1
|
Jdidi H, de Bisschop C, Dugué B, Bouzigon R, Douzi W. Optimal duration of whole-body cryostimulation exposure to achieve target skin temperature: influence of body mass index-a randomized cross-over controlled trial. J Physiol Anthropol 2024; 43:28. [PMID: 39482725 PMCID: PMC11529021 DOI: 10.1186/s40101-024-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The efficacy of whole-body cryostimulation (WBC) may be influenced by individual characteristics. The aim of this study is to determine the optimal exposure time required to reach the analgesic threshold of 13.6 °C, which has been proposed to be a target temperature to be reached at skin level. Our objective is also to follow the skin temperature changes during and after WBC considering the participants body mass index (BMI). METHODS Thirty healthy men were assigned into 2 groups based on their BMI [normal weight (n = 15; BMI = 21.53 ± 1.63 kg·m-2) and overweight (n = 15; BMI = 27.98 ± 1.16 kg·m-2)]. In a random order, each participant experienced a 4-min WBC exposure, as well as a control session with no cold exposure. Skin temperature was measured using a thermal imaging camera during and after cold exposure. RESULTS Normal weight participants reached the threshold in 4 min, whereas overweight participants reached it in 3 min 30 s. Following WBC, a rapid mean skin temperature (MsT°) increase was observed for both groups, immediately after exposure. However, after 30 min, MsT° remained significantly lower than at baseline. CONCLUSION Our findings suggest that appropriate WBC dosage may differ according to BMI. Understanding the impact of such variable on cold exposure outcomes can help to optimize WBC treatments and maximize potential benefits.
Collapse
Affiliation(s)
- Hela Jdidi
- Laboratory "Mobilité, Vieillissement, Exercice (MOVE)-UR 20296", Faculty of Sport Sciences, University of Poitiers, Poitiers, 86000, France.
| | - Claire de Bisschop
- Laboratory "Mobilité, Vieillissement, Exercice (MOVE)-UR 20296", Faculty of Sport Sciences, University of Poitiers, Poitiers, 86000, France
| | - Benoit Dugué
- Laboratory "Mobilité, Vieillissement, Exercice (MOVE)-UR 20296", Faculty of Sport Sciences, University of Poitiers, Poitiers, 86000, France
| | - Romain Bouzigon
- Department of Sport and Performance, Unit of Formation and Research in Sports, Laboratory C3S (EA 4660), University of Franche-Comte, Besançon, 25000, France
- Inside the Athletes 3.0, Sports Performance Optimization Complex, Besançon, 25000, France
| | - Wafa Douzi
- Laboratory "Mobilité, Vieillissement, Exercice (MOVE)-UR 20296", Faculty of Sport Sciences, University of Poitiers, Poitiers, 86000, France
| |
Collapse
|
2
|
Fisher JT, Ciuha U, Mekjavić IB. The combined effects of temperature and posture on regional blood flow and haemodynamics. J Therm Biol 2024; 123:103937. [PMID: 39111062 DOI: 10.1016/j.jtherbio.2024.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Under simultaneous ambient temperature and postural stressors, integrated regional blood flow responses are required to maintain blood pressure and thermoregulatory homeostasis. The aim of the present study was to assess the effect of ambient temperature and body posture on regional regulation of microvascular blood flow, specifically in the arms and legs. Participants (N = 11) attended two sessions in which they experienced transient ambient conditions, in a climatic chamber. During each 60-min trial, ambient temperature increased from 15.7 (0.6) °C to 38.9 (0.6) °C followed by a linear decrease, and the participants were either standing or in a supine position throughout the trial; relative humidity in the chamber was maintained at 25.9 (6.6) %. Laser doppler flowmetry of the forearm (SkBFarm) and calf (SkBFcalf), and haemodynamic responses (heart rate, HR; stroke volume, SV; cardiac output, CO; blood pressure, BP), were measured continuously. Analyses of heart rate variability and wavelet transform were also conducted. SkBFarm increased significantly at higher ambient temperatures (p = 0.003), but not SkBFcalf. The standing posture caused lower overall SkBF in both regions throughout the protocol, regardless of temperature (p < 0.001). HR and BP were significantly elevated, and SV significantly lowered, in response to separate and combined effects of higher ambient temperatures and a standing position (all p < 0.05); CO remained unchanged. Mechanistic analyses identified greater sympathetic nerve activation, and higher calf myogenic activation at peak temperatures, in the standing condition. Mechanistically and functionally, arm vasculature responds to modulation from both thermoregulation and baroreceptor activity. The legs, meanwhile, are more sensitive to baroreflex regulatory mechanisms.
Collapse
Affiliation(s)
- Jason T Fisher
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Igor B Mekjavić
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Xu Z, Anai R, Hirano H, Soh Z, Tsuji T. Noninvasive characterization of peripheral sympathetic activation across sensory stimuli using a peripheral arterial stiffness index. Front Physiol 2024; 14:1294239. [PMID: 38260092 PMCID: PMC10801023 DOI: 10.3389/fphys.2023.1294239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The peripheral arterial stiffness index has been proposed and validated as a noninvasive measure quantifying stimulus intensity based on amplitude changes induced by sympathetic innervation of vascular tone. However, its temporal response characteristics remain unclear, thus hindering continuous and accurate monitoring of the dynamic process of sympathetic activation. This paper presents a study aimed at modeling the transient response of the index across sensory stimuli to characterize the corresponding peripheral sympathetic activation. Methods: The index was measured using a continuous arterial pressure monitor and a pulse oximeter during experiments with local pain and local cooling stimuli designed to elicit different patterns of sympathetic activation. The corresponding response of the index was modeled to clarify its transient response characteristics across stimuli. Results: The constructed transfer function accurately depicted the transient response of the index to local pain and local cooling stimuli (Fit percentage: 78.4% ± 11.00% and 79.92% ± 8.79%). Differences in dead time (1.17 ± 0.67 and 0.99 ± 0.56 s, p = 0.082), peak time (2.89 ± 0.81 and 2.64 ± 0.68 s, p = 0.006), and rise time (1.81 ± 0.50 and 1.65 ± 0.48 s, p = 0.020) revealed different response patterns of the index across stimuli. The index also accurately characterized similar vasomotor velocities at different normalized peak amplitudes (0.19 ± 0.16 and 0.16 ± 0.19 a.u., p = 0.007). Discussion: Our findings flesh out the characterization of peripheral arterial stiffness index responses to different sensory stimuli and demonstrate its validity in characterizing peripheral sympathetic activation. This study valorizes a noninvasive method to characterize peripheral sympathetic activation, with the potential to use this index to continuously and accurately track sympathetic activators.
Collapse
Affiliation(s)
- Ziqiang Xu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Reiji Anai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Harutoyo Hirano
- Department of Medical Equipment Engineering, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Zu Soh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Wait SO, Charkoudian N, Skinner JW, Smith CJ. Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences. Am J Physiol Regul Integr Comp Physiol 2023; 324:R677-R690. [PMID: 36971421 PMCID: PMC10202487 DOI: 10.1152/ajpregu.00244.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced V̇o2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Seaver O Wait
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jared W Skinner
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| | - Caroline J Smith
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States
| |
Collapse
|
5
|
Kagelmann N, Janke D, Maggioni MA, Gunga HC, Riveros Rivera A, Genov M, Noppe A, Habazettl H, Bothe TL, Nordine M, Castiglioni P, Opatz O. Peripheral skin cooling during hyper-gravity: hemodynamic reactions. Front Physiol 2023; 14:1173171. [PMID: 37256071 PMCID: PMC10225582 DOI: 10.3389/fphys.2023.1173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Orthostatic dysregulation occurs during exposure to an increased gravitational vector and is especially common upon re-entering standard Earth gravity (1 g) after an extended period in microgravity (0 g). External peripheral skin cooling (PSC) has recently been described as a potent countermeasure against orthostatic dysregulation during heat stress and in lower body negative pressure (LBNP) studies. We therefore hypothesized that PSC may also be an effective countermeasure during hyper-gravity exposure (+Gz). Methods: To investigate this, we designed a randomized short-arm human centrifuge (SAHC) experiment ("Coolspin") to investigate whether PSC could act as a stabilizing factor in cardiovascular function during +Gz. Artificial gravity between +1 g and +4 g was generated by a SAHC. 18 healthy male volunteers completed two runs in the SAHC. PSC was applied during one of the two runs and the other run was conducted without cooling. Each run consisted of a 10-min baseline trial followed by a +Gz step protocol marked by increasing g-forces, with each step being 3 min long. The following parameters were measured: blood pressure (BP), heart rate (HR), stroke volume (SV), total peripheral resistance (TPR), cardiac output (CO). Furthermore, a cumulative stress index for each subject was calculated. Results: +Gz led to significant changes in primary as well as in secondary outcome parameters such as HR, SV, TPR, CO, and BP. However, none of the primary outcome parameters (HR, cumulative stress-index, BP) nor secondary outcome parameters (SV, TPR, CO) showed any significant differences-whether the subject was cooled or not cooled. Systolic BP did, however, tend to be higher amongst the PSC group. Conclusion: In conclusion, PSC during +Gz did not confer any significant impact on hemodynamic activity or orthostatic stability during +Gz. This may be due to lower PSC responsiveness of the test subjects, or an insufficient level of body surface area used for cooling. Further investigations are warranted in order to comprehensively pinpoint the exact degree of PSC needed to serve as a useful countermeasure system during +Gz.
