1
|
Hinchcliffe J, Roques JAC, Ekström A, Hedén I, Sundell K, Sundh H, Sandblom E, Björnsson BT, Jönsson E. Insights into thermal sensitivity: Effects of elevated temperature on growth, metabolic rate, and stress responses in Atlantic wolffish (Anarhichas lupus). JOURNAL OF FISH BIOLOGY 2025; 106:61-74. [PMID: 39709949 DOI: 10.1111/jfb.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The Atlantic wolffish (Anarhichas lupus) is a cold-water fish with potential for aquaculture diversification. To unveil the mechanisms underlying the compromised growth in Atlantic wolffish when reared at higher temperatures, we investigated the relationship between temperature, growth rate, aerobic capacity, stress biomarkers, and gut barrier function. Juveniles acclimated to 10°C were maintained at 10°C (control) or exposed to 15°C for either 24 h (acute exposure) or 50 days (chronic exposure). Fish exposed to 15°C exhibited reduced growth, higher standard, and maximum metabolic rates compared to those at 10°C. In the chronically exposed group at 15°C, metabolic rates were lower than those of acutely exposed fish. The absolute aerobic scope exhibited no significant variation in temperatures; however, the factorial scope showed a notable reduction at 15°C in both acute and chronic exposed groups, aligning with a correlated decrease in individual growth rates. Chronic warming led to increased plasma glucose levels, indicating energy mobilization, but cortisol levels were unaffected. Furthermore, chronic warming resulted in reduced intestinal barrier function, as evidenced by increased ion permeability and a negative potential in the serosa layer. We conclude that warming elevates metabolic rates while reducing intestinal barrier function, thus increasing energy expenditure, collectively, limiting energy available for growth at this temperature from increased allostatic load. Thus, juvenile wolffish maintaining their aerobic scope under thermal stress experience slower growth. This research provides insights for improving the welfare and resilience of wolffish in aquaculture at elevated temperatures and understanding their response to increased environmental temperatures.
Collapse
Affiliation(s)
- James Hinchcliffe
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
| | - Jonathan A C Roques
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
- Blue Food, Center for Future Seafood, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
| | - Ida Hedén
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
- Blue Food, Center for Future Seafood, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
- Blue Food, Center for Future Seafood, University of Gothenburg, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden
- The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
- Blue Food, Center for Future Seafood, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Hedén I, Sundell K, Jönsson E, Sundh H. The role of environmental salinity on Na +-dependent intestinal amino acid uptake in rainbow trout (Oncorhynchus mykiss). Sci Rep 2022; 12:22205. [PMID: 36564520 PMCID: PMC9789053 DOI: 10.1038/s41598-022-26904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Na+/K+-ATPases (NKA) in the basolateral membrane of the intestinal enterocytes create a Na+-gradient that drives both ion-coupled fluid uptake and nutrient transport. Being dependent on the same gradient as well as on the environmental salinity, these processes have the potential to affect each other. In salmonids, L-lysine absorption has been shown to be higher in freshwater (FW) than in seawater (SW) acclimated fish. Using electrophysiology (Ussing chamber technique), the aim was to explore if the decrease in L-lysine transport was due to allocation of the Na+-gradient towards ion-driven fluid uptake in SW, at the cost of amino acid transport. Intestinal NKA activity was higher in SW compared to FW fish. Exposure to ouabain, an inhibitor of NKA, decreased L-lysine transport. However, exposure to bumetanide and hydrochlorothiazide, inhibitors of Na+, K+, 2Cl--co-transporter (NKCC) and Na+, Cl--co-transporter (NCC) respectively, did not affect the rate of intestinal L-lysine transport. In conclusion, L-lysine transport is Na+-dependent in rainbow trout and the NKA activity and thus the available Na+-gradient increases after SW acclimation. This increased Na+-gradient is most likely directed towards osmoregulation, as amino acid transport is not compromised in SW acclimated fish.
Collapse
Affiliation(s)
- Ida Hedén
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Kristina Sundell
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Elisabeth Jönsson
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| | - Henrik Sundh
- grid.8761.80000 0000 9919 9582The Department of Biological and Environmental Sciences and SWEMARC (Swedish Mariculture Research Centre), The University of Gothenburg, Medicinaregatan 18A, 413 90 Gothenburg, Sweden
| |
Collapse
|
3
|
Doyle D, Carney Almroth B, Sundell K, Simopoulou N, Sundh H. Transport and Barrier Functions in Rainbow Trout Trunk Skin Are Regulated by Environmental Salinity. Front Physiol 2022; 13:882973. [PMID: 35634157 PMCID: PMC9136037 DOI: 10.3389/fphys.2022.882973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underpinning ionic transport and barrier function have been relatively well characterised in amphibians and fish. In teleost fish, these processes have mostly been characterised in the gill and intestine. In contrast, these processes remain much less clear for the trunk skin of fish. In this study, we measured barrier function and active transport in the trunk skin of the rainbow trout, using the Ussing chamber technique. The effects of epithelial damage, skin region, salinity, and pharmacological inhibition were tested. Skin barrier function decreased significantly after the infliction of a superficial wound through the removal of scales. Wound healing was already underway after 3 h and, after 24 h, there was no significant difference in barrier function towards ions between the wounded and control skin. In relation to salinity, skin permeability decreased drastically following exposure to freshwater, and increased following exposure to seawater. Changes in epithelial permeability were accompanied by salinity-dependent changes in transepithelial potential and short-circuit current. The results of this study support the idea that barrier function in rainbow trout trunk skin is regulated by tight junctions that rapidly respond to changes in salinity. The changes in transepithelial permeability and short circuit current also suggest the presence of an active transport component. Immunostaining and selective inhibition suggest that one active transport component is an apical V-ATPase. However, further research is required to determine the exact role of this transporter in the context of the trunk skin.
Collapse
Affiliation(s)
- D Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - K Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - N Simopoulou
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - H Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Different transcriptomic architecture of the gill epithelia in Nile and Mozambique tilapia after salinity challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 41:100927. [PMID: 34794104 DOI: 10.1016/j.cbd.2021.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.
