School of Medicine, Istanbul, Turkey
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Balck
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein Campus Lübeck and University of Lübeck, Lübeck, Germany
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein Campus Lübeck and University of Lübeck, Lübeck, Germany
| | - Philip Campbell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Center, University College London, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Center, University College London, London, UK
| | - Anthony H Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Center, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein Campus Lübeck and University of Lübeck, Lübeck, Germany
| | | | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - A Nazlı Başak
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), University School of Medicine, Istanbul, Turkey
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein Campus Kiel and Kiel University, Kiel, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
34
|
Chougar L, Faucher A, Faouzi J, Lejeune FX, Gama Lobo G, Jovanovic C, Cormier F, Dupont G, Vidailhet M, Corvol JC, Colliot O, Lehéricy S, Grabli D, Degos B. Contribution of MRI for the Early Diagnosis of Parkinsonism in Patients with Diagnostic Uncertainty. Mov Disord 2024; 39:825-835. [PMID: 38486423 DOI: 10.1002/mds.29760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND International clinical criteria are the reference for the diagnosis of degenerative parkinsonism in clinical research, but they may lack sensitivity and specificity in the early stages. OBJECTIVES To determine whether magnetic resonance imaging (MRI) analysis, through visual reading or machine-learning approaches, improves diagnostic accuracy compared with clinical diagnosis at an early stage in patients referred for suspected degenerative parkinsonism. MATERIALS Patients with initial diagnostic uncertainty between Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multisystem atrophy (MSA), with brain MRI performed at the initial visit (V1) and available 2-year follow-up (V2), were included. We evaluated the accuracy of the diagnosis established based on: (1) the international clinical diagnostic criteria for PD, PSP, and MSA at V1 ("Clin1"); (2) MRI visual reading blinded to the clinical diagnosis ("MRI"); (3) both MRI visual reading and clinical criteria at V1 ("MRI and Clin1"), and (4) a machine-learning algorithm ("Algorithm"). The gold standard diagnosis was established by expert consensus after a 2-year follow-up. RESULTS We recruited 113 patients (53 with PD, 31 with PSP, and 29 with MSA). Considering the whole population, compared with clinical criteria at the initial visit ("Clin1": balanced accuracy, 66.2%), MRI visual reading showed a diagnostic gain of 14.3% ("MRI": 80.5%; P = 0.01), increasing to 19.2% when combined with the clinical diagnosis at the initial visit ("MRI and Clin1": 85.4%; P < 0.0001). The algorithm achieved a diagnostic gain of 9.9% ("Algorithm": 76.1%; P = 0.08). CONCLUSION Our study shows the use of MRI analysis, whether by visual reading or machine-learning methods, for early differentiation of parkinsonism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lydia Chougar
- Department of Neuroradiology, Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU DIAMENT, Paris, France
- ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France
- ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), Paris, France
- Department of Neuroradiology, Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU DIAMENT, Paris, France
| | - Alice Faucher
- Assistance Publique Hôpitaux de Paris, Service de Neurologie, Hôpital Avicenne, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Sorbonne Paris Nord, NS-PARK/FCRIN Network, Bobigny, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- CREST, ENSAI, Campus de Ker-Lann, Bruz, France
| | - François-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, Paris, France
- ICM, Data Analysis Core (DAC), Paris, France
| | - Gonçalo Gama Lobo
- Neuroradiology Department, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Carna Jovanovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Florence Cormier
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Clinique des Mouvements Anormaux, Clinical Investigation Center for Neurosciences, Paris, France
| | - Gwendoline Dupont
- Université de Bourgogne, Dijon, France
- Département de Neurologie, Centre Hospitalier Universitaire François Mitterrand, Dijon, France
| | - Marie Vidailhet
- ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), Paris, France
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, Paris, France