Collapse
Affiliation(s)
- Niklas Kagelmann
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - David Janke
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Martina Anna Maggioni
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Hanns-Christian Gunga
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Alain Riveros Rivera
- Department of Physiological Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Magdalena Genov
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Alexandra Noppe
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Helmut Habazettl
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Tomas Lucca Bothe
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Institute of Translational Physiology, Berlin, Germany
| | - Michael Nordine
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Paolo Castiglioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Oliver Opatz
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| |
Collapse
|
6
|
Sánchez-Jiménez JL, Tejero-Pastor R, Calzadillas-Valles MDC, Jimenez-Perez I, Cibrián Ortiz de Anda RM, Salvador-Palmer R, Priego-Quesada JI. Chronic and Acute Effects on Skin Temperature from a Sport Consisting of Repetitive Impacts from Hitting a Ball with the Hands. SENSORS (BASEL, SWITZERLAND) 2022; 22:8572. [PMID: 36366270 PMCID: PMC9655514 DOI: 10.3390/s22218572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Valencian handball consists in hitting the ball with the hands and it may contribute to injury development on the hands. This study aimed to analyze skin temperature asymmetries and recovery after a cold stress test (CST) in professional players of Valencian handball before and after a competition. Thirteen professional athletes and a control group of ten physically active participants were measured. For both groups, infrared images were taken at the baseline condition; later they underwent a thermal stress test (pressing for 2 min with the palm of the hand on a metal plate) and then recovery images were taken. In athletes, the images were also taken after their competition. Athletes at baseline condition presented lower temperatures (p < 0.05) in the dominant hand compared with the non-dominant hand. There were asymmetries in all regions after their match (p < 0.05). After CST, a higher recovery rate was found after the game. The regions with the most significant differences in variation, asymmetries and recovery patterns were the index, middle and ring fingers, and the palm of the dominant hand. Taking into account that lower temperatures and the absence of temperature variation may be the consequence of a vascular adaptation, thermography could be used as a method to prevent injuries in athletes from Valencian handball.
Collapse
Affiliation(s)
- Jose Luis Sánchez-Jiménez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain
| | - Robert Tejero-Pastor
- Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain
| | | | - Irene Jimenez-Perez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain
- Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | | | - Rosario Salvador-Palmer
- Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain
- Research Group in Medical Physics (GIFIME), Department of Physiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Barbic F, Minonzio M, Cairo B, Shiffer D, Cerina L, Verzeletti P, Badilini F, Vaglio M, Porta A, Santambrogio M, Gatti R, Rigo S, Bisoglio A, Furlan R. Effects of a cool classroom microclimate on cardiac autonomic control and cognitive performances in undergraduate students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152005. [PMID: 34871696 DOI: 10.1016/j.scitotenv.2021.152005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
An inverted U-shape relationship between cognitive performance and indoor temperature with best performance peaking at 21.6 °C was previously described. Little is known on classroom temperature reduction effects on cognitive performances and cardiac autonomic profile, during the cold season. Fifteen students underwent electrocardiogram recording during a lecture in two days in December when classroom temperatures were set as neutral (NEUTRAL, 20-22 °C) and cool (COOL, 16-18 °C). Cognitive performance (memory, verbal ability, reasoning, overall cognitive C-score) was assessed by Cambridge Brain Science cognitive evaluation tool. Cardiac autonomic control was evaluated via the analysis of spontaneous fluctuations of heart period, as the temporal distance between two successive R-wave peaks (RR). Spectral analysis provided the power in the high frequency (HF, 0.15-0.40 Hz) and low frequency (LF, 0.04-0.15 Hz) bands of RR variability. Sympatho-vagal interaction was assessed by LF to HF ratio (LF/HF). Symbolic analysis provided the fraction of RR patterns composed by three heart periods with no variation (0 V%) and two variations (2 V%), taken as markers of cardiac sympathetic and vagal modulations, respectively. The students' thermal comfort was assessed during NEUTRAL and COOL trials. Classroom temperatures were 21.5 ± 0.8 °C and 18.4 ± 0.4 °C during NEUTRAL and COOL. Memory, verbal ability, C-Score were greater during COOL (13.01 ± 3.43, 12.32 ± 2.58, 14.29 ± 2.90) compared to NEUTRAL (9.98 ± 2.26, p = 0.002; 8.57 ± 1.07, p = 0.001 and 10.35 ± 3.20, p = 0.001). LF/HF (2.4 ± 1.7) and 0 V% (23.2 ± 11.1%) were lower during COOL compared to NEUTRAL (3.7 ± 2.8, p = 0.042; 28.1 ± 12.2.1%, p = 0.031). During COOL, 2 V% was greater (30.5 ± 10.9%) compared to NEUTRAL (26.2 ± 11.3, p = 0.047). The students' thermal comfort was slightly reduced during COOL compared to NEUTRAL trial. During cold season, a better cognitive performance was obtained in a cooler indoor setting enabling therefore energy saving too.
Collapse
Affiliation(s)
- Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, Milan, Italy.
| | - Maura Minonzio
- IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Dana Shiffer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, Milan, Italy
| | | | | | | | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Marco Santambrogio
- Dipartimento di Informazione, Elettronica e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Roberto Gatti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, Milan, Italy
| | - Stefano Rigo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Bisoglio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Internal Medicine, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Zamunér AR, Minonzio M, Shiffer D, Fornerone R, Cairo B, Porta A, Rigo S, Furlan R, Barbic F. Relationships Between Cardiovascular Autonomic Profile and Work Ability in Patients With Pure Autonomic Failure. Front Hum Neurosci 2021; 15:761501. [PMID: 35002654 PMCID: PMC8733607 DOI: 10.3389/fnhum.2021.761501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Pure autonomic failure (PAF) is a rare disorder belonging to the group of synucleinopathies, characterized by autonomic nervous system degeneration. Severe orthostatic intolerance with recurrent syncope while standing are the two most disabling manifestations. Symptoms may start at middle age, thus affecting people at their working age. The aims of this study were to evaluate the autonomic and work ability impairment of a group of PAF patients and assess the relationships between cardiovascular autonomic control and work ability in these patients. Eleven PAF patients (age 57.3 ± 6.7 years), engaged in work activity, participated in the study. They completed the Composite Autonomic Symptom Score (COMPASS-31, range 0 no symptom-100 maximum symptom intensity) and Work Ability questionnaires (Work Ability Index, WAI, range 7-49; higher values indicate better work ability and lower values indicating unsatisfactory or jeopardized work ability). Electrocardiogram, blood pressure and respiratory activity were continuously recorded for 10 min while supine and during 75° head-up tilt (HUT). Autoregressive spectral analysis of cardiac cycle length approximated as the time distance between two consecutive R-wave peaks (RR) and systolic arterial pressure (SAP) variabilities provided the power in the high frequency (HF, 0.15-0.40 Hz) and low frequency (LF, 0.04-0.15 Hz) bands of RR and SAP variabilities. Cardiac sympatho-vagal interaction was assessed by LF to HF ratio (LF/HF), while the LF power of SAP (LFSAP) quantified the vascular sympathetic modulation. Changes in cardiovascular autonomic indexes induced by HUT were calculated as the delta (Δ) between HUT and supine resting positions. Spearman correlation analysis was applied. PAF patients were characterized by a moderate autonomic dysfunction (COMPASS-31 total score 47.08 ± 20.2) and by a reduction of work ability (WAI 26.88 ± 10.72). Direct significant correlations were found between WAI and ΔLFRR (r = 0.66, p = 0.03) and ΔLF/HFRR (r = 0.70, p = 0.02). Results indicate that patients who were better able to modulate heart rate, as revealed by a greater cardiac sympathetic increase and/or vagal withdrawal during the orthostatic stimulus, were those who reported higher values of WAI. This finding could be relevant to propose new strategies in the occupational environment to prevent early retirement or to extend the working life of these patients.
Collapse
Affiliation(s)
- Antonio R. Zamunér
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
| | - Maura Minonzio
- Internal Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Dana Shiffer
- Internal Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Stefano Rigo
- Internal Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaello Furlan
- Internal Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Franca Barbic
- Internal Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
9
|
Effect of fatigue strength exercise on anterior thigh skin temperature rewarming after cold stress test. J Therm Biol 2021; 101:103098. [PMID: 34879916 DOI: 10.1016/j.jtherbio.2021.103098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Although dynamic thermography skin temperature assessment has been used in medical field, scientific evidence in sports is scarce. The aim of the study was to assess changes in anterior thigh skin temperature in response to a cold stress test after a strength exercise fatiguing protocol. Ten physically active adults performed a familiarization session and two strength exercise sessions, one with dominant and the other with non-dominant lower limb. Participants performed bouts of 10 concentric and eccentric contractions of leg extensions in an isokinetic device until reaching around 30% of force loss. Infrared thermographic images were taken at baseline conditions and after the fatigue level from both thighs after being cooled using a cryotherapy system. ROIs included vastus medialis, rectus femoris, adductor and vastus lateralis. Skin temperature rewarming was assessed during 180s after the cooling process obtaining the coefficients of the following equation: ΔSkin temperature = β0 + β1 * ln(T), being β0 and β1 the constant and slope coefficients, respectively, T the time elapsed following the cold stress in seconds, and ΔSkin temperature the difference between the skin temperature at T respect and the pre-cooling moment. Lower β0 and higher β1 were found for vastus lateralis and rectus femoris in the intervention lower limb compared with baseline conditions (p < 0.05 and ES > 0.6). Adductor only showed differences in β0 (p = 0.01 and ES = 0.92). The regressions models obtained showed that β0 and β1 had a direct relationship with age and muscle mass, but an inverse relationship with the number of series performed until 30% of fatigue (R2 = 0.8). In conclusion, fatigue strength exercise results in a lower skin temperature and a faster thermal increase after a cold stress test.