Collapse
|
5
|
Sun J, Wang Y, Lv A, Xian JA, Wang Q, Zhang S, Guo Y, Xing K. Histochemical distribution of four types of enzymes and mucous cells in the intestine of koi carp (Cyprinus carpio var. koi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1367-1376. [PMID: 31209688 DOI: 10.1007/s10695-019-00673-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The main purpose of this study was to investigate the distribution of acid phosphatase (ACP), alkaline phosphatase (ALP), non-specific esterase (NSE), peroxidase (POD), and mucous cells in the intestine of the koi carp Cyprinus carpio var. koi. ACP activity was located in the striated border, enterocytes, and lamina propria of the anterior and middle intestines. The ACP activity in the anterior intestine was higher than that in the middle and posterior intestines. ALP existed in the striated border of enterocytes and lamina propria, serosa, muscular layer, and the junction between muscular layer and submucosa layer of the intestine. The ALP activity in the anterior intestine was higher than that in the middle and posterior intestines. NSE activity was localized in the cytoplasm of enterocytes in the whole intestine, and the middle intestine showed the lower NSE activity than the anterior and posterior intestines. POD activity was localized in the blood cells of the lamina propria and cytoplasm of enterocytes in all intestinal segments. The POD activity among the anterior, middle, and posterior intestines was non-significantly different. Alcian blue periodic acid-Schiff histochemical results revealed three types of mucous cells in the intestine. The total number of mucous cells and percentage of type I cells among the anterior, middle, and posterior intestines were non-significantly different. The percentage of the type II cells was the highest in the posterior intestine, while the lowest in the anterior intestine. The percentage of the type III cells was the highest in the anterior intestine, while the lowest in the posterior intestine.
Collapse
Affiliation(s)
- Jingfeng Sun
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yize Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jian-An Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qingkui Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Shulin Zhang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yongjun Guo
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Kezhi Xing
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
6
|
Gregório SF, Ruiz-Jarabo I, Carvalho EM, Fuentes J. Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification. PLoS One 2019; 14:e0218473. [PMID: 31226164 PMCID: PMC6588277 DOI: 10.1371/journal.pone.0218473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
Collapse
Affiliation(s)
- Sílvia F. Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Edison M. Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
7
|
Alves A, Gregório SF, Egger RC, Fuentes J. Molecular and functional regionalization of bicarbonate secretion cascade in the intestine of the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 233:53-64. [PMID: 30946979 DOI: 10.1016/j.cbpa.2019.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In marine fish the intestinal HCO3- secretion is the key mechanism to enable luminal aggregate formation and water absorption. Using the sea bass (Dicentrarchus labrax), the present study aimed at establishing the functional and molecular organization of different sections of the intestine concerning bicarbonate secretion and Cl- movements. The proximal intestinal regions presented similar HCO3- secretion rates, while differences were detected in the molecular expression of the transporters involved and on regional HCO3- concentrations. The anterior region presented significantly higher Na+/K+-ATPase activity, Cl- transepithelial transport and basolateral slc4a4, apical slc26a6 and slc26a3 expression levels. In the mid intestine, the total HCO3- content was significantly increased in the fluid as in the carbonate aggregates. In the rectum no HCO3- secretion was observed and was characterized by the diminished HCO3- total content, residual molecular expression of slc4a4, slc26a6 and slc26a3, higher H+-ATPase activity and expression, suggesting the existence of a different bicarbonate handling mechanism. The possible regulation of HCO3- secretion by extracellular HCO3- and increased intracellular cAMP levels were also investigated. cAMP did not affect HCO3- secretion, although Cl- secretion was enhanced by cftr. HCO3- secretion rise due to the HCO3- basolateral increment showed that at resting levels slc4a4 was not a limiting step for secretion. The transcellular/intracellular dependence of apical HCO3- secretion differed between the proximal regions. In conclusion, intestinal HCO3- secretion has a functional region-dependent organization that was not reflected by the anterior-posterior regionalization on HCO3- secretion and expression profiles of chloride/water absorption related genes.
Collapse
Affiliation(s)
- Alexandra Alves
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Renata C Egger
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
8
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Front Physiol 2018; 9:761. [PMID: 30018560 PMCID: PMC6037869 DOI: 10.3389/fphys.2018.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jonathan M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
9
|
Effect of β-Glucans in Diets on Growth, Survival, Digestive Enzyme Activity, and Immune System and Intestinal Barrier Gene Expression for Tropical Gar (Atractosteus tropicus) Juveniles. FISHES 2018. [DOI: 10.3390/fishes3030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Ruhr IM, Schauer KL, Takei Y, Grosell M. Renoguanylin stimulates apical CFTR translocation and decreases HCO 3- secretion through PKA activity in the Gulf toadfish ( Opsanus beta). ACTA ACUST UNITED AC 2018; 221:jeb.173948. [PMID: 29361605 DOI: 10.1242/jeb.173948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
The guanylin peptides - guanylin, uroguanylin and renoguanylin (RGN) - are endogenously produced hormones in teleost fish enterocytes that are activators of guanylyl cyclase-C (GC-C) and are potent modulators of intestinal physiology, particularly in seawater teleosts. Most notably, they reverse normal net ion-absorbing mechanisms that are vital to water absorption, an important process for seawater teleost survival. The role of guanylin-peptide stimulation of the intestine remains unclear, but it is hypothesized to facilitate the removal of solids from the intestine by providing fluid to enable their removal by peristalsis. The present study used one member of this group of peptides - RGN - to provide evidence for the prominent role that protein kinase A (PKA) plays in mediating the effects of guanylin-peptide stimulation in the posterior intestine of the Gulf toadfish (Opsanus beta). Protein kinase G was found to not mediate the intracellular effects of RGN, despite previous evidence showing that GC-C activation leads to higher cyclic guanosine monophosphate formation. RGN reversed the absorptive short-circuit current and increased conductance in the Gulf toadfish intestine. These effects are correlated to increased trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to the apical membrane, which is negated by PKA inhibition. Moreover, RGN decreased HCO3- secretion, likely by limiting apical HCO3-/Cl- exchange (possibly by reducing SLC26a6 activity), a reduction that was enhanced by PKA inhibition. RGN seems to alter PKA activity in the posterior intestine to recruit CFTR to the apical membrane and reduce HCO3- secretion.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| |
