1
|
Karale RR, Kamble S, Alwaleedy S, Kabara KB, Narwade P, Al-Hamdani SM, Kumbharkhane AC, Sarode AV. Hydration behavior of asparagine: an approach using time domain reflectometry at low temperatures. J Biomol Struct Dyn 2024:1-14. [PMID: 39731534 DOI: 10.1080/07391102.2024.2445153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/10/2024] [Indexed: 12/30/2024]
Abstract
The dielectric behavior of Asparagine (C4H8N2O3) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine. The obtained dielectric spectra reveal two relaxation peaks. The low frequency relaxation is attributed to the interaction between solute-solute molecules, while the high frequency relaxation is due to the reorientation of solvent molecules. The various dielectric and thermodynamic parameters were calculated such as the dielectric constant (εj), relaxation time (τj), effective dipole moment (μeff), Kirkwood correlation factor (g1), hydration number or the number of solvent molecules effectively bounded to solute molecule (Zib), effective volume of rotation (Veff), free energy of activation (ΔFj), entropy of activation (ΔSj) and enthalpy of activation (ΔHj). The static dielectric constant (ε1) shows increasing trend towards the higher concentration of asparagine, where as the high frequency dielectric constant (ε2) decreases with the concentration of asparagine. The relaxation time of low frequency (τ1) and high frequency (τ2) processes increases towards higher concentration of solute molecule and also towards lower temperature. As the concentration of asparagine increases, the value of effective dipole moment (μeff) decreases. With increasing amino acid concentrations hydration dynamics get affected and indicated by decreasing the hydration number (Zib) but the hydration dynamics of aqueous asparagine was found least temperature dependent.
Collapse
Affiliation(s)
- Ravikant R Karale
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Savita Kamble
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Suad Alwaleedy
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Taiz University, Taiz, Yemen
| | - Komal B Kabara
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Pallavi Narwade
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Shri Vitthal Rukmini Arts, Commerce and Science College, Yavatmal, Maharashtra, India
| | - Saeed Mohammed Al-Hamdani
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Abyn University, Yemen
| | - Ashok C Kumbharkhane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Arvind V Sarode
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
2
|
Luo Z, Zhou F, Jiang S, Huang J, Yang L, Yang Q, Shi J, Li E, Ma Z, Li Y. Immune and physiological responses in Penaeus monodon to ammonia-N stress: a multi-omics approach. Front Immunol 2024; 15:1510887. [PMID: 39720717 PMCID: PMC11666502 DOI: 10.3389/fimmu.2024.1510887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Ammonia-N stress is a significant environmental factor that adversely affects the health and productivity of aquaculture species. This study investigates the effects of ammonia-N stress on the shrimp Penaeus monodon through a combination of biochemical, histological, transcriptomic, and metabolomic analyses. Shrimp were exposed to ammonia-N stress for 12 and 96 hours, and key markers of oxidative stress, nitrogen metabolism, immune response, and overall health were assessed. The results showed that prolonged ammonia-N exposure causes significant hepatopancreatic damage, including atrophy and deformation. Transcriptomic analysis revealed significant changes in gene expression related to apoptosis, immune response, and key metabolic pathways, with particular emphasis on the disruption of innate immune signaling and defense mechanisms. Metabolomic analysis identified disruptions in nucleotide turnover, antioxidant defenses, and fundamental metabolic processes. These findings suggest that ammonia-N stress induces a multifaceted stress response in shrimp, involving oxidative stress, immune activation, and metabolic disturbances. Understanding these immune-related and metabolic mechanisms provides valuable insights into the molecular responses of crustaceans to environmental stress, laying the foundation for assessing the ecological risk of ammonia-N and identifying potential immunological biomarkers for monitoring and mitigating its adverse effects in aquaculture systems.