Collapse
|
10
|
Reproducibility of Skin Temperature Response after Cold Stress Test Using the Game Ready System: Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168295. [PMID: 34444044 PMCID: PMC8392449 DOI: 10.3390/ijerph18168295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
The objective of this preliminary study was to determine the reproducibility of lower limbs skin temperature after cold stress test using the Game Ready system. Skin temperature of fourteen participants was measured before and after cold stress test using the Game Ready system and it was repeated the protocol in four times: at 9:00, at 11:00, at 19:00, and at 9:00 h of the posterior day. To assess skin temperature recovery after cold stress test, a logarithmic equation for each region was calculated, and constant (β0) and slope (β1) coefficients were obtained. Intraclass correlation coefficient (ICC), standard error (SE), and within-subject coefficient of variation (CV) were determined. No differences were observed between measurement times in any of the regions for the logarithmic coefficients (p > 0.38). Anterior thigh (β0 ICC 0.33–0.47; β1 ICC 0.31–0.43) and posterior knee (β0 ICC 0.42–0.58; β1 ICC 0.28–0.57) were the regions with the lower ICCs, and the other regions presented values with a fair and good reproducibility (ICC > 0.41). Posterior leg was the region with the better reproducibility (β0 ICC 0.68–0.78; β1 ICC 0.59–0.74; SE 3–4%; within-subject CV 7–12%). In conclusion, cold stress test using Game Ready system showed a fair and good reproducibility, especially when the posterior leg was the region assessed.
Collapse
|
11
|
Jimenez-Perez I, Gil-Calvo M, Vardasca R, Fernandes RJ, Vilas-Boas JP. Pre-exercise skin temperature evolution is not related with 100 m front crawl performance. J Therm Biol 2021; 98:102926. [PMID: 34016349 DOI: 10.1016/j.jtherbio.2021.102926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
During the transition between warm-up and competition there is a change in core, muscle and (eventually) skin temperature that may affect swimming performance. We have aimed to assess skin temperature evolution during transition phases of different durations before a typical front crawl effort and to investigate its relationship with performance. Following a standardized warm-up, nine adolescent male swimmers performed three maximal randomized 100 m maximum front crawl trials after 10, 20 and 45 min transition phases. Skin temperature, performance (time, stroke frequency, length and index, and propelling efficiency), heart rate, lactate and perceived effort were assessed. Data showed a skin temperature log increase over time (R2 > 0.96, p < 0.01) without differences from the 15 min with the following instants. Performance and psychophysiological variables were similar between transition phases. However, skin temperature at the end of the transition periods, i.e., just before the 100 m trials, was lower in the 10 min than the 20 and 45 min transitions (32.0 ± 0.6 vs 33.0 ± 0.4 and 33.5 ± 0.5 °C, respectively). The main finding was that no relevant relationships were observed between pre-test skin temperature and performance times (|r| < 0.6, p > 0.05) for the studied transition phases. We have concluded that transitions longer than 10 min will not present thermal changes and that, within the physiologic limits studied, pre-exercise skin temperature does not influence swimming performance.
Collapse
Affiliation(s)
- Irene Jimenez-Perez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain; Research Group in Medical Physics (GIFIME), Department of Physiology, Universitat de València, Valencia, Spain; Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal
| | - Marina Gil-Calvo
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, Universitat de València, Valencia, Spain; Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal; Faculty of health and Sport Sciences, Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain
| | - Ricardo Vardasca
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal; ISLA Santarem, Santarem, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), University of Porto, Porto, Portugal
| | - Ricardo J Fernandes
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal; Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal.
| | - João Paulo Vilas-Boas
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Porto, Portugal; Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Mejía-Mejía E, Budidha K, Abay TY, May JM, Kyriacou PA. Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses. Front Physiol 2020; 11:779. [PMID: 32792970 PMCID: PMC7390908 DOI: 10.3389/fphys.2020.00779] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: Heart Rate Variability (HRV) and Pulse Rate Variability (PRV), are non-invasive techniques for monitoring changes in the cardiac cycle. Both techniques have been used for assessing the autonomic activity. Although highly correlated in healthy subjects, differences in HRV and PRV have been observed under various physiological conditions. The reasons for their disparities in assessing the degree of autonomic activity remains unknown. Methods: To investigate the differences between HRV and PRV, a whole-body cold exposure (CE) study was conducted on 20 healthy volunteers (11 male and 9 female, 30.3 ± 10.4 years old), where PRV indices were measured from red photoplethysmography signals acquired from central (ear canal, ear lobe) and peripheral sites (finger and toe), and HRV indices from the ECG signal. PRV and HRV indices were used to assess the effects of CE upon the autonomic control in peripheral and core vasculature, and on the relationship between HRV and PRV. The hypotheses underlying the experiment were that PRV from central vasculature is less affected by CE than PRV from the peripheries, and that PRV from peripheral and central vasculature differ with HRV to a different extent, especially during CE. Results: Most of the PRV time-domain and Poincaré plot indices increased during cold exposure. Frequency-domain parameters also showed differences except for relative-power frequency-domain parameters, which remained unchanged. HRV-derived parameters showed a similar behavior but were less affected than PRV. When PRV and HRV parameters were compared, time-domain, absolute-power frequency-domain, and non-linear indices showed differences among stages from most of the locations. Bland-Altman analysis showed that the relationship between HRV and PRV was affected by CE, and that it recovered faster in the core vasculature after CE. Conclusion: PRV responds to cold exposure differently to HRV, especially in peripheral sites such as the finger and the toe, and may have different information not available in HRV due to its non-localized nature. Hence, multi-site PRV shows promise for assessing the autonomic activity on different body locations and under different circumstances, which could allow for further understanding of the localized responses of the autonomic nervous system.
Collapse
Affiliation(s)
- Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Engineering and Computer Science, University of London, London, United Kingdom
| | - Karthik Budidha
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Engineering and Computer Science, University of London, London, United Kingdom
| | - Tomas Ysehak Abay
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Engineering and Computer Science, University of London, London, United Kingdom
| | - James M May
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Engineering and Computer Science, University of London, London, United Kingdom
| | - Panayiotis A Kyriacou
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Engineering and Computer Science, University of London, London, United Kingdom
| |
Collapse
|
13
|
Mugele H, Oliver SJ, Gagnon D, Lawley JS. Integrative crosstalk between hypoxia and the cold: Old data and new opportunities. Exp Physiol 2020; 106:350-358. [DOI: 10.1113/ep088512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Hendrik Mugele
- Department of Sport Science University of Innsbruck Innsbruck Austria
| | - Samuel J. Oliver
- Extremes Research Group School of Sport, Health and Exercise Sciences Bangor University Wales UK
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre Montreal Heart Institute Montréal Quebec Canada
- Department of Pharmacology and Physiology Faculty of Medicine Université de Montréal Montréal Quebec Canada
| | - Justin S. Lawley
- Department of Sport Science University of Innsbruck Innsbruck Austria
| |
Collapse
|
14
|
Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int J Sports Physiol Perform 2020; 15:1467-1475. [PMID: 32470920 DOI: 10.1123/ijspp.2019-0963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Although skin-temperature assessment has received much attention in recent years as a possible internal-load measurement, scientific evidence is scarce. PURPOSE To analyze baseline skin temperature and its rewarming through means of a cold-stress test before and after performing a marathon and to study the association between skin temperature and internal/external-load measurements. METHODS A total of 16 runners were measured 48 and 24 h before and 24 and 48 h after completing a marathon. The measurements on each day of testing included urine biomarkers of oxidative stress, pain and fatigue perception, skin temperature (at baseline and after a cold-stress test), and jump performance. RESULTS Reduced jump performance (P < .01 and effect size [ES] = 0.5) and higher fatigue and pain perception were observed 24 h after the marathon (P < .01 and ES > 0.8). Although no differences in baseline skin temperature were observed between the 4 measuring days, posterior legs presented lower constant (P < .01 and ES = 1.4) and higher slope (P = .04 and ES = 1.1) parameters in the algorithmic equations fitted for skin-temperature recovery after the cold-stress test 24 h after the marathon than on the day before the marathon. Regressions showed that skin-temperature parameters could be predicted by the ratio of ortho-tyrosine isomer to phenylalanine (oxidative stress biomarker) and body fat composition, among others. CONCLUSIONS Although baseline skin temperature was not altered 24 or 48 h after a marathon, the application of cold stress after the marathon would appear to be a good method for providing information on vasoconstriction and a runner's state of stress.