Collapse
|
11
|
Takei Y, Wong MKS, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Kusakabe M. Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 2016; 312:R231-R244. [PMID: 28003213 DOI: 10.1152/ajpregu.00465.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- transporters profoundly decreased the absorption. Among the transporter genes expressed in eel esophagus detected by RNA-seq, dimethyl amiloride-sensitive Na+/H+ exchanger (NHE3) and 4,4'-diisothiocyano-2,2'-disulfonic acid-sensitive Cl-/[Formula: see text] exchanger (AE) coupled by the scaffolding protein on the apical membrane of epithelial cells, and ouabain-sensitive Na+-K+-ATPases (NKA1α1c and NKA3α) and diphenylamine-2-carboxylic acid-sensitive Cl- channel (CLCN2) on the basolateral membrane, may be responsible for enhanced transcellular NaCl transport because of their profound upregulation after SW acclimation. Upregulated carbonic anhydrase 2a (CA2a) supplies H+ and [Formula: see text] for activation of the coupled NHE and AE. Apical hydrochlorothiazide-sensitive Na+-Cl- cotransporters and basolateral Na+-[Formula: see text] cotransporter (NBCe1) and AE1 are other possible candidates. Concerning the low water permeability that is typically seen in marine teleost esophagus, downregulated aquaporin genes (aqp1a and aqp3) and upregulated claudin gene (cldn15a) are candidates for transcellular/paracellular route. In situ hybridization showed that these upregulated transporters and tight-junction protein genes were expressed in the absorptive columnar epithelial cells of eel esophagus. These results allow us to provide a full picture of the molecular mechanism of active desalination and low water permeability that are characteristic to marine teleost esophagus and gain deeper insights into the role of gastrointestinal tracts in SW acclimation.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan;
| | - Marty K-S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Supriya Pipil
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Haruka Ozaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama, Japan; and
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kusakabe
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
12
|
Ferreira-Martins D, Coimbra J, Antunes C, Wilson JM. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. CONSERVATION PHYSIOLOGY 2016; 4:cov064. [PMID: 27293744 PMCID: PMC4765514 DOI: 10.1093/conphys/cov064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 05/07/2023]
Abstract
The sea lamprey, Petromyzon marinus, is an anadromous, semelparous species that is vulnerable to endangered in parts of its native range due in part to loss of spawning habitat because of man-made barriers. The ability of lampreys to return to the ocean or estuary and search out alternative spawning river systems would be limited by their osmoregulatory ability in seawater. A reduction in tolerance to salinity has been documented in migrants, although the underlying mechanisms have not been characterized. We examined the capacity for marine osmoregulation in upstream spawning migrants by characterizing the physiological effects of salinity challenge from a molecular perspective. Estuarine-captured migrants held in freshwater (FW) for ∼1 week (short-term acclimation) or 2 months (long-term acclimation) underwent an incremental salinity challenge until loss of equilibrium occurred and upper thresholds of 25 and 17.5, respectively, occurred. Regardless of salinity tolerance, all lamprey downregulated FW ion-uptake mechanisms [gill transcripts of Na(+):Cl(-) cotransporter (NCC/slc12a3) and epithelial Na(+) channel (ENaC/scnn1) and kidney Na(+)/K(+)-ATPase (NKA) protein and activity but not transcript]. At their respective salinity limits, lamprey displayed a clear osmoregulatory failure and were unable to regulate [Na(+)] and [Cl(-)] in plasma and intestinal fluid within physiological limits, becoming osmocompromised. A >90% drop in haematocrit indicated haemolysis, and higher plasma concentrations of the cytosolic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase indicated damage to other tissues, including liver. However, >80% of short-term FW-acclimated fish were able to osmoregulate efficiently, with less haemolysis and tissue damage. This osmoregulatory ability was correlated with significant upregulation of the secretory form of Na(+):K(+):2Cl(-) cotransporter (NKCC1/slc12a2) transcript levels and the re-emergence of seawater-type ionocytes detected through immunohistochemical NKA immunoreactivity in the gill, the central ionoregulatory organ. This work sheds light on the molecular and physiological limits to the potential return to seawater for lampreys searching for alternative FW systems in which to spawn.
Collapse
Affiliation(s)
- D. Ferreira-Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, ICBAS, Universidade do Porto, Porto, Portugal
| | - J. Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, ICBAS, Universidade do Porto, Porto, Portugal
| | - C. Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Aquamuseu do Rio Minho, Vila Nova de Cerveira, Portugal
| | - J. M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Abro R, Sundell K, Sandblom E, Sundh H, Brännäs E, Kiessling A, Lindberg JE, Lundh T. Evaluation of chitinolytic activities and membrane integrity in gut tissues of Arctic charr (Salvelinus alpinus) fed fish meal and zygomycete biomass. Comp Biochem Physiol B Biochem Mol Biol 2014; 175:1-8. [DOI: 10.1016/j.cbpb.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/19/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
14
|
Kolosov D, Bui P, Chasiotis H, Kelly SP. Claudins in teleost fishes. Tissue Barriers 2013; 1:e25391. [PMID: 24665402 PMCID: PMC3875606 DOI: 10.4161/tisb.25391] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/09/2013] [Indexed: 12/26/2022] Open
Abstract
Teleost fishes are a large and diverse animal group that represent close to 50% of all described vertebrate species. This review consolidates what is known about the claudin (Cldn) family of tight junction (TJ) proteins in teleosts. Cldns are transmembrane proteins of the vertebrate epithelial/endothelial TJ complex that largely determine TJ permeability. Cldns achieve this by expressing barrier or pore forming properties and by exhibiting distinct tissue distribution patterns. So far, ~63 genes encoding for Cldn TJ proteins have been reported in 16 teleost species. Collectively, cldns (or Cldns) are found in a broad array of teleost fish tissues, but select genes exhibit restricted expression patterns. Evidence to date strongly supports the view that Cldns play a vital role in the embryonic development of teleost fishes and in the physiology of tissues and organ systems studied thus far.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology; York University; Toronto, ON, Canada
| | - Phuong Bui
- Department of Biology; York University; Toronto, ON, Canada
| | | | - Scott P Kelly
- Department of Biology; York University; Toronto, ON, Canada
| |
Collapse
|
15
|
Tipsmark CK, Madsen SS. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:378-85. [PMID: 22561661 DOI: 10.1016/j.cbpa.2012.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/23/2023]
Abstract
Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation.
