1
|
Bechtel W, Bich L. Situating homeostasis in organisms: maintaining organization through time. J Physiol 2024. [PMID: 39383321 DOI: 10.1113/jp286883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024] Open
Abstract
Since it was inspired by Bernard and developed and named by Cannon, the concept of homeostasis has been invoked by many as the central theoretical framework for physiology. It has also been the target of numerous criticisms that have elicited the introduction of a plethora of alternative concepts. We argue that many of the criticisms actually target the more restrictive account of homeostasis advanced by the cyberneticists. What was crucial to Bernard and Cannon was a focus on the maintenance of the organism as the goal of physiological regulation. We analyse how Bernard's and Cannon's broad conception of what was required to maintain the organism was narrowed to negative feedback, characterized in terms of setpoints, by the cyberneticists and demonstrate how many of the alternative concepts challenge the role of setpoints - treating them as variable in light of circumstances or in anticipation of future circumstances, or as dispensable altogether. To support our analysis, we draw on the experimental and theoretical work on thermoregulation, a phenomenon that has been considered as a paradigmatic example of homeostasis and has been a common focus of those advancing alternative concepts. To integrate the insights advanced by the original proponents of homeostasis and the theorists proposing replacement notions we advance a framework in which regulation is viewed from the perspective of maintaining the organism.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California, San Diego, CA, USA
| | - Leonardo Bich
- Department of Philosophy, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Mota-Rojas D, Ghezzi MD, Hernández-Ávalos I, Domínguez-Oliva A, Casas-Alvarado A, Lendez PA, Ceriani MC, Wang D. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals (Basel) 2024; 14:513. [PMID: 38338158 PMCID: PMC10854546 DOI: 10.3390/ani14030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
When an organism detects decreases in their core body temperature, the hypothalamus, the main thermoregulatory center, triggers compensatory responses. These responses include vasomotor changes to prevent heat loss and physiological mechanisms (e.g., shivering and non-shivering thermogenesis) for heat production. Both types of changes require the participation of peripheral thermoreceptors, afferent signaling to the spinal cord and hypothalamus, and efferent pathways to motor and/or sympathetic neurons. The present review aims to analyze the scientific evidence of the hypothalamic control of hypothermia and the central and peripheral changes that are triggered in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB, Tandil 7000, Buenos Aires, Argentina
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Pamela Anahí Lendez
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - María Carolina Ceriani
- Anatomy Area, Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), GIB/CISAPA, Tandil 7000, Buenos Aires, Argentina
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Nakamura K. Central Mechanisms of Thermoregulation and Fever in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:141-159. [PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermoregulation is a fundamental homeostatic function in mammals mediated by the central nervous system. The framework of the central circuitry for thermoregulation lies in the hypothalamus and brainstem. The preoptic area (POA) of the hypothalamus integrates cutaneous and central thermosensory information into efferent control signals that regulate excitatory descending pathways through the dorsomedial hypothalamus (DMH) and rostral medullary raphe region (rMR). The cutaneous thermosensory feedforward signals are delivered to the POA by afferent pathways through the lateral parabrachial nucleus, while the central monitoring of body core temperature is primarily mediated by warm-sensitive neurons in the POA for negative feedback regulation. Prostaglandin E2, a pyrogenic mediator produced in response to infection, acts on the POA to trigger fever. Recent studies have revealed that this circuitry also functions for physiological responses to psychological stress and starvation. Master psychological stress signaling from the medial prefrontal cortex to the DMH has been discovered to drive a variety of physiological responses for stress coping, including hyperthermia. During starvation, hunger signaling from the hypothalamus was found to activate medullary reticular neurons, which then suppress thermogenic sympathetic outflows from the rMR for energy saving. This thermoregulatory circuit represents a fundamental mechanism of the central regulation for homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
4
|
O’Brien F, Feetham CH, Staunton CA, Hext K, Barrett-Jolley R. Temperature modulates PVN pre-sympathetic neurones via transient receptor potential ion channels. Front Pharmacol 2023; 14:1256924. [PMID: 37920211 PMCID: PMC10618372 DOI: 10.3389/fphar.2023.1256924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus plays a vital role in maintaining homeostasis and modulates cardiovascular function via autonomic pre-sympathetic neurones. We have previously shown that coupling between transient receptor potential cation channel subfamily V Member 4 (Trpv4) and small-conductance calcium-activated potassium channels (SK) in the PVN facilitate osmosensing, but since TRP channels are also thermosensitive, in this report we investigated the temperature sensitivity of these neurones. Methods: TRP channel mRNA was quantified from mouse PVN with RT-PCR and thermosensitivity of Trpv4-like PVN neuronal ion channels characterised with cell-attached patch-clamp electrophysiology. Following recovery of temperature-sensitive single-channel kinetic schema, we constructed a predictive stochastic mathematical model of these neurones and validated this with electrophysiological recordings of action current frequency. Results: 7 thermosensitive TRP channel genes were found in PVN punches. Trpv4 was the most abundant of these and was identified at the single channel level on PVN neurones. We investigated the thermosensitivity of these Trpv4-like channels; open probability (Po) markedly decreased when temperature was decreased, mediated by a decrease in mean open dwell times. Our neuronal model predicted that PVN spontaneous action current frequency (ACf) would increase as temperature is decreased and in our electrophysiological experiments, we found that ACf from PVN neurones was significantly higher at lower temperatures. The broad-spectrum channel blocker gadolinium (100 µM), was used to block the warm-activated, Ca2+-permeable Trpv4 channels. In the presence of gadolinium (100 µM), the temperature effect was largely retained. Using econazole (10 µM), a blocker of Trpm2, we found there were significant increases in overall ACf and the temperature effect was inhibited. Conclusion: Trpv4, the abundantly transcribed thermosensitive TRP channel gene in the PVN appears to contribute to intrinsic thermosensitive properties of PVN neurones. At physiological temperatures (37°C), we observed relatively low ACf primarily due to the activity of Trpm2 channels, whereas at room temperature, where most of the previous characterisation of PVN neuronal activity has been performed, ACf is much higher, and appears to be predominately due to reduced Trpv4 activity. This work gives insight into the fundamental mechanisms by which the body decodes temperature signals and maintains homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Richard Barrett-Jolley
- Department of Musculoskeletal Ageing Science, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Nolasco-Pérez TDJ, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Fernández-Rivera O, Salazar-Castañón VH, Legorreta-Herrera M. Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection. Front Cell Infect Microbiol 2023; 13:1146356. [PMID: 37384220 PMCID: PMC10296187 DOI: 10.3389/fcimb.2023.1146356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens. Methods To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies. Results We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
6
|
Domingues TE, Diniz E Magalhães CO, Szawka RE, Reis AM, Henriques PC, da Costa Silva KS, Costa SP, Silva SB, Ferreira da Fonseca S, Rodrigues CM, Dias Peixoto MF, Coimbra CC, Mendonça VA, Scheidet PHF, Sampaio KH, Lacerda ACR. Prior aerobic physical training modulates neuropeptide expression and central thermoregulation after ovariectomy in the rat. Mol Cell Endocrinol 2022; 558:111756. [PMID: 36084853 DOI: 10.1016/j.mce.2022.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
This study compared the effects of aerobic physical training and estradiol (E2) replacement on central pathways involved with thermoregulation in ovariectomized rats. Rats were assigned to untrained ovariectomized treated with placebo (UN-OVX), untrained ovariectomized treated with E2 (E2-OVX), and trained ovariectomized (TR-OVX) groups. Tail skin temperature (TST), internal temperature (Tint), and basal oxygen consumption (VO2) were recorded. Neuronal activity, brain expression of Kiss1, NKB and Prodyn, and central norepinephrine (NE) levels were measured. UN-OVX had the highest TST. Compared to UN-OVX rats, TR-OVX and E2-OVX had lower Fos expression in the paraventricular and arcuate (ARC) nuclei, and lower double labeling for Tyrosine Hydroxylase and Fos in the brainstem. Compared to UN-OVX, only TR-OVX group exhibited lower kisspeptin (Kiss1), neurokinin B (NKB), and prodynorphin expression in the ARC and higher central NE levels. Aerobic physical training before menopause may prevent the heat dissipation imbalance induced by reduction of E2, through central NE release, modulation of Kiss1, NKB and prodynorphin expression in neurons from ARC nucleus.