Collapse
Affiliation(s)
- Zhi Luo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Jianzhi Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yundong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| |
Collapse
|
3
|
Liu W, Li E, Xu C, Chen L, Wang X. Effects of Diets With Different Carbohydrate to Lipid Ratios on the Growth Performance, Ion Transport, and Carbohydrate, Lipid and Ammonia Metabolism of Nile Tilapia ( Oreochromis niloticus) Under Long-Term Saline-Alkali Stress. AQUACULTURE NUTRITION 2024; 2024:9388755. [PMID: 39575181 PMCID: PMC11581798 DOI: 10.1155/2024/9388755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/28/2024] [Indexed: 11/24/2024]
Abstract
A 50-day test was adopted to compare the growth performance, liver histology, glucose metabolism, lipid (L) metabolism, ion transport, and ammonia metabolism of tilapia fed different carbohydrate-lipid (C:L) ratio diets under saline-alkaline water (salinity = 16 mmol/L and alkalinity = 35 mmol/L). The C and L levels of five isoenergetic (16.5 kJ/g) and isonitrogenous (32% protein) diets were C45%:L3% (L3), C38%:L6% (L6), C31%:L9% (L9), C24%:L12% (L12), and C17%:L15% (L15). This study found that the dietary C:L ratio did not affect the survival rate (SR), feed conversion ratio (FCR), or condition factor of tilapia in saline-alkali water, but fish in the L12 group had the highest weight gain (WG) rate and the lowest hepatosomatic index (HSI) compared with the other groups. Fish fed the higher C diet (L3 and L6) had a higher ion transport capacity and ammonia excretion capacity in gills. However, the highest mRNA expression of genes involved in glutamine metabolism and urea metabolism in the liver was found in the high-L diet groups (L12 and L15). In particular, a lower serum ammonia concentration was observed in the high-L diet groups (L12 and L15). In addition, biochemical indicators indicated that the L12 group had the highest liver pyruvic acid, lactic dehydrogenase (LDH), and lipase (LPS) and serum total cholesterol (T-CHO) contents. In summary, this study indicated that dietary Ls could promote glutamine metabolism and urea metabolism more than dietary Cs and then reduce the serum ammonia concentration of tilapia in saline-alkali water. A dietary C:L ratio of 2:1 was beneficial to the growth and ammonia excretion of tilapia in saline-alkali water in this study.
Collapse
Affiliation(s)
- Wei Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Uddin KB, Li Y, Zhang M, Jiang R, Liu J, Zhao Y, Cui Y, Wang H. Various effects of feeding level on ammonia tolerance in Carassius auratus under different ammonia exposure stress and the underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116827. [PMID: 39178763 DOI: 10.1016/j.ecoenv.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Elevated ammonia levels in aquaculture systems could reduce fish growth and survival rates and produce a range of physiological problems. Ammonia toxicity in aquatic environments was regulated by various factors. Feeding was usually reported to help in the detoxification of fish, thereby increasing their capacity to tolerate ammonia nitrogen. However, the impact of different feeding amounts on fish in relation to ammonia exposure stress remains to be determined. To determine how feeding levels affected fish's responses to different ammonia nitrogen concentrations, two acute toxicity experiments were conducted with Carassius auratus gibelio, the major strain of gibel carp in aquaculture systems in China. In Test I, fed Carassius auratus gibelio (3 % body weight) showed a higher survival rate under a specific ammonia exposure stress. 96-h LC50 of NH3-N to 3 %F gibel carp was 1.1 times greater than that for NF (no feeding). In Test II, all fed groups (2 %F and 4 %F) under low and high ammonia stress exhibited improved ammonia detoxification, evidenced by higher liver GSase, GDH, and glutamine concentrations compared with the NF treatment. Muscle glycogen levels in feeding treatments were higher than those in NF, indicating that fed fish have more energy for ammonia detoxification. While compared with low ammonia treatment (2.70 mg L-1 TAN; NH3 0.06 mg L-1), fish exposed to high ammonia levels (26.03 mg L-1 TAN; NH3 0.57 mg L-1) demonstrated a decrease in food consumption, severe histopathological alterations in their liver, gill, and kidney, and decreased GSase, GDH, and glutamine production in the liver and brain. The results partly supported our hypothesis and suggested that increasing feeding enhances gibel carp's tolerance to ammonia nitrogen. The highest detoxification metabolism was observed under low ammonia stress. While excessive ammonia exposure could inhibit feeding and damage the detoxification organs of fish, and thus reduce the detoxification metabolism of gibel carp.
Collapse
Affiliation(s)
- Kazi Belal Uddin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh.
| | - Yan Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Miao Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renwei Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Wuhan Institute of Technology, Wuhan 430000, China.
| | - Jiahao Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongjing Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongde Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hongzhu Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Sartori D, Macchia S, Gaion A. Did you consider ammonium? A possible confounding factor in evaluating the toxicity of marine sediments. MARINE POLLUTION BULLETIN 2024; 199:116021. [PMID: 38217915 DOI: 10.1016/j.marpolbul.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Bioassays are a crucial tool for assessing environmental quality, but they face inherent variability due to unexplored confounding factors in marine ecosystems. Ammonium (NH4+) is a vital form of nitrogen in aquatic environments, but it is also a significant focus due to its toxic effects, particularly on marine invertebrates. This study examines the impact of ammonium toxicity on Paracentrotus lividus embryo-development bioassays, which are widely used to evaluate the environmental quality of dredged sediment. The aim is to establish threshold values (EC01, EC05, EC20, and EC50 values) for the correct application of the P. lividus bioassay. The research reveals that ammonium has a significant impact on larval development (EC50 for NH4+ equivalent to 0.81 mg/L). The results emphasize the ecological implications of elevated NH4+ levels in dredged material and highlight the need for precise assessments in environmental management. This study provides essential data for refining guidelines and understanding the complex interactions of this compound in marine ecosystems, ensuring accurate evaluations of environmental quality.