Collapse
Affiliation(s)
- C K Tipsmark
- Institute of Biology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
16
|
Chang MH, Plata C, Kurita Y, Kato A, Hirose S, Romero MF. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology. Am J Physiol Cell Physiol 2011; 302:C1083-95. [PMID: 22159080 DOI: 10.1152/ajpcell.00233.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Watanabe S, Mekuchi M, Ideuchi H, Kim YK, Kaneko T. Electroneutral cation-Cl- cotransporters NKCC2β and NCCβ expressed in the intestinal tract of Japanese eel Anguilla japonica. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:427-35. [PMID: 21539929 DOI: 10.1016/j.cbpa.2011.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 11/29/2022]
Abstract
In the present study, we aimed to elucidate the mechanisms of intestinal Na(+) and Cl(-) absorption in Japanese eel, focusing on electroneutral cation-Cl(-) cotransporters, NKCC2β and NCCβ, expressed in the intestinal tract. First, we cloned cDNAs encoding NKCC2β and NCCβ from the intestinal tract of Japanese eel. In both freshwater- and seawater-acclimated eels, quantitative PCR analysis showed that NKCC2β was predominantly expressed in the anterior and posterior intestines, and that NCCβ expression was specifically high in the rectum. According to immunohistochemistry with anti-eel NKCC2β (reacting with NKCC2β but not with NCCβ) and T4 antibody (reacting with both NKCC2β and NCCβ), NKCC2β was localized in the apical surface of the epithelial cells in the anterior and posterior intestines, whereas NCCβ was likely to be distributed to that in the rectum. Furthermore, a specific NCC inhibitor, hydrochlorothiazide, inhibited of Na(+) and Cl(-) absorption, as well as water absorption, in the rectal sac preparations from seawater eel, indicating the involvement of NCCβ in ion absorption in the rectum. Our findings indicate that NKCC2β expressed in the anterior and posterior intestines and NCCβ in the rectum are importantly involved in ion absorption to reduce osmolality of ingested seawater prior to water absorption in seawater-acclimated eel.
Collapse
Affiliation(s)
- Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Whittamore JM, Cooper CA, Wilson RW. HCO (3)(-) secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol Regul Integr Comp Physiol 2010; 298:R877-86. [PMID: 20130226 DOI: 10.1152/ajpregu.00545.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO(3)(-) secretion. This is suggested to drive additional fluid absorption directly (via Cl(-)/HCO(3)(-) exchange) and indirectly by precipitating ingested Ca(2+) as CaCO(3), thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca(2+)]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca(2+)), where almost all secreted HCO(3)(-) was excreted as CaCO(3). This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na(+)-independent fluid absorption and total HCO(3)(-) secretion was consistent with the predicted roles for anion exchange and CaCO(3) precipitation. Further analysis suggested that Na(+)-independent fluid absorption could be accounted for by net Cl(-) and H(+) absorption (from Cl(-)/HCO(3)(-) exchange and CO(2) hydration, respectively). There was no evidence to suggest that CaCO(3) alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca(2+) it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO(3)(-) buffers the absorbed H(+) (from HCO(3)(-) production), and consequently reduces the osmolarity of the absorbed fluid entering the body.
Collapse
|
19
|
Grosell M, Genz J, Taylor JR, Perry SF, Gilmour KM. The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout. ACTA ACUST UNITED AC 2009; 212:1940-8. [PMID: 19483012 DOI: 10.1242/jeb.026856] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyloric caeca and anterior intestine epithelia from seawater-acclimated rainbow trout exhibit different electrophysiological parameters with lower transepithelial potential and higher epithelial conductance in the pyloric caeca than the anterior intestine. Both pyloric caeca and the anterior intestine secrete HCO(3)(-) at high rates in the absence of serosal HCO(3)(-)/CO(2), demonstrating that endogenous CO(2) is the principal source of HCO(3)(-) under resting control conditions. Apical, bafilomycin-sensitive, H(+) extrusion occurs in the anterior intestine and probably acts to control luminal osmotic pressure while enhancing apical anion exchange; both processes with implications for water absorption. Cytosolic carbonic anhydrase (CAc) activity facilitates CO(2) hydration to fuel apical anion exchange while membrane-associated, luminal CA activity probably facilitates the conversion of HCO(3)(-) to CO(2). The significance of membrane-bound, luminal CA may be in part to reduce HCO(3)(-) gradients across the apical membrane to further enhance anion exchange and thus Cl(-) absorption and to facilitate the substantial CaCO(3) precipitation occurring in the lumen of marine teleosts. In this way, membrane-bound, luminal CA thus promotes the absorption of osmolytes and reduction on luminal osmotic pressure, both of which will serve to enhance osmotic gradients to promote intestinal water absorption.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, Division of Marine Biology and Fisheries, University of Miami, Miami, FL 33149, USA.
| | | | | | | | | |
Collapse
|
20
|
Grosell M, Mager EM, Williams C, Taylor JR. High rates of HCO3- secretion and Cl- absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? ACTA ACUST UNITED AC 2009; 212:1684-96. [PMID: 19448078 DOI: 10.1242/jeb.027730] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anion exchange contributes significantly to intestinal Cl(-) absorption in marine teleost fish and is thus vital for successful osmoregulation. This anion exchange process leads to high luminal HCO(3)(-) concentrations (up to approximately 100 mmol l(-1)) and high pH and results in the formation of CaCO(3) precipitates in the intestinal lumen. Recent advances in our understanding of the transport processes involved in intestinal anion exchange in marine teleost fish include the demonstration of a role for the H(+)-pump (V-ATPase) in apical H(+) extrusion and the presence of an electrogenic (nHCO(3)(-)/Cl(-)) exchange protein (SLC26a6). The H(+)-V-ATPase defends against cellular acidification, which might otherwise occur as a consequence of the high rates of base secretion. In addition, apical H(+) extrusion probably maintains lower HCO(3)(-) concentrations in the unstirred layer at the apical surface than in the bulk luminal fluids and thus facilitates continued anion exchange. Furthermore, H(+)-V-ATPase activity hyperpolarizes the apical membrane potential that provides the driving force for apical electrogenic nHCO(3)(-)/Cl(-) exchange, which appears to occur against both Cl(-) and HCO(3)(-) electrochemical gradients. We propose that a similar coupling between apical H(+) extrusion and nHCO(3)(-)/Cl(-) exchange accounts for Cl(-) uptake in freshwater fish and amphibians against very steep Cl(-) gradients.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | | | |
Collapse
|
21
|
Bagherie-Lachidan M, Wright SI, Kelly SP. Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater. J Comp Physiol B 2008; 179:419-31. [PMID: 19112569 DOI: 10.1007/s00360-008-0326-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 12/01/2008] [Indexed: 01/03/2023]
Abstract
Genes encoding for claudin-8 and -27 tight junction proteins in the euryhaline puffer fish (Tetraodon nigroviridis) were identified using its recently sequenced genome. Phylogenetic analysis indicated that multiple genes encoding for claudin-8 proteins (designated Tncldn8a, Tncldn8b, Tncldn8c and Tncldn8d) arose by tandem gene duplication. In contrast, both tandem and whole genome duplication events appear to have generated genes encoding for claudin-27 proteins (designated Tncldn27a, Tncldn27b, Tncldn27c and Tncldn27d). Tncldn8 and Tncldn27 mRNA were widely distributed in Tetraodon, suggesting involvement in various physiological processes. All Tncldn8 and Tncldn27 genes were expressed in gill and skin tissue (i.e., epithelia exposed directly to the external environment). A potential role for claudin-8 and -27 proteins in the regulation of hydromineral balance in Tetraodon was investigated by examining alterations in mRNA abundance in select ionoregulatory tissue of fish acclimated to freshwater (FW) and seawater (SW). In FW or SW, Tetraodon exhibited alterations in Na(+)-K(+)-ATPase activity (a correlate of transcellular transport) typical of a euryhaline teleost fish. Simultaneously, tissue and gene specific alterations in Tncldn8 and Tncldn27 transcript abundance occurred. These data provide some insight into the duplication history of cldn8 and cldn27 genes in fishes and suggest a possible role for claudin-8 and -27 proteins in the osmoregulatory strategies of euryhaline teleosts.