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Clinique des Mouvements Anormaux, Clinical Investigation Center for Neurosciences, Paris, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France
- ICM, Team "Movement Investigations and Therapeutics" (MOV'IT), Paris, France
- Department of Neuroradiology, Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, DMU DIAMENT, Paris, France
| | - David Grabli
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inserm, Paris, France
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Clinique des Mouvements Anormaux, Clinical Investigation Center for Neurosciences, Paris, France
| | - Bertrand Degos
- Assistance Publique Hôpitaux de Paris, Service de Neurologie, Hôpital Avicenne, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Sorbonne Paris Nord, NS-PARK/FCRIN Network, Bobigny, France
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France
| |
Collapse
|
35
|
Mulroy E, Erro R, Bhatia KP, Hallett M. Refining the clinical diagnosis of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106041. [PMID: 38360507 PMCID: PMC11069446 DOI: 10.1016/j.parkreldis.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Our ability to define, understand, and classify Parkinson's disease (PD) has undergone significant changes since the disorder was first described in 1817. Clinical features and neuropathologic signatures can now be supplemented by in-vivo interrogation of genetic and biological substrates of disease, offering great opportunity for further refining the diagnosis of PD. In this mini-review, we discuss the historical perspectives which shaped our thinking surrounding the definition and diagnosis of PD. We highlight the clinical, genetic, pathologic and biologic diversity which underpins the condition, and proceed to discuss how recent developments in our ability to define biologic and pathologic substrates of disease might impact PD definition, diagnosis, individualised prognostication, and personalised clinical care. We argue that Parkinson's 'disease', as currently diagnosed in the clinic, is actually a syndrome. It is the outward manifestation of any array of potential dysfunctional biologic processes, neuropathological changes, and disease aetiologies, which culminate in common outward clinical features which we term PD; each person has their own unique disease, which we can now define with increasing precision. This is an exciting time in PD research and clinical care. Our ability to refine the clinical diagnosis of PD, incorporating in-vivo assessments of disease biology, neuropathology, and neurogenetics may well herald the era of biologically-based, precision medicine approaches PD management. With this however comes a number of challenges, including how to integrate these technologies into clinical practice in a way which is acceptable to patients, promotes meaningful changes to care, and minimises health economic impact.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, (SA), Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Iftikhar IH, AlShimemeri S, Rabah H, Rao ST, BaHammam AS. Alpha-synuclein pathology in isolated rapid eye movement sleep behaviour disorder: a meta-analysis. J Sleep Res 2024:e14204. [PMID: 38586895 DOI: 10.1111/jsr.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Accumulating evidence indicates that patients with isolated rapid eye movement sleep behaviour disorder (iRBD), a prodromal stage of synucleinopathies, show abnormal deposition of misfolded alpha-synuclein (a-Syn) in peripheral tissues. The clinical utility of testing for a-Syn in iRBD is unclear. This meta-analysis focused on the utility of testing for the abnormal a-Syn phosphorylated at Ser129 (p-syn) and a-Syn seeding activity (a-Syn seed amplification assays [aSyn-SAA]). Following an electronic database search, 15 studies were included that provided at a minimum data on test positivity in participants with iRBD. Test positivity from cerebrospinal fluid (CSF) was 80% (95% confidence interval [CI] 68-88%, I2 = 71%) and for skin was 74.8% (95% CI 53.2-88.5%, I2 = 64%) for aSyn-SAA and 78.5% (95% CI 70.4-84.9%, I2 = 14%) for p-syn. The phenoconversion rate ratio of biopsy-positive versus biopsy-negative iRBD was 1.28 (95% CI 0.68-2.41, I2 = 0%). Skin as a source had a specificity of 99% (95% CI 95-100%, I2 = 0%; p = 0.01 compared to CSF). As a test, p-syn, had a specificity of 100% (95% CI 93-100%, I2 = 0%; p < 0.001) compared to aSyn-SAA. The odds ratio of a-Syn test positivity in iRBD versus other RBDs was 112 (95% CI 20-629, I2 = 0%). These results demonstrate clinically significant test positivity in iRBD and favour skin over CSF as the source of a-Syn pathological analysis, and p-syn over aSyn-SAA as the testing method. Overall, these findings indicate that testing for a-Syn could help in differentiating iRBD from RBD secondary to other conditions.