Collapse
Affiliation(s)
- Davide Sartori
- Italian Institute for Environmental Protection and Research - ISPRA, via del Cedro 38, 57122 Livorno, Italy.
| | - Simona Macchia
- Italian Institute for Environmental Protection and Research - ISPRA, via del Cedro 38, 57122 Livorno, Italy
| | - Andrea Gaion
- Italian Institute for Environmental Protection and Research - ISPRA, via del Cedro 38, 57122 Livorno, Italy; University Centre South Devon, Long Road, Paignton TQ4 7EJ, United Kingdom
| |
Collapse
|
6
|
Li Y, He Y, Liu M, Uddin KB, Zhao Y, Wang H, Cui Y, Wang H. Benthic macroinvertebrate assemblages in relation to high ammonia loading: A 5-year fertilization experiment in 5 subtropical ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122587. [PMID: 37734630 DOI: 10.1016/j.envpol.2023.122587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Nitrogen pollution, especially ammonia, and its impacts on aquatic ecosystems are always hot topics worldwide. Evaluating the toxicity effect of ammonia on aquatic organisms is the essential basis for nitrogen management. Benthic macroinvertebrates are widely used to evaluate ammonia toxicity based on acute and chronic lab tests. In comparison, responses of macroinvertebrates under field and controlled conditions were rarely studied. To explore the effect of ammonia on macroinvertebrate assemblages and the underlying mechanisms under field conditions, a 5-year fertilization experiment was conducted in 5 quasi-natural ponds located in the Yangtze River floodplain. One control (TN0, no artificial ammonia loading) and four treatments (TN2, TN10, TN20, TN100; ordered by artificial ammonia loading from low to high) were set. The results showed that (1) species number of macroinvertebrates differed little among the ponds, while total density and biomass were positively correlated with unionized ammonia concentration (NH3), indicating that increased ammonia loading had no adverse impact on macroinvertebrate abundance; (2) all ponds were dominated by gathering collectors and the biomass was higher in the ponds with higher ammonia loading resulting from the more phytoplankton promoted by ammonia loading and improved internal phosphorus release; (3) the biomass of predators also increased with the increasing NH3 which may be due to the bottom-up effect through their prey; (4) some species, such as Limnodrilus hoffmeisteri, survived and were dominant species in the ponds with higher NH3 compared with 96 h median lethal concentration from acute lab test. The results suggested that higher ammonia loading increased macroinvertebrate abundance, mainly contributed by gathering collectors and predators. Unlike previous acute and chronic lab tests, macroinvertebrates showed extremely high tolerance to NH3 in field conditions. This study supported that ammonia toxicity to aquatic organisms was scale-dependent and should be evaluated at multiple scales.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yajing He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Miao Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100000, PR China.
| | - Kazi Belal Uddin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100000, PR China.
| | - Yongjing Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Haijun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, PR China.
