1
|
Liu B, Wang X, Yang Z, Yin Z, Tang C, He Y, Ling Q, Huang Z, Feng S. A genetic study to identify pathogenic mechanisms and drug targets for benign prostatic hyperplasia: a multi-omics Mendelian randomization study. Sci Rep 2024; 14:23120. [PMID: 39367121 PMCID: PMC11452698 DOI: 10.1038/s41598-024-73466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) as a common geriatric disease in urology, the incidence and prevalence are rapidly increasing with the aging society, prompting an urgent need for effective prevention and treatment of BPH. However, limited therapeutic efficacy and higher risk of complications result in the treatment of BPH remaining challenging. The unclear pathogenic mechanism also hampers further exploration of therapeutic approaches for BPH. In this study, we used multi-omics methods to integrate genomics, transcriptomics, immunomics, and metabolomics data and identify biomolecules associated with BPH. We performed transcriptomic imputation, summary data-based Mendelian randomization (SMR), joint/conditional analysis, colocalization analysis, and FOCUS to explore high-confidence genes associated with BPH in blood and prostate tissue. Subsequently, three-step SMR was used to identify the DNA methylation sites regulating high-confidence genes to improve the pathogenic pathways of BPH. We also used cis-instruments of druggable genes to conduct SMR analysis to find potential drug targets for BPH. Finally, we used MR analysis to explore the immune pathways and metabolomics related to BPH. Multiple analytical methods identified BTN3A2 (Blood: TWAS Z score = 5.02912, TWAS P = 4.93 × 10-7; Prostate: TWAS Z score = 4.89, TWAS P = 1.01 × 10-6) and C4A (Blood: TWAS Z score = 4.90754, TWAS P = 9.22 × 10-7; Prostate: TWAS Z score = 5.084, TWAS P = 3.70 × 10-7) as high-confidence genes for BPH and identified the cg14345882-BTN3A2-BPH pathogenic pathway. We also used druggable gene data to identify 30 promising therapeutic target genes, including BTN3A2 and C4A. For MR analysis of immune pathways, we identified immune cell surface molecules as well as the inflammatory factor IL-17 (OR = 1.25, 95% CI = 1.09-1.43, PFDR = 0.12, Maximum likelihood) as risk factors for BPH. In addition, we found that disulfide levels of cysteinylglycine (OR = 1.11, 95% CI = 1.05-1.18, P = 5.18 × 10-4, Weighted median), oxidation levels of cysteinylglycine (OR = 1.09, 95% CI = 1.04-1.14, P = 3.87 × 10-4, Weighted median), and sebacate levels (OR = 1.05, 95% CI = 1.02-1.08, P = 3.0 × 10-4, Maximum likelihood) increase the risk of BPH. This multi-omics study explored biomolecules associated with BPH, improved the pathogenic pathways of BPH, and identified promising therapeutic targets. Our results provide evidence for future studies aimed at developing appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinyi Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zerui Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaofa Yin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cai Tang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yushi He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qi Ling
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhongli Huang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Li H, Li W, Li D, Yuan L, Xu Y, Su P, Wu L, Zhang Z. Based on systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for diabetes. Front Endocrinol (Lausanne) 2024; 15:1366290. [PMID: 38915894 PMCID: PMC11194396 DOI: 10.3389/fendo.2024.1366290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Diabetes and its complications cause a heavy burden of disease worldwide. In recent years, Mendelian randomization (MR) has been widely used to discover the pathogenesis and epidemiology of diseases, as well as to discover new therapeutic targets. Therefore, based on systematic "druggable" genomics, we aim to identify new therapeutic targets for diabetes and analyze its pathophysiological mechanisms to promote its new therapeutic strategies. Material and method We used double sample MR to integrate the identified druggable genomics to evaluate the causal effect of quantitative trait loci (eQTLs) expressed by druggable genes in blood on type 1 and 2 diabetes (T1DM and T2DM). Repeat the study using different data sources on diabetes and its complications to verify the identified genes. Not only that, we also use Bayesian co-localization analysis to evaluate the posterior probabilities of different causal variations, shared causal variations, and co-localization probabilities to examine the possibility of genetic confounding. Finally, using diabetes markers with available genome-wide association studies data, we evaluated the causal relationship between established diabetes markers to explore possible mechanisms. Result Overall, a total of 4,477 unique druggable genes have been gathered. After filtering using methods such as Bonferroni significance (P<1.90e-05), the MR Steiger directionality test, Bayesian co-localization analysis, and validation with different datasets, Finally, 7 potential druggable genes that may affect the results of T1DM and 7 potential druggable genes that may affect the results of T2DM were identified. Reverse MR suggests that C4B may play a bidirectional role in the pathogenesis of T1DM, and none of the other 13 target genes have a reverse causal relationship. And the 7 target genes in T2DM may each affect the biomarkers of T2DM to mediate the pathogenesis of T2DM. Conclusion This study provides genetic evidence supporting the potential therapeutic benefits of targeting seven druggable genes, namely MAP3K13, KCNJ11, REG4, KIF11, CCNE2, PEAK1, and NRBP1, for T2DM treatment. Similarly, targeting seven druggable genes, namely ERBB3, C4B, CD69, PTPN22, IL27, ATP2A1, and LT-β, has The potential therapeutic benefits of T1DM treatment. This will provide new ideas for the treatment of diabetes and also help to determine the priority of drug development for diabetes.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Urology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongyang Li
- Internal Medicine-Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yuan
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Yucheng Xu
- Department of Critical Care Medicine, Jinan Central Hospital, Jinan, China
| | - Pengtao Su
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Liqiang Wu
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
3
|
Zdziarski P, Gamian A. Role of B Cells beyond Antibodies in HBV-Induced Oncogenesis: Fulminant Cancer in Common Variable Immunodeficiency-Clinical and Immunotransplant Implications with a Review of the Literature. Diseases 2024; 12:80. [PMID: 38785735 PMCID: PMC11119213 DOI: 10.3390/diseases12050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously introduced clinical model of host-virus interaction (i.e., infectious process in immunodeficiency) for analysis of B cells and the specific IgG role (an observational study of a CVID patient who received intravenous immunoglobulin (IVIG). Suddenly, the patient deteriorated and a positive results of for HBs and HBV-DNA (369 × 106 copies) were detected. Despite lamivudine therapy and IVIG escalation (from 0.3 to 0.4 g/kg), CT showed an 11 cm intrahepatic tumor (hepatocellular carcinoma). Anti-HBs were positive in time-lapse analysis (range 111-220 IU/mL). Replacement therapy intensification was complicated by an immune complex disease with renal failure. Fulminant HCC in CVID and the development of a tumor as the first sign is of interest. Unfortunately, treatment with hepatitis B immune globulins (HBIG) plays a major role in posttransplant maintenance therapy. Anti-HB substitution has not been proven to be effective, oncoprotective, nor safe. Therefore, immunosuppression in HBV-infected recipients should be carefully minimized, and patient selection more precise with the exclusion of HBV-positive donors. Our clinical model showed an HCC pathway with important humoral host factors, contrary to epidemiological/cohort studies highlighting risk factors only (e.g., chronic hepatitis). The lack of cell cooperation as well as B cell deficiency observed in CVID play a crucial role in high HBV replication, especially in carcinogenesis.