Collapse
Affiliation(s)
- Talita Emanuela Domingues
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório Experimental de Treinamento Físico - LETFis - Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Martha Reis
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia Costa Henriques
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Kaoma Stephani da Costa Silva
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Sabrina Paula Costa
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Sara Barros Silva
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Sueli Ferreira da Fonseca
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Cíntia Maria Rodrigues
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Pedro Henrique Figueiredo Scheidet
- Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Temperature-robust rapid eye movement and slow wave sleep in the lizard Laudakia vulgaris. Commun Biol 2022; 5:1310. [PMID: 36446903 PMCID: PMC9709036 DOI: 10.1038/s42003-022-04261-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
During sleep our brain switches between two starkly different brain states - slow wave sleep (SWS) and rapid eye movement (REM) sleep. While this two-state sleep pattern is abundant across birds and mammals, its existence in other vertebrates is not universally accepted, its evolutionary emergence is unclear and it is undetermined whether it is a fundamental property of vertebrate brains or an adaptation specific to homeotherms. To address these questions, we conducted electrophysiological recordings in the Agamid lizard, Laudakia vulgaris during sleep. We found clear signatures of two-state sleep that resemble the mammalian and avian sleep patterns. These states switched periodically throughout the night with a cycle of ~90 seconds and were remarkably similar to the states previously reported in Pogona vitticeps. Interestingly, in contrast to the high temperature sensitivity of mammalian states, state switches were robust to large variations in temperature. We also found that breathing rate, micro-movements and eye movements were locked to the REM state as they are in mammals. Collectively, these findings suggest that two-state sleep is abundant across the agamid family, shares physiological similarity to mammalian sleep, and can be maintain in poikilothems, increasing the probability that it existed in the cold-blooded ancestor of amniotes.
Collapse
|
8
|
Thermoregulatory heat-escape/cold-seeking behavior in mice and the influence of TRPV1 channels. PLoS One 2022; 17:e0276748. [DOI: 10.1371/journal.pone.0276748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The present study assessed heat-escape/cold-seeking behavior during thermoregulation in mice and the influence of TRPV1 channels. Mice received subcutaneous injection of capsaicin (50 mg/kg; CAP group) for desensitization of TRPV1 channels or vehicle (control [CON] group). In Experiment 1, heat-escape/cold-seeking behavior was assessed using a newly developed system comprising five temperature-controlled boards placed in a cross-shape. Each mouse completed three 90-min trials. In the trials, the four boards, including the center board, were set at either 36˚C, 38˚C, or 40˚C, while one corner board was set at 32˚C, which was rotated every 5 min. In Experiment 2, mice were exposed to an ambient temperature of 37˚C for 30 min. cFos expression in the preoptic area of the hypothalamus (POA) was assessed. In Experiment 1, the CON group stayed on the 32˚C board for the longest duration relative to that on other boards, and intra-abdominal temperature (Tabd) was maintained. In the CAP group, no preference for the 32˚C board was observed, and Tabd increased. In Experiment 2, cFos expression in the POA decreased in the CAP group. Capsaicin-induced desensitization of TRPV1 channels suppressed heat-escape/cold-seeking behavior in mice during heat exposure, resulting in hyperthermia. In conclusion, our findings suggest that heat sensation from the body surface may be a key inducer of thermoregulatory behaviors in mice.
Collapse
|
9
|
Lee W, Dwortz MF, Milewski TM, Champagne FA, Curley JP. Social status mediated variation in hypothalamic transcriptional profiles of male mice. Horm Behav 2022; 142:105176. [PMID: 35500322 DOI: 10.1016/j.yhbeh.2022.105176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Animals of different social status exhibit variation in aggression, territorial and reproductive behavior as well as activity patterns, feeding, drinking and status signaling. This behavioral and physiological plasticity is coordinated by underlying changes in brain gene transcription. Using Tag-based RNA sequencing (Tag-seq), we explore RNA transcriptomes from the medial preoptic area (mPOA) and ventral hypothalamus (vHYP) of male mice of different social ranks in a dominance hierarchy and detect candidate genes and cellular pathways that underlie status-related plasticity. Within the mPOA, oxytocin (Oxt) and vasopressin (Avp) are more highly expressed in subdominant mice compared to other ranks, while nitric oxide synthase (Nos1) has lower expression in subdominant mice. Within the vHYP, we find that both orexigenic and anorexigenic genes involved in feeding behavior, including agouti-related peptide (Agrp), neuropeptide-Y (Npy), galanin (Gal), proopiomelanocortin (Pomc), and Cocaine- and Amphetamine-Regulated Transcript Protein prepropeptide (Cartpt), are less expressed in dominant animals compared to more subordinate ranks. We suggest that this may represent a reshaping of feeding circuits in dominant compared to subdominant and subordinate animals. Furthermore, we determine several genes that are positively and negatively associated with the level of despotism (aggression) in dominant males. Ultimately, we identify hypothalamic genes controlling feeding and social behaviors that are differentially transcribed across animals of varying social status. These changes in brain transcriptomics likely support phenotypic variation that enable animals to adapt to their current social status.
Collapse
Affiliation(s)
- W Lee
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - M F Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - T M Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - J P Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Different Changes in Adipokines, Lipid Profile, and TNF-Alpha Levels between 10 and 20 Whole Body Cryostimulation Sessions in Individuals with I and II Degrees of Obesity. Biomedicines 2022; 10:biomedicines10020269. [PMID: 35203477 PMCID: PMC8869184 DOI: 10.3390/biomedicines10020269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with chronic inflammation. While cold therapy influences the pro/antioxidative status of an individual, by affecting adipokine levels and the lipid profile, the effect of body mass index (BMI) on the response to cold exposure is unclear. We analyzed the link between BMI and the differences in effects of whole-body stimulation, depending on the number of treatments, on specific physiological parameters in men. Twenty-seven non-active men were divided into three groups: N (n = 9, BMI < 24.9), IOb (n = 9, BMI 30.0–34.9), and IIOb (BMI ≥ 35.0). The subjects participated in 20 3-min cryochamber sessions (−120 °C), 1/day, 5 days/week. Body composition was analyzed before and after treatment. Blood adiponectin (ADP), leptin (LEP), and tumor necrosis factor alpha (TNF-alpha) levels, and the lipid profile were analyzed three times: at baseline and up to 2 h after 10 and 20 sessions. The 20 treatments caused significant changes in body composition. Between 10 and 20 whole-body cryostimulation (WBC) sessions, a significant decreased was observed in the LEP and TNF-alpha levels. No significant changes in the lipid profile were noted. However, a positive tendency to regain the metabolic balance in adipose tissue was apparent in the IOb group in the tested period (decreased TG levels, increased HDL levels or the HDL/LDL ratio, and significantly decreased visceral adiposity index levels). Collectively, for people with obesity increasing the number of treatments above the standard 10 should be recommended.
Collapse
|
11
|
Lima PM, Reis TO, Wanner SP, Chianca-Jr DA, Menezes RC. The role of peripheral transient receptor potential vanilloid 1 channels in stress-induced hyperthermia in rats subjected to an anxiogenic environment. J Therm Biol 2022; 106:103191. [DOI: 10.1016/j.jtherbio.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
12
|
Menchetti L, Nanni Costa L, Zappaterra M, Padalino B. Effects of Reduced Space Allowance and Heat Stress on Behavior and Eye Temperature in Unweaned Lambs: A Pilot Study. Animals (Basel) 2021; 11:ani11123464. [PMID: 34944241 PMCID: PMC8698074 DOI: 10.3390/ani11123464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In Europe, young lambs can be transported long distances for slaughter. While transport is regulated by E.U. law, there is a lack of research investigating the optimal transport conditions specifically for young lambs. For example, while the regulations set a minimum space allowance for lambs above 26 kg, no minimum is specified for young lambs meaning they can be transported in overcrowded conditions. Further, while the temperature within the vehicle must be maintained between 5–30 °C, this is well above the 21 °C said to be the upper end of the comfortable range for lambs. This study aimed to investigate how variation in space allowance and temperature can affect the welfare of young lambs. Three groups of lambs were created where either the density of individuals (0.27 vs. 0.20 m2 per head) or the temperature range (12–18 °C vs. 19–30 °C) varied. Lambs housed in the higher density and heat stress groups showed more discomfort and higher body temperatures. In addition, lambs kept in the heat stress group lost weight over the course of the study, and showed signs of heat stress when the temperature exceeded 25 °C. These results indicate that the regulations for the transport of young lambs need to be refined. Abstract Current European animal transportation law contains only a few and vague indications concerning how to move lambs of less than 26 kg. Moreover, little information is available in the literature about factors affecting these lambs’ welfare. We investigated the effect of space allowance and ambient temperature on the welfare of unweaned Lacaune lambs during a simulation of long-distance transportation (19 h). Three groups of lambs (N = 130) were housed in equally sized pens for 19 h, Control (C; n = 39; 0.27 m2 per head), Low Space Allowance (LSA; n = 52; 0.20 m2 per head), and Heat Stress (HS; n = 39; 0.27 m2 per head) groups. LSA lambs had lower space allowance than C but were tested at the same temperature, within their Thermoneutral zone (range = 12–18 °C). The HS lambs were, instead, subjected to higher temperatures (range = 19–30 °C). Scan sampling of behavior was conducted, eye temperature and body weight were also recorded. LSA and HS lambs showed more discomfort behaviors (p < 0.05) and higher eye temperatures (p < 0.001) compared to C lambs, while HS lambs additionally showed a decrease in body weight over the experimental period (p < 0.001). This study indicates that lower space allowances and higher temperatures impact negatively the welfare of lambs transported for slaughter suggesting that the regulation should be implemented taking these factors into account.