Collapse
Affiliation(s)
- Imran H Iftikhar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Sohaila AlShimemeri
- Neurology Unit, Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hussein Rabah
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Saad Tauheed Rao
- Shifa College of Medicine (medical student), Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ahmed S BaHammam
- Department of Medicine, University Sleep Disorders Center, and Pulmonary Service, King Saud University, Riyadh, Saudi Arabia
- Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Mak E, Reid RI, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Influences of amyloid-β and tau on white matter neurite alterations in dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:76. [PMID: 38570511 PMCID: PMC10991290 DOI: 10.1038/s41531-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-β with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-β, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-β exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanis J Ferman
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Hatano T, Okuzumi A, Matsumoto G, Tsunemi T, Hattori N. α-Synuclein: A Promising Biomarker for Parkinson's Disease and Related Disorders. J Mov Disord 2024; 17:127-137. [PMID: 38589016 PMCID: PMC11082597 DOI: 10.14802/jmd.24075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024] Open
Abstract
Mutations in the SNCA gene, which encodes α-synuclein (α-syn), play a key role in the development of genetic Parkinson's disease (PD). α-Syn is a major component of Lewy bodies in PD and glial cytoplasmic inclusions in multiple system atrophy (MSA). Rapid eye movement sleep behavior disorder patients often progress to PD, dementia with Lewy bodies, or MSA, which are collectively known as α-synucleinopathies. The loss of dopaminergic neurons with Lewy bodies precedes motor dysfunction in these diseases, but the mechanisms of neurodegeneration due to α-syn aggregation are poorly understood. Monitoring α-syn aggregation in vivo could serve as a diagnostic biomarker and help elucidate pathogenesis, necessitating a simple and accurate detection method. Seed amplification assays (SAAs), such as real-time quaking-induced conversion and protein misfolding cyclic amplification, are used to detect small amounts of abnormally structured α-syn protofibrils, which are central to aggregation. These methods are promising for the early diagnosis of α-synucleinopathy. Differences in α-syn filament structures between α-synucleinopathies, as observed through transmission electron microscopy and cryo-electron microscopy, suggest their role in the pathogenesis of neurodegeneration. SAAs may differentiate between subtypes of α-synucleinopathy and other diseases. Efforts are also being made to identify α-syn from blood using various methods. This review introduces body fluid α-syn biomarkers based on pathogenic α-syn seeds, which are expected to redefine α-synucleinopathy diagnosis and staging, improving clinical research accuracy and facilitating biomarker development.
Collapse
Affiliation(s)
- Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Gen Matsumoto
- Department of Histology and Cell Biology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
39
|
Puigròs M, Calderon A, Martín-Ruiz D, Serradell M, Fernández M, Muñoz-Lopetegi A, Mayà G, Santamaria J, Gaig C, Colell A, Tolosa E, Iranzo A, Trullas R. Mitochondrial DNA deletions in the cerebrospinal fluid of patients with idiopathic REM sleep behaviour disorder. EBioMedicine 2024; 102:105065. [PMID: 38502973 PMCID: PMC10963194 DOI: 10.1016/j.ebiom.2024.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".
Collapse
Affiliation(s)
- Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; Neurophysiology Laboratory, School of Medicine, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Calderon
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniel Martín-Ruiz
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mònica Serradell
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manel Fernández
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Amaia Muñoz-Lopetegi
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gerard Mayà
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Joan Santamaria
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carles Gaig
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Colell
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eduard Tolosa
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Wang Y, Huang W. Pathological α-synuclein detected by real-time quaking-induced conversion in synucleinopathies. Exp Gerontol 2024; 187:112366. [PMID: 38280659 DOI: 10.1016/j.exger.2024.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
synucleinopathies are diseases characterized by the aggregation of α-synuclein (α-syn), which forms fibrils through misfolding and accumulates in a prion-like manner. To detect the presence of these α-syn aggregates in clinical samples, seed amplification assays (SAAs) have been developed. These SAAs are capable of amplifying the α-syn seeds, allowing for their detection. αSyn-SAAs have been reported under the names 'protein misfolding cyclic amplification' (αSyn-PMCA) and 'real-time quaking-induced conversion'α-Syn-RT-QuIC. The α-Syn RT-QuIC, in particular, has been adapted to amplify and detect α-syn aggregates in various biospecimens, including cerebrospinal fluid (CSF), skin, nasal brushing, serum and saliva. The α-syn RT-QuIC assay has demonstrated good sensitivity and specificity in detecting pathological α-syn, particularly in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) cases, with an accuracy rate of up to 80 %. Additionally, differential diagnosis between DLB and PD, as well as PD and multiple system atrophy (MSA), can be achieved by utilizing certain kinetic thioflavin T (ThT) parameters and other parameters. Moreover, the positive detection of α-syn in the prodromal stage of synucleinopathies provides an opportunity for early intervention and management. In summary, the development of the α-syn RT-QuIC assay has greatly contributed to the field of synucleinopathies. Therefore, we review the development of α-syn RT-QuIC assay and describe in detail the recent advancements of α-syn RT-QuIC assay for detecting pathological α-syn in synucleinopathies.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Xingxing Yuan
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Ye Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China.