Collapse
Affiliation(s)
- Przemyslaw Zdziarski
- Lower Silesian Center for Cellular Transplantation, 53-439 Wroclaw, Poland
- Clinical Research Center PRION, 50-385 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland;
| |
Collapse
|
4
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Zhou Y, Song L, Li H. Full resolution HLA and KIR genes annotation for human genome assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576452. [PMID: 38328160 PMCID: PMC10849470 DOI: 10.1101/2024.01.20.576452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The HLA (Human Leukocyte Antigen) genes and the KIR (Killer cell Immunoglobulin-like Receptor) genes are critical to immune responses and are associated with many immune-related diseases. Located in highly polymorphic regions, they are hard to be studied with traditional short-read alignment-based methods. Although modern long-read assemblers can often assemble these genes, using existing tools to annotate HLA and KIR genes in these assemblies remains a non-trivial task. Here, we describe Immuannot, a new computation tool to annotate the gene structures of HLA and KIR genes and to type the allele of each gene. Applying Immuannot to 56 regional and 212 whole-genome assemblies from previous studies, we annotated 9,931 HLA and KIR genes and found that almost half of these genes, 4,068, had novel sequences compared to the current Immuno Polymorphism Database (IPD). These novel gene sequences were represented by 2,664 distinct alleles, some of which contained non-synonymous variations resulting in 92 novel protein sequences. We demonstrated the complex haplotype structures at the two loci and reported the linkage between HLA/KIR haplotypes and gene alleles. We anticipate that Immuannot will speed up the discovery of new HLA/KIR alleles and enable the association of HLA/KIR haplotype structures with clinical outcomes in the future.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Li Song
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
7
|
Borbye-Lorenzen N, Zhu Z, Agerbo E, Albiñana C, Benros ME, Bian B, Børglum AD, Bulik CM, Debost JCPG, Grove J, Hougaard DM, McRae AF, Mors O, Mortensen PB, Musliner KL, Nordentoft M, Petersen LV, Privé F, Sidorenko J, Skogstrand K, Werge T, Wray NR, Vilhjálmsson BJ, McGrath JJ. The correlates of neonatal complement component 3 and 4 protein concentrations with a focus on psychiatric and autoimmune disorders. CELL GENOMICS 2023; 3:100457. [PMID: 38116117 PMCID: PMC10726496 DOI: 10.1016/j.xgen.2023.100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Complement components have been linked to schizophrenia and autoimmune disorders. We examined the association between neonatal circulating C3 and C4 protein concentrations in 68,768 neonates and the risk of six mental disorders. We completed genome-wide association studies (GWASs) for C3 and C4 and applied the summary statistics in Mendelian randomization and phenome-wide association studies related to mental and autoimmune disorders. The GWASs for C3 and C4 protein concentrations identified 15 and 36 independent loci, respectively. We found no associations between neonatal C3 and C4 concentrations and mental disorders in the total sample (both sexes combined); however, post-hoc analyses found that a higher C3 concentration was associated with a reduced risk of schizophrenia in females. Mendelian randomization based on C4 summary statistics found an altered risk of five types of autoimmune disorders. Our study adds to our understanding of the associations between C3 and C4 concentrations and subsequent mental and autoimmune disorders.
Collapse
Affiliation(s)
- Nis Borbye-Lorenzen
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Zhihong Zhu
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark.
| | - Esben Agerbo
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Integrated Register-based Research, Aarhus University, CIRRAU, 8210 Aarhus V, Denmark
| | - Clara Albiñana
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark
| | - Michael E Benros
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Beilei Bian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean-Christophe Philippe Goldtsche Debost
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; Department of Psychosis, Aarhus University Hospital Skejby, Aarhus Nord, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark; Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark; Bioinformatics Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Preben Bo Mortensen
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Integrated Register-based Research, Aarhus University, CIRRAU, 8210 Aarhus V, Denmark
| | - Katherine L Musliner
- Department of Affective Disorders, Aarhus University and Aarhus University Hospital -Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Liselotte V Petersen
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark
| | - Florian Privé
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, University of Copenhagen, 2200 Copenhagen N, Denmark; Lundbeck Center for Geogenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | - Bjarni J Vilhjálmsson
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Bioinformatics Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - John J McGrath
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD 4076, Australia.
| |
Collapse
|
8
|
Kalinowski A, Tian L, Pattni R, Ollila H, Khan M, Manko C, Silverman M, Ma M, Columbo L, Farhadian B, Swedo S, Murphy T, Johnson M, Fernell E, Gillberg C, Thienemann M, Mellins ED, Levinson DF, Urban AE, Frankovich J. Evaluation of C4 Gene Copy Number in Pediatric Acute Neuropsychiatric Syndrome. Dev Neurosci 2023; 45:315-324. [PMID: 37379808 DOI: 10.1159/000531707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) is an abrupt-onset neuropsychiatric disorder. PANS patients have an increased prevalence of comorbid autoimmune illness, most commonly arthritis. In addition, an estimated one-third of PANS patients present with low serum C4 protein, suggesting decreased production or increased consumption of C4 protein. To test the possibility that copy number (CN) variation contributes to risk of PANS illness, we compared mean total C4A and total C4B CN in ethnically matched subjects from PANS DNA samples and controls (192 cases and 182 controls). Longitudinal data from the Stanford PANS cohort (n = 121) were used to assess whether the time to juvenile idiopathic arthritis (JIA) or autoimmune disease (AI) onset was a function of total C4A or C4B CN. Lastly, we performed several hypothesis-generating analyses to explore the correlation between individual C4 gene variants, sex, specific genotypes, and age of PANS onset. Although the mean total C4A or C4B CN did not differ in PANS compared to controls, PANS patients with low C4B CN were at increased risk for subsequent JIA diagnosis (hazard ratio = 2.7, p value = 0.004). We also observed a possible increase in risk for AI in PANS patients and a possible correlation between lower C4B and PANS age of onset. An association between rheumatoid arthritis and low C4B CN has been reported previously. However, patients with PANS develop different types of JIA: enthesitis-related arthritis, spondyloarthritis, and psoriatic arthritis. This suggests that C4B plays a role that spans these arthritis types.
Collapse
Affiliation(s)
- Agnieszka Kalinowski
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Lu Tian
- Stanford University Department of Biomedical Data Science, Stanford, California, USA
| | - Reenal Pattni
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
- Stanford University Department of Genetics, Stanford, California, USA
| | - Hanna Ollila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Maroof Khan
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Cindy Manko
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Melissa Silverman
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Meiqian Ma
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Laurie Columbo
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Bahare Farhadian
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Susan Swedo
- National Institutes of Health, Pediatrics and Developmental Neuroscience Branch, Bethesda, Maryland, USA
| | - Tanya Murphy
- Department of Pediatrics and Department of Psychiatry and Neurosciences, University of South Florida, Tampa, Florida, USA
- John Hopkins Medicine, Baltimore, Maryland, USA
| | - Mats Johnson
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | | | - Margo Thienemann
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Elizabeth D Mellins
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| | - Douglas F Levinson
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
| | - Alexander E Urban
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, California, USA
- Stanford University Department of Genetics, Stanford, California, USA
| | - Jennifer Frankovich
- Immune Behavioral Health Clinic, Stanford University Department of Pediatrics, Stanford, California, USA
| |
Collapse
|
9
|
Veremeyko T, Jiang R, He M, Ponomarev ED. Complement C4-deficient mice have a high mortality rate during PTZ-induced epileptic seizures, which correlates with cognitive problems and the deficiency in the expression of Egr1 and other immediate early genes. Front Cell Neurosci 2023; 17:1170031. [PMID: 37234916 PMCID: PMC10206007 DOI: 10.3389/fncel.2023.1170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Complement system plays an important role in the immune defense against pathogens; however, recent studies demonstrated an important role of complement subunits C1q, C4, and C3 in normal functions of the central nervous system (CNS) such as non-functional synapse elimination (synapse pruning), and during various neurologic pathologies. Humans have two forms of C4 protein encoded by C4A and C4B genes that share 99.5% homology, while mice have only one C4B gene that is functionally active in the complement cascade. Overexpression of the human C4A gene was shown to contribute to the development of schizophrenia by mediating extensive synapse pruning through the activation C1q-C4-C3 pathway, while C4B deficiency or low levels of C4B expression were shown to relate to the development of schizophrenia and autism spectrum disorders possibly via other mechanisms not related to synapse elimination. To investigate the potential role of C4B in neuronal functions not related to synapse pruning, we compared wildtype (WT) mice with C3- and C4B- deficient animals for their susceptibility to pentylenetetrazole (PTZ)- induced epileptic seizures. We found that C4B (but not C3)-deficient mice were highly susceptible to convulsant and subconvulsant doses of PTZ when compared to WT controls. Further gene expression analysis revealed that in contrast to WT or C3-deficient animals, C4B-deficient mice failed to upregulate expressions of multiple immediate early genes (IEGs) Egrs1-4, c-Fos, c-Jus, FosB, Npas4, and Nur77 during epileptic seizures. Moreover, C4B-deficient mice had low levels of baseline expression of Egr1 on mRNA and protein levels, which was correlated with the cognitive problems of these animals. C4-deficient animals also failed to upregulate several genes downstream of IEGs such as BDNF and pro-inflammatory cytokines IL-1β, IL-6, and TNF. Taken together, our study demonstrates a new role of C4B in the regulation of expression of IEGs and their downstream targets during CNS insults such as epileptic seizures.