Collapse
|
13
|
Verduzco-Mendoza A, Bueno-Nava A, Wang D, Martínez-Burnes J, Olmos-Hernández A, Casas A, Domínguez A, Mota-Rojas D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals (Basel) 2021; 11:3448. [PMID: 34944225 PMCID: PMC8698170 DOI: 10.3390/ani11123448] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Evaluating laboratory animals' health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Antonio Bueno-Nava
- División of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, (INR-LGII), Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| |
Collapse
|
14
|
Abstract
This paper presents the findings of a 6-week long, five-participant experiment in a controlled climate chamber. The experiment was designed to understand the effect of time on thermal behaviour, electrodermal activity (EDA) and the adaptive behavior of occupants in response to a thermal non-uniform indoor environment were continuously logged. The results of the 150 h-long longitudinal study suggested a significant difference in tonic EDA levels between “morning” and “afternoon” clusters although the environmental parameters were the same, suggesting a change in the human body’s thermal reception over time. The correlation of the EDA and temperature was greater for the afternoon cluster (r = 0.449, p < 0.001) in relation to the morning cluster (r = 0.332, p < 0.001). These findings showed a strong temporal dependency of the skin conductance level of the EDA to the operative temperature, following the person’s circadian rhythm. Even further, based on the person’s chronotype, the beginning of the “afternoon” cluster was observed to have shifted according to the person’s circadian rhythm. Furthermore, the study is able to show how the body reacts differently under the same PMV values, both within and between subjects; pointing to the lack of temporal parameter in the PMV model.
Collapse
|
15
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
16
|
Fernandes P, Pereira LDM, Horta NAC, Cardoso TSR, Coimbra CC, Szawka RE, Pereira GS, Poletini MO. Social interaction masking contributes to changes in the activity of the suprachiasmatic nucleus and impacts on circadian rhythms. Physiol Behav 2021; 237:113420. [PMID: 33878315 DOI: 10.1016/j.physbeh.2021.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Light is the most powerful temporal cue that entrains physiology and behavior through modulation of the suprachiasmatic nucleus (SCN) of the hypothalamus. However, on a daily basis, individuals face a combination of light and several non-photic cues, such as social interaction. In order to investigate whether SCN activity and SCN-driven rhythms are altered by social interaction, adult male C57BLJ/6 mice were maintained in groups of 3-4 animals per cage or 1 animal per cage (socially isolated) under 12:12 h / light:dark (LD) cycles or constant darkness (DD). Analysis of the two anatomical subdivisions (ventral, v and dorsal, d) of the medial SCN revealed an effect of housing conditions on the d-SCN but not on the v-SCN on the number of c-Fos immunoreactive (ir) neurons. As such, 2 h after the light-phase onset d-SCN c-Fos-ir number was lower in single-housed mice under LD. Importantly, under DD there were no effect of housing conditions in the number of c-Fos-ir SCN neurons. Social isolation increased the amplitude and strength of SCN-driven rhythm of body temperature (Tc) entrained to LD and it advanced its onset, uncoupling with spontaneous locomotor activity (SLA) rhythm, without altering endogenous Tc and SLA rhythms expressed under DD. Associated with reduced Tc in the light phase, single-housed mice showed reduced body weight. However, these phenotypes were not accompanied by changes in the number of c-Fos-ir neurons in the preoptic area (POA), which are known to regulate energy metabolism and Tc. Altogether, these results imply that the social interaction masking effect on the d-SCN is added to that of light stimulus, in order to achieve full c-Fos expression in the SCN, which, in turn seems to be required to maintain daily-phase coherence between the photo-entrained rhythms of Tc and SLA. There might be an inter-relationship between masking (social interaction) and entrainment stimulus (light) that impacts the circadian parameters of the photo-entrained Tc rhythm. As such, in the absence of social interactions a more robust Tc rhythm is shown. This inter-relationship seems to occur in the dorsal subdivision of the SCN but not in the POA.
Collapse
Affiliation(s)
- Paola Fernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Melo Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara Abreu Coelho Horta
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Santana Rocha Cardoso
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cândido Celso Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela Oliveira Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
17
|
Ushio A, Eto K. The Expression of the Cold Shock Protein RNA Binding Motif Protein 3 is Transcriptionally Responsive to Organ Temperature in Mice. Protein Pept Lett 2021; 28:270-275. [PMID: 32972335 DOI: 10.2174/0929866527666200924144424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mild hypothermia, i.e. maintenance of organ temperature by up to 8°C lower than body temperature, is a critical strategy for exerting some functions of the cells and organs normally, and is an useful therapy for recovering properly from some diseases, including myocardial infarction, cardiac arrest, brain injury, and ischemic stroke. Nevertheless, there were no focusses so far on organ temperature and potential responses of gene expression to organ temperature in organs of homeothermic animals that survive under normal conditions. OBJECTIVE The present study aimed to assess organ temperature in homeothermic animals and evaluate the effect of their organ temperature on the expression of the cold shock protein RNA binding motif protein 3 (RBM3), and to gain insights into the organ temperature-mediated regulation of RBM3 gene transcription via Nuclear factor β-light-chain-enhancer of activated B cells (NF-κB) p65, which had been identified as a transcription factor that is activated by undergoing the Ser276 phosphorylation and promotes the RBM3 gene expression during mild hypothermia. METHODS We measured the temperature of several organs, where RBM3 expression was examined, in female and male mice. Next, in male mice, we tested NF-κB p65 expression and its Ser276 phosphorylation in organs that have their lower temperature than body temperature and compared them with those in organs that have their temperature near body temperature. RESULTS Organ temperature was around 32°C in the brain and reproductive organs, which is lower than the body temperature, and around 37°C in the heart, liver, and kidney, which is comparable to the body temperature. The expression of RBM3 was detected greatly in the brain and reproductive organs with their organ temperature of around 32°C, and poorly in the heart, liver, and kidney with their organ temperature of around 37°C. In accordance with the changes in the RBM3 expression, the NF-κB p65 Ser276 phosphorylation was detected more greatly in the testis and brain with their organ temperature of around 32°C, than in the heart, liver, and kidney with their organ temperature of around 37°C, although the NF-κB p65 expression was unchanged among all the organs tested. DISCUSSION Our data suggested that organ temperature lower than body temperature causes the expression of RBM3 in the brain and reproductive organs of mice, and that lower organ temperature causes the NF-κB p65 activation through the Ser276 phosphorylation, resulting in an increase in the RBM3 gene transcription, in the brain and reproductive organs of mice. CONCLUSION The study may present the possibility that organ temperature-induced alterations in gene expression are organ specific in homeotherms and the possibility that organ temperature-induced alterations in gene expression are transcriptionally regulated in some organs of homeotherms.