| | - Yongde Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Hongzhu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
7
|
Jung EH, Nguyen J, Nelson C, Brauner CJ, Wood CM. Ammonia transport is independent of PNH 3 gradients across the gastrointestinal epithelia of the rainbow trout: A role for the stomach. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:180-192. [PMID: 36369634 DOI: 10.1002/jez.2670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Although the gastrointestinal tract (GIT) is an important site for nitrogen metabolism in teleosts, the mechanisms of ammonia absorption and transport remain to be elucidated. Both protein catabolism in the lumen and the metabolism of the GIT tissues produce ammonia which, in part, enters the portal blood through the anterior region of the GIT. The present study examined the possible roles of different GIT sections of rainbow trout (Oncorhynchus mykiss) in transporting ammonia in its unionized gas form-NH3 -by changing the PNH3 gradient across GIT epithelia using in vitro gut sac preparations. We also surveyed messenger RNA expression patterns of three of the identified Rh proteins (Rhbg, Rhcg1, and Rhcg2) as potential NH3 transporters and NKCC as a potential ammonium ion (NH4 + ) transporter along the GIT of rainbow trout. We found that ammonia absorption is not dependent on the PNH3 gradient despite expression of Rhbg and Rhcg2 in the intestinal tissues, and Rhcg2 in the stomach. We detected no expression of Rhbg in the stomach and no expression of Rhcg1 in any GIT tissues. There was also a lack of correlation between ammonia transport and [NH4 + ] gradient despite NKCC expression in all GIT tissues. Regardless of PNH3 gradients, the stomach showed the greatest absorption and net tissue consumption of ammonia. Overall, our findings suggest nitrogen metabolism zonation of GIT, with stomach serving as an important site for the absorption, handling and transport of ammonia that is independent of the PNH3 gradient.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Nguyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Nelson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
9
|
Patra K, Rajaswini R, Murmu B, Rasal KD, Sahoo L, Saha A, Saha N, Koner D, Barman HK. Identifying miRNAs in the modulation of gene regulation associated with ammonia toxicity in catfish, Clarias magur (Linnaeus, 1758). Mol Biol Rep 2022; 49:6249-6259. [PMID: 35399140 DOI: 10.1007/s11033-022-07424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
|
10
|
Adamek M, Teitge F, Baumann I, Jung-Schroers V, El Rahman SA, Paley R, Piackova V, Gela D, Kocour M, Rakers S, Bergmann SM, Ganter M, Steinhagen D. Koi sleepy disease as a pathophysiological and immunological consequence of a branchial infection of common carp with carp edema virus. Virulence 2021; 12:1855-1883. [PMID: 34269137 PMCID: PMC8288041 DOI: 10.1080/21505594.2021.1948286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gills of fish are involved in respiration, excretion and osmoregulation. Due to numerous interactions between these processes, branchial diseases have serious implications on fish health. Here, "koi sleepy disease" (KSD), caused by carp edema virus (CEV) infection was used to study physiological, immunological and metabolic consequences of a gill disease in fish. A metabolome analysis shows that the moderately hypoxic-tolerant carp can compensate the respiratory compromise related to this infection by various adaptations in their metabolism. Instead, the disease is accompanied by a massive disturbance of the osmotic balance with hyponatremia as low as 71.65 mmol L-1, and an accumulation of ammonia in circulatory blood causing a hyperammonemia as high as 1123.24 µmol L-1. At water conditions with increased ambient salt, the hydro-mineral balance and the ammonia excretion were restored. Importantly, both hyponatremia and hyperammonemia in KSD-affected carp can be linked to an immunosuppression leading to a four-fold drop in the number of white blood cells, and significant downregulation of cd4, tcr a2 and igm expression in gills, which can be evaded by increasing the ion concentration in water. This shows that the complex host-pathogen interactions within the gills can have immunosuppressive consequences, which have not previously been addressed in fish. Furthermore, it makes the CEV infection of carp a powerful model for studying interdependent pathological and immunological effects of a branchial disease in fish.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ilka Baumann
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura Egypt
| | - Richard Paley
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Veronica Piackova
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - David Gela
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Kocour
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Sebastian Rakers
- Working Group Aquatic Cell Technology and Aquaculture, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| | - Sven M Bergmann
- Institute of Infectology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Ganter
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Chew SF, Tan SZL, Ip SCY, Pang CZ, Hiong KC, Ip YK. The Non-ureogenic Stinging Catfish, Heteropneustes fossilis, Actively Excretes Ammonia With the Help of Na +/K +-ATPase When Exposed to Environmental Ammonia. Front Physiol 2020; 10:1615. [PMID: 32038295 PMCID: PMC6987325 DOI: 10.3389/fphys.2019.01615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Abstract