Collapse
Affiliation(s)
- Tatyana Veremeyko
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Mingliang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Eugene D. Ponomarev
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Zhou J, Wang ZB, Sun Y, Fu Y, Li D, Tan L. Cerebrospinal Fluid Complement 4 Levels Were Associated with Alzheimer's Disease Pathology and Cognition in Non-Demented Elderly. J Alzheimers Dis 2023; 96:1071-1081. [PMID: 38007670 DOI: 10.3233/jad-230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Numerous studies have shown that the complement system plays an important role in Alzheimer's disease (AD). However, whether complement 4 (C4) protein in cerebrospinal fluid (CSF) was associated with AD pathology, especially in the early stage of AD, is still unclear. OBJECTIVE We aimed to explore the association of CSF C4 with AD pathology and cognition in the preclinical AD. METHODS The study included a total of 287 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Based on the A/T scheme, they were divided into four groups to access the changes of CSF C4 in the preclinical AD. Linear regression models were used to test the associations between CSF C4 and AD core biomarkers, namely Aβ42, P-tau, and T-tau. RESULTS The level of CSF C4 decreased in the A + T- group compared with the A-T- group (p = 0.04) and it increased in the A-T+ group compared to the A + T- group (p = 0.01). In pooled samples, C4 was significantly associated with AD core biomarkers (all p < 0.05), but only in the A + group after stratification according to the A/T scheme. Furthermore, CSF C4 levels at baseline were associated with longitudinal cognitive changes. CONCLUSIONS Our results showed that CSF C4 levels changed dynamically in the preclinical AD, and that the responses of CSF C4 to brain Aβ pathology, tau pathology and neurodegeneration were found only in the presence of amyloid plaques, both of which indicates the complex link between C4 and AD.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Da Li
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Kerick M, Acosta-Herrera M, Simeón-Aznar CP, Callejas JL, Assassi S, Proudman SM, Nikpour M, Hunzelmann N, Moroncini G, de Vries-Bouwstra JK, Orozco G, Barton A, Herrick AL, Terao C, Allanore Y, Fonseca C, Alarcón-Riquelme ME, Radstake TRDJ, Beretta L, Denton CP, Mayes MD, Martin J. Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis. NPJ Genom Med 2022; 7:57. [PMID: 36198672 PMCID: PMC9534873 DOI: 10.1038/s41525-022-00327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.
Collapse
Affiliation(s)
- Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain.
| | | | | | - Shervin Assassi
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susanna M Proudman
- Rheumatology Unit, Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Science, Università Politecnica delle Marche e Ospedali Riuniti, Ancona, Italy
| | | | - Gisela Orozco
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Anne Barton
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Northern care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yannick Allanore
- Department of Rheumatology A, Hospital Cochin, Paris, Île-de-France, France
| | - Carmen Fonseca
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Marta Eugenia Alarcón-Riquelme
- Center for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Christopher P Denton
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Maureen D Mayes
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
13
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
14
|
Lee JE, Dan K, Kim HJ, Kim YM, Park KH. Plasma proteomic analysis to identify potential biomarkers of histologic chorioamnionitis in women with preterm premature rupture of membranes. PLoS One 2022; 17:e0270884. [PMID: 35797368 PMCID: PMC9262229 DOI: 10.1371/journal.pone.0270884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/18/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction
To identify potential biomarkers in the plasma that could predict histologic chorioamnionitis (HCA) in women with preterm premature rupture of membranes (PPROM), using shotgun and targeted proteomic analyses.
Methods
This retrospective cohort study included 78 singleton pregnant women with PPROM (24–34 gestational weeks) who delivered within 96 h of blood sampling. Maternal plasma samples were analyzed by label-free liquid chromatography-tandem mass spectrometry for proteome profiling in a nested case-control study design (HCA cases vs. non-HCA controls [n = 9 each]). Differential expression of 12 candidate proteins was assessed by multiple reaction monitoring-mass spectrometry (MRM-MS) analysis in individual plasma samples from cases and controls matched by gestational age at sampling (n = 40, cohort 1). A validation study was further performed in an independent study group (n = 38, cohort 2) using ELISA and turbidimetric immunoassay for three differentially expressed proteins.
Results
Shotgun proteomics analyses yielded 18 proteins that were differentially expressed (P < 0.05) between HCA cases and non-HCA controls. MRM-MS analysis of 12 differentially expressed proteins further revealed that the CRP, C4A, and SAA4 levels were significantly increased in women with HCA. A multi-marker panel comprising plasma SAA4 and C4A showed enhanced potential for differentiating HCA from non-HCA women (area under the curve = 0.899). Additional validation of these findings by ELISA assays revealed that the CRP levels were significantly higher in women with HCA than in those without HCA, whereas the plasma levels of C4A and SAA4 did not significantly differ between the two groups.
Conclusions
Plasma C4A, SAA4, and CRP were identified as potential biomarkers for detecting HCA in women with PPROM, based on targeted and shotgun proteomic analyses, showing good accuracy when used as a combined dual-biomarker panel (C4A and SAA4). Nevertheless, ELISA validation of these proteins, except for CRP, may not yield clinically useful markers for predicting HCA.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyeon Ji Kim
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Mi Kim
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| |
Collapse
|
15
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Zhou D, Rudnicki M, Chua GT, Lawrance SK, Zhou B, Drew JL, Barbar-Smiley F, Armstrong TK, Hilt ME, Birmingham DJ, Passler W, Auletta JJ, Bowden SA, Hoffman RP, Wu YL, Jarjour WN, Mok CC, Ardoin SP, Lau YL, Yu CY. Human Complement C4B Allotypes and Deficiencies in Selected Cases With Autoimmune Diseases. Front Immunol 2021; 12:739430. [PMID: 34764957 PMCID: PMC8577214 DOI: 10.3389/fimmu.2021.739430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Human complement C4 is one of the most diverse but heritable effectors for humoral immunity. To help understand the roles of C4 in the defense and pathogenesis of autoimmune and inflammatory diseases, we determined the bases of polymorphisms including the frequent genetic deficiency of C4A and/or C4B isotypes. We demonstrated the diversities of C4A and C4B proteins and their gene copy number variations (CNVs) in healthy subjects and patients with autoimmune disease, such as type 1 diabetes, systemic lupus erythematosus (SLE) and encephalitis. We identified subjects with (a) the fastest migrating C4B allotype, B7, or (b) a deficiency of C4B protein caused by genetic mutation in addition to gene copy-number variation. Those variants and mutants were characterized, sequenced and specific techniques for detection developed. Novel findings were made in four case series. First, the amino acid sequence determinant for C4B7 was likely the R729Q variation at the anaphylatoxin-like region. Second, in healthy White subject MS630, a C-nucleotide deletion at codon-755 led to frameshift mutations in his single C4B gene, which was a private mutation. Third, in European family E94 with multiplex lupus-related mortality and low serum C4 levels, the culprit was a recurrent haplotype with HLA-A30, B18 and DR7 that segregated with two defective C4B genes and identical mutations at the donor splice site of intron-28. Fourth, in East-Asian subject E133P with anti-NMDA receptor encephalitis, the C4B gene had a mutation that changed tryptophan-660 to a stop-codon (W660x), which was present in a haplotype with HLA-DRB1*04:06 and B*15:27. The W660x mutation is recurrent among East-Asians with a frequency of 1.5% but not detectable among patients with SLE. A meticulous annotation of C4 sequences revealed clusters of variations proximal to sites for protein processing, activation and inactivation, and binding of interacting molecules.
Collapse
Affiliation(s)
- Danlei Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Simon K Lawrance
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Bi Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joanne L Drew
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Fatima Barbar-Smiley
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Taylor K Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, United States
| | - Miranda E Hilt
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Daniel J Birmingham
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Werner Passler
- Division of Nephrology and Dialysis, City Hospital, Bolzano, Italy
| | - Jeffrey J Auletta
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sasigarn A Bowden
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Robert P Hoffman
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Yee Ling Wu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Wael N Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong, SAR China
| | - Stacy P Ardoin
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Chack Yung Yu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Wang H, Liu M. Complement C4, Infections, and Autoimmune Diseases. Front Immunol 2021; 12:694928. [PMID: 34335607 PMCID: PMC8317844 DOI: 10.3389/fimmu.2021.694928] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Complement C4, a key molecule in the complement system that is one of chief constituents of innate immunity for immediate recognition and elimination of invading microbes, plays an essential role for the functions of both classical (CP) and lectin (LP) complement pathways. Complement C4 is the most polymorphic protein in complement system. A plethora of research data demonstrated that individuals with C4 deficiency are prone to microbial infections and autoimmune disorders. In this review, we will discuss the diversity of complement C4 proteins and its genetic structures. In addition, the current development of the regulation of complement C4 activation and its activation derivatives will be reviewed. Moreover, the review will provide the updates on the molecule interactions of complement C4 under the circumstances of bacterial and viral infections, as well as autoimmune diseases. Lastly, more evidence will be presented to support the paradigm that links microbial infections and autoimmune disorders under the condition of the deficiency of complement C4. We provide such an updated overview that would shed light on current research of complement C4. The newly identified targets of molecular interaction will not only lead to novel hypotheses on the study of complement C4 but also assist to propose new strategies for targeting microbial infections, as well as autoimmune disorders.