Collapse
Affiliation(s)
- Ayako Ushio
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Neudorfer C, Elias GJB, Jakobs M, Boutet A, Germann J, Narang K, Loh A, Paff M, Horn A, Kucharczyk W, Deeb W, Salvato B, Almeida L, Foote KD, Rosenberg PB, Tang-Wai DF, Anderson WS, Mari Z, Ponce FA, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Lozano AM. Mapping autonomic, mood, and cognitive effects of hypothalamic region deep brain stimulation. Brain 2021; 144:2837-2851. [PMID: 33905474 DOI: 10.1093/brain/awab170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
Due to its involvement in a wide variety of cardiovascular, metabolic, and behavioral functions, the hypothalamus constitutes a potential target for neuromodulation in a number of treatment-refractory conditions. The precise neural substrates and circuitry subserving these responses, however, are poorly characterized to date. We sought to retrospectively explore the acute sequalae of hypothalamic region deep brain stimulation and characterize their neuroanatomical correlates. To this end we studied at multiple international centers 58 patients (mean age: 68.5 ± 7.9 years, 26 females) suffering from mild Alzheimer's disease who underwent stimulation of the fornix region between 2007 and 2019. We catalogued the diverse spectrum of acutely induced clinical responses during electrical stimulation and interrogated their neural substrates using volume of tissue activated modelling, voxel-wise mapping, and supervised machine learning techniques. In total 627 acute clinical responses to stimulation - including tachycardia, hypertension, flushing, sweating, warmth, coldness, nausea, phosphenes, and fear - were recorded and catalogued across patients using standard descriptive methods. The most common manifestations during hypothalamic region stimulation were tachycardia (30.9%) and warmth (24.6%) followed by flushing (9.1%) and hypertension (6.9%). Voxel-wise mapping identified distinct, locally separable clusters for all sequelae that could be mapped to specific hypothalamic and extrahypothalamic gray- and white-matter structures. K-nearest neighbor classification further validated the clinico-anatomical correlates emphasizing the functional importance of identified neural substrates with area under the receiving operating characteristic curves (AUROC) between 0.67 - 0.91. Overall, we were able to localize acute effects of hypothalamic region stimulation to distinct tracts and nuclei within the hypothalamus and the wider diencephalon providing clinico-anatomical insights that may help to guide future neuromodulation work.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Martin Jakobs
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Keshav Narang
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michelle Paff
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Wissam Deeb
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | | | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Paul B Rosenberg
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - David F Tang-Wai
- Department of Neurology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Francisco A Ponce
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna D Burke
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Marwan N Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Mendes C, Gomes G, Belpiede LT, do Carmo Buonfiglio D, Motta-Teixeira LC, Amaral FG, Cipolla-Neto J. The effects of melatonin daily supplementation to aged rats on the ability to withstand cold, thermoregulation and body weight. Life Sci 2020; 265:118769. [PMID: 33309717 DOI: 10.1016/j.lfs.2020.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023]
Abstract
AIMS Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.
Collapse
Affiliation(s)
- Caroline Mendes
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Gomes
- Department of Physics and Interdisciplinary Science (FCI), São Carlos Institute of Physics (IFSC), University of São Paulo, São Paulo, Brazil
| | - Luciana Tocci Belpiede
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lívia Clemente Motta-Teixeira
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar Amaral
- Pineal Neurobiology Lab, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Neurobiology Lab, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Kiss DS, Toth I, Jocsak G, Barany Z, Bartha T, Frenyo LV, Horvath TL, Zsarnovszky A. Functional Aspects of Hypothalamic Asymmetry. Brain Sci 2020; 10:brainsci10060389. [PMID: 32575391 PMCID: PMC7349050 DOI: 10.3390/brainsci10060389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023] Open
Abstract
Anatomically, the brain is a symmetric structure. However, growing evidence suggests that certain higher brain functions are regulated by only one of the otherwise duplicated (and symmetric) brain halves. Hemispheric specialization correlates with phylogeny supporting intellectual evolution by providing an ergonomic way of brain processing. The more complex the task, the higher are the benefits of the functional lateralization (all higher functions show some degree of lateralized task sharing). Functional asymmetry has been broadly studied in several brain areas with mirrored halves, such as the telencephalon, hippocampus, etc. Despite its paired structure, the hypothalamus has been generally considered as a functionally unpaired unit, nonetheless the regulation of a vast number of strongly interrelated homeostatic processes are attributed to this relatively small brain region. In this review, we collected all available knowledge supporting the hypothesis that a functional lateralization of the hypothalamus exists. We collected and discussed findings from previous studies that have demonstrated lateralized hypothalamic control of the reproductive functions and energy expenditure. Also, sporadic data claims the existence of a partial functional asymmetry in the regulation of the circadian rhythm, body temperature and circulatory functions. This hitherto neglected data highlights the likely high-level ergonomics provided by such functional asymmetry.
Collapse
Affiliation(s)
- David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
- Correspondence: ; Tel.: +36-1478-4247 or +36-1478-8406
| | - Istvan Toth
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
| | - Zoltan Barany
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
| | - Laszlo V. Frenyo
- Department of Physiology and Biochemistry, University of Veterinary Medicine, 1078 Budapest, Hungary; (I.T.); (G.J.); (Z.B.); (T.B.); (L.V.F.)
| | - Tamas L. Horvath
- Department of Animal Physiology and Animal Health, Szent Istvan University, Faculty of Agricultural and Environmental Sciences, 2100 Gödöllő, Hungary; (T.L.H.); (A.Z.)
- Division of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Attila Zsarnovszky
- Department of Animal Physiology and Animal Health, Szent Istvan University, Faculty of Agricultural and Environmental Sciences, 2100 Gödöllő, Hungary; (T.L.H.); (A.Z.)
- Division of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Pilch W, Wyrostek J, Major P, Zuziak R, Piotrowska A, Czerwińska-Ledwig O, Grzybkowska A, Zasada M, Ziemann E, Żychowska M. The effect of whole-body cryostimulation on body composition and leukocyte expression of HSPA1A, HSPB1, and CRP in obese men. Cryobiology 2020; 94:100-106. [PMID: 32289283 DOI: 10.1016/j.cryobiol.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022]
Abstract
In recent years, the prevalence of obesity has increased dramatically and has become a 21st century epidemic. Obesity is associated with the development of many diseases, and therefore treatments that can reduce body mass are actively sought. The aim of this study was to examine the effect of 20 cryostimulation sessions on body composition in obese/high body mass (HBM, n = 12) males and normal body mass (NBM, n = 9) controls. The HBM group had a mean age = 29.08 ± 4.19 years, body fat percentage = 32.08 ± 6.16%, body mass index = 36.23 ± 8.13 kg/m2) and NBM group had a mean age = 22.00 ± 2.45 years, body fat percentage = 12.14 ± 4.93%, body mass index = 23.58 ± 2.00 kg/m2. Kilocalorie intake was similar for both groups. All participants received 20 sessions of systemic cryostimulation at -120°C for 2-3 min in a cryochamber. Blood samples were collected before the first session, 1 h after the 10th session, and 1 h after the 20th cryostimulation session. C-reactive protein (CRP) plasma concentrations, and expression of the heat shock protein genes (HSPA1A, HSPB1) and CRP mRNA in leukocytes were evaluated after 10 and 20 cryostimulation sessions. In both groups, 20 sessions were associated with a significant decrease in body mass, fat mass and the percentage of body fat. CRP concentrations were significantly higher in obese people before the first session and after 10 treatments, but not at the end of study. Expression of HSPA1A and HSPB1 mRNA gradually decreased with the number of cryostimulation sessions. A significant difference in HSPA1A expression was found after 20 sessions (NBM > HBM) and for HSPB1 at baseline and after 20 sessions (HBM > NBM). Our results show that cryostimulation influences body composition and that cryostimulation-induced HSP genes expression depends on the number of cryosessions and baseline body mass, and is differentially altered in HBM individuals. Further research on the interaction between body mass and cold adaptation is warranted.