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
41
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
42
|
Höglinger GU, Adler CH, Berg D, Klein C, Outeiro TF, Poewe W, Postuma R, Stoessl AJ, Lang AE. A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria. Lancet Neurol 2024; 23:191-204. [PMID: 38267191 DOI: 10.1016/s1474-4422(23)00404-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
With the hope that disease-modifying treatments could target the molecular basis of Parkinson's disease, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.
Collapse
Affiliation(s)
- Günter U Höglinger
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) and German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Daniela Berg
- Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lüebeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Werner Poewe
- Medical University Innsbruck, Innsbruck, Austria
| | - Ronald Postuma
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and Parkinson's Foundation Centre of Excellence, University of British Columbia, BC, Canada
| | - Anthony E Lang
- University Health Network's Krembil Brain Institute, Edmond J Safra Program in Parkinson's Disease and the Rossy PSP Centre, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
43
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
44
|
Bentivenga GM, Mammana A, Baiardi S, Rossi M, Ticca A, Magliocchetti F, Mastrangelo A, Poleggi A, Ladogana A, Capellari S, Parchi P. Performance of a seed amplification assay for misfolded alpha-synuclein in cerebrospinal fluid and brain tissue in relation to Lewy body disease stage and pathology burden. Acta Neuropathol 2024; 147:18. [PMID: 38240849 PMCID: PMC10799141 DOI: 10.1007/s00401-023-02663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
The development of in vitro seed amplification assays (SAA) detecting misfolded alpha-synuclein (αSyn) in cerebrospinal fluid (CSF) and other tissues has provided a pathology-specific biomarker for Lewy body disease (LBD). However, αSyn SAA diagnostic performance in early pathological stages or low Lewy body (LB) pathology load has only been assessed in small cohorts. Moreover, the relationship between SAA kinetic parameters, the number of αSyn brain seeds and the LB pathology burden assessed by immunohistochemistry has never been systematically investigated. We tested 269 antemortem CSF samples and 138 serially diluted brain homogenates from patients with and without neuropathological evidence of LBD in different stages by the αSyn Real-Time Quaking-Induced Conversion (RT-QuIC) SAA. Moreover, we looked for LB pathology by αSyn immunohistochemistry in a consecutive series of 604 Creutzfeldt-Jakob disease (CJD)-affected brains. αSyn CSF RT-QuIC showed 100% sensitivity in detecting LBD in limbic and neocortical stages. The assay sensitivity was significantly lower in patients in early stages (37.5% in Braak 1 and 2, 73.3% in Braak 3) or with focal pathology (50% in amygdala-predominant). The average number of CSF RT-QuIC positive replicates significantly correlated with LBD stage. Brain homogenate RT-QuIC showed higher sensitivity than immunohistochemistry for the detection of misfolded αSyn. In the latter, the kinetic parameter lag phase (time to reach the positive threshold) strongly correlated with the αSyn seed concentration in serial dilution experiments. Finally, incidental LBD prevalence was 8% in the CJD cohort. The present results indicate that (a) CSF RT-QuIC has high specificity and sufficient sensitivity to detect all patients with LB pathology at Braak stages > 3 and most of those at stage 3; (b) brain deposition of misfolded αSyn precedes the formation of LB and Lewy neurites; (c) αSyn SAA provides "quantitative" information regarding the LB pathology burden, with the lag phase and the number of positive replicates being the most promising variables to be used in the clinical setting.