Collapse
|
22
|
Scott GR, Baker DW, Schulte PM, Wood CM. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. ACTA ACUST UNITED AC 2008; 211:2450-9. [PMID: 18626079 DOI: 10.1242/jeb.017947] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have explored the molecular and physiological responses of the euryhaline killifish Fundulus heteroclitus to transfer from brackish water (10% seawater) to 100% seawater for 12 h, 3 days or 7 days. Plasma [Na+] and [Cl-] were unchanged after transfer, and plasma cortisol underwent a transient increase. Na+/K+-ATPase activity increased 1.5-fold in the gills and opercular epithelium at 7 days (significant in gills only), responses that were preceded by three- to fourfold increases in Na+/K+-ATPase alpha(1a) mRNA expression. Expression of Na+/K+/2Cl- cotransporter 1, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, Na+/H+-exchanger 3 (significant in opercular epithelium only) and carbonic anhydrase II mRNA also increased two- to fourfold after transfer. Drinking rate increased over twofold after 12 h and remained elevated for at least 7 days. Surprisingly, net rates of water and ion absorption measured in vitro across isolated intestines decreased approximately 50%, possibly due to reduced salt demands from the diet in seawater, but water absorption capacity still exceeded the drinking rate. Changes in bulk water absorption were well correlated with net ion absorption, and indicated that slightly hyperosmotic solutions (>or=298 mmol l(-1)) were transported. There were no reductions in unidirectional influx of Na+ from luminal to serosal fluid or intestinal Na+/K+-ATPase activity after transfer. Overall, our results indicate that gill and opercular epithelia function similarly at a molecular level in seawater, in contrast to their divergent function in freshwater, and reveal unexpected changes in intestinal function. As such they provide further insight into the mechanisms of euryhalinity in killifish.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
23
|
Chasiotis H, Kelly SP. Occludin immunolocalization and protein expression in goldfish. J Exp Biol 2008; 211:1524-34. [DOI: 10.1242/jeb.014894] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARYTight junctions (TJs) are an integral component of models illustrating ion transport mechanisms across fish epithelia; however, little is known about TJ proteins in fishes. Using immunohistochemical methods and Western blot analysis, we examined the localization and expression of occludin, a transmembrane TJ protein, in goldfish tissues. In goldfish gills,discontinuous occludin immunostaining was detected along the edges of secondary gill lamellae and within parts of the interlamellar region that line the lateral walls of the central venous sinus. In the goldfish intestine,occludin immunolocalized in a TJ-specific distribution pattern to apical regions of columnar epithelial cells lining the intestinal lumen. In the goldfish kidney, occludin was differentially expressed in discrete regions of the nephron. Occludin immunostaining was strongest in the distal segment of the nephron, moderate in the collecting duct and absent in the proximal segment. To investigate a potential role for occludin in the maintenance of the hydromineral balance of fishes, we subjected goldfish to 1, 2 and 4 weeks of food deprivation, and then examined the endpoints of hydromineral status,Na+,K+-ATPase activity and occludin protein expression in the gills, intestine and kidney. Occludin expression altered in response to hydromineral imbalance in a tissue-specific manner suggesting a dynamic role for this TJ protein in the regulation of epithelial permeability in fishes.