Collapse
|
15
|
Barbic F, Minonzio M, Cairo B, Shiffer D, Dipasquale A, Cerina L, Vatteroni A, Urechie V, Verzeletti P, Badilini F, Vaglio M, Iatrino R, Porta A, Santambrogio M, Gatti R, Furlan R. Effects of different classroom temperatures on cardiac autonomic control and cognitive performances in undergraduate students. Physiol Meas 2019; 40:054005. [DOI: 10.1088/1361-6579/ab1816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Greaney JL, Kenney WL. Measuring and quantifying skin sympathetic nervous system activity in humans. J Neurophysiol 2017; 118:2181-2193. [PMID: 28701539 DOI: 10.1152/jn.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/23/2023] Open
Abstract
Development of the technique of microneurography has substantially increased our understanding of the function of the sympathetic nervous system (SNS) in health and in disease. The ability to directly record signals from peripheral autonomic nerves in conscious humans allows for qualitative and quantitative characterization of SNS responses to specific stimuli and over time. Furthermore, distinct neural outflow to muscle (MSNA) and skin (SSNA) can be delineated. However, there are limitations and caveats to the use of microneurography, measurement criteria, and signal analysis and interpretation. MSNA recordings have a longer history and are considered relatively more straightforward from a measurement and analysis perspective. This brief review provides an overview of the development of the technique as used to measure SSNA. The focus is on the utility of measuring sympathetic activity directed to the skin, the unique issues related to analyzing and quantifying multiunit SSNA, and the challenges related to its interpretation.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
18
|
Greaney JL, Kenney WL, Alexander LM. Neurovascular mechanisms underlying augmented cold-induced reflex cutaneous vasoconstriction in human hypertension. J Physiol 2017; 595:1687-1698. [PMID: 27891612 DOI: 10.1113/jp273487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS In hypertensive adults (HTN), cardiovascular risk increases disproportionately during environmental cold exposure. Despite ample evidence of dysregulated sympathetic control of the peripheral vasculature in hypertension, no studies have examined integrated neurovascular function during cold stress in HTN. The findings of the present study show that whole-body cold stress elicits greater increases in sympathetic outflow directed to the cutaneous vasculature and, correspondingly, greater reductions in skin blood flow in HTN. We further demonstrate an important role for non-adrenergic sympathetic co-transmitters in mediating the vasoconstrictor response to cold stress in hypertension. In the context of thermoregulation and the maintenance of core temperature, sympathetically-mediated control of the cutaneous vasculature is not only preserved, but also exaggerated in hypertension. Given the increasing prevalence of hypertension, clarifying the mechanistic underpinnings of hypertension-induced alterations in neurovascular function during cold exposure is clinically relevant. ABSTRACT Despite ample evidence of dysregulated sympathetic control of the peripheral vasculature in hypertension, no studies have examined integrated neurovascular function during cold stress in hypertensive adults (HTN). We hypothesized that (i) whole-body cooling would elicit greater cutaneous vasoconstriction and greater increases in skin sympathetic nervous system activity (SSNA) in HTN (n = 14; 56 ± 2 years) compared to age-matched normotensive adults (NTN; n = 14; 55 ± 2 years) and (ii) augmented reflex vasoconstriction in HTN would be mediated by an increase in cutaneous vascular adrenergic sensitivity and a greater contribution of non-adrenergic sympathetic co-transmitters. SSNA (peroneal microneurography) and red cell flux (laser Doppler flowmetry; dorsum of foot) were measured during whole-body cooling (water-perfused suit). Sympathetic adrenergic- and non-adrenergic-dependent contributions to reflex cutaneous vasoconstriction and vascular adrenergic sensitivity were assessed pharmacologically using intradermal microdialysis. Cooling elicited greater increases in SSNA (NTN: +64 ± 13%baseline vs. HTN: +194 ± 26%baseline ; P < 0.01) and greater reductions in skin blood flow (NTN: -16 ± 2%baseline vs. HTN: -28 ± 3%baseline ; P < 0.01) in HTN compared to NTN, reflecting an increased response range for sympathetic reflex control of cutaneous vasoconstriction in HTN. Norepinephrine dose-response curves showed no HTN-related difference in cutaneous adrenergic sensitivity (logEC50 ; NTN: -7.4 ± 0.3 log M vs. HTN: -7.5 ± 0.3 log M; P = 0.84); however, non-adrenergic sympathetic co-transmitters mediated a significant portion of the vasoconstrictor response to cold stress in HTN. Collectively, these findings indicate that hypertension increases the peripheral cutaneous vasoconstrictor response to cold via greater increases in skin sympathetic outflow coupled with an increased reliance on non-adrenergic neurotransmitters.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Lanza G, Kosac A, Trajkovic G, Whittaker RG. Nerve Conduction Studies as a Measure of Disease Progression: Objectivity or Illusion? J Neuromuscul Dis 2017; 4:209-215. [PMID: 28869485 DOI: 10.3233/jnd-170243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical nerve conduction studies (NCS) are often used as a secondary outcome measure in therapeutic trials, but show a high degree of inter-trial variability even when technical factors known to affect the recorded responses are minimised. This raises the intriguing possibility that some of the observed variability may reflect true changes in nerve activity. OBJECTIVES Our aim was determine how much variability these factors might produce, and how this might affect the results of commonly used neuropathy rating scales. METHODS A standardised protocol was repeated over forty consecutive trials by the same operators in two healthy subjects. The protocol included recordings that shared either a stimulating or a recording electrode position, such that changes due to electrode position could be excluded, and hand temperature was closely controlled. RESULTS Despite controlling for inter-operator differences, electrode position, and hand temperature, the variability in sensory nerve action potential (SNAP) amplitude was extremely high (Range 23 μV, CoV = 10.7-18.8). This variability was greater than the change in amplitude needed to move a subject from point 0 to point 4 on the CMT neuropathy rating scale. Neither temperature or electrode position accounted for all of this variability, suggesting that additional as yet unidentified factors are responsible. CONCLUSION Even under closely controlled conditions and sophisticated laboratory methods, test-to-test variability can be significant. The factors responsible for this variability may be difficult to control, limiting the utility of single nerve recordings as a trial outcome measure.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Neurology I.C., "Oasi" Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Ana Kosac
- Clinic of Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Goran Trajkovic
- Institute of Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
20
|
Carrillo AE, Flouris AD, Herry CL, Poirier MP, Boulay P, Dervis S, Friesen BJ, Malcolm J, Sigal RJ, Seely AJE, Kenny GP. Heart rate variability during high heat stress: a comparison between young and older adults with and without Type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2016; 311:R669-R675. [PMID: 27511279 DOI: 10.1152/ajpregu.00176.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
We examined whether older individuals with and without Type 2 diabetes (T2D) experience differences in heart rate variability (HRV) during a 3-h exposure to high heat stress compared with young adults. Young (Young; n = 22; 23 ± 3 yr) and older individuals with (T2D; n = 11; 59 ± 9 yr) and without (Older; n = 25; 63 ± 5 yr) T2D were exposed to heat stress (44°C, 30% relative humidity) for 3 h. Fifty-five HRV measures were assessed for 15 min at baseline and at minutes 82.5-97.5 (Mid) and minutes 165-180 (End) during heat stress. When compared with Young, a similar number of HRV indices were significantly different (P < 0.05) in Older (Baseline: 35; Mid: 29; End: 32) and T2D (Baseline: 31; Mid: 30; End: 27). In contrast, the number of HRV indices significantly different (P < 0.05) between Older and T2D were far fewer (Baseline: 13, Mid: 1, End: 3). Within-group analyses demonstrated a greater change in the Young group's HRV during heat stress compared with Older and T2D; the number of significantly different (P < 0.05) HRV indices between baseline and End were 42, 29, and 20, for Young, Older, and T2D, respectively. Analysis of specific HRV domains suggest that the Young group experienced greater sympathetic activity during heat stress compared with Older and T2D. In conclusion, when compared with young, older individuals with and without T2D demonstrate low HRV at baseline and less change in HRV (including an attenuated sympathetic response) during 3 h high heat stress, potentially contributing to impaired thermoregulatory function.
Collapse
Affiliation(s)
- Andres E Carrillo
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece.,Department of Exercise Science, Chatham University, Pittsburgh, Pennsylvania
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece.,Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Christophe L Herry
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Martin P Poirier
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian J Friesen
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Janine Malcolm
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada; and
| | - Andrew J E Seely
- Thoracic Surgery and Critical Care Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; .,Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Ishida K, Nakamura T, Kimura K, Kanno N, Takahashi N, Kamijo YI, Tajima F. Suppression of activation of muscle sympathetic nerve during non-noxious local cooling after the end of local cooling in normal adults. Eur J Appl Physiol 2016; 116:851-8. [DOI: 10.1007/s00421-016-3343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
22
|
Schnell I, Potchter O, Yaakov Y, Epstein Y. Human exposure to environmental health concern by types of urban environment: The case of Tel Aviv. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:58-65. [PMID: 26344491 DOI: 10.1016/j.envpol.2015.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
This study classifies urban environments into types characterized by different exposure to environmental risk factors measured by general sense of discomfort and Heart Rate Variability (HRV). We hypothesize that a set of environmental factors (micro-climatic, CO, noise and individual heart rate) that were measured simultaneously in random locations can provide a better understanding of the distribution of human exposure to environmental loads throughout the urban space than results calculated based on measurements from close fixed stations. We measured micro-climatic and thermal load, CO and noise, individual Heart Rate, Subjective Social Load and Sense of Discomfort (SD) were tested by questionnaire survey. The results demonstrate significant differences in exposure to environmental factors among 8 types of urban environments. It appears that noise and social load are the more significant environmental factors to enhance health risks and general sense of discomfort.