The stinging catfish, Heteropneustes fossilis, can tolerate high concentrations of environmental ammonia. Previously, it was regarded as ureogenic, having a functional ornithine-urea cycle (OUC) that could be up-regulated during ammonia-loading. However, contradictory results indicated that increased urea synthesis and switching to ureotelism could not explain its high ammonia tolerance. Hence, we re-examined the effects of exposure to 30 mmol l–1 NH4Cl on its ammonia and urea excretion rates, and its tissue ammonia and urea concentrations. Our results confirmed that H. fossilis did not increase urea excretion or accumulation during 6 days of ammonia exposure, and lacked detectable carbamoyl phosphate synthetase I or III activity in its liver. However, we discovered that it could actively excrete ammonia during exposure to 8 mmol l–1 NH4Cl. As active ammonia excretion is known to involve Na+/K+-ATPase (Nka) indirectly in several ammonia-tolerant fishes, we also cloned various nkaα-subunit isoforms from the gills of H. fossilis, and determined the effects of ammonia exposure on their branchial transcripts levels and protein abundances. Results obtained revealed the presence of five nkaα-subunit isoforms, with nkaα1b having the highest transcript level. Exposure to 30 mmol l–1 NH4Cl led to significant increases in the transcript levels of nkaα1b (on day 6) and nkaα1c1 (on day 1 and 3) as compared with the control. In addition, the protein abundances of Nkaα1c1, Nkaα1c2, and total NKAα increased significantly on day 6. Therefore, the high environmental ammonia tolerance of H. fossilis is attributable partly to its ability to actively excrete ammonia with the aid of Nka.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Stephanie Z L Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sabrina C Y Ip
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Caryn Z Pang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
G DP, Souza-Bastos LR, Giacomin M, Dolatto RG, Baika LM, Grassi MT, Ostrensky A, Wood CM. Acute exposure to the water-soluble fraction of gasoline (WSF G) affects oxygen consumption, nitrogenous-waste and Mg excretion, and activates anaerobic metabolism in the goldfish Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108590. [PMID: 31404698 DOI: 10.1016/j.cbpc.2019.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Contamination of aquatic environments by petroleum and its products (e.g. gasoline) is a hazard for aquatic organisms as a result of the potential toxicity of monocyclic aromatic hydrocarbons (BTEX) and polycyclic aromatic hydrocarbons (PAH). Our goal was to evaluate the acute effects of the water-soluble fraction of gasoline (WSFG) on nitrogen excretion, osmoregulation, and metabolism of goldfish Carassius auratus. We first chemically characterized the WSFG and then tested its effects on these physiological aspects of C. auratus, in several different exposure scenarios (0, 0.25, 5, 10 and 25% of WSFG). The WSFG contained high concentrations BTEX (toluene 70% and benzene 17%) relative to PAH (<1%), and low levels of several metals (Al, Fe, Zn, Sr). Routine O2 uptake rate (MO2) of goldfish was inhibited by exposure to 5% WSFG, and during post-exposure recovery, MO2 increased in a dose-dependent fashion. Ammonia excretion was not affected by exposure to WSFG, but urea-N excretion increased progressively with the WSFG concentration. The same pattern of dose/response was observed for net Mg2+ loss rates and steadily increasing plasma lactate concentrations. Loss rates of Na+, Ca2+, K+ and Cl-, and plasma concentrations of Mg2+ and urea-N were not significantly altered. We propose that acute exposure to WSFG inhibits aerobic metabolism and activates anaerobic metabolism, breaking down ATP such that bound Mg2+ is liberated and the purine ring component is metabolized to urea-N, both of which are subsequently excreted.
Collapse
Affiliation(s)
- Dal Pont G
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR ZIP 80035-050, Brazil; Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| | - Luciana Rodrigues Souza-Bastos
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR ZIP 80035-050, Brazil; Institute of Technology for Development - Lactec, Curitiba, PR ZIP 81531-980, Brazil.
| | - Marina Giacomin
- Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| | - Rafael Garrett Dolatto
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil
| | - Loana Mara Baika
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil
| | - Marco Tadeu Grassi
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil.
| | - Antonio Ostrensky
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| |
Collapse
|
13
|
STC1 and PTHrP Modify Carbohydrate and Lipid Metabolism in Liver of a Teleost Fish. Sci Rep 2019; 9:723. [PMID: 30679516 PMCID: PMC6346029 DOI: 10.1038/s41598-018-36821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023] Open
Abstract
Stanniocalcin 1 (STC1) and parathyroid hormone-related protein (PTHrP) are calciotropic hormones in vertebrates. Here, a recently hypothesized metabolic role for these hormones is tested on European sea bass treated with: (i) teleost PTHrP(1-34), (ii) PTHrP(1-34) and anti-STC1 serum (pro-PTHrP groups), (iii) a PTHrP antagonist PTHrP(7-34) or (iv) PTHrP(7-34) and STC1 (pro-STC1 groups). Livers were analysed using untargeted metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectroscopy. Concentrations of branched-chain amino acid (BCAA), alanine, glutamine and glutamate increased in pro-STC1 groups suggesting their mobilization from the muscle to the liver for degradation and gluconeogenesis from alanine and glutamine. In addition, only STC1 treatment decreased the concentrations of succinate, fumarate and acetate, indicating slowing of the citric acid cycle. In the pro-PTHrP groups the concentrations of glucose, erythritol and lactate decreased, indicative of gluconeogenesis from lactate. Taurine, trimethylamine, trimethylamine N-oxide and carnitine changed in opposite directions in the pro-STC1 versus the pro-PTHrP groups, suggesting opposite effects, with STC1 stimulating lipogenesis and PTHrP activating lipolysis/β-oxidation of fatty acids. These findings suggest a role for STC1 and PTHrP related to strategic energy mechanisms that involve the production of glucose and safeguard of liver glycogen reserves for stressful situations.