Collapse
Affiliation(s)
- Hongbin Wang
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States.,Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, Elk Grove, CA, United States.,Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Mengyao Liu
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
18
|
Carrozza C, Foca L, De Paolis E, Concolino P. Genes and Pseudogenes: Complexity of the RCCX Locus and Disease. Front Endocrinol (Lausanne) 2021; 12:709758. [PMID: 34394006 PMCID: PMC8362596 DOI: 10.3389/fendo.2021.709758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Copy Number Variations (CNVs) account for a large proportion of human genome and are a primary contributor to human phenotypic variation, in addition to being the molecular basis of a wide spectrum of disease. Multiallelic CNVs represent a considerable fraction of large CNVs and are strictly related to segmental duplications according to their prevalent duplicate alleles. RCCX CNV is a complex, multiallelic and tandem CNV located in the major histocompatibility complex (MHC) class III region. RCCX structure is typically defined by the copy number of a DNA segment containing a series of genes - the serine/threonine kinase 19 (STK19), the complement 4 (C4), the steroid 21-hydroxylase (CYP21), and the tenascin-X (TNX) - lie close to each other. In the Caucasian population, the most common RCCX haplotype (69%) consists of two segments containing the genes STK19-C4A-CYP21A1P-TNXA-STK19B-C4B-CYP21A2-TNXB, with a telomere-to-centromere orientation. Nonallelic homologous recombination (NAHR) plays a key role into the RCCX genetic diversity: unequal crossover facilitates large structural rearrangements and copy number changes, whereas gene conversion mediates relatively short sequence transfers. The results of these events increased the RCCX genetic diversity and are responsible of specific human diseases. This review provides an overview on RCCX complexity pointing out the molecular bases of Congenital Adrenal Hyperplasia (CAH) due to CYP21A2 deficiency, CAH-X Syndrome and disorders related to CNV of complement component C4.
Collapse
Affiliation(s)
- Cinzia Carrozza
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Laura Foca
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
| | - Elisa De Paolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
| | - Paola Concolino
- Dipartimento di Scienze di Laboratorio e Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Roma, Italy
- *Correspondence: Paola Concolino,
| |
Collapse
|
19
|
Wang Y, Zhou S, Wang D, Wei T, Zhu J, Li Z. Complement C4-A and Plasminogen as Potential Biomarkers for Prediction of Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2021; 12:737638. [PMID: 34803909 PMCID: PMC8603925 DOI: 10.3389/fendo.2021.737638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early diagnosis and therapy of papillary thyroid carcinoma (PTC) is essential for reducing recurrence and improving the long-term survival. In this study, we aimed to investigate the proteome profile of plasma and screen unique proteins which could be used as a biomarker for predicting PTC. METHODS Serum samples were collected from 29 PTC patients and 29 nodular goiter (NG) patients. Five PTC serum samples and five NG serum samples were selected for proteome profiles by proteomics. Eight proteins in PTC and NG serum samples were selected for confirmation by enzyme-linked immunosorbent assay analysis. Receiver operating characteristic curves was used to evaluate the diagnostic value of potential biomarkers. RESULTS Complement C4-A (C4A) and plasminogen (PLG) were significantly lower in serum samples of PTC patients compared with NG patients. C4A was observed to have excellent diagnostic accuracy for PTC, with a sensitivity of 91.67% and specificity of 83.33%. The diagnostic value of PLG for PTC was demonstrated by a sensitivity at 87.50% and specificity at 75.00%. The AUC for C4A and PLG was 0.97 ± 0.02 and 0.89 ± 0.05. CONCLUSION C4A and PLG appeared to be excellent potential biomarkers for the prediction of PTC.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shengliang Zhou
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dun Wang
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Zhihui Li,
| |
Collapse
|
20
|
Li L, Shen Y, Xu X, Yang W, Li J. Fish complement C4 gene evolution and gene/protein regulatory network analyses and simulated stereo conformation of C4-MASP-2 protein complex. FISH & SHELLFISH IMMUNOLOGY 2020; 107:54-63. [PMID: 32980531 DOI: 10.1016/j.fsi.2020.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Complement C4 is a central protein by acting as pivotal molecule in the activation of the complement system. More than a decade ago, C4 gene duplication had been found in several species including fish, revealing the evolutionary origin of C4 gene. However, the evolutionary pattern and systematic function of C4 are still limited. In this study, C4 D and H types in different species groups were completely diverged. The codon usage of C4 H type in higher vertebrates were much closer to their own genome environment, in contrast to lower vertebrates, suggesting that the evolution may provide the dynamic for homogeneous codon usage between specific gene and genome. Multiple C4 sequence alignment showed that the sequences were conserved among different species. However, sequence similarity was obviously different between species C4 D and H type. Negative selection pressure was found on C4 gene evolution and it may be one of the possible reasons for the sequence broad similarity and conservation among interspecies. Proteins from C4 protein-protein interaction (PPI) network were enriched in more hematopoiesis, infections, diseases and immune-related pathways in human than zebrafish. The result suggested that the functional complexities of C4 isotypes are distinct in species from different evolutionary positions. The simulated C4 protein structures between human and grass carp shared structural similarity and the stereo structures of grass carp C4-MASP-2 protein complexes were further simulated according to a study of human. These results suggested that the interaction between C4 and MASP-2 proteins may also exist in grass carp. Our results can provide an insight for the evolutionary process of C4 and better understanding to the potential mechanism of interaction between C4 and MASP-2 in fish species.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
21
|
Simoni L, Presumey J, van der Poel CE, Castrillon C, Chang SE, Utz PJ, Carroll MC. Complement C4A Regulates Autoreactive B Cells in Murine Lupus. Cell Rep 2020; 33:108330. [PMID: 33147456 PMCID: PMC7927756 DOI: 10.1016/j.celrep.2020.108330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease mediated by pathogenic autoantibodies. While complement protein C4 is associated with SLE, its isoforms (C4A and C4B) are not equal in their impact. Despite being 99% homologous, genetic studies identified C4A as more protective than C4B. By generating gene-edited mouse strains expressing either human C4A or C4B and crossing these with the 564lgi lupus strain, we show that, overall, C4A-like 564Igi mice develop less humoral autoimmunity than C4B-like 564Igi mice. This includes a decrease in the number of GCs, autoreactive B cells, autoantibodies, and memory B cells. The higher efficiency of C4A in inducing self-antigen clearance is associated with the follicular exclusion of autoreactive B cells. These results explain how the C4A isoform is protective in lupus and suggest C4A as a possible replacement therapy in lupus. Simoni et al. address a long-standing question about how complement C4A and C4B isoforms differ in function in vivo in autoimmunity. They find that C4A leads to an increased protection in humoral autoimmunity relative to C4B. Autoantibody diversity is likewise dependent on the C4 protein isotype.
Collapse
Affiliation(s)
- Léa Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jessy Presumey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah E Chang
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology, and Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Complement C4 Gene Copy Number Variation Genotyping by High Resolution Melting PCR. Int J Mol Sci 2020; 21:ijms21176309. [PMID: 32878183 PMCID: PMC7504122 DOI: 10.3390/ijms21176309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Complement C4 gene copy number variation plays an important role as a determinant of genetic susceptibility to common diseases, such as systemic lupus erythematosus, schizophrenia, rheumatoid arthritis, and infectious diseases. This study aimed to develop an assay for the quantification of copy number variations in the C4 locus. METHODS the assay was based on a gene ratio analysis copy enumeration (GRACE) PCR combined with high resolution melting (HRM) PCR. The test was optimized using samples of a known genotype and validated with 72 DNA samples from healthy blood donors. RESULTS to validate the assay, standard curves were generated by plotting the C4/RP1 ratio values against copy number variation (CNV) for each gene, using genomic DNA with known C4 CNV. The range of copy numbers in control individuals was comparable to distributions observed in previous studies of European descent. CONCLUSIONS the method herein described significantly simplifies C4 CNV diagnosis to validate the assay.