Collapse
Affiliation(s)
- Izhak Schnell
- Department of Geography and Human Environment, Tel Aviv University, Tel Aviv, Israel
| | - Oded Potchter
- Department of Geography and Human Environment, Tel Aviv University, Tel Aviv, Israel; Department of Geography, Beit Berl Academic College, Beit Berl, Israel.
| | - Yaron Yaakov
- Department of Geography and Human Environment, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Epstein
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Greaney JL, Kenney WL, Alexander LM. Sympathetic regulation during thermal stress in human aging and disease. Auton Neurosci 2015; 196:81-90. [PMID: 26627337 DOI: 10.1016/j.autneu.2015.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023]
Abstract
Humans control their core temperature within a narrow range via precise adjustments of the autonomic nervous system. In response to changing core and/or skin temperature, several critical thermoregulatory reflex effector responses are initiated and include shivering, sweating, and changes in cutaneous blood flow. Cutaneous vasomotor adjustments, mediated by modulations in sympathetic nerve activity (SNA), aid in the maintenance of thermal homeostasis during cold and heat stress since (1) they serve as the first line of defense of body temperature and are initiated before other thermoregulatory effectors, and (2) they are on the efferent arm of non-thermoregulatory reflex systems, aiding in the maintenance of blood pressure and organ perfusion. This review article highlights the sympathetic responses of humans to thermal stress, with a specific focus on primary aging as well as impairments that occur in both heart disease and type 2 diabetes mellitus. Age- and pathology-related changes in efferent muscle and skin SNA during cold and heat stress, measured directly in humans using microneurography, are discussed.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA 16802, United States.
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA 16802, United States
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
24
|
Greaney JL, Alexander LM, Kenney WL. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J Appl Physiol (1985) 2015; 119:771-82. [PMID: 26272321 DOI: 10.1152/japplphysiol.00527.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Synthesis highlights a series of recent studies that has systematically interrogated age-related deficits in cold-induced skin vasoconstriction. In response to cold stress, a reflex increase in sympathetic nervous system activity mediates reductions in skin blood flow. Reflex vasoconstriction during cold exposure is markedly impaired in aged skin, contributing to the relative inability of healthy older adults to maintain core temperature during mild cold stress in the absence of appropriate behavioral thermoregulation. This compromised reflex cutaneous vasoconstriction in healthy aging can occur as a result of functional deficits at multiple points along the efferent sympathetic reflex axis, including blunted sympathetic outflow directed to the skin vasculature, reduced presynaptic neurotransmitter synthesis and/or release, and altered end-organ responsiveness at several loci, in addition to potential alterations in afferent thermoreceptor function. Arguments have been made that the relative inability of aged skin to appropriately constrict is due to the aging cutaneous arterioles themselves, whereas other data point to the neural circuitry controlling those vessels. The argument presented herein provides strong evidence for impaired efferent sympathetic control of the peripheral cutaneous vasculature during whole body cold exposure as the primary mechanism responsible for attenuated vasoconstriction.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
25
|
Greaney JL, Stanhewicz AE, Kenney WL, Alexander LM. Impaired increases in skin sympathetic nerve activity contribute to age-related decrements in reflex cutaneous vasoconstriction. J Physiol 2015; 593:2199-211. [PMID: 25752518 DOI: 10.1113/jp270062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The reduction in skin blood flow during whole-body cooling is impaired in healthy older adults. However, the relative contributions of altered skin sympathetic nerve activity (SSNA), transduction of this efferent neural outflow to the cutaneous vasculature, and peripheral vascular responsiveness to adrenergic stimuli to the impaired reflex vasoconstrictor response to whole-body cooling in human ageing remain unclear. We report that the SSNA response to whole-body cooling is blunted in healthy older adults, and this attenuated sympathetic response is related to a marked impairment in reflex cutaneous vasoconstriction. Further, the reflex SSNA response to a non-thermoregulatory stimulus was preserved in older adults during cooling. We additionally show that cutaneous vascular responsiveness to adrenergic stimuli is not reduced in older adults. These results further our understanding of the physiological mechanisms underlying impaired thermal-cardiovascular integration in healthy ageing. ABSTRACT Reflex cutaneous vasoconstriction is impaired in older adults; however, the relative roles of altered skin sympathetic nerve activity (SSNA) and end-organ peripheral vascular responsiveness are unclear. We hypothesized that in older adults whole-body cooling would elicit a blunted SSNA response and cutaneous adrenergic responsiveness would be reduced. Twelve young adults (Y; 24 ± 1 years) and 12 older adults (O; 57 ± 2 years) participated in two protocols. In Protocol 1, SSNA (peroneal microneurography) and red cell flux in the affected dermatome (laser Doppler flowmetry; dorsum of foot) were measured during whole-body cooling (mean skin temperature (Tsk ) 30.5°C; water-perfused suit). Mental stress was performed at mean Tsk 34.0°C (thermoneutral) and at 30.5°C. In Protocol 2, an intradermal microdialysis fibre was placed in the skin of the lateral calf for graded infusions of noradrenaline (norepinephrine) (NA; 10(-12) to 10(-2) m). Cutaneous vascular conductance (CVC = flux/mean arterial pressure) was expressed as a change from baseline (ΔCVCbase ). Vasoconstriction was attenuated in O. SSNA increased significantly during cooling in Y (+184 ± 37%; P < 0.05) but not O (+51 ± 12%; P > 0.05). Mental stress at Tsk 30.5°C further increased SSNA in both groups. There was no age-related difference in adrenergic responsiveness to exogenous NA (logEC50 : -6.41 ± 0.24 in Y, -6.37 ± 0.25 in O; P > 0.05). While the SSNA response to whole-body cooling is impaired with ageing, SSNA can be further increased by a non-thermoregulatory stimulus. Cutaneous adrenergic sensitivity is not reduced in O. These findings suggest that alterations in afferent signalling or central processing likely contribute to blunted SSNA responses to cooling and subsequent impairments in reflex cutaneous vasoconstriction in ageing.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
26
|
Oh SH, Oh JS, Kim YM, Park KN, Choi SP, Kim GW, Jeung KW, Jang TC, Park YS, Kyong YY. An observational study of surface versus endovascular cooling techniques in cardiac arrest patients: a propensity-matched analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:85. [PMID: 25880667 PMCID: PMC4367874 DOI: 10.1186/s13054-015-0819-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/17/2015] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Various methods and devices have been described for cooling after cardiac arrest, but the ideal cooling method remains unclear. The aim of this study was to compare the neurological outcomes, efficacies and adverse events of surface and endovascular cooling techniques in cardiac arrest patients. METHODS We performed a multicenter, retrospective, registry-based study of adult cardiac arrest patients treated with therapeutic hypothermia presenting to 24 hospitals across South Korea from 2007 to 2012. We included patients who received therapeutic hypothermia using overall surface or endovascular cooling devices and compared the neurological outcomes, efficacies and adverse events of both cooling techniques. To adjust for differences in the baseline characteristics of each cooling method, we performed one-to-one matching by the propensity score. RESULTS In total, 803 patients were included in the analysis. Of these patients, 559 underwent surface cooling, and the remaining 244 patients underwent endovascular cooling. In the unmatched cohort, a greater number of adverse events occurred in the surface cooling group. Surface cooling was significantly associated with a poor neurological outcome (cerebral performance category 3-5) at hospital discharge (p = 0.01). After propensity score matching, surface cooling was not associated with poor neurological outcome and hospital mortality [odds ratio (OR): 1.26, 95% confidence interval (CI): 0.81-1.96, p = 0.31 and OR: 0.85, 95% CI: 0.55-1.30, p = 0.44, respectively]. Although surface cooling was associated with an increased incidence of adverse events (such as overcooling, rebound hyperthermia, rewarming related hypoglycemia and hypotension) compared with endovascular cooling, these complications were not associated with surface cooling using hydrogel pads. CONCLUSIONS In the overall matched cohort, no significant difference in neurological outcomes and hospital morality was observed between the surface and endovascular cooling methods.