Collapse
Affiliation(s)
- Wanda Pilch
- University of Physical Education in Krakow, Faculty of Physiotherapy, Department of Cosmetology, Krakow, Poland
| | - Joanna Wyrostek
- University of Physical Education in Krakow, Faculty of Physiotherapy, Department of Cosmetology, Krakow, Poland
| | - Piotr Major
- Jagiellonian University Medical College, 2nd Department of General Surgery, Krakow, Poland
| | - Roxana Zuziak
- University of Physical Education in Krakow, Faculty of Physiotherapy, Department of Cosmetology, Krakow, Poland
| | - Anna Piotrowska
- University of Physical Education in Krakow, Faculty of Physiotherapy, Department of Cosmetology, Krakow, Poland
| | - Olga Czerwińska-Ledwig
- University of Physical Education in Krakow, Faculty of Physiotherapy, Department of Cosmetology, Krakow, Poland
| | - Agata Grzybkowska
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Department of Biochemistry, Gdansk, Poland
| | - Mariusz Zasada
- Kazimierz Wielki University in Bydgoszcz, Faculty of Physical Education, Department of Sport, Bydgoszcz, Poland
| | - Ewa Ziemann
- Poznan University of Physical Education, Department of Athletics, Strength and Conditioning, Poznań, Poland
| | - Małgorzata Żychowska
- Kazimierz Wielki University in Bydgoszcz, Faculty of Physical Education, Department of Sport, Bydgoszcz, Poland.
| |
Collapse
|
22
|
Altıner Ş, Ardic S, Çebi AH. Extending the Phenotypic Spectrum of Huntington Disease: Hypothermia. Mol Syndromol 2020; 11:56-58. [PMID: 32256303 PMCID: PMC7109404 DOI: 10.1159/000505887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant progressive neurodegenerative disorder associated with expanded CAG repeat size in the huntingtin gene and usually presenting with movement disorder, psychiatric symptoms, and cognitive decline. Sleep problems, weight loss, and cachexia are also common. Here, we report a patient presenting with hypothermia in late-stage HD. Although thermoregulatory defects were documented in animal models, this is the first report describing HD with hypothermia in humans.
Collapse
Affiliation(s)
- Şule Altıner
- Department of Medical Genetics, Trabzon Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Senol Ardic
- Department of Emergency Medicine, Faculty of Medicine, University of Health Sciences, Trabzon, Turkey
| | - Alper H. Çebi
- Department of Medical Genetics, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| |
Collapse
|
23
|
Hachisuka J, Koerber HR, Ross SE. Selective-cold output through a distinct subset of lamina I spinoparabrachial neurons. Pain 2020; 161:185-194. [PMID: 31577643 PMCID: PMC10461608 DOI: 10.1097/j.pain.0000000000001710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinal projection neurons are a major pathway through which somatic stimuli are conveyed to the brain. However, the manner in which this information is coded is poorly understood. Here, we report the identification of a modality-selective spinoparabrachial (SPB) neuron subtype with unique properties. Specifically, we find that cold-selective SPB neurons are differentiated by selective afferent input, reduced sensitivity to substance P, distinct physiological properties, small soma size, and low basal drive. In addition, optogenetic experiments reveal that cold-selective SPB neurons do not receive input from Nos1 inhibitory interneurons and, compared with other SPB neurons, show significantly smaller inhibitory postsynaptic currents upon activation of Pdyn inhibitory interneurons. Together, these data suggest that cold output from the spinal cord to the parabrachial nucleus is mediated by a specific cell type with distinct properties.
Collapse
Affiliation(s)
- Junichi Hachisuka
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States. Dr. Hachisuka is now with the Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | |
Collapse
|
24
|
Freudenmacher L, von Twickel A, Walkowiak W. The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. J Comp Neurol 2019; 528:705-728. [PMID: 31566737 DOI: 10.1002/cne.24777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Lars Freudenmacher
- Zoological Institute, University of Cologne, Cologne, Germany
- Institute II for Anatomy, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
25
|
The origin, significance and plasticity of the thermoeffector thresholds: Extrapolation between humans and laboratory rodents. J Therm Biol 2019; 85:102397. [DOI: 10.1016/j.jtherbio.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023]
|
26
|
Lima PMA, Campos HO, Fóscolo DRC, Szawka RE, Wanner SP, Coimbra CC. The time-course of thermoregulatory responses during treadmill running is associated with running duration-dependent hypothalamic neuronal activation in rats. Brain Struct Funct 2019; 224:2775-2786. [DOI: 10.1007/s00429-019-01933-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
|
27
|
The location and characteristics of the thermal sudomotor pathways in the human brainstem: A reappraisal. Auton Neurosci 2019; 217:80-90. [PMID: 30744906 DOI: 10.1016/j.autneu.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 11/21/2018] [Accepted: 01/27/2019] [Indexed: 11/21/2022]
Abstract
To elucidate location and characteristics of the central thermoregulatory sudomotor pathway in the human brainstem, thermoregulatory sweating (TS) in 91 patients with focal brainstem lesions was studied. TS was symmetric or minimally asymmetric in 40 subjects (Group S), and was apparently asymmetric in 51 patients (Group AS). In Group AS, the main abnormality was ipsilateral segmental hypohidrosis with a varying extent, involving predominantly the upper half of the body. Lesion locations, correlations between thermoregulatory sweat test results, and other autonomic and somatic functions were compared between the groups. The results suggested following: (1) The hypothalamospinal pathway related to TS may pass through the posterior hypothalamus and descend in the dorsolateral part of the brainstem, near the spinal trigeminal and spinothalamic tracts; (2) the pathway may descend together with those related to oculosympathetic and vasoconstrictor systems, but each of these may form distinct fiber groups; (3) the majority of the central TS fibers may reach ipsilateral sudomotor sympathetic neurons of the spinal cord, even though some fibers may cross at various levels; (4) in this descending pathway, somatotopic arrangements corresponding to each of the spinal sympathetic segments must be present; (5) There may be another fiber group passing through the central to dorsal paramedian portions of the brainstem, and lesions of these fibers also result in asymmetric TS, but seldom in oculosympathetic dysfunction. This second pathway probably exerts contralateral inhibitory influence on TS, but its origin, intracerebral course and exact physiological function require further clinical investigations.
Collapse
|
28
|
Angilletta MJ, Youngblood JP, Neel LK, VandenBrooks JM. The neuroscience of adaptive thermoregulation. Neurosci Lett 2019; 692:127-136. [DOI: 10.1016/j.neulet.2018.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|
29
|
Hermanns H, Werdehausen R, Hollmann MW, Stevens MF. Assessment of skin temperature during regional anaesthesia-What the anaesthesiologist should know. Acta Anaesthesiol Scand 2018; 62:1280-1289. [PMID: 29938773 DOI: 10.1111/aas.13176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/22/2023]
Abstract
Body temperature homeostasis is accurately regulated by complex feedback-driven neuronal mechanisms, which involve a multitude of thermoregulatory pathways. Thus, core temperature is constantly maintained within a narrow range. As one of the most effective regulatory systems skin temperature is dependent on skin blood flow. Skin blood flow in turn is highly dependent on sympathetic activity. Regional anaesthesia leads to blockade not only of somatosensory and motor nerve fibres but also of sympathetic fibres. As a consequence, vasoconstrictor tonic activity is abrogated and a vasodilation leads to an increase in skin blood flow and temperature. The aim of this review was to summarize the general physiology of thermoregulation and skin temperature as well as the alterations during regional anaesthesia. The main focus was the usefulness of measuring skin temperature as an indicator of regional anaesthesia success. According to the available literature, assessment of skin temperature can indeed serve to predict success of regional anaesthesia. Hence, it is important to realize that relevant and reliable temperature increase is only seen in the most distal body parts, ie fingers and toes. More proximally, temperature changes are frequently small and inconsistent, which means that assessment of block levels is not possible by temperature measurement. Furthermore, relevant skin temperature increases will only be observed in patients, which are initially vasoconstricted. In conclusion, measurement of skin temperature represents a reliable and feasible diagnostic tool to assess and predict the success or failure of regional anaesthesia procedures, especially in patients in which sensory testing is impossible.
Collapse
Affiliation(s)
- H. Hermanns
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| | - R. Werdehausen
- Department of Anaesthesiology and Intensive Care Therapy; Medical Faculty; University of Leipzig; Leipzig Germany
| | - M. W. Hollmann
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| | - M. F. Stevens
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| |
Collapse
|
30
|
Melo C, Vizin RCL, Silva NU, Ishikawa DT, Echeverry MB, Carrettiero DC, Almeida MC. Early maternal separation promotes alterations in the thermoregulatory profile of adult Wistar rats. J Therm Biol 2018; 78:151-160. [PMID: 30509631 DOI: 10.1016/j.jtherbio.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Stressful lifelong events may influence psychiatric diseases, like depression and anxiety. Interestingly, depressed patients have dysfunction of thermoregulatory cooling mechanisms. Thus, understanding the mechanisms related to the thermoregulatory changes in stress-related pathologies is important to better understand the symptoms and treatments for those diseases. However, the influence of early-life stress on the thermoregulatory profile of adults is unknown. In this study, we aimed to evaluate the thermoregulatory profile of adult male Wistar rats submitted to early-life stress by maternal separation (MS). On postnatal days 2-14, rats were submitted daily to MS for 3 h per day. At 3-4 months of age, anxiety-like behavior was evaluated using the open field test and elevated plus maze, depression-like behavior was evaluated using the forced swim test and thermoregulatory profile were also evaluated. In the behavioral tests, MS animals exhibited anxiety- and depression-like behaviors, and had higher core body temperatures during dark period of the circadian cycle, when compared to controls. In addition, MS animals presented higher hyperthermic and vasoconstriction responses than control animals when exposed to the warmth environment, and engaged in cold-seeking behavior whenever possible to select their preferred ambient temperature. The results suggest that, besides emotional alterations, MS induces a change in the thermoregulatory profile of rats that persists into adulthood.