Collapse
|
14
|
Yan X, Yan B, Ren Q, Dou J, Wang W, Zhang J, Zhou J, Long R, Ding L, Han J, Li Z, Qiu Q. Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Duan T, Shi C, Zhou J, Lv X, Li Y, Luo Y. How does the snakehead Channa argus survive in air? The combined roles of the suprabranchial chamber and physiological regulations during aerial respiration. Biol Open 2018; 7:bio.029223. [PMID: 29361611 PMCID: PMC5861356 DOI: 10.1242/bio.029223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aimed to test the hypothesis that the aerial survival of the northern snakehead is involved not only with suprabranchial chamber respiration but also with physiological regulations. The aerial survival time and oxygen consumption rate (VO2) were determined in snakeheads with either normal or injured suprabranchial organs. Some hematological and biochemical parameters were assessed during aerial exposure. The results showed that resting VO2 decreased when switching from water to air in both the control and the suprabranchial organ-injured fish, with decreases of 22.4% and 23.5%, respectively. Resting VO2 in air was not different between the control and the suprabranchial organ-injured fish. The red blood cell (RBC) count and hemoglobin concentration showed no marked changes, while RBC size increased when exposed to air. The liver lactate concentration remained unchanged, and the white muscle lactate concentration decreased when switching from water to air. The blood ammonia concentration tended to increase during aerial respiration. These results suggest that the aerial survival of the snakehead is positively associated with a combination of factors, including respiration of suprabranchial organs and other accessory organs, depressed metabolic demands and increased oxygen transport, and negatively associated with the accumulation of blood ammonia but not anaerobic metabolism. Summary: The aerial survival of the northern snakehead could be involved with suprabranchial chamber respiration, and also with physiological regulations.
Collapse
Affiliation(s)
- Ting Duan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenchen Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Xiao Lv
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yongli Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Hangzo H, Banerjee B, Saha S, Saha N. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:77-88. [PMID: 27492114 DOI: 10.1007/s10695-016-0269-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH4Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.
Collapse
Affiliation(s)
- Hnunlalliani Hangzo
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Shrabani Saha
- Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
17
|
Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia. J Comp Physiol B 2016; 187:135-151. [DOI: 10.1007/s00360-016-1027-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
|
18
|
Golombieski JI, Koakoski G, Becker AJ, Almeida APG, Toni C, Finamor IA, Pavanato MA, de Almeida TM, Baldisserotto B. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:837-849. [PMID: 23135153 DOI: 10.1007/s10695-012-9744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L(-1) CaCO3), humic acid (0, 2.5, or 5.0 mg L(-1)), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1% (244-423 μmol kg(-1 )h(-1)) for ammonia, 10.9% (30-52 μmol kg(-1 )h(-1)) for creatinine, 0.02% (0.05-0.08 μmol kg(-1 )h(-1)) for protein, 0.001 % (0.002-0.004 μmol kg(-1 )h(-1)) for urea, 0.5% (0.64-3.6 μmol kg(-1 )h(-1)) for nitrite, and 0.5% (0.0-6.9 μmol kg(-1 )h(-1)) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14-2.97 μmol kg(-1) h(-1). Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.