Collapse
|
23
|
Tyagi RK, Li J, Jacobse J, Snapper SB, Shouval DS, Goettel JA. Humanized mouse models of genetic immune disorders and hematological malignancies. Biochem Pharmacol 2020; 174:113671. [PMID: 31634456 PMCID: PMC7050416 DOI: 10.1016/j.bcp.2019.113671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
The immune system is quite remarkable having both the ability to tolerate innocuous and self-antigens while possessing a robust capacity to recognize and eradicate infectious pathogens and foreign entities. The genetics that encode this delicate balancing act include multiple genes and specialized cell types. Over the past several years, whole exome and whole genome sequencing has uncovered the genetics driving many human immune-mediated diseases including monogenic disorders and hematological malignancies. With the advent of genome editing technologies, the ability to correct genetic immune defects in autologous cells holds great promise for a number of conditions. Since assessment of novel therapeutic strategies have been difficult in mice, in recent years, immunodeficient mice capable of engrafting human cells and tissue have been developed and utilized for a variety of research applications. In this review, we discuss immune-humanized mice as a research tool to study human immunobiology and genetic immune disorders in vivo and the promise of future applications.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
25
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
26
|
Zai CC, Tiwari AK, Zai GC, Freeman N, Pouget JG, Greco J, Tampakeras M, Shaikh SA, Herbert D, Emmerson H, Cheema SY, Braganza N, Müller DJ, Voineskos AN, Remington G, Kennedy JL. Association Study of the Complement Component C4 Gene in Tardive Dyskinesia. Front Pharmacol 2019; 10:1339. [PMID: 31849639 PMCID: PMC6901959 DOI: 10.3389/fphar.2019.01339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Tardive dyskinesia (TD) is a movement disorder that may develop in schizophrenia patients being treated long-term with antipsychotic medication. TD interferes with voluntary movements and leads to stigma, and can be associated with treatment non-adherence. The etiology of TD is unclear, but it appears to have a genetic component. There is emerging evidence of immune dysregulation in TD. In the current study, we set out to investigate the complex schizophrenia-associated complement component 4 (C4) gene for possible association with TD occurrence and TD severity as assessed by the Abnormal Involuntary Movement Scale (AIMS) in a sample of 129 schizophrenia patients of European ancestry. We have genotyped the copy numbers of long and short forms of C4A and C4B gene variants in 129 European ancestry patients with schizophrenia or schizoaffective disorder. We did not find predicted C4A or C4B expression to be nominally associated with TD risk or severity. However, we found the number of copies of C4BL to be nominally associated with TD severity (p = 0.020).
Collapse
Affiliation(s)
- Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jennie G Pouget
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James Greco
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Maria Tampakeras
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sajid A Shaikh
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Deanna Herbert
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Heather Emmerson
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sheraz Y Cheema
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nicole Braganza
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Matuszewska E, Matysiak J, Bręborowicz A, Olejniczak K, Kycler Z, Kokot ZJ, Matysiak J. Proteomic features characterization of Hymenoptera venom allergy. Allergy Asthma Clin Immunol 2019; 15:77. [PMID: 31798646 PMCID: PMC6881982 DOI: 10.1186/s13223-019-0387-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Hymenoptera venom allergy is one of the most frequent causes of anaphylaxis. In its most severe form, the reaction to wasp and honey bee stings may be life-threatening. Therefore, immediate and proper diagnosis of venom allergy and implementation of suitable therapy are extremely important. Broadening the knowledge on the mechanism of the allergic reaction may contribute to the improvement of both diagnostic and treatment methods. Thus, this study aimed to discover changes in protein expression in serum of patients allergic to Hymenoptera (wasp and honeybee) venom and to point out proteins and peptides involved in the allergic inflammation. Methods Serum proteomic patterns typical to allergic patients and healthy volunteers were obtained with MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometer. The spectra were processed, analyzed and compared using advanced bioinformatics tools. The discriminative peaks were subjected to identification with liquid chromatography coupled with tandem mass spectrometry. Results This methodology allowed for the identification of four features differentiating between allergy and control groups. They were: fibrinogen alpha chain, coagulation factor XIII chain A, complement C4-A, and inter-alpha-trypsin inhibitor heavy chain H4. All of these proteins are involved in allergic inflammatory response. Conclusions Extending the knowledge of the Hymenoptera venom sensitization will contribute to the development of novel, sensitive and specific methods for quick and unambiguous allergy diagnosis. Understanding the basis of the allergy at the proteomic level will support the improvement of preventive and therapeutic measures.
Collapse
Affiliation(s)
- Eliza Matuszewska
- 1Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Joanna Matysiak
- Medical Faculty, Higher Vocational State School, 13 Kaszubska Street, 62-800 Kalisz, Poland
| | - Anna Bręborowicz
- 3Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznan, Poland
| | - Katarzyna Olejniczak
- 3Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznan, Poland
| | - Zdzisława Kycler
- 3Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznan, Poland
| | - Zenon J Kokot
- 1Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Jan Matysiak
- 1Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| |
Collapse
|
28
|
Meng F, Zhang Y, Zhou J, Li M, Shi G, Wang R. Do the toll-like receptors and complement systems play equally important roles in freshwater adapted Dolly Varden char (Salvelinus malma)? FISH & SHELLFISH IMMUNOLOGY 2019; 86:581-598. [PMID: 30266607 DOI: 10.1016/j.fsi.2018.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Unlike the normal anadromous lifestyle, Chinese native Dolly Varden char (Salvelinus malma) is locked in land and lives in fresh water lifetime. To explore the effect of freshwater adaption on its immune system, we constructed a pooled cDNA library of hepatopancreas and spleen of Chinese freshwater Dolly Varden char (S. malma). A total of 27,829 unigenes were generated from 31,233 high-quality transcripts and 17,670 complete open reading frames (ORF) were identified. Totally 25,809 unigenes were successfully annotated and it classified more native than adaptive immunity-associated genes, and more genes involved in toll-like receptor signal pathway than those in complement and coagulation cascades (51 vs 3), implying the relative more important role of toll-like receptors than the complement system under bacterial injection for the freshwater Dolly Varden char. These huge different numbers of TLR and complement system identified in freshwater Dolly Varden char probably caused by distinct evolution pressure patterns between fish TLR and complement system, representative by TLR3 and TLR5 as well as C4 and C6, respectively, which were under purifying and positively selecting pressure, respectively. Further seawater adaptation experiment and the comparison study with our library will no doubt be helpful to elucidate the effect of freshwater adaption of Chinese native Dolly Varden char on its immune system.
Collapse
Affiliation(s)
- Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuanyuan Zhang
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jianbo Zhou
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Clarke DJ, Chohan TW, Kassem MS, Smith KL, Chesworth R, Karl T, Kuligowski MP, Fok SY, Bennett MR, Arnold JC. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus. Schizophr Bull 2019; 45:339-349. [PMID: 29566220 PMCID: PMC6403066 DOI: 10.1093/schbul/sby029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Collapse
Affiliation(s)
- David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | | | - Kristie L Smith
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, Australia,Neuroscience Research Australia, Randwick, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Michael P Kuligowski
- Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, Australia
| | - Sandra Y Fok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia,To whom correspondence should be addressed; Brain and Mind Centre, Level 6, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia; tel: +61-29351-0812, e-mail:
| |
Collapse
|
30
|
Askar M, Sayer D, Wang T, Haagenson M, Spellman SR, Lee SJ, Madbouly A, Fleischhauer K, Hsu KC, Verneris MR, Thomas D, Zhang A, Sobecks RM, Majhail NS. Analysis of Single Nucleotide Polymorphisms in the Gamma Block of the Major Histocompatibility Complex in Association with Clinical Outcomes of Hematopoietic Cell Transplantation: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 2018; 25:664-672. [PMID: 30537553 DOI: 10.1016/j.bbmt.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
HLA haplotype mismatches have been associated with an elevated risk of acute graft-versus-host disease (aGVHD) in patients undergoing HLA-matched unrelated donor (URD) hematopoietic cell transplantation (HCT). The gamma block (GB) is located in the central MHC region between beta and delta blocks (encoding HLA-B and -C and HLA-DQ and -DR antigens, respectively) and contains numerous inflammatory and immune regulatory genes, including Bf, C2, and C4 genes. A single-center study showed that mismatches in SNPs c.2918+98G, c.3316C, and c.4385C in the GB block (C4 SNPs) were associated with higher risk of grade III-IV aGVHD. We investigated the association of GB SNP (GBS) mismatches with outcomes after 10/10 and 9/10 URD HCT (n = 714). The primary outcome was acute GVHD. Overall survival, disease-free survival, transplantation-related mortality, relapse, chronic GVHD, and engraftment were also analyzed. DNA samples were GBS genotyped by identifying 338 SNPs across 20 kb using the Illumina NGS platform. The overall 100-day incidence of aGVHD grade II-IV and II-IV were 41% and 17%, respectively. The overall incidence of matching at all GBSs tested and at the C4 SNPs were 23% and 81%, respectively. Neither being matched across all GB SNPs tested (versus mismatched) nor having a higher number of GBS mismatches was associated with transplantation outcomes. There was no association between C4 SNP mismatches and outcomes except for an unexpected significant association between having 2 C4 SNP mismatches and a higher hazard ratio (HR) for relapse (association seen in 15 patients only; HR, 3.38, 95% confidence interval, 1.75 to 6.53; P = .0003). These data do not support the hypothesis that mismatching at GB is associated with outcomes after HCT.