Collapse
Affiliation(s)
- C Melo
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R C L Vizin
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - N U Silva
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - D T Ishikawa
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - M B Echeverry
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Center for Mathematics, Computation and Cognition (CMCC), UFABC, São Bernardo do Campo, SP, Brazil
| | - D C Carrettiero
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - M C Almeida
- Graduate Program in Neuroscience and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
31
|
Polikarpov I, Titova T, Kondratyuk E, Novikov E. Adrenocortical and bioenergetic responses to cold in laboratory-born northern red-backed voles (Myodes rutilus) from two populations in south Siberia, Russia. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2016-0314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In animal populations inhabiting ecologically suboptimal environmental conditions, phenotypical shifts in physiological traits responsible for coping with environmental challenges can be expected. If such variations are of heritable origin, then they will manifest themselves even in individuals bred in captivity. In laboratory-born red-backed voles (Myodes rutilus (Pallas, 1779)) originating from a population with constantly low density, maximum cold-induced metabolic rates were higher than in voles from a high-density population, similar to the data obtained on wild-caught individuals from the same populations. However, unlike wild-caught voles, in laboratory-born individuals maintained under comfortable conditions, we revealed no interpopulation differences either in basal plasma corticosterone level or in corticosterone response to acute cooling. These data confirm the suggestion about the heritable origin of increased maximum cold-induced metabolic rate in a red-backed vole population with relatively low density.
Collapse
Affiliation(s)
- I.A. Polikarpov
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - T.V. Titova
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - E.Yu. Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
| | - E.A. Novikov
- Institute of Systematics and Ecology of Animals SB RAS, 630091, Frunze Street, 11, Novosibirsk, Russia
- Novosibirsk State Agrarian University, 630039, Dobrolubova Street, 160, Novosibirsk, Russia
| |
Collapse
|
32
|
Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, Tonoli C, Soares DD, Coimbra CC. Association Between Exercise-Induced Hyperthermia and Intestinal Permeability: A Systematic Review. Sports Med 2018; 47:1389-1403. [PMID: 27943148 DOI: 10.1007/s40279-016-0654-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Prolonged and strenuous physical exercise increases intestinal permeability, allowing luminal endotoxins to translocate through the intestinal barrier and reach the bloodstream. When recognized by the immune system, these endotoxins trigger a systemic inflammatory response that may affect physical performance and, in severe cases, induce heat stroke. However, it remains to be elucidated whether there is a relationship between the magnitude of exercise-induced hyperthermia and changes in intestinal permeability. OBJECTIVE In this systematic review, we evaluated whether an exercise-induced increase in core body temperature (T Core) is associated with an exercise-induced increase in intestinal permeability. METHODS The present systematic review screened the MEDLINE/PubMed and Web of Science databases in September 2016, without any date restrictions. Sixteen studies that were performed in healthy participants, presented original data, and measured both the exercise-induced changes in T Core and intestinal permeability were selected. These studies assessed intestinal permeability through the measurement of sugar levels in the urine and measurement of intestinal fatty acid binding protein or lipopolysaccharide levels in the blood. RESULTS Exercise increased both T Core and intestinal permeability in most of the 16 studies. In addition, a positive and strong correlation was observed between the two parameters (r = 0.793; p < 0.001), and a T Core exceeding 39 °C was always associated with augmented permeability. CONCLUSION The magnitude of exercise-induced hyperthermia is directly associated with the increase in intestinal permeability.
Collapse
Affiliation(s)
- Washington Pires
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Christiano E Veneroso
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P Wanner
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo A S Pacheco
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele C Vaz
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fabiano T Amorim
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.,Department of Health, Exercise Science and Sport, University of New Mexico, Albuquerque, New Mexico, USA
| | - Cajsa Tonoli
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Danusa D Soares
- Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 6627 Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil. .,Graduate Program in Sport Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Central fractalkine stimulates central prostaglandin E 2 production and induces systemic inflammatory responses. Brain Res Bull 2018; 140:311-317. [PMID: 29870777 DOI: 10.1016/j.brainresbull.2018.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022]
Abstract
Fractalkine (FKN; CX3CL1) belongs to gamma-chemokine family and binds to CX3CR1 receptors. Currently, the mechanisms involving FKN-induced inflammatory mediators are research targets in an attempt to study immune diseases mechanisms. Besides, FKN seems to modulate inflammation in the nervous system by inducing the secretion of pro-inflammatory mediators such as prostaglandin E2 (PGE2). PGE2 is a classic and important mediator of fever that activates warm-responsive neurons in the anteroventral preoptic region of the hypothalamus (AVPO). Here, we tested the hypothesis that central FKN modulates febrigenic signaling both centrally and peripherally. We performed intracerebroventricular (icv) microinjections of saline (1 μL) or FKN (doses of 5, 50, 500 pg/μL) in rats and measured body temperature (Tb) besides assessing tail skin temperature (Tsk) as a thermoeffector indicator used to calculate the heat loss index (HLI). We also measured the time course changes in AVPO PGE2, besides plasma corticosterone (CORT) and interleukin-6 (IL-6) levels. FKN induced a long lasting febrile response in which the highest dose (500 pg/μL) induced a marked rise on Tb that was accompanied by a reduced Tsk and HLI, consequently. FKN increased AVPO PGE2 production in a time-dependent manner besides increasing plasma CORT and IL-6 levels. Our data consistently indicate that FKN increases AVPO PGE2 production and Tb, accompanied by raised plasma IL-6 levels and activation of the hypothalamus-pituitary-adrenal axis.
Collapse
|
34
|
Señarís R, Ordás P, Reimúndez A, Viana F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Arch 2018; 470:761-777. [DOI: 10.1007/s00424-018-2145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
35
|
Uchida Y, Onishi K, Tokizawa K, Nagashima K. Regional differences of cFos immunoreactive cells in the preoptic areas in hypothalamus associated with heat and cold responses in mice. Neurosci Lett 2018; 665:130-134. [PMID: 29183691 DOI: 10.1016/j.neulet.2017.11.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
cFos expression in the preoptic area (PO), which is thermoregulatory center increased by both heat and cold exposures; however, the regional difference is unknown yet. We aimed to determine if cFos expression in the PO was regionally different between heat and cold exposures. Mice were exposed to 27, 10, or 38°C for 90min, and body temperature (Tb) was measured. cFos-immunoreactive (cFos-IR) cells in the PO were counted by separating the PO into the ventral and dorsal parts in the rostral (bregma 0.38mm), central (-0.10mm), and caudal (-0.46mm) planes. Tb at 10°C remained unchanged; however, it increased at 38°C. Counts of cFos-IR cells in all areas were greater at 38°C than at 27°C. In the dorsal and ventral parts of the central and the dorsal part of caudal PO, counts of cFos-IR cells were greater at 10°C than at 27°C. In conclusion, the areas of increased cFos expression in the PO in the heat were different that in the cold in mice.