Collapse
Affiliation(s)
- Helen Chasiotis
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| | - Scott P. Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3
| |
Collapse
|
24
|
Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:63-73. [DOI: 10.1016/j.cbpb.2007.08.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/15/2007] [Accepted: 08/17/2007] [Indexed: 11/22/2022]
|
25
|
Scillitani G, Liquori GE, Mastrodonato M, Ferri D. Histochemical and immunohistochemical characterization of exocrine cells in the foregut of the red-eared slider turtle, Trachemys scripta (Emydidae). ACTA ACUST UNITED AC 2008; 71:279-90. [DOI: 10.1679/aohc.71.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giovanni Scillitani
- Laboratorio di Istologia e Anatomia comparata, Dipartimento di Zoologia, Università degli studi di Bari
| | - Giuseppa Esterina Liquori
- Laboratorio di Istologia e Anatomia comparata, Dipartimento di Zoologia, Università degli studi di Bari
| | - Maria Mastrodonato
- Laboratorio di Istologia e Anatomia comparata, Dipartimento di Zoologia, Università degli studi di Bari
| | - Domenico Ferri
- Laboratorio di Istologia e Anatomia comparata, Dipartimento di Zoologia, Università degli studi di Bari
| |
Collapse
|
26
|
Scott GR, Schulte PM, Wood CM. Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. ACTA ACUST UNITED AC 2007; 209:4040-50. [PMID: 17023598 DOI: 10.1242/jeb.02462] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have explored intestinal function in the euryhaline killifish Fundulus heteroclitus after transfer from brackish water (10% seawater) to fresh water. Plasma Na+ and Cl- concentrations fell at 12 h post-transfer, but recovered by 7 days. Drinking rate decreased substantially at 12 h (32% of control value) and remained suppressed after 3 and 7 days in fresh water (34 and 43%). By contrast, there was a transient increase in the capacity for water absorption measured across isolated intestines in vitro (3.3- and 2.6-fold at 12 h and 3 days), which returned to baseline after 7 days. These changes in water absorption could be entirely accounted for by changes in net ion flux: there was an extremely strong correlation (R2=0.960) between water absorption and the sum of net Na+ and net Cl- fluxes (3.42+/-0.10 microl water micromol(-1) ion). However, enhanced ion transport across the intestine in fresh water would probably not increase water uptake in vivo, because the drinking rate was far less than the capacity for water absorption across the intestine. The increased intestinal ion absorption after freshwater transfer may instead serve to facilitate ion absorption from food when it is present in the gut. Modulation of net ion flux occurred without changes in mRNA levels of many ion transporters (Na+/K+-ATPase alpha(1a), carbonic anhydrase 2, CFTR Cl- channel, Na+/K+/2Cl- cotransporter 2, and the signalling protein 14-3-3a), and before a measured increase in Na+/K+-ATPase activity at 3 days, suggesting that there is some other mechanism responsible for increasing ion transport. Interestingly, net Cl- flux always exceeded net Na+ flux, possibly to help maintain Cl- balance and/or facilitate bicarbonate excretion. Our results suggest that intestinal NaCl absorption from food is important during the period of greatest ionic disturbance after transfer to fresh water, and provide further insight into the mechanisms of euryhalinity in killifish.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
27
|
Hoyle I, Handy RD. Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 72:147-159. [PMID: 15748753 DOI: 10.1016/j.aquatox.2004.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/25/2004] [Accepted: 11/27/2004] [Indexed: 05/24/2023]
Abstract
The trophic transfer and nutritional toxicity of mercury (Hg) in aquatic food chains is well known, but there is limited information on the mechanism of mercury uptake across the gut. In this study, isolated whole gut sacs from rainbow trout were used to identify the regions of the gut involved in Hg absorption, and then perfused intestines were used to investigate Hg uptake. Exposure of whole gut sacs to 100 micromol l(-1) Hg as HgCl2 in the luminal solution caused Hg accumulation primarily in the mucosa (78% or more), with the intact mid and hind gut supporting 59% of the accumulated Hg. Luminal exposure to [Hg] between 0 and 100 micromol l(-1) for 4 h in perfused trout intestines showed a non-linear dose-dependent accumulation with a maximum Hg uptake rate of about 103 nmol g(-1) h(-1), and suggests carrier mediated transport into the gut cells and the blood. Additions of 2 mmol l(-1) amiloride depressed Hg accumulation by the mid and hind gut by 40-50%, whilst additions of the Ca chelator 1 mmol l(-1) EGTA increased Hg levels in the tissue. Symmetrical additions of 10 mmol l(-1) cyanide did not prevent tissue accumulation of Hg, but caused a 3.4-fold decline in net Hg flux to the serosal compartment. We conclude that Hg absorption across the gut is partly carrier mediated and involves both amiloride sensitive, and energy-dependent pathways.
Collapse
Affiliation(s)
- I Hoyle
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | |
Collapse
|
28
|
Grosell M, Wood CM, Wilson RW, Bury NR, Hogstrand C, Rankin C, Jensen FB. Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol Regul Integr Comp Physiol 2004; 288:R936-46. [PMID: 15576660 DOI: 10.1152/ajpregu.00684.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments performed on isolated intestinal segments from the marine teleost fish, the European flounder (Platichthys flesus), revealed that the intestinal epithelium is capable of secondary active HCO3(-) secretion in the order of 0.2-0.3 micromol x cm(-2) x h(-1) against apparent electrochemical gradient. The HCO3(-) secretion occurs via anion exchange, is dependent on mucosal Cl(-), results in very high mucosal HCO3(-) concentrations, and contributes significantly to Cl(-) and fluid absorption. This present study was conducted under in vivo-like conditions, with mucosal saline resembling intestinal fluids in vivo. These conditions result in a transepithelial potential of -16.2 mV (serosal side negative), which is very different from the -2.2 mV observed under symmetrical conditions. Under these conditions, we found a significant part of the HCO3(-) secretion is fueled by endogenous epithelial CO2 hydration mediated by carbonic anhydrase because acetazolamide (10(-4) M) was found to inhibit HCO3(-) secretion and removal of serosal CO(2) was found not to influence HCO3(-) secretion. Reversal of the epithelial electrochemical gradient for Cl(-) (removal of serosal Cl(-)) and elevation of serosal HCO3(-) resulted in enhanced HCO3(-) secretion and enhanced Cl(-) and fluid absorption. Cl(-) absorption via an anion exchange system appears to partly drive fluid absorption across the intestine in the absence of net Na(+) absorption.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, Division of Marine Biology and Fisheries, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bartels H, Potter IC. Cellular composition and ultrastructure of the gill epithelium of larval and adult lampreys. J Exp Biol 2004; 207:3447-62. [PMID: 15339941 DOI: 10.1242/jeb.01157] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYLampreys, one of the only two surviving groups of agnathan (jawless)vertebrates, contain several anadromous species that, during their life cycle,thus migrate from fresh to seawater and back to freshwater. Lampreys have independently evolved the same overall osmoregulatory mechanisms as the gnathostomatous (jawed) and distantly related teleost fishes. Lamprey gills thus likewise play a central role in taking up and secreting monovalent ions. However, the ultrastructural characteristics and distribution of their epithelial cell types [ammocoete mitochondria-rich (MR) cell, intercalated MR cell, chloride cell and pavement cell] differ in several respects from those of teleosts. The ultrastructural characteristics of these cells are distinctive and closely resemble those of certain ion-transporting epithelia in other vertebrates, for which the function has been determined. The data on each cell type, together with the stage in the life cycle at which it is found, i.e. whether in fresh or seawater, enable the following proposals to be made regarding the ways in which lampreys use their gill epithelial cells for osmoregulating in hypo- and hypertonic environments. In freshwater, the intercalated MR cell takes up Cl– and secretes H+,thereby facilitating the uptake of Na+ through pavement cells. In seawater, the chloride cell uses a secondarily active transcellular transport of Cl– to provide the driving force for the passive movement of Na+ through leaky paracellular pathways between these cells.