Collapse
Affiliation(s)
- Medhat Askar
- Baylor University Medical Center, Transplant Immunology, Dallas, Texas
| | - David Sayer
- Illumina, Conexio Genomics, Fremantle, Australia
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
| | | | - Abeer Madbouly
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital Essen, Essen, Germany
| | | | - Michael R Verneris
- Children's Hospital Colorado, University of Colorado School of Medicine, Pediatrics-Heme/Onc and Bone Marrow Transplantation, Aurora, Colorado
| | - Dawn Thomas
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Aiwen Zhang
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Ronald M Sobecks
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Navneet S Majhail
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| |
Collapse
|
31
|
Lao Q, Jardin MD, Jayakrishnan R, Ernst M, Merke DP. Complement component 4 variations may influence psychopathology risk in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Genet 2018; 137:955-960. [PMID: 30465166 DOI: 10.1007/s00439-018-1959-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
CYP21A2 defects result in congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by impaired adrenal steroidogenesis. CYP21A2 lies within the major histocompatibility complex in an area of the genome highly susceptible to genetic variation. Alterations in the neighboring complement component 4 isotypes C4A and C4B have been associated with psychiatric and autoimmune disease. The purpose of this study was to evaluate C4A and C4B in patients with CAH in relation to CYP21A2 genotype and psychiatric and autoimmune comorbidity. We determined the copy numbers of C4A and C4B in 145 patients with CAH (median age: 15.5 years, IQR: 16.8) and 108 carrier relatives (median age: 41.5 years, IQR: 12.0) and evaluated serum C4 concentrations. Comorbidity was determined by medical record review. Only 30% of subjects had the expected two copies each of the two C4 genes. C4B copy number determined total C4 copy number and serum C4 concentration, negatively correlated with carriership of a 30-kb deletion (P < 10- 5), and positively correlated with carriership of p.V281L (P < 10- 5). High C4A copy number (≥ 3) was associated with increased risk of having an externalizing psychiatric condition (relative risk: 2.67, 95% CI: 1.03-6.89, P = 0.04). No association was found between C4 copy number and autoimmune disease. Mutation-specific C4 structural variations commonly occur in patients with CAH and may have important clinical consequences, including increased risk of psychiatric morbidity. Trial registration NCT00250159 (November 7, 2005).
Collapse
Affiliation(s)
- Qizong Lao
- National Institutes of Health Clinical Center, 10 Center Drive, Room 1-2740, Bethesda, MD, 20892-1932, USA
| | - Marcia Des Jardin
- National Institutes of Health Clinical Center, 10 Center Drive, Room 1-2740, Bethesda, MD, 20892-1932, USA
| | - Rahul Jayakrishnan
- National Institutes of Health Clinical Center, 10 Center Drive, Room 1-2740, Bethesda, MD, 20892-1932, USA
| | - Monique Ernst
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deborah P Merke
- National Institutes of Health Clinical Center, 10 Center Drive, Room 1-2740, Bethesda, MD, 20892-1932, USA. .,Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Abstract
Determining the functions of human genes is a key objective for understanding disease and enabling development of new therapeutic approaches. A number of recent studies have shown that the amount of attention the research community gives to each of the more than 20,000 human genes is dramatically skewed toward specific, well-known genes. In this issue, Stoeger and colleagues uncover the factors that explain this bias and offer a way ahead to move more genes into the research limelight. Some genes get all the luck. This Primer explores a new analysis as to why the amount of research attention given to each of the more than 20,000 human genes is dramatically skewed towards specific, well known genes, and asks whether we need to take steps to change it.
Collapse
Affiliation(s)
- Ian Dunham
- Open Targets and European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients-a pilot study. Transl Psychiatry 2018; 8:134. [PMID: 30026462 PMCID: PMC6053402 DOI: 10.1038/s41398-018-0181-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023] Open
Abstract
A recent report suggested Complement 4 (C4A) gene copy numbers (GCN) as risk factors for schizophrenia. Rodent model showed association of C4 with synaptic pruning suggesting its pathophysiological significance (Sekar, A. et al. (2016)). We, therefore, predicted that C4A GCN would be positively correlated with neuropil contraction in the human brain among schizophrenia patients showing more prominent correlations in ventral regions among young adults and dorsal regions among adolescents since neuromaturation progresses dorsoventrally. Whole-brain, multi-voxel, in vivo phosphorus magnetic resonance spectroscopy (31P MRS) assessed neuropil changes by estimating levels of membrane phospholipid (MPL) precursors and catabolites. Increased MPL catabolites and/or decreased MPL precursors indexed neuropil contraction. Digital droplet PCR-based assay was used to estimate C4A and C4B GCN. We evaluated two independent cohorts (young adult-onset early-course schizophrenia (YASZ = 15) and adolescent-onset schizophrenia (AOSZ = 12) patients), and controls matched for each group, n = 22 and 15, respectively. Separate forward stepwise linear regression models with Akaike information Criterion were built for MPL catabolites and precursors. YASZ cohort: Consistent with the rodent model (Sekar, A. et al. 2016)), C4A GCN positively correlated with neuropil contraction (increased pruning/decreased formation) in the inferior frontal cortex and inferior parietal lobule. AOSZ cohort: C4A GCN positively correlated with neuropil contraction in the dorsolateral prefrontal cortex and thalamus. Exploratory analysis of C4B GCN showed positive correlation with neuropil contraction in the cerebellum and superior temporal gyrus among YASZ while AOSZ showed neuropil contraction in the prefrontal and subcortical structures. Thus, C4A and C4B GCN are associated with neuropil contraction in regions often associated with schizophrenia, and may be neuromaturationally dependent.
Collapse
|
35
|
Goicoechea de Jorge E, López Lera A, Bayarri-Olmos R, Yebenes H, Lopez-Trascasa M, Rodríguez de Córdoba S. Common and rare genetic variants of complement components in human disease. Mol Immunol 2018; 102:42-57. [PMID: 29914697 DOI: 10.1016/j.molimm.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Genetic variability in the complement system and its association with disease has been known for more than 50 years, but only during the last decade have we begun to understand how this complement genetic variability contributes to the development of diseases. A number of reports have described important genotype-phenotype correlations that associate particular diseases with genetic variants altering specific aspects of the activation and regulation of the complement system. The detailed functional characterization of some of these genetic variants provided key insights into the pathogenic mechanisms underlying these pathologies, which is facilitating the design of specific anti-complement therapies. Importantly, these analyses have sometimes revealed unknown features of the complement proteins. As a whole, these advances have delineated the functional implications of genetic variability in the complement system, which supports the implementation of a precision medicine approach based on the complement genetic makeup of the patients. Here we provide an overview of rare complement variants and common polymorphisms associated with disease and discuss what we have learned from them.
Collapse
Affiliation(s)
- Elena Goicoechea de Jorge
- Department of Immunology, Complutense University, Madrid, Spain; Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alberto López Lera
- Research Institute Hospital Universitario La Paz (IdiPaz), Madrid, Spain; Ciber de Enfermedades Raras, Madrid, Spain
| | - Rafael Bayarri-Olmos
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Yebenes
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Santiago Rodríguez de Córdoba
- Ciber de Enfermedades Raras, Madrid, Spain; Molecular Pathology and Complement Genetics Unit. Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
36
|
Qaddoori Y, Abrams ST, Mould P, Alhamdi Y, Christmas SE, Wang G, Toh CH. Extracellular Histones Inhibit Complement Activation through Interacting with Complement Component 4. THE JOURNAL OF IMMUNOLOGY 2018; 200:4125-4133. [PMID: 29752310 DOI: 10.4049/jimmunol.1700779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Complement activation leads to membrane attack complex formation, which can lyse not only pathogens but also host cells. Histones can be released from the lysed or damaged cells and serve as a major type of damage-associated molecular pattern, but their effects on the complement system are not clear. In this study, we pulled down two major proteins from human serum using histone-conjugated beads: one was C-reactive protein and the other was C4, as identified by mass spectrometry. In surface plasmon resonance analysis, histone H3 and H4 showed stronger binding to C4 than other histones, with KD around 1 nM. The interaction did not affect C4 cleavage to C4a and C4b. Because histones bind to C4b, a component of C3 and C5 convertases, their activities were significantly inhibited in the presence of histones. Although it is not clear whether the inhibition was achieved through blocking C3 and C5 convertase assembly or just through reducing their activity, the outcome was that both classical and mannose-binding lectin pathways were dramatically inhibited. Using a high concentration of C4 protein, histone-suppressed complement activity could not be fully restored, indicating C4 is not the only target of histones in those pathways. In contrast, the alternative pathway was almost spared, but the overall complement activity activated by zymosan was inhibited by histones. Therefore, we believe that histones inhibiting complement activation is a natural feedback mechanism to prevent the excessive injury of host cells.