Collapse
Affiliation(s)
- Yuki Uchida
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Keisuke Onishi
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Ken Tokizawa
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan; Institute of Applied Brain Sciences, Waseda University, Saitama, Japan.
| |
Collapse
|
36
|
Abstract
Brown fat is emerging as an interesting and promising target for therapeutic intervention in obesity and metabolic disease. Activation of brown fat in humans is associated with marked improvement in metabolic parameters such as levels of free fatty acids and insulin sensitivity. Skeletal muscle is another important organ for thermogenesis, with the capacity to induce energy-consuming futile cycles. In this Review, we focus on how these two major thermogenic organs - brown fat and muscle - act and cooperate to maintain normal body temperature. Moreover, in the light of disease-relevant mechanisms, we explore the molecular pathways that regulate thermogenesis in brown fat and muscle. Brown adipocytes possess a unique cellular mechanism to convert chemical energy into heat: uncoupling protein 1 (UCP1), which can short-circuit the mitochondrial proton gradient. However, recent research demonstrates the existence of several other energy-expending 'futile' cycles in both adipocytes and muscle, such as creatine and calcium cycling. These mechanisms can complement or even substitute for UCP1-mediated thermogenesis. Moreover, they expand our view of cold-induced thermogenesis from a special feature of brown adipocytes to a more general physiological principle. Finally, we discuss how thermogenic mechanisms can be exploited to expend energy and hence offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
37
|
Abstract
The processes of thermoregulation are roughly divided into two categories: autonomic and behavioral. Behavioral thermoregulation alone does not have the capacity to regulate core temperature, as autonomic thermoregulation. However, behavioral thermoregulation is often utilized to maintain core temperature in a normal environment and is critical for surviving extreme environments. Thermal comfort, i.e., the hedonic component of thermal perception, is believed to be important for initiating and/or activating behavioral thermoregulation. However, the mechanisms involved are not fully understood. Thermal comfort is usually obtained when thermal stimuli to the skin restore core temperature to a regulated level. Conversely, thermal discomfort is produced when thermal stimuli result in deviations of core temperature away from a regulated level. Regional differences in the thermal sensitivity of the skin, hypohydration, and adaptation of the skin may affect thermal perception. Thermal comfort and discomfort seem to be determined by brain mechanisms, not by peripheral mechanisms such as thermal sensing by the skin. The insular and cingulate cortices may play a role in assessing thermal comfort and discomfort. In addition, brain sites involved in decision making may trigger behavioral responses to environmental changes.
Collapse
Affiliation(s)
- Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan.
| | - Ken Tokizawa
- National Institute of Occupational Safety and Health, Tokyo, Japan
| | - Shuri Marui
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
38
|
Shido O, Matsuzaki K, Katakura M. Neurogenesis in the thermoregulatory system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:457-463. [PMID: 30454607 DOI: 10.1016/b978-0-444-63912-7.00028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In response to various internal and external stimuli, neuronal progenitor cells in the hypothalamic area proliferate and differentiate to functionally working neurons even in adult animals. This is the case in the thermoregulatory system, especially in the process of heat acclimation. The heat acclimation process presents two different patterns, namely short-term and long-term heat acclimation. In rats, long-term heat acclimation is attained by exposing subjects to constant heat for more than 4 weeks, while short-term heat acclimation is established within several days of heat exposure. Heat exposure for more than 6 days facilitates cell proliferation in the ependymal layer of the third ventricle. The newborn cells then migrate into the hypothalamic parenchyma. After 33 days of heat exposure, the newborn cells abruptly differentiate to mature neurons. A part of the newborn cells are incorporated in a neuronal circuit in the hypothalamus. However, only 6 days of heat exposure hardly promote neuronal differentiation. An administration of mitosis inhibitor interferes with cell proliferation in the hypothalamic area and attenuates heat acclimation-induced improvement of heat tolerance. Long-term, but not short-term, heat acclimation may be established by generating new functional neurons in the hypothalamic area, which is where an important part of the thermoregulatory circuitry exists in rats.
Collapse
Affiliation(s)
- Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Masanori Katakura
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| |
Collapse
|
39
|
A low degree of high ambient temperature decreased food intake and activated median preoptic and arcuate nuclei. Physiol Behav 2017; 181:16-22. [DOI: 10.1016/j.physbeh.2017.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022]
|
40
|
Matsuzaki K, Katakura M, Sugimoto N, Hara T, Hashimoto M, Shido O. Neural progenitor cell proliferation in the hypothalamus is involved in acquired heat tolerance in long-term heat-acclimated rats. PLoS One 2017. [PMID: 28628625 PMCID: PMC5476247 DOI: 10.1371/journal.pone.0178787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Constant exposure to moderate heat facilitates progenitor cell proliferation and neuronal differentiation in the hypothalamus of heat-acclimated (HA) rats. In this study, we investigated neural phenotype and responsiveness to heat in HA rats’ hypothalamic newborn cells. Additionally, the effect of hypothalamic neurogenesis on heat acclimation in rats was evaluated. Male Wistar rats (5 weeks old) were housed at an ambient temperature (Ta) of 32°C for 6 days (STHA) or 40 days (LTHA), while control (CN) rats were kept at a Ta of 24°C for 6 days (STCN) or 40 days (LTCN). Bromodeoxyuridine (BrdU) was intraperitoneally injected daily for five consecutive days (50 mg/kg/day) after commencing heat exposure. The number of hypothalamic BrdU-immunopositive (BrdU+) cells in STHA and LTHA rats was determined immunohistochemically in brain samples and found to be significantly greater than those in respective CN groups. In LTHA rats, approximately 32.6% of BrdU+ cells in the preoptic area (POA) of the anterior hypothalamus were stained by GAD67, a GABAergic neuron marker, and 15.2% of BrdU+ cells were stained by the glutamate transporter, a glutamatergic neuron marker. In addition, 63.2% of BrdU+ cells in the POA were immunolabeled with c-Fos. Intracerebral administration of the mitosis inhibitor, cytosine arabinoside (AraC), interfered with the proliferation of neural progenitor cells and acquired heat tolerance in LTHA rats, whereas the selected ambient temperature was not changed. These results demonstrate that heat exposure generates heat responsive neurons in the POA, suggesting a pivotal role in autonomic thermoregulation in long-term heat-acclimated rats.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
- * E-mail:
| | - Masanori Katakura
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Naotoshi Sugimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshiko Hara
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
41
|
Ishiwata T, Hasegawa H, Greenwood BN. Involvement of serotonin in the ventral tegmental area in thermoregulation of freely moving rats. Neurosci Lett 2017; 653:71-77. [PMID: 28527719 DOI: 10.1016/j.neulet.2017.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 01/25/2023]
Abstract
We have recently reported that the serotonin (5-HT) projections from the midbrain's raphe nuclei that contains 5-HT cell bodies may play a role both in heat production and in heat loss. The purpose of the present study was to clarify the involvement of 5-HT in the ventral tegmental area (VTA), where 5-HT is suggested to participate in thermoregulation, using the combined methods of telemetry, microdialysis, and high performance liquid chromatography, with a special emphasis on regulation of the body temperature (Tb) in freely moving rats. First, we measured changes in Tb, tail skin temperature (Ttail; an index of heat loss), heart rate (HR; an index of heat production), locomotor activity (Act), and levels of extracellular monoamines in the VTA during cold (5°C) or heat (35°C) exposure. Subsequently, we perfused citalopram (5-HT re-uptake inhibitor) into the VTA and measured the thermoregulatory parameters and monoamines release. Although Tb, Ttail, and HR changed during both exposures, significant changes in extracellular level of 5-HT (138.7±12.7% baseline, p<0.01), but not dopamine (DA) or noradrenaline (NA) were noted in the VTA only during heat exposure. In addition, perfusion of citalopram into the VTA increased extracellular 5-HT levels (221.0±52.2% baseline, p<0.01), but not DA or NA, while Tb decreased from 37.4±0.1°C to 36.8±0.2°C (p<0.001),Ttail increased from 26.3±0.4°C to 28.4±0.4°C (p<0.001), and HR and Act remained unchanged. Our results suggest that the VTA is a key area for thermoregulation, and 5-HT, but not DA or NA, modulates the heat loss system through action in the VTA.
Collapse
Affiliation(s)
- Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan; Department of Psychology, College of Liberal Arts & Sciences, University of Colorado Denver, Denver, CO, USA.
| | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8521, Japan
| | - Benjamin N Greenwood
- Department of Psychology, College of Liberal Arts & Sciences, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
42
|
Ezquerra-Romano I, Ezquerra A. Highway to thermosensation: a traced review, from the proteins to the brain. Rev Neurosci 2017; 28:45-57. [PMID: 27754972 DOI: 10.1515/revneuro-2016-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/07/2016] [Indexed: 01/09/2023]
Abstract
Temperature maintenance and detection are essential for the survival and perpetuation of any species. This review is focused on thermosensation; thus a detailed and traced explanation of the anatomical and physiological characteristics of each component of this sensation is given. First, the proteins that react to temperature changes are identified; next, the nature of the neurons involved in thermosensation is described; and then, the pathways from the skin through the spinal cord to the brain are outlined. Finally, the areas of the brain and their interconnections where thermoperception arises are explained. Transduction of the external and internal temperature information is essentially mediated by the transient receptor potential ion channels (TRPs). These proteins are embedded in the neurons' membrane and they hyper- or de-polarize neurons in function of the intrinsic voltage and the temperature changes. There are distinct TRP sensors for different temperature ranges. Interestingly, the primary afferent neurons have either cold or hot receptors, so they are dedicated separately to cold or hot sensation. The information is transmitted by different pathways from the skin to the brain, where it either remains separated or is integrated to generate a response. It seems that both the determination of how thermoperception is produced and how we interact with the world are dependent on the particular arrangement and nature of the components, the way of transduction of information and the communication between these elements.