Collapse
Affiliation(s)
| | - Angela Mammana
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
45
|
Gilboa T, Swank Z, Thakur R, Gould RA, Ooi KH, Norman M, Flynn EA, Deveney BT, Chen A, Borberg E, Kuzkina A, Ndayisaba A, Khurana V, Weitz DA, Walt DR. Toward the quantification of α-synuclein aggregates with digital seed amplification assays. Proc Natl Acad Sci U S A 2024; 121:e2312031121. [PMID: 38194461 PMCID: PMC10801878 DOI: 10.1073/pnas.2312031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
The quantification and characterization of aggregated α-synuclein in clinical samples offer immense potential toward diagnosing, treating, and better understanding neurodegenerative synucleinopathies. Here, we developed digital seed amplification assays to detect single α-synuclein aggregates by partitioning the reaction into microcompartments. Using pre-formed α-synuclein fibrils as reaction seeds, we measured aggregate concentrations as low as 4 pg/mL. To improve our sensitivity, we captured aggregates on antibody-coated magnetic beads before running the amplification reaction. By first characterizing the pre-formed fibrils with transmission electron microscopy and size exclusion chromatography, we determined the specific aggregates targeted by each assay platform. Using brain tissue and cerebrospinal fluid samples collected from patients with Parkinson's Disease and multiple system atrophy, we demonstrated that the assay can detect endogenous pathological α-synuclein aggregates. Furthermore, as another application for these assays, we studied the inhibition of α-synuclein aggregation in the presence of small-molecule inhibitors and used a custom image analysis pipeline to quantify changes in aggregate growth and filament morphology.
Collapse
Affiliation(s)
- Tal Gilboa
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Harvard Medical School, Boston, MA02115
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Harvard Medical School, Boston, MA02115
| | - Rohan Thakur
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA02138
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Russell A. Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Kean Hean Ooi
- Department of Medical Sciences, Harvard Medical School, Boston, MA02115
| | - Maia Norman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Harvard Medical School, Boston, MA02115
- Physician Scientist Training Program, Massachusetts General Hospital/McLean Residency in Adult Psychiatry, Boston, MA02114
| | - Elizabeth A. Flynn
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Brendan T. Deveney
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA02138
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Harvard Medical School, Boston, MA02115
| | - Anastasia Kuzkina
- Harvard Medical School, Boston, MA02115
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Alain Ndayisaba
- Harvard Medical School, Boston, MA02115
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Vikram Khurana
- Harvard Medical School, Boston, MA02115
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02138
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - David A. Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
46
|
Fernandes M, Maio S, Eusebi P, Placidi F, Izzi F, Spanetta M, De Masi C, Lupo C, Calvello C, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. Cerebrospinal-fluid biomarkers for predicting phenoconversion in patients with isolated rapid-eye movement sleep behavior disorder. Sleep 2024; 47:zsad198. [PMID: 37542734 DOI: 10.1093/sleep/zsad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Indexed: 08/07/2023] Open
Abstract
STUDY OBJECTIVES Patients with isolated rapid-eye-movement sleep behavior disorder (iRBD) have an increased risk of developing neurodegenerative diseases. This study assessed cerebrospinal-fluid (CSF) biomarkers of neurodegeneration and blood-brain barrier (BBB) alteration in patients with iRBD compared to controls and ascertain whether these biomarkers may predict phenoconversion to alpha-synucleinopathies (Parkinson's Disease (PD), Dementia with Lewy bodies (DLB), Multiple System Atrophy (MSA)). METHODS Patients and controls underwent between 2012 and 2016 a neurological assessment, a lumbar puncture for CSF biomarker analysis (β-amyloid42 - Aβ42; total-tau, and phosphorylated tau), and BBB alteration (CSF/serum albumin ratio). All patients with iRBD were followed until 2021 and then classified into patients who converted to alpha-synucleinopathies (iRBD converters, cRBD) or not (iRBD non-converters, ncRBD). RESULTS Thirty-four patients with iRBD (mean age 67.12 ± 8.14) and 33 controls (mean age 64.97 ± 8.91) were included. At follow-up (7.63 ± 3.40 years), eight patients were ncRBD and 33 patients were cRBD: eleven converted to PD, 10 to DLB, and two to MSA. Patients with iRBD showed lower CSF Aβ42 levels and higher CSF/serum albumin ratio than controls. Cox regression analysis showed that the phenoconversion rate increases with higher motor impairment (hazard ratio [HR] = 1.23, p = 0.032). CSF Aβ42 levels predicted phenoconversion to DLB (HR = 0.67, p = 0.038) and BBB alteration predicted phenoconversion to PD (HR = 1.20, p = 0.038). DISCUSSION This study showed that low CSF Aβ42 levels and high BBB alteration may predict the phenoconversion to DLB and PD in patients with iRBD, respectively. These findings highlight the possibility to discriminate phenoconversion in iRBD patients through CSF biomarkers; however, further studies are needed.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Silvia Maio