Collapse
Affiliation(s)
- Yasir Qaddoori
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Paul Mould
- Biomolecular Analysis Core Facility, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Stephen E Christmas
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom;
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, United Kingdom; .,Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| |
Collapse
|
37
|
Grandi N, Cadeddu M, Pisano MP, Esposito F, Blomberg J, Tramontano E. Identification of a novel HERV-K(HML10): comprehensive characterization and comparative analysis in non-human primates provide insights about HML10 proviruses structure and diffusion. Mob DNA 2017; 8:15. [PMID: 29118853 PMCID: PMC5667498 DOI: 10.1186/s13100-017-0099-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background About half of the human genome is constituted of transposable elements, including human endogenous retroviruses (HERV). HERV sequences represent the 8% of our genetic material, deriving from exogenous infections occurred millions of years ago in the germ line cells and being inherited by the offspring in a Mendelian fashion. HERV-K elements (classified as HML1–10) are among the most studied HERV groups, especially due to their possible correlation with human diseases. In particular, the HML10 group was reported to be upregulated in persistent HIV-1 infected cells as well as in tumor cells and samples, and proposed to have a role in the control of host genes expression. An individual HERV-K(HML10) member within the major histocompatibility complex C4 gene has even been studied for its possible contribution to type 1 diabetes susceptibility. Following a first characterization of the HML10 group at the genomic level, performed with the innovative software RetroTector, we have characterized in detail the 8 previously identified HML10 sequences present in the human genome, and an additional HML10 partial provirus in chromosome 1p22.2 that is reported here for the first time. Results Using a combined approach based on RetroTector software and a traditional Genome Browser Blat search, we identified a novel HERV-K(HML10) sequence in addition to the eight previously reported in the human genome GRCh37/hg19 assembly. We fully characterized the nine HML10 sequences at the genomic level, including their classification in two types based on both structural and phylogenetic characteristics, a detailed analysis of each HML10 nucleotide sequence, the first description of the presence of an Env Rec domain in the type II HML10, the estimated time of integration of individual members and the comparative map of the HML10 proviruses in non-human primates. Conclusions We performed an unambiguous and exhaustive analysis of the nine HML10 sequences present in GRCh37/hg19 assembly, useful to increase the knowledge of the group’s contribution to the human genome and laying the foundation for a better understanding of the potential physiological effects and the tentative correlation of these sequences with human pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13100-017-0099-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Pisano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
38
|
Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry 2017; 22:1554-1561. [PMID: 28761078 PMCID: PMC5656502 DOI: 10.1038/mp.2017.151] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the 'staging posts' for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.
Collapse
Affiliation(s)
- Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Kodavali V. Chowdari
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Emily G. Severance
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert H. Yolken
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
39
|
Wang Z, Yang H, Guo M, Han Z, Tao J, Chen H, Ge Y, Wang K, Tan R, Wei JF, Gu M. Impact of complement component 3/4/5 single nucleotide polymorphisms on renal transplant recipients with antibody-mediated rejection. Oncotarget 2017; 8:94539-94553. [PMID: 29212248 PMCID: PMC5706894 DOI: 10.18632/oncotarget.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/24/2017] [Indexed: 01/29/2023] Open
Abstract
Antibody-mediated rejection (ABMR) is an important risk of allograft dysfunction in kidney transplantation. The complement system is considered to be associated with the generation of alloreative antibodies and donor-specific antibodies. However, the association of complement single nucleotide polymorphisms (SNPs) with ABMR still remained unclear. Blood samples of 199 renal transplant recipients containing 68 with ABMR and 131 with stable graft function were collected, and analyzed by next-generation sequencing with an established gene panel. High quality readout was obtained in 18 C3 SNPs, 9 C4 SNPs and 22 C5 SNPs. Concerning C3 gene polymorphisms, after being adjusted with age, sex and immunosuppressive protocols, rs10411506 and rs2230205 were found to be statistically associated with ABMR in dominant model (rs10411506: OR=2.73, 95% CIs: 1.16, 6.68, P=0.028; rs2230205: OR=2.52, 95% CIs: 1.07, 5.92, P=0.034); rs10411506, rs2230205 and rs2230201 were found different in HET model (rs10411506: OR=3.05, 95% CIs: 1.22, 7.64, P=0.017; rs2230205: OR=2.90, 95% CIs: 1.20, 7.00, P=0.018; rs2230201: OR=2.41, 95% CIs: 1.03, 5.64, P=0.042). The linkage analysis showed relatively high linkage disequilibrium among these SNPs. In addition, no significant correlation was found between C4 SNPs, or C5 SNPs, and the development of ABMR. Our study firstly identified the two SNPs (rs10411506 and rs2230205) in C3 gene were statistically correlated with ABMR in kidney transplantation. These findings may have implications for the diagnosis and prevention of ABMR.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Zhijian Han
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Jun Tao
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Hao Chen
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Yuqiu Ge
- School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Ke Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ruoyun Tan
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Min Gu
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| |
Collapse
|
40
|
Nissilä E, Korpela K, Lokki AI, Paakkanen R, Jokiranta S, de Vos WM, Lokki ML, Kolho KL, Meri S. C4B gene influences intestinal microbiota through complement activation in patients with paediatric-onset inflammatory bowel disease. Clin Exp Immunol 2017; 190:394-405. [PMID: 28832994 DOI: 10.1111/cei.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Complement C4 genes are linked to paediatric inflammatory bowel disease (PIBD), but the mechanisms have remained unclear. We examined the influence of C4B gene number on intestinal microbiota and in-vitro serum complement activation by intestinal microbes in PIBD patients. Complement C4A and C4B gene numbers were determined by genomic reverse transcription-polymerase chain reaction (RT-PCR) from 64 patients with PIBD (Crohn's disease or ulcerative colitis). The severity of the disease course was determined from faecal calprotectin levels. Intestinal microbiota was assessed using the HITChip microarray. Complement reactivity in patients was analysed by incubating their sera with Yersinia pseudotuberculosis and Akkermansia muciniphila and determining the levels of C3a and soluble terminal complement complex (SC5b-9) using enzyme immunoassays. The microbiota diversity was wider in patients with no C4B genes than in those with one or two C4B genes, irrespective of intestinal inflammation. C4B and total C4 gene numbers correlated positively with soluble terminal complement complex (TCC, SC5b-9) levels when patient serum samples were stimulated with bacteria. Our results suggest that the C4B gene number associates positively with inflammation in patients with PIBD. Multiple copies of the C4B gene may thus aggravate the IBD-associated dysbiosis through escalated complement reactivity towards the microbiota.
Collapse
Affiliation(s)
- E Nissilä
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - K Korpela
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - A I Lokki
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - R Paakkanen
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
| | - S Jokiranta
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - W M de Vos
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - M-L Lokki
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
| | - K-L Kolho
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - S Meri
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland
| |
Collapse
|
41
|
Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 2017; 274:245-269. [PMID: 27782319 DOI: 10.1111/imr.12471] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the system's pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross-talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross-talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Sana Asif
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Claudia Duehrkop
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Elisabet Gustafson
- Department of Women's and Children's Health, Uppsala University Hospital, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Huda Kozarcanin
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
42
|
Can Cell Bound Complement Activation Products Predict Inherited Complement Deficiency in Systemic Lupus Erythematosus? Case Rep Rheumatol 2017; 2016:8219317. [PMID: 28074166 PMCID: PMC5198155 DOI: 10.1155/2016/8219317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 11/17/2022] Open
Abstract
Activation of the classical pathway complement system has long been implicated in stimulating immune complex mediated tissue destruction in systemic lupus erythematosus (SLE). C3 and C4 complement levels are utilized as part of SLE diagnosis and monitoring criteria. Recently, cell bound complement activation products (CBCAPs) have shown increased sensitivity in diagnosing and monitoring lupus activity, compared to traditional markers. CBCAPs are increasingly utilized in rheumatology practice as additional serological markers in evaluating SLE patients. We report a case of a patient diagnosed with SLE that had chronically low C3 and C4, along with negative CBCAPs. We surmise that the patient has an inherited complement deficiency as the etiology of her SLE and that CBCAPs could be used to predict such deficiency.