Collapse
Affiliation(s)
- Jaqueline Ineu Golombieski
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang L, Nawata CM, Wood CM. Sensitivity of ventilation and brain metabolism to ammonia exposure in rainbow trout, Oncorhynchus mykiss. ACTA ACUST UNITED AC 2013; 216:4025-37. [PMID: 23868844 DOI: 10.1242/jeb.087692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ammonia has been documented as a respiratory gas that stimulates ventilation, and is sensed by peripheral neuroepithelial cells (NECs) in the gills in ammoniotelic rainbow trout. However, the hyperventilatory response is abolished in trout chronically exposed (1+ months) to high environmental ammonia [HEA; 250 μmol l(-1) (NH4)2SO4]. This study investigates whether the brain is involved in the acute sensitivity of ventilation to ammonia, and whether changes in brain metabolism are related to the loss of hyperventilatory responses in trout chronically exposed to HEA ('HEA trout'). Hyperventilation (via increased ventilatory amplitude rather than rate) and increased total ammonia concentration ([TAmm]) in brain tissue were induced in parallel by acute HEA exposure in control trout in a concentration-series experiment [500, 750 and 1000 μmol l(-1) (NH4)2SO4], but these inductions were abolished in HEA trout. Ventilation was correlated more closely to [TAmm] in brain rather than to [TAmm] in plasma or cerebrospinal fluid. The close correlation of hyperventilation and increased brain [TAmm] also occurred in control trout acutely exposed to HEA in a time-series analysis [500 μmol l(-1) (NH4)2SO4; 15, 30, 45 and 60 min], as well as in a methionine sulfoxamine (MSOX) pre-injection experiment [to inhibit glutamine synthetase (GSase)]. These correlations consistently suggest that brain [TAmm] is involved in the hyperventilatory responses to ammonia in trout. The MSOX treatments, together with measurements of GSase activity, TAmm, glutamine and glutamate concentrations in brain tissue, were conducted in both the control and HEA trout. These experiments revealed that GSase plays an important role in transferring ammonia to glutamate to make glutamine in trout brain, thereby attenuating the elevation of brain [TAmm] following HEA exposure, and that glutamate concentration is reduced in HEA trout. The mRNAs for the ammonia channel proteins Rhbg, Rhcg1 and Rhcg2 were expressed in trout brain, and the expression of Rhbg and Rhcg2 increased in HEA trout, potentially as a mechanism to facilitate the efflux of ammonia. In summary, the brain appears to be involved in the sensitivity of ventilation to ammonia, and brain ammonia levels are regulated metabolically in trout.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| | | | | |
Collapse
|
20
|
Chew SF, Tng YY, Wee NL, Wilson JM, Ip YK. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:360-9. [DOI: 10.1016/j.cbpa.2009.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 01/09/2023]
|
21
|
Lee SML, Wong WP, Hiong KC, Loong AM, Chew SF, Ip YK. Nitrogen metabolism and excretion in the aquatic chinese soft-shelled turtle, Pelodiscus sinensis, exposed to a progressive increase in ambient salinity. ACTA ACUST UNITED AC 2007; 305:995-1009. [PMID: 17068799 DOI: 10.1002/jez.a.350] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to determine effects of 6-day progressive increase in salinity from 1 per thousand to 15 per thousand on nitrogen metabolism and excretion in the soft-shelled turtle, Pelodiscus sinensis. For turtles exposed to 15 per thousand water on day 6, the plasma osmolality and concentrations of Na+, Cl- and urea increased significantly, which presumably decreased the osmotic loss of water. Simultaneously, there were significant increases in contents of urea, certain free amino acids (FAAs) and water-soluble proteins that were involved in cell volume regulation in various tissues. There was an apparent increase in proteolysis, releasing FAAs as osmolytes. In addition, there might be an increase in catabolism of certain amino acids, producing more ammonia. The excess ammonia was retained as indicated by a significant decrease in the rate of ammonia excretion on day 4 in 15 per thousand water, and a major portion of it was converted to urea. The rate of urea synthesis increased 1.4-fold during the 6-day period, although the capacity of the hepatic ornithine urea cycle remained unchanged. Urea was retained for osmoregulation because there was a significant decrease in urea excretion on day 4. Increased protein degradation and urea synthesis implies greater metabolic demands, and indeed turtles exposed to 15 per thousand water had significantly higher O2 consumption rate than the freshwater (FW) control. When turtles were returned from 15 per thousand water to FW on day 7, there were significant increases in ammonia (probably released through increased amino acid catabolism) and urea excretion, confirming that FAAs and urea were retained for osmoregulatory purposes in brackish water.