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Paolo Eusebi
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Claudia De Masi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Clementina Lupo
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| |
Collapse
|
47
|
Schaeffer E, Kluge A, Schulte C, Deuschle C, Bunk J, Welzel J, Maetzler W, Berg D. Association of Misfolded α-Synuclein Derived from Neuronal Exosomes in Blood with Parkinson's Disease Diagnosis and Duration. JOURNAL OF PARKINSON'S DISEASE 2024; 14:667-679. [PMID: 38669557 PMCID: PMC11191501 DOI: 10.3233/jpd-230390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/28/2024]
Abstract
Background Misfolded α-synuclein can be detected in blood samples of Parkinson's disease (PD) patients by a seed amplification assay (SAA), but the association with disease duration is not clear, yet. Objective In the present study we aimed to elucidate whether seeding activity of misfolded α-synuclein derived from neuronal exosomes in blood is associated with PD diagnosis and disease duration. Methods Cross-sectional samples of PD patients were analyzed and compared to samples of age- and gender-matched healthy controls using a blood-based SAA. Presence of α-synuclein seeding activity and differences in seeding parameters, including fluorescence response (in arbitrary units) at the end of the amplification assay (F60) were analyzed. Additionally, available PD samples collected longitudinally over 5-9 years were included. Results In the cross-sectional dataset, 79 of 80 PD patients (mean age 69 years, SD = 8; 56% male) and none of the healthy controls (n = 20, mean age 70 years, SD = 10; 55% male) showed seeding activity (sensitivity 98.8%). When comparing subgroups divided by disease duration, longer disease duration was associated with lower α-synuclein seeding activity (F60: p < 0.001). In the longitudinal analysis 10/11 patients showed a gradual decrease of α-synuclein seeding activity over time. Conclusions This study confirms the high sensitivity of the blood-based α-synuclein SAA applied here. The negative association of α-synuclein seeding activity in blood with disease duration makes this parameter potentially interesting as biomarker for future studies on the pathophysiology of disease progression in PD, and for biologically oriented trials in this field.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Christian Deuschle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Josina Bunk
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
48
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
49
|
Seibler P, Streubel-Gallasch L, Klein C. Combining Biomarkers with Genetics In Prodromal/Earliest Phase Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S345-S351. [PMID: 39331107 PMCID: PMC11492027 DOI: 10.3233/jpd-240155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Family studies have linked several rare genetic variants to hereditary forms of Parkinson's disease (PD). In addition to these monogenic forms, many PD cases are associated with genetic risk factors. Asymptomatic individuals carrying pathogenic variants linked to PD are at risk of developing the disease later in life, thereby providing a unique opportunity for the detection of the earliest pathophysiological and later clinical changes and, importantly, also of protective and compensatory features and mechanisms. However, the rarity of monogenic PD-causing variants is a major challenge of this approach. In this review, we discuss recent advances in the search for biomarkers in the prodromal/earliest phase of genetically linked PD.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Linn Streubel-Gallasch
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
50
|
Fort-Aznar L, Molina-Porcel L, Ramos-Campoy O, Esteller D, Naranjo L, Lladó A, Balasa M, Ruiz-García R, Antonell A, Sánchez-Valle R. Misfolded α-Synuclein in Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2024; 97:1091-1096. [PMID: 38250774 DOI: 10.3233/jad-230919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We analyzed Lewy body (LB) pathology in 18 autosomal dominant Alzheimer's disease (ADAD) brains via immunohistochemistry. Real-time quaking induced conversion was used to detect misfolded α-synuclein (α-syn) in 18 living ADAD cerebrospinal fluid (CSF) samples. Concomitant LB pathology was present in 44% ADAD brains. Only 6% CSF samples were positive for misfolded α-syn. In an additional AD sample, all patients with confirmed LB presented misfolded α-syn in postmortem CSF regardless of the LB staging. In conclusion, misfolded α-syn in CSF was scarce in symptomatic living ADAD individuals, in contrast to postmortem brain tissue. These results suggest late appearance of LB pathology in ADAD.
Collapse
Affiliation(s)
- Laura Fort-Aznar
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
- Neurological Tissue Bank, Biobank-Hospital Clinic-FRCB-IDIBAPS, Barcelona, Spain
| | - Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
| | - Diana Esteller
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
| | - Laura Naranjo
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
| | - Raquel Ruiz-García
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|