Collapse
Affiliation(s)
- Helmut Bartels
- Anatomische Anstalt, Ludwig-Maximilians-Universität München, Pettenkoferstr. 11, 80336 München, Germany.
| | | |
Collapse
|
30
|
Bosi G, Shinn AP, Giari L, Arrighi S, Domeneghini C. The presence of a galanin-like peptide in the gut neuroendocrine system of Lampetra fluviatilis and Acipenser transmontanus: an immunohistochemical study. Tissue Cell 2004; 36:283-92. [PMID: 15261748 DOI: 10.1016/j.tice.2004.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 03/30/2004] [Accepted: 04/22/2004] [Indexed: 11/21/2022]
Abstract
Galanin is a brain-gut neuropeptide present in the central and peripheral nervous systems of vertebrates. In the present survey, the galaninergic and the diffuse endocrine systems of the alimentary canal of the river lamprey, Lampetra fluviatilis, and the white sturgeon, Acipenser transmontanus, were studied by immunohistochemistry. The results show the presence of galanin-like immunoreactive endocrine cells in the gut of L. fluviatilis. In addition, a galanin-like immunoreactivity was detected in enteric intramural neurons of both species. It is conceivable that the galaninergic system plays in both species a role in the regulation of the gut muscle contractility and in the modulation of mucosal secretive/absorptive processes. In A. transmontanus, the presence of galanin-like immunoreactive nerve fibres associated with components of the gut associated-lymphoid tissue is possibly correlated with a control of the defensive events at this site. The presence of a galanin-like immunoreactivity in the neuroendocrine system of these two ancient fishes confirms the hypothesis on the early occurrence of this regulative molecule in the gastro-enteric system of vertebrates.
Collapse
Affiliation(s)
- G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, University of Milan, via Trentacoste n. 2, I-20134 Milan, Italy.
| | | | | | | | | |
Collapse
|
31
|
Grosell M, McDonald MD, Wood CM, Walsh PJ. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 68:249-262. [PMID: 15159051 DOI: 10.1016/j.aquatox.2004.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/26/2004] [Accepted: 03/03/2004] [Indexed: 05/24/2023]
Abstract
Acute (96 h) and prolonged (30 days) copper exposure induced osmoregulatory disturbance and impaired nitrogenous waste excretion in the marine teleost, the gulf toadfish (Opsanus beta), which was found to be extremely tolerant to acute copper exposure with a 96 h LC50 exceeding 340 microM but exhibited disturbed mineral balance in response to both acute and prolonged exposure to approximately 12 microM copper. The main cause of copper toxicity was found to be Na+ and Cl- regulatory failure leading to elevated plasma [Na+] and [Cl-] and osmolality which in turn led to fluid loss from muscle tissue. Analysis of intestinal fluid composition revealed a complicated pattern of effects of copper exposure. Intestinal transport physiology was directly influenced by copper exposure with Cl- absorption being the most sensitive parameter. Evidence for increased Na+ and fluid absorption when the fish exhibited elevated plasma osmolality indicates that the intestine may also exhibit a compensatory response to impairment of branchial transport processes, suggesting at least two target organs (gill and intestine) for copper toxicity in marine fish. Plasma Mg2+ was elevated from approximately 1.5 mM to as much as 4.0 mM, likely as a result of increased branchial permeability. While plasma [ammonia] clearly responded to copper exposure, plasma [urea] exhibited a much more sensitive and pronounced response to both acute and prolonged copper exposure, resulting in as much as a three-fold increase in circulating urea levels. This response is most likely the result of the unique ability of this teleost to convert ammonia to urea.
Collapse
Affiliation(s)
- M Grosell
- RSMAS, Division of Marine Biology and Fisheries, University of Miami, 4600 Rickenbacker Causeway, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
32
|
Grosell M, McDonald MD, Walsh PJ, Wood CM. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta) II: copper accumulation, drinking rate and Na+/K+ -ATPase activity in osmoregulatory tissues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 68:263-275. [PMID: 15159052 DOI: 10.1016/j.aquatox.2004.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/26/2004] [Accepted: 03/03/2004] [Indexed: 05/24/2023]
Abstract
Gulf toadfish were exposed to sublethal levels of copper (12.8 or 55.2 microM) for 30 days. Drinking in control fish averaged 1 ml kg(-1)h(-1) but exposure to 55.2 microM copper resulted in a complex biophasic pattern with initial (3 h and 1 day) inhibition of drinking rate, followed by an elevation of drinking rate from day 3 onwards. Drinking led to copper accumulation in the intestinal fluids at levels three to five times higher than the ambient copper concentrations, which in turn resulted in intestinal copper accumulation. The gill exhibited more rapid accumulation of copper than the intestine and contributed to early copper uptake leading to accumulation in internal organs. Muscle, spleen and plasma exhibited little if any disturbance of copper homeostasis while renal copper accumulation was evident at both ambient copper concentrations. The liver exhibited the highest copper concentrations and the greatest copper accumulation of all examined internal organs during exposure to 55.2 microM. Elevated biliary copper excretion was evident from measurements of gall bladder bile copper concentrations and appeared to protect partially against internal accumulation in fish exposed to 12.8 microM copper. No inhibition of Na+/K+ -ATPase activity in either gills or intestine was seen despite copper accumulation in these organs. Calculations of inorganic copper speciation suggest that Cu(CO3)(2)2- complexes which dominate in seawater and intestinal fluids are of limited availability for uptake while the low levels of ionic Cu2+, CuOH+ and CuCO3 may be the forms taken up by the gill and the intestinal epithelium.