Collapse
Affiliation(s)
- Serene Min Lin Lee
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
22
|
Ip YK, Yeo PJ, Loong AM, Hiong KC, Wong WP, Chew SF. The interplay of increased urea synthesis and reduced ammonia production in the African lungfish Protopterus aethiopicus during 46 days of aestivation in a mucus cocoon. ACTA ACUST UNITED AC 2006; 303:1054-65. [PMID: 16254918 DOI: 10.1002/jez.a.237] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was undertaken to test the hypothesis that the rate of urea synthesis in Protopterus aethiopicus was up-regulated to detoxify ammonia during the initial phase of aestivation in air (day 1-day 12), and that a profound suppression of ammonia production occurred at a later phase of aestivation (day 35-day 46) which eliminated the need to sustain the increased rate of urea synthesis. Fasting apparently led to a greater rate of nitrogenous waste excretion in P. aethiopicus in water, which is an indication of increases in production of endogenous ammonia and urea probably as a result of increased proteolysis and amino acid catabolism for energy production. However, 46 days of fasting had no significant effects on the ammonia or urea contents in the muscle, liver, plasma and brain. In contrast, there were significant decreases in the muscle ammonia content in fish after 12, 34 or 46 days of aestivation in air when compared with fish fasting in water. Ammonia was apparently detoxified to urea because urea contents in the muscle, liver, plasma and brain of P. aethiopicus aestivated for 12, 34 or 46 days were significantly greater than the corresponding fasting control; the greatest increases in urea contents occurred during the initial 12 days. There were also significant increases in activities of some of the hepatic ornithine-urea cycle enzymes from fish aestivated for 12 or 46 days. Therefore, contrary to a previous report on P. aethiopicus, our results demonstrated an increase in the estimated rate of urea synthesis (2.8-fold greater than the day 0 fish) in this lungfish during the initial 12 days of aestivation. However, the estimated rate of urea synthesis decreased significantly during the next 34 days. Between day 35 and day 46 (12 days), urea synthesis apparently decreased to 42% of the day 0 control value, and this is the first report of such a phenomenon in African lungfish undergoing aestivation. On the other hand, the estimated rate of ammonia production in P. aethiopicus increased slightly (14.7%) during the initial 12 days of aestivation as compared with that in the day 0 fish. By contrast, the estimated rate of ammonia production decreased by 84% during the final 12 days of aestivation (day 35-day 46) compared with the day 0 value. Therefore, it can be concluded that P. aethiopicus depended mainly on increased urea synthesis to ameliorate ammonia toxicity during the initial phase of aestivation, but during prolonged aestivation, it suppressed ammonia production profoundly, eliminating the need to increase urea synthesis which is energy-intensive.
Collapse
Affiliation(s)
- Yuen Kwong Ip
- Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
23
|
Ip YK, Leong MWF, Sim MY, Goh GS, Wong WP, Chew SF. Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti: brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801. ACTA ACUST UNITED AC 2005; 208:1993-2004. [PMID: 15879078 DOI: 10.1242/jeb.01586] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Hiong KC, Peh WYX, Loong AM, Wong WP, Chew SF, Ip YK. Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clamPolymesoda expansa. J Exp Biol 2004; 207:4605-14. [PMID: 15579556 DOI: 10.1242/jeb.01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYPolymesoda expansa spends a considerable portion of its life exposed to air in mangrove swamps where salinity fluctuates greatly. Thus, the aim of this study was to evaluate the effects of aerial exposure (transfer from 10‰ brackish water directly to air) or salinity changes (transfer from 10‰ brackish water directly to 30‰ seawater) on nitrogen metabolism in P. expansa. We concluded that P. expansa is non-ureogenic because carbamoyl phosphate (CPS) III activity was undetectable in the adductor muscle, foot muscle, hepatopancreas and mantle when exposed to brackish water (control), seawater or air for 17 days. It is ammonotelic as it excretes nitrogenous wastes mainly as ammonia in brackish water or seawater. After transfer to seawater for 17 days, the contents of total free amino acids(TFAA) in the adductor muscle, foot muscle, hepatopancreas and mantle increased significantly. This could be related to an increase in protein degradation because exposure to seawater led to a greater rate of ammonia excretion on days 15 and 17, despite unchanged tissue ammonia contents. Alanine was the major free amino acid (FAA) in P. expansa. The contribution of alanine to the TFAA pool in various tissues increased from 43–48% in brackish water to 62–73% in seawater. In contrast, in clams exposed to air for 17 days there were no changes in alanine content in any of the tissues studied. Thus, the functional role of alanine in P. expansa is mainly connected with intracellular osmoregulation. Although 8.5–16.1% of the TFAA pool of P. expansa was attributable to glutamine, the glutamine contents in the adductor muscle, foot muscle,hepatopancreas and mantle were unaffected by 17 days of exposure to seawater. However, after exposure to air for 17 days, there were significant increases in ammonia content in all these tissues in P. expansa, accompanied by significant increases in glutamine content (2.9-, 2.5-, 4.5- and 3.4-fold,respectively). Simultaneously, there were significant increases in glutamine synthetase activities in the adductor muscle (1.56-fold) and hepatopancreas(3.8-fold). This is the first report on the accumulation of glutamine associated with an upregulation of glutamine synthetase in a bivalve species in response to aerial exposure, and these results reveal that the evolution of glutamine synthesis as a means for detoxification of ammonia first occurred among invertebrates.
Collapse
Affiliation(s)
- Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | | | | | | | | | | |
Collapse
|