Collapse
Affiliation(s)
- Sang Hoon Oh
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | - Joo Suk Oh
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | - Young-Min Kim
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | - Kyu Nam Park
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | - Seung Pill Choi
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | - Gi Woon Kim
- Department of Emergency Medicine, College of Medicine, Ajou University, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea, 443-380.
| | - Kyung Woon Jeung
- Department of Emergency Medicine, College of Medicine, Chonnam National University, 42, Jebong-ro, Dong-gu, Gwangju, South Korea, 501-757.
| | - Tae Chang Jang
- Department of Emergency Medicine, College of Medicine, Catholic University of Daegu, 33, Duryugongwonro 17-gil, Nam-gu, Daegu, Korea, 705-718.
| | - Yoo Seok Park
- Department of Emergency Medicine, College of Medicine, Yonsei University, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Korea, 120-752.
| | - Yeon Young Kyong
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, 222, Banpodaero, Seocho-gu, Seoul, Korea, 137-701.
| | | |
Collapse
|
27
|
Abstract
During exposure to cold, our bodies attempt to maintain normal core temperature by restricting heat loss through cutaneous vasoconstriction, and by increasing heat production through shivering and nonshivering thermogenesis. In selected areas of human skin (including on the fingers and toes), the vascular system has specialized structural and functional features that enable it to contribute to thermoregulation. These features include arteriovenous anastomoses, which directly connect the arterial and venous systems and bypass the nutritional capillaries supplying blood to the skin tissue. Of note, Raynaud phenomenon predominantly affects the arterial territories supplying these specialized areas of skin. Indeed, Raynaud phenomenon can be considered a disorder of vascular thermoregulatory control. This Review presents an understanding of Raynaud phenomenon in the context of vascular and thermoregulatory control mechanisms, including the role of unique thermosensitive vascular structural and functional specialization, and describes the potential role of thermogenesis in this disorder. This new approach provides remarkable insight into the disease process and builds a framework to critically appraise the existing knowledge base. This paradigm also explains the deficiencies in some current therapeutic approaches, and highlights new areas of potential relevance to the pathogenesis and treatment of Raynaud phenomenon that should be expanded and explored.
Collapse
|
28
|
Ismail E, Capo A, Amerio P, Merla A. Functional-thermoregulatory model for the differential diagnosis of psoriatic arthritis. Biomed Eng Online 2014; 13:162. [PMID: 25494626 PMCID: PMC4320504 DOI: 10.1186/1475-925x-13-162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Psoriasis arthritis (PsA) is a chronic inflammatory arthritis of joints of uncertain pathogenesis. PsA may lead to severe disabilities even in the absence of any clinical symptom. Therefore, PsA diagnosis in its early stages is critical. Material and methods This study uses Control System theory to model finger skin thermoregulatory processes overlying the hand joint in response to an isometric exercise. The proposed model is based on a homeostatic negative feedback loop characterized by four distinct parameters that describe how the control mechanisms are activated and maintained. Thermal infrared imaging was used to record a total of 280 temperature curves of 14 finger joints for each of 11 PsA patients and 9 healthy controls. Result and conclusion PsA patients presented delayed and prolonged re-warming processes characterized by the undershoot onset after the end of the isometric exercise followed by a faster temperature increase. Region classification on the basis of the model parameters demonstrated that the interphalageal joint region of thumb better discriminates between patients and controls, providing 100% true-positive discrimination for PsA affected regions and 88.89% of correct classification of healthy regions. Even proved over a limited number of subjects, the proposed method may provide useful hints for early differential diagnosis in the IR assessment of PsA disease.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Neuroscience, Imaging and Clinical Sciences, University "G, d'Annunzio", Via dei Vestini, 31, 66013 Chieti, Italy.
| | | | | | | |
Collapse
|
29
|
Cardiovascular and autonomic responses to whole-body cryostimulation in essential hypertension. Cryobiology 2014; 69:249-55. [DOI: 10.1016/j.cryobiol.2014.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
|
30
|
Ismail E, Orlando G, Pompa P, Gabrielli D, Di Donato L, Cardone D, Merla A. Time-domain analysis of scrotal thermoregulatory impairment in varicocele. Front Physiol 2014; 5:342. [PMID: 25278903 PMCID: PMC4165266 DOI: 10.3389/fphys.2014.00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022] Open
Abstract
Varicocele is a common male disease defined as the pathological dilatation of the pampiniform plexus and scrotal veins with venous blood reflux. Varicocele usually impairs the scrotal thermoregulation via a hemodynamic alteration, thus inducing an increase in cutaneous temperature. The investigation of altered scrotal thermoregulation by means of thermal infrared imaging has been proved to be useful in the study of the functional thermal impairment. In this study, we use the Control System Theory to analyze the time-domain dynamics of the scrotal thermoregulation in response to a mild cold challenge. Four standard time-domain dynamic parameters of a prototype second order control system (Delay Time, Rise Time, closed poles locations, steady state error) and the static basal temperatures were directly estimated from thermal recovery curves. Thermal infrared imaging data from 31 healthy controls (HCS) and 95 varicocele patients were processed. True-positive predictions, by comparison with standard echo color Doppler findings, higher than 87% were achieved into the proper classification of the disease stage. The proposed approach could help to understand at which specific level the presence of the disease impacts the scrotal thermoregulation, which is also involved into normal spermatogenesis process.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University of Chieti PescaraChieti-Pescara, Italy
- Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio UniversityChieti-Pescara, Italy
- *Correspondence: Enas Ismail, Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio University, Campus Universitario, Via dei Vestini, 66013 Chieti Scalo, Italy e-mail:
| | | | - Paolo Pompa
- Department of Urology, Ospedale CivilePescara, Italy
| | - Daniela Gabrielli
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University of Chieti PescaraChieti-Pescara, Italy
- Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio UniversityChieti-Pescara, Italy
| | - Luigino Di Donato
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University of Chieti PescaraChieti-Pescara, Italy
- Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio UniversityChieti-Pescara, Italy
| | - Daniela Cardone
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University of Chieti PescaraChieti-Pescara, Italy
- Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio UniversityChieti-Pescara, Italy
| | - Arcangelo Merla
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University of Chieti PescaraChieti-Pescara, Italy
- Institute for Advanced Biomedical Technologies (ITAB), G. d'Annunzio UniversityChieti-Pescara, Italy
| |
Collapse
|
31
|
Zalewski P, Bitner A, Słomko J, Szrajda J, Klawe JJ, Tafil-Klawe M, Newton JL. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature. J Therm Biol 2014; 45:75-80. [PMID: 25436954 DOI: 10.1016/j.jtherbio.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/28/2022]
Abstract
The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects.
Collapse
Affiliation(s)
- Pawel Zalewski
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland.
| | - Anna Bitner
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Joanna Słomko
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Justyna Szrajda
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Jacek J Klawe
- Department of Hygiene and Epidemiology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Malgorzata Tafil-Klawe
- Department of Human Physiology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Julia L Newton
- Institute for Ageing and Health,The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| |
Collapse
|
32
|
Ismail E, Orlando G, Corradini ML, Amerio P, Romani GL, Merla A. Differential diagnosis of Raynaud’s phenomenon based on modeling of finger thermoregulation. Physiol Meas 2014; 35:703-16. [DOI: 10.1088/0967-3334/35/4/703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Schnell I, Potchter O, Epstein Y, Yaakov Y, Hermesh H, Brenner S, Tirosh E. The effects of exposure to environmental factors on Heart Rate Variability: an ecological perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 183:7-13. [PMID: 23477780 DOI: 10.1016/j.envpol.2013.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/16/2012] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
The impact of human exposure to environmental factors on Heart Rate Variability (HRV) was examined in the urban space of Tel-Aviv-Jaffa. Four environmental factors were investigated: thermal and social loads; CO concentrations and noise. Levels of HRV are explained mainly by subjective social stresses, noise and CO. The most interesting result is the fact that while subjective social stress and noise increase HRV, low levels of CO are reducing HRV to some extent moderating the impact of subjective social stress and noise. Beyond the poisoning effect of CO and the fact that extremely low levels of HRV associated with high dozes of CO increase risk for life, low levels of CO may have a narcotic effect, as it is measured by HRV. The effects of thermal loads on HRV are negligible probably due to the use of behavioral means in order to neutralize heat and cold effects.