Collapse
|
43
|
Presumey J, Bialas AR, Carroll MC. Complement System in Neural Synapse Elimination in Development and Disease. Adv Immunol 2017; 135:53-79. [DOI: 10.1016/bs.ai.2017.06.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Pozhitkov AE, Neme R, Domazet-Lošo T, Leroux BG, Soni S, Tautz D, Noble PA. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7:160267. [PMID: 28123054 PMCID: PMC5303275 DOI: 10.1098/rsob.160267] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Rafik Neme
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Catholic University of Croatia, Ilica 242, Zagreb, Croatia
| | - Brian G Leroux
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Peter A Noble
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
- PhD Program in Microbiology, Alabama State University, Montgomery, AL 36101-0271, USA
| |
Collapse
|
45
|
Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv 2016; 1:240-249. [PMID: 29296939 DOI: 10.1182/bloodadvances.2016001867] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
Blood group genotyping has recently developed into a clinical tool to improve compatibility of blood transfusions and management of pregnancies. Next-generation sequencing (NGS) is rapidly moving toward routine practice for patient and donor typing and has the potential to remedy some of the limitations of currently used platforms. However, a large-scale investigation into the blood group genotypes obtained by NGS in a multiethnic cohort is lacking. The 1000 Genomes Project provides information on genome variation among 2504 individuals representing 26 populations worldwide. We extracted their NGS data for all 36 blood group systems to a custom-designed database. In total, 210 412 alleles from 43 blood group-related genes were imported and curated. Matching algorithms were developed to compare them to blood group variants identified to date. Of the 1241 non-synonymous variants identified in the coding regions, 241 are known blood group polymorphisms. Interestingly, 357 of the remaining 1000 variants are predicted to occur on extracellular portions of 31 different blood group-carrying proteins and some may represent undiscovered antigens. Of the alleles analyzed, 1504 were not previously described. The ABO/GBGT1/FUT2/FUT3 and GYPB/GYPC genes showed the highest degree of variation per kilobase coding sequence, and ACKR1 variants had the most skewed distribution across 5 continental superpopulations in the dataset. Results were exported to an online search engine, www.erythrogene.com, which presents data according to the allele nomenclature developed for clinical reporting by the International Society of Blood Transfusion. The established database deepens our knowledge on blood group polymorphism globally and provides a long-sought platform for future research.
Collapse
|
46
|
Croll TI, Andersen GR. Re-evaluation of low-resolution crystal structures via interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1006-16. [PMID: 27599733 DOI: 10.1107/s2059798316012201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022]
Abstract
While the rapid proliferation of high-resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand-threading through low-resolution and/or weak electron density. With current model-building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side-chain conformations) in structures based on data with dmax not exceeding 3.5 Å reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6-4.2 Å resolution structures of complement C4 (PDB entries 4fxg, 4fxk and 4xam) rank in the top quartile of structures of comparable resolution both in terms of Rfree and MolProbity score, yet, as shown here, contain register errors in six β-strands. By applying a molecular-dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular-dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user-guided model building in maps with a resolution lower than 3.5 Å to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re-refine these three structures to MolProbity scores of <1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5 Å as demonstrated by paired refinement.
Collapse
Affiliation(s)
- Tristan Ian Croll
- Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
47
|
Perry H, Bovin N, Henry S. Antibody complement-mediated hemolytic studies with kodecytes reveal that human complement utilized in the classical pathway is more stable than generally accepted. Transfusion 2016; 56:2495-2501. [DOI: 10.1111/trf.13719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Holly Perry
- School of Science; Faculty of Health and Environmental Sciences; Auckland University of Technology; Auckland New Zealand
- Centre for Kode Technology Innovation, School Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies; Auckland University of Technology; Auckland New Zealand
| | - Nicolai Bovin
- Centre for Kode Technology Innovation, School Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies; Auckland University of Technology; Auckland New Zealand
- Shemyakin Institute of Bioorganic Chemistry; Moscow Russian Federation
| | - Stephen Henry
- Centre for Kode Technology Innovation, School Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies; Auckland University of Technology; Auckland New Zealand
| |
Collapse
|
48
|
Novel Associations Between Major Histocompatibility Complex and Pediatric-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2016; 62:567-72. [PMID: 26398154 DOI: 10.1097/mpg.0000000000000984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Major histocompatibility complex (MHC) genes have been widely studied in adult inflammatory bowel disease (IBD), but data on MHC genes are scarce in pediatric IBD. This study focused on MHC association of genes with pediatric-onset IBD and its different phenotypes. METHODS Blood samples of 103 patients with pediatric IBD (Crohn disease or ulcerative colitis) were collected at Children's Hospital, University of Helsinki, Finland. HLA-A, -B, -DRB1 alleles and complement C4A and C4B gene copy numbers were determined and constructed into haplotypes by a Bayesian algorithm (PHASE). A general population cohort (n = 149) served as a control. HLA-alleles and C4 deficiency frequencies were compared between patients and controls with χ-squared and Fisher exact test with Bonferroni correction (Pcorr). RESULTS One MHC haplotype HLA-A03; HLA-B07; 1 C4A gene; 1 C4B gene; HLA-DRB115 was more common in Crohn disease and ulcerative colitis than in controls (7/61, 11.5%, 6/42, 14.3% and 1/149, 0.7%, respectively, odds ratio (OR) = 19.19, 95% CI 2.31-159.57, Pcorr = 0.004 for Crohn disease vs controls and OR = 24.67, 95% CI 2.88-211.36, Pcorr = 0.002 for ulcerative colitis vs controls). Two MHC markers were associated with clinical characteristics. HLA-DRB101 was more common in patients with milder disease course, that is, no need for anti-tumor necrosis factor (TNF)-α medication (18/32, 56.2% vs 19/71, 26.8% without and with anti-TNF-α medication, respectively, OR = 0.28, 95% CI 0.12-0.68, Pcorr = 0.032). C4B deficiency (<2 C4B genes) was associated with complicated recovery after surgery (12/16, 75.0% vs 4/16, 25.0%, respectively, OR = 9.00, 95% CI 1.82-44.59, Pcorr = 0.025). CONCLUSIONS One MHC haplotype is strongly linked with pediatric-onset IBD, whereas the need for immunomodulatory therapy and surgery outcome associates with other distinct MHC gene markers.
Collapse
|
49
|
Guo B, Wu C, Lv Z, Liu C. Characterisation and expression analysis of two terminal complement components: C7 and C9 from large yellow croaker, Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 51:211-219. [PMID: 26902705 DOI: 10.1016/j.fsi.2016.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
The large yellow croaker Larimichthys crocea, as one of the most economically important marine fish in China and East Asian countries, are facing the fatal attraction of various pathogens in recent years. Elucidation of the organism immunomodulatory mechanism of croaker response to pathogen infection is essential for the disease control. In present study, we reported for the first time the molecular characterization and expression analysis of two terminal complement components (TCCs) of croaker, Lc-C7 and Lc-C9. These two structural conserved TCCs were detected in many tissues in adult healthy fish, with highest levels detected in liver. The transcriptional expression analysis of Lc-C7 and Lc-C9 at different developmental stages showed a continuous increase towards hatch, however the two TCCs mRNA were not detected at the unfertilized stage, hinting the origination of these two TCCs after fertilization. Rapid and drastic responses to Vibrio alginolyticus challenge were observed for Lc-C7 and Lc-C9, suggesting the involvement of component C7 and C9 in innate immune responses to pathogenic invasion in teleost fish. These findings could deepen our understanding about immunomodulatory mechanisms of croaker and shed a new light to the role of component system in teleostean immunomodulation.
Collapse
Affiliation(s)
- Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China
| | - Changlin Liu
- Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
50
|
Genome-Wide Copy Number Variation Scan Identifies Complement Component C4 as Novel Susceptibility Gene for Crohn's Disease. Inflamm Bowel Dis 2016; 22:505-15. [PMID: 26595553 DOI: 10.1097/mib.0000000000000623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The genetic component of Crohn's disease (CD) is well known, with 140 susceptibility loci identified so far. In addition to single nucleotide polymorphisms typically studied in genome-wide scans, copy number variation is responsible for a large proportion of human genetic variation. METHODS We performed a genome-wide search for copy number variants associated with CD using array comparative genomic hybridization. One of the found regions was validated independently through real-time PCR. Serum levels of the found gene were measured in patients and control subjects. RESULTS We found copy number differences for the C4S and C4L gene variants of complement component C4 in the central major histocompatibility complex region on chromosome 6p21. Specifically, we saw that CD patients tend to have lower C4L and higher C4S copies than control subjects (P = 5.00 × 10 and P = 9.11 × 10), which was independent of known associated classical HLA I and II alleles (P = 7.68 × 10 and P = 6.29 × 10). Although C4 serum levels were not different between patients and control subjects, the relationship between C4 copy number and serum level was different for patients and control subjects with higher copy numbers leading to higher serum concentrations in control subjects, compared with CD patients (P < 0.001). CONCLUSIONS C4 is part of the classical activation pathway of the complement system, which is important for (auto)immunity. Low C4L or high C4S copy number, and corresponding effects on C4 serum level, could lead to an exaggerated response against infections, possibly leading to (auto)immune disease.
Collapse
|