Collapse
Affiliation(s)
- M Grosell
- Division of Marine Biology and Fisheries, RSMAS, University of Miami, 4600 Rickenbacker Causeway, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
33
|
Marshall WS, Howard JA, Cozzi RRF, Lynch EM. NaCl and fluid secretion by the intestine of the teleostFundulus heteroclitus: involvement of CFTR. J Exp Biol 2002; 205:745-58. [PMID: 11914383 DOI: 10.1242/jeb.205.6.745] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSections of posterior intestine of the euryhaline killifish Fundulus heteroclitus adapted to sea water were stimulated by the calcium ionophore ionomycin (1 μmol l–1) in combination with agents to elevate intracellular cyclic AMP levels, 0.5 mmol l–1 dibutyryl-cyclic AMP (db-cAMP) with 0.1 mmol l–1 3-isobutyl-1-methylxanthine (IBMX). Intestinal bag preparations from recently fed animals (but not from overnight unfed animals) changed from fluid absorption (+18.9±8.30 μl cm–2 h–1 , N=8) in the untreated control period to net fluid secretion after stimulation (–7.43±1.30 μl cm–2 h–1, N=8, P<0.01; means ± s.e.m.), indicative of the capacity of teleost intestine to undergo secretion. Posterior intestinal pieces mounted in vitro in Ussing-style membrane chambers showed net Cl– uptake (+2.245±0.633 μequiv cm–2 h–1, N=7) that turned to net secretion following stimulation by ionomycin + db-cAMP + IBMX (–3.809±1.22 μequiv cm–2 h–1, N=7, P<0.01). Mucosal application of the anion channel blocker 1 mmol l–1 diphenylamine-2-carboxylate (DPC) after ionomycin + db-cAMP + IBMX treatment significantly reduced serosal-to-mucosal unidirectional Cl– flux (P<0.001), net Cl– flux (P<0.05), short-circuit current (Isc, P<0.001) and tissue conductance (Gt, P<0.001), while 0.1 mmol l–1 4,4′-diisothiocyano-2,2′-stilbene-disulphonic acid (DIDS, a blocker of anion exchange) was without effect. Stimulation by db-cAMP + IBMX (no ionomycin) significantly increased unidirectional fluxes, Isc and Gt but did not produce net Cl– secretion. Ionomycin alone produced a transient increase in Isc but had no effect on Gt and caused no significant changes in unidirectional or net Cl– fluxes. Addition of db-cAMP + IBMX after ionomycin treatment produced net secretion of Cl– and large increases in unidirectional fluxes and Gt. Cystic fibrosis transmembrane conductance regulator (CFTR) was immunocytochemically localized with a monoclonal mouse antibody to the carboxy terminus and found to be present in the cytoplasm and basolateral membranes of all enterocytes and in the brush-border membrane of some cells, whereas NKCC immunofluorescence, demonstrating the presence of the Na+/K+/2Cl– cotransporter, was present in the cytoplasm and brush-border membrane. We conclude that the teleost intestine is capable of salt and fluid secretion only if intracellular Ca2+ and cyclic AMP pathways are stimulated together and that this secretion appears to involve activation of CFTR ion channels in the apical membrane of a subpopulation of enterocytes.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | | | |
Collapse
|
34
|
Bury NR, Grosell M, Wood CM, Hogstrand C, Wilson RW, Rankin JC, Busk M, Lecklin T, Jensen FB. Intestinal iron uptake in the European flounder (Platichthys flesus). J Exp Biol 2001; 204:3779-87. [PMID: 11719541 DOI: 10.1242/jeb.204.21.3779] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Iron is an essential element because it is a key constituent of the metalloproteins involved in cellular respiration and oxygen transport. There is no known regulated excretory mechanism for iron, and homeostasis is tightly controlled via its uptake from the diet. This study assessed in vivo intestinal iron uptake and in vitro iron absorption in a marine teleost, the European flounder Platichthys flesus. Ferric iron, in the form 59FeCl3, was reduced to Fe2+ by ascorbate, and the bioavailability of Fe3+ and Fe2+ were compared. In vivo Fe2+ uptake was significantly greater than Fe3+ uptake and was reduced by the iron chelator desferrioxamine. Fe2+ was also more bioavailable than Fe3+ in in vitro studies that assessed the temporal pattern and concentration-dependency of iron absorption. The posterior region, when compared with the anterior and mid regions of the intestine, was the preferential site for Fe2+ uptake in vivo. In vitro iron absorption was upregulated in the posterior intestine in response to prior haemoglobin depletion of the fish, and the transport showed a Q10 value of 1.94. Iron absorption in the other segments of the intestine did not correlate with haematocrit, and Q10 values were lower. Manipulation of the luminal pH had no effect on in vitro iron absorption. The present study demonstrates that a marine teleost absorbs Fe2+ preferentially in the posterior intestine. This occurs in spite of extremely high luminal bicarbonate concentrations recorded in vivo, which may be expected to reduce the bioavailability of divalent cations as a result of the precipitation as carbonates (e.g. FeCO3).
Collapse
Affiliation(s)
- N R Bury
- Division of Health and Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Kelly SP, Chow IN, Woo NY. Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba. Gen Comp Endocrinol 1999; 113:9-22. [PMID: 9882539 DOI: 10.1006/gcen.1998.7159] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silver seabream (Sparus sarba) held in seawater (33 per thousand) or acclimated to a hypoosmotic environment of 6 per thousand were given intraperitoneal injections of saline (0.8% NaCl), recombinant bream growth hormone (rbGH, 1 microg/g), or ovine prolactin (oPRL, 6microg/g) for 7 consecutive days. Serum Na+ levels were unaffected by hypoosmotic acclimation and rbGH and oPRL treatment. Treatment of seawater fish with oPRL resulted in hyperchloremia. In 6 per thousand, saline-treated fish exhibited elevated branchial chloride cell (CC) numbers and exposure indices, all of which were markedly reduced by oPRL. CC numbers and morphometrics were unaffected by oPRL in seawater fish. In contrast, rbGH treatment of seawater fish resulted in elevated CC numbers, apical area, and fractional area and, in 6 per thousand fish, elevated CC fractional area and exposure numbers. Branchial Na+-K+-ATPase activity reduced in saline-treated fish adapted to 6% but was unaffected by rbGH regardless of salinity. oPRL reduced activity in both seawater and 6 per thousand-adapted fish. Neither hypoosmotic adaptation nor oPRL had any effect on renal Na+-K+-ATPase activity whereas rbGH reduced activity in both 33 and 6 per thousand. Saline-treated fish adapted to 6 per thousand exhibited reduced Na+-K+-ATPase activity in most regions of the intestine. Treatment with rbGH did not change intestinal Na+-K+-ATPase activity of seawater fish but elevated activity in the anterior regions (esophagus and stomach) of 6 per thousand-adapted fish. Treatment with oPRL elevated Na+-K+-ATPase activity throughout the gastrointestinal tract of seawater fish and in the anterior reaches of 6 per thousand-adapted fish. The data indicated that the as yet uncharacterized osmoregulatory roles of PRL and GH in seabream may warrant further attention as the present study connoted differing responses to that of other teleosts studied.
Collapse
Affiliation(s)
- S P Kelly
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|