Collapse
Affiliation(s)
- Izhak Schnell
- Geography and Human Environment Department, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Muller MD, Sauder CL, Ray CA. Melatonin attenuates the skin sympathetic nerve response to mental stress. Am J Physiol Heart Circ Physiol 2013; 305:H1382-6. [PMID: 23997106 DOI: 10.1152/ajpheart.00470.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melatonin attenuates muscle sympathetic nerve responses to sympathoexcitatory stimuli, but it is unknown whether melatonin similarly attenuates reflex changes in skin sympathetic nerve activity (SSNA). In this double-blind, placebo-controlled, crossover study, we tested the hypothesis that melatonin (3 mg) would attenuate the SSNA response to mental stress (mental arithmetic). Twelve healthy subjects underwent experimental testing on two separate days. Three minutes of mental stress occurred before and 45 min after ingestion of melatonin (3 mg) or placebo. Skin temperature was maintained at 34°C. Reflex increases in SSNA (peroneal nerve), mean arterial pressure, and heart rate (HR) to mental stress before and after melatonin were determined. Melatonin lowered HR (pre, 66 ± 3 beats/min; and post, 62 ± 3 beats/min, P = 0.046) and SSNA (pre, 14,282 ± 3,706 arbitrary units; and post, 9,571 ± 2,609 arbitrary units, P = 0.034) at rest. In response to mental stress, SSNA increases were significantly attenuated following melatonin ingestion (second minute, 114 ± 30 vs. 74 ± 14%; and third minute, 111 ± 29 vs. 54 ± 12%, both P < 0.05). The mean arterial pressure increase to mental stress was blunted in the third minute (20 ± 2 vs. 17 ± 2 mmHg, P = 0.032), and the HR increase was blunted in the first minute (33 ± 3 vs. 29 ± 3 beats/min, P = 0.034) after melatonin. In summary, exogenous melatonin attenuates the SSNA response to mental stress.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart and Vascular Institute, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | |
Collapse
|
35
|
Uangpairoj P, Shibata M. Evaluation of vascular wall elasticity of human digital arteries using alternating current-signal photoplethysmography. Vasc Health Risk Manag 2013; 9:283-95. [PMID: 23766653 PMCID: PMC3678902 DOI: 10.2147/vhrm.s43784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose A simple method of estimating arterial elasticity in the human finger using a volume-oscillometric technique with photoplethysmography was principally studied under the various effects of age, sex, and cold-stress stimulation for testing the capability of using this technique in arterial elasticity analysis. Methods Amplitude variations in the alternating current signal of the photoplethysmograph during a continuous change in transmural pressure were analyzed to obtain the blood pressure and the transmural pressure–relative volume difference relationship of the arteries. We first tested the effect of the occluding cuff size on the arterial elasticity analysis in eight subjects (ages 20–45 years) to obtain a suitable cuff size, resulting in the selection of a middle cuff with a 22 mm diameter. Blood pressure and arterial elasticity were measured in six groups of subjects separated into three age-groups of women and men (ages 20–25, 32–45, and over 50 years) for testing the effect of age and sex. Twelve subjects (ages 20–25 years) also had their blood pressure and arterial elasticity measured in three conditions under the influence of the cold-stress stimulation. Results Age, sex, and cold-stress stimulation had an impact on mean blood pressure (P < 0.0005, 0.025), whereas pulse pressure and heart rate were statistically unchanged by those factors. Furthermore, an advanced age (over 50 years) was found to induce an increase in relative volume difference values (P < 0.025) and upward shifting of the transmural pressure–relative volume difference relationships, whereas sex, level of mean blood pressure, and cold-stress stimulation had no influence on these forms of the index. Conclusion This study showed the usefulness of the relative volume difference as being a mean blood pressure-independent indicator for changes in arterial elasticity.
Collapse
Affiliation(s)
- Pichitra Uangpairoj
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
36
|
Lee IS, Kim SK, Jeon MH, Jeon WK. Ethyl acetate extract from tissue-cultured mountain ginseng adventitious roots inhibits in vitro platelet aggregation in whole human blood and augments peripheral blood flow in mice. J Ginseng Res 2013; 35:442-8. [PMID: 23717090 PMCID: PMC3659548 DOI: 10.5142/jgr.2011.35.4.442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/21/2022] Open
Abstract
We previously reported that in vitro anti-platelet activity of tissue-cultured mountain ginseng (TCMG) ethanol extracts show improved efficacy when compared with commercial ginseng products such as Korean red ginseng and Panax ginseng. However, information on the anti-platelet activity of the ethyl acetate fraction from TCMG adventitious roots is limited. Therefore, in this study, we further investigated the effects of an ethyl acetate extract of TCMG (EA-TCMG) adventitious roots on in vitro antiplatelet activity in whole human blood and its effect on peripheral blood flow in mice. We found that EA-TCMG inhibited platelet aggregation with IC50 values of 271, 180, and 147 μg/mL induced by collagen, adenosine-5΄-diphosphate, and arachidonic acid, respectively. Among the three agonists used, thromboxane A2 formation induced by arachidonic acid was markedly suppressed. Furthermore, EA-TCMG improved the peripheral circulatory disturbance by improving vascular blood flow. In conclusion, these results suggest that ethyl acetate extracts from TCMG adventitious roots might inhibit vascular platelet aggregation and thrombus formation.
Collapse
Affiliation(s)
- In Sun Lee
- Creative Research Laboratory, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | | | | | | |
Collapse
|
37
|
Muller MD, Sauder CL, Ray CA. Mental Stress Elicits Sustained and Reproducible Increases in Skin Sympathetic Nerve Activity. Physiol Rep 2013; 1. [PMID: 23750321 PMCID: PMC3673729 DOI: 10.1002/phy2.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mental stress (MS) is a known trigger of myocardial infarction and sudden death. By activating the sympathetic nervous system, MS may have deleterious effect on the cardiovascular system but this process is not completely understood. The primary aim of this study was to quantify the effect of MS on skin sympathetic nerve activity (SSNA). The secondary aim was to determine the reproducibility of SSNA to MS within a given day and ∼1 week later. Ten subjects (26 ± 1 year) performed two bouts of mental arithmetic lasting 3 min. The bouts were separated by 45 min. One week later the subjects returned to repeat MS. All experiments were conducted in the supine posture during the morning hours. To maintain neutral skin temperature, each subject wore a custom suit (34–35°C). Skin blood flow and sweat rate were measured on the dorsal foot. MS elicited a marked increase in SSNA within the first 10 sec (184 ± 42%; P < 0.01) in all subjects, which was less during the remaining period of MS, but remained elevated (87 ± 20; P < 0.01). The pattern of responses to MS was unchanged during the second bout (10 sec, 247 ± 55%; 3 min average, 133 ± 29%) and during the retest 1 week later (10 sec, 196 ± 55%; 3 min average, 117 ± 36%). MS did not significantly affect cutaneous vascular conductance or sweat rate during any trial. In summary, MS elicits robust and reproducible increases in SSNA in humans, which may be followed over time to observe alterations in the regulation of the autonomic nervous system.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Heart & Vascular Institute, Department of Cellular and Molecular Physiology, Clinical Research Center, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033
| | | | | |
Collapse
|
38
|
Keller DM, Low DA, Davis SL, Hastings J, Crandall CG. Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest. J Appl Physiol (1985) 2011; 110:1592-7. [PMID: 21454746 DOI: 10.1152/japplphysiol.00233.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged exposure to microgravity, as well as its ground-based analog, head-down bed rest (HDBR), reduces orthostatic tolerance in humans. While skin surface cooling improves orthostatic tolerance, it remains unknown whether this could be an effective countermeasure to preserve orthostatic tolerance following HDBR. We therefore tested the hypothesis that skin surface cooling improves orthostatic tolerance after prolonged HDBR. Eight subjects (six men and two women) participated in the investigation. Orthostatic tolerance was determined using a progressive lower-body negative pressure (LBNP) tolerance test before HDBR during normothermic conditions and on day 16 or day 18 of 6° HDBR during normothermic and skin surface cooling conditions (randomized order post-HDBR). The thermal conditions were achieved by perfusing water (normothermia ∼34°C and skin surface cooling ∼12-15°C) through a tube-lined suit worn by each subject. Tolerance tests were performed after ∼30 min of the respective thermal stimulus. A cumulative stress index (CSI; mmHg LBNP·min) was determined for each LBNP protocol by summing the product of the applied negative pressure and the duration of LBNP at each stage. HDBR reduced normothermic orthostatic tolerance as indexed by a reduction in the CSI from 1,037 ± 96 mmHg·min to 574 ± 63 mmHg·min (P < 0.05). After HDBR, skin surface cooling increased orthostatic tolerance (797 ± 77 mmHg·min) compared with normothermia (P < 0.05). While the reduction in orthostatic tolerance following prolonged HDBR was not completely reversed by acute skin surface cooling, the identified improvements may serve as an important and effective countermeasure for individuals exposed to microgravity, as well as immobilized and bed-stricken individuals.
Collapse
Affiliation(s)
- David M Keller
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Ave., Dallas, TX 75231, USA
| | | | | | | | | |
Collapse
|
39
|
Mariotti A, Di Carlo L, Orlando G, Corradini ML, Di Donato L, Pompa P, Iezzi R, Cotroneo AR, Romani GL, Merla A. Scrotal thermoregulatory model and assessment of the impairment of scrotal temperature control in varicocele. Ann Biomed Eng 2010; 39:664-73. [PMID: 20976556 DOI: 10.1007/s10439-010-0191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Varicocele is defined as the pathological dilatation of the pampiniform plexus and scrotal veins with venous blood reflux. Varicocele may impair scrotal thermoregulation and spermatogenesis, even when present in asymptomatic forms. In this study, we use the control system theory to model scrotal thermoregulation in response to a standardized cold challenge in order to study the functional thermal impairment secondary to varicocele. The proposed model is based on a homeostatic negative feedback loop, characterized by four distinct parameters, which describe how the control mechanisms are activated and maintained. Thermal infrared images series from 49 young patients suffering from left varicocele and 17 healthy controls were processed. With respect to healthy controls, left varicocele patients presented higher basal scrotal temperature and faster recovery of the left hemiscrotum. The model indicated that varicocele alters local heat exchange processes among cutaneous layers and inner structures. The estimated model parameters help in the assessment of the scrotal thermoregulatory impairment secondary to the disease.