Collapse
|
43
|
Schieber AMP, Ayres JS. Thermoregulation as a disease tolerance defense strategy. Pathog Dis 2016; 74:ftw106. [PMID: 27815313 PMCID: PMC5975229 DOI: 10.1093/femspd/ftw106] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Physiological responses that occur during infection are most often thought of in terms of effectors of microbial destruction through the execution of resistance mechanisms, due to a direct action of the microbe, or are maladaptive consequences of host-pathogen interplay. However, an examination of the cellular and organ-level consequences of one such response, thermoregulation that leads to fever or hypothermia, reveals that these actions cannot be readily explained within the traditional paradigms of microbial killing or maladaptive consequences of host-pathogen interactions. In this review, the concept of disease tolerance is applied to thermoregulation during infection, inflammation and trauma, and we discuss the physiological consequences of thermoregulation during disease including tissue susceptibility to damage, inflammation, behavior and toxin neutralization.
Collapse
Affiliation(s)
- Alexandria M Palaferri Schieber
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| | - Janelle S Ayres
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| |
Collapse
|
44
|
Kepinska M, Gdula-Argasinska J, Dabrowski Z, Szarek M, Pilch W, Kreska-Korus A, Szygula Z. Fatty acids composition in erythrocyte membranes of athletes after one and after a series of whole body cryostimulation sessions. Cryobiology 2016; 74:121-125. [PMID: 27871847 DOI: 10.1016/j.cryobiol.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/03/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Whole body cryotherapy (WBC) is a treatment often used by athletes as part of biological renewal. Despite the large interest in this form therapy there is still a lack of information on the effects of WBC on the concentration of fatty acids in erythrocyte membranes. Our study aimed at comparing the fatty acids (FA) composition of erythrocyte membranes of athletes after one session and after a series of sessions of whole body cryostimulation. In our study small changes in the level of total cholesterol (decrease) were observed 24 h after a single session. After the twelfth session of whole body cryostimulation, the level of saturated fatty acids (SFA), mainly palmitic acid (C16:0) and n-3 fatty acid eicosapentaenoic (EPA, C20:5n-3) increased almost two-times fold in the red blood cell membranes. The level of n-6 polyunsaturated fatty acids (PUFA n-6), mainly gamma-linolenic acid (C18:3n-6) as well as trans fatty acids (elaidic acid) decreased in the erythrocyte membranes from men after a series of session in a cryochamber, when compared to the control sample. The n-3/n-6 FA ratio in the erythrocyte membranes was higher after twelfth session in a cryochamber in comparison to the control sample. The data obtained during our study will be important for further research regarding the biochemistry of lipids in men after sessions of whole body cryostimulation.
Collapse
Affiliation(s)
- Magdalena Kepinska
- Department of Cosmetology, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland.
| | - Joanna Gdula-Argasinska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Zbigniew Dabrowski
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Marta Szarek
- Department of Human Physiology, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Wanda Pilch
- Department of Cosmetology, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Agnieszka Kreska-Korus
- Department of Physiotherapy, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| |
Collapse
|
45
|
Machado FSM, Fóscolo DRC, Poletini MO, Coimbra CC. Influence of Time-of-Day on Maximal Exercise Capacity Is Related to Daily Thermal Balance but Not to Induced Neuronal Activity in Rats. Front Physiol 2016; 7:464. [PMID: 27790157 PMCID: PMC5063920 DOI: 10.3389/fphys.2016.00464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/27/2016] [Indexed: 11/13/2022] Open
Abstract
In the present study, we investigated whether the daily fluctuations of internal body temperature (Tb) and spontaneous locomotor activity (SLA) interact with the thermal and neuronal adjustments induced by high-intensity aerobic exercise until fatigue. The body temperature and SLA of adult Wistar rats (n = 23) were continuously recorded by telemetry for 48 h. Then, the rats were subjected to a protocol of graded exercise until fatigue or rest on the treadmill during light and dark-phases. Tb, tail skin temperature and ambient temperature during each experimental session were recorded. At the end of the last experimental session, the animals were anaesthetized; the brains were perfused and removed for immunohistochemical analysis of c-fos neuronal activation. The daily rhythms of SLA and Tb were strongly correlated (r = 0.88 and p < 0.001), and this was followed by a daily oscillation in both the ratio and the correlation index between these variables (p < 0.001). Exercise capacity was associated with a lower resting Tb (p < 0.01) and was higher in the light-phase (p < 0.001), resulting in an increased capacity to accumulate heat during exercise (p < 0.01). Independent of time-of-day, high intensity exercise strongly activated the hypothalamic paraventricular nucleus (PVN), the supra-optic nucleus (SON) and the locus coeruleus (LC) (p < 0.001) but not the suprachiasmatic nucleus (SCN). Taken together, our results points toward a role of the circadian system in a basal activity control of the thermoregulatory system as an important component for the onset of physical activities. In fact, rather than directly limiting the adjustments induced by exercise the present study brings new evidence that the effect of time-of-day on exercise performance occurs at the threshold level for each thermoregulatory system effector activity. This assumption is based on the observed resilience of the central clock to high-intensity exercise and the similarities in exercise-induced neuronal activation in the PVN, SON, and LC.
Collapse
Affiliation(s)
- Frederico S M Machado
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Daniela R C Fóscolo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Maristela O Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Cândido C Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
46
|
Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats. J Therm Biol 2016; 61:1-7. [DOI: 10.1016/j.jtherbio.2016.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
|
47
|
Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. Warm-Sensitive Neurons that Control Body Temperature. Cell 2016; 167:47-59.e15. [PMID: 27616062 DOI: 10.1016/j.cell.2016.08.028] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 08/13/2016] [Indexed: 01/12/2023]
Abstract
Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth K Cooke
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn E Daly
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Zimmerman
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Dewe H, Watson DG, Braithwaite JJ. Uncomfortably numb: new evidence for suppressed emotional reactivity in response to body-threats in those predisposed to sub-clinical dissociative experiences. Cogn Neuropsychiatry 2016; 21:377-401. [PMID: 27466978 DOI: 10.1080/13546805.2016.1212703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Depersonalisation and derealisation disorders refer to feelings of detachment and dissociation from one's "self" or surroundings. A reduced sense of self (or "presence") and emotional "numbness" is thought to be mediated by aberrant emotional processing due to biases in self-referent multi-sensory integration. This emotional "numbing" is often accompanied by suppressed autonomic arousal to emotionally salient stimuli. METHODS 118 participants completed the Cambridge Depersonalisation scale [Sierra, & Berrios, 2000. The Cambridge Depersonalisation Scale: A new instrument for the measurement of depersonalisation. Psychiatry Research, 93, 153-164)] as an index of dissociative anomalous experience. Participants took part in a novel "Implied Body-Threat Illusion" task; a pantomimed injection procedure conducted directly onto their real body (hand). Objective psychophysiological data were recorded via standardised threat-related skin conductance responses and finger temperature measures. RESULTS Individuals predisposed to depersonalisation/derealisation revealed suppressed skin conductance responses towards the pantomimed body-threat. Although the task revealed a reliable reduction in finger temperature as a fear response, this reduction was not reliably associated with measures of dissociative experience. CONCLUSIONS The present findings significantly extend previous research by revealing emotional suppression via a more direct body-threat task, even for sub-clinical groups. The findings are discussed within probabilistic and predictive coding frameworks of multi-sensory integration underlying a coherent sense of self.
Collapse
Affiliation(s)
- Hayley Dewe
- a Behavioural Brain Sciences Centre , School of Psychology, University of Birmingham , Edgbaston , Birmingham , UK
| | - Derrick G Watson
- b Department of Psychology , University of Warwick , Coventry , UK
| | | |
Collapse
|
49
|
Effects of interleukin-1 beta injections into the subfornical organ and median preoptic nucleus on sodium appetite, blood pressure and body temperature of sodium-depleted rats. Physiol Behav 2016; 163:149-160. [DOI: 10.1016/j.physbeh.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
|
50
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|