Collapse
Affiliation(s)
- Alessandro Mariotti
- ITAB-Institute for Advanced Biomedical Technologies, Fondazione Università G. d'Annunzio, Via dei Vestini 31, Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Grossi G, Mariotti A, Di Donato L, Amerio P, Tulli A, Romani GL, Merla A. Functional infrared imaging of paroxysmal ischemic events in patients with Raynaud's phenomenon. Int J Immunopathol Pharmacol 2010; 23:627-32. [PMID: 20646358 DOI: 10.1177/039463201002300225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of thermal infrared (IR) imaging together with the study of the thermal recovery from a controlled cold challenge has been proposed in the diagnosis and follow-up of therapeutic response of Raynaud's Phenomenon (RP) and Systemic Sclerosis (SSc). The controlled cold challenge test usually performed during IR investigations may induce a RP in patients with the latter condition. In our Institution we routinely perform capillaroscopy and thermal IR to follow-up SSc patients. In this paper, we describe the thermal recovery patterns shown by two SSc patients (a 40 year-old male with diffuse variant of SSc and a 71 year-old female with a limited variant of SSc) who presented ischemic and paroxysmal RP attack while recovering from the routine controlled cold challenge test. During RP attack, the cutaneous temperature of some fingers continued to decrease for some minutes even after the cessation of the cold stress. To the best of our knowledge, to date, no literature report has documented the thermal behaviour of SSc patients' fingers which occasionally present ischemic and paroxysmal response. Triggering of ischemic RP attack appears to not rely only on morphological and structural finger impairment, but also upon other aspects, like the emotional attitude of the subject and the possible discomfort experienced with the proceeding of the functional cold stress test.
Collapse
|
41
|
Flouris AD, Cheung SS. On the origins of cold-induced vasodilation. Eur J Appl Physiol 2009; 108:1281-2. [DOI: 10.1007/s00421-009-1324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
|
42
|
Reply to A. D. Flouris and S. S. Cheung reply letter regarding "cold-induced vasodilation". Eur J Appl Physiol 2009; 108:215-6. [PMID: 19820960 DOI: 10.1007/s00421-009-1241-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
43
|
Mariotti A, Grossi G, Amerio P, Orlando G, Mattei PA, Tulli A, Romani GL, Merla A. Finger thermoregulatory model assessing functional impairment in Raynaud's phenomenon. Ann Biomed Eng 2009; 37:2631-9. [PMID: 19760147 DOI: 10.1007/s10439-009-9788-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/27/2009] [Indexed: 11/30/2022]
Abstract
Raynaud's Phenomenon (RP) is a paroxysmal vasospastic disorder of small arteries, pre-capillary arteries, and cutaneous arteriovenous shunts of the extremities, typically induced by cold exposure and emotional stress. RP is either primary (PRP) or secondary to systemic sclerosis. In this study we use Control System Theory to model finger thermoregulatory processes in response to a standardized cold challenge (a diagnostic test routinely performed for differential diagnosis of RP). The proposed model is based on a homeostatic negative feedback loop, characterized by five distinct parameters which describe how the control mechanisms are activated and maintained. Thermal infrared imaging data from 14 systemic sclerosis subjects (SSc), 14 PRP, and 16 healthy control subjects (HCS) were processed. HCS presented the fastest active recovery, with the highest gain. PRP presented the slowest and weakest recovery, mostly due to passive heat exchange with the environment. SSc presented an intermediate behavior, with the longest delay of response onset. The estimated model parameters elucidated the level of functional impairment expressed in the various forms of this disease.
Collapse
Affiliation(s)
- Alessandro Mariotti
- Department of Clinical Sciences and Bioimaging, "G. d'Annunzio" University, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen J, Nakamura H, Fujisaki Y, Tanida M, Horii Y, Fuyuki R, Takumi H, Shiraishi K, Kometani T, Nagai K. Effect of 4G-α-glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature. Neurosci Lett 2009; 461:30-5. [DOI: 10.1016/j.neulet.2009.05.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/16/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
45
|
Heart rate variability at different thermal comfort levels. Eur J Appl Physiol 2008; 103:361-6. [DOI: 10.1007/s00421-008-0718-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
|
46
|
|
47
|
Investigation of gender difference in thermal comfort for Chinese people. Eur J Appl Physiol 2007; 102:471-80. [DOI: 10.1007/s00421-007-0609-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
48
|
Wilson TE, Sauder CL, Kearney ML, Kuipers NT, Leuenberger UA, Monahan KD, Ray CA. Skin-surface cooling elicits peripheral and visceral vasoconstriction in humans. J Appl Physiol (1985) 2007; 103:1257-62. [PMID: 17673561 DOI: 10.1152/japplphysiol.00401.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skin-surface cooling elicits a pronounced systemic pressor response, which has previously been reported to be associated with peripheral vasoconstriction and may not fully account for the decrease in systemic vascular conductance. To test the hypothesis that whole body skin-surface cooling would also induce renal and splanchnic vasoconstriction, 14 supine subjects performed 26 skin-surface cooling trials (15-18 degrees C water perfused through a tube-lined suit for 20 min). Oral and mean skin temperature, heart rate, stroke volume (Doppler ultrasound), mean arterial blood pressure (MAP), cutaneous blood velocity (laser-Doppler), and mean blood velocity of the brachial, celiac, renal, and superior mesenteric arteries (Doppler ultrasound) were measured during normothermia and skin-surface cooling. Cardiac output (heart rate x stroke volume) and indexes of vascular conductance (flux or blood velocity/MAP) were calculated. Skin-surface cooling increased MAP (n = 26; 78 +/- 5 to 88 +/- 5 mmHg; mean +/- SD) and decreased mean skin temperature (n = 26; 33.7 +/- 0.7 to 27.5 +/- 1.2 degrees C) and cutaneous (n = 12; 0.93 +/- 0.68 to 0.36 +/- 0.20 flux/mmHg), brachial (n = 10; 32 +/- 15 to 20 +/- 12), celiac (n = 8; 85 +/- 22 to 73 +/- 22 cm.s(-1).mmHg(-1)), superior mesenteric (n = 8; 55 +/- 16 to 48 +/- 10 cm.s(-1).mmHg(-1)), and renal (n = 8; 74 +/- 26 to 64 +/- 20 cm.s(-1).mmHg(-1); all P < 0.05) vascular conductance, without altering oral temperature, cardiac output, heart rate, or stroke volume. These data identify decreases in vascular conductance of skin and of brachial, celiac, superior mesenteric, and renal arteries. Thus it appears that vasoconstriction in both peripheral and visceral arteries contributes importantly to the pressor response produced during skin-surface cooling in humans.
Collapse
Affiliation(s)
- Thad E Wilson
- Heart and Vascular Institute, General Clinical Research Center, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mourot L, Cluzeau C, Regnard J. [Physiological assessment of a gaseous cryotherapy device: thermal effects and changes in cardiovascular autonomic control]. ACTA ACUST UNITED AC 2007; 50:209-17. [PMID: 17300850 DOI: 10.1016/j.annrmp.2007.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/03/2007] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of the study was to assess thermal effects and cardiovascular autonomic control with application of a gaseous cryotherapy device to the hand. MATERIAL AND METHODS Before, during and after cooling of the left hand, we continuously evaluated cutaneous temperature of the right and left hands, as well as heart rate (HR) and arterial blood pressure (BP) and their neurovegetatif control (HR and BP variability) in 8 healthy subjects. Comparison of cooling caused by projection of CO(2) microcrystals (2 min) under high pressure (75 bar) and low temperature (-78 degrees C) to that with application of a latex ice pack (15 min). Assessment of whether cooling triggered any changes in cardiovascular autonomic control, especially as compared with responses by the hand cold-pressure test (2 min). RESULTS CO(2) projection in the left hand induced a steep decrease (-26 degrees C) in temperature followed by a rapid increase and a cutaneous vasoconstriction of the right hand, with significant increases in BP and cardiac parasympathetic activity. Cardiovascular responses were similar to those with application of the hand cold-pressure test. Application of an ice pack decreased cutaneous temperature to a lesser extent (-19 degrees C) and more slowly, without changing BP or indices of HR and BP variability. CONCLUSION CO(2) projection caused "thermal shock" and triggered a systemic cutaneous vasoconstriction response, with activation of indices of both ortho- and parasympathetic activity, as with the hand cold-pressure test. Vascular responses during ice pack cooling appeared solely localised to the cooled area, without any significant change in autonomic cardiovascular control.
Collapse
Affiliation(s)
- L Mourot
- Laboratoire de physiologie, faculté de médecine et de pharmacie, université de Franche-Comté, EA 3920 et IFR133, 25030 Besançon cedex, France.
| | | | | |
Collapse
|
50
|
Mano T, Iwase S, Toma S. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans. Clin Neurophysiol 2006; 117:2357-84. [PMID: 16904937 DOI: 10.1016/j.clinph.2006.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 11/17/2022]
Abstract
Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be important to convey cutaneous sensation to the central structures related to emotion. Recordings of afferent discharges in thin myelinated and unmyelinated fibers from nociceptors in muscle and skin have been used to provide information concerning pain. Recordings of afferent discharges of different types of cutaneous C-nociceptors identified by marking method have become an important tool to reveal the neural mechanisms of cutaneous sensations such as an itch. No direct microneurographic evidence has been so far proved regarding the effects of sympathoexcitation on sensitization of muscle and skin sensory receptors at least in healthy humans.
Collapse
Affiliation(s)
- Tadaaki Mano
- Gifu University of Medical Science, 795-1 Nagamine Ichihiraga, Seki, Gifu 501-3892, Japan.
| | | | | |
Collapse
|