1
|
Rivera-Ingraham GA, Martínez-Alarcón D, Theuerkauff D, Nommick A, Lignot JH. Two faces of one coin: Beneficial and deleterious effects of reactive oxygen species during short-term acclimation to hypo-osmotic stress in a decapod crab. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111700. [PMID: 39019252 DOI: 10.1016/j.cbpa.2024.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Exposure to environmental changes often results in the production of reactive oxygen species (ROS), which, if uncontrolled, leads to loss of cellular homeostasis and oxidative distress. However, at physiological levels these same ROS are known to be key players in cellular signaling and the regulation of key biological activities (oxidative eustress). While ROS are known to mediate salinity tolerance in plants, little is known for the animal kingdom. In this study, we use the Mediterranean crab Carcinus aestuarii, highly tolerant to salinity changes in its environment, as a model to test the healthy or pathological role of ROS due to exposure to diluted seawater (dSW). Crabs were injected either with an antioxidant [N-acetylcysteine (NAC), 150 mg·kg-1] or phosphate buffered saline (PBS). One hour after the first injection, animals were either maintained in seawater (SW) or transferred to dSW and injections were carried out at 12-h intervals. After ≈48 h of salinity change, all animals were sacrificed and gills dissected for analysis. NAC injections successfully inhibited ROS formation occurring due to dSW transfer. However, this induced 55% crab mortality, as well as an inhibition of the enhanced catalase defenses and mitochondrial biogenesis that occur with decreased salinity. Crab osmoregulatory capacity under dSW condition was not affected by NAC, although it induced in anterior (non-osmoregulatory) gills a 146-fold increase in Na+/K+/2Cl- expression levels, reaching values typically observed in osmoregulatory tissues. We discuss how ROS influences the physiology of anterior and posterior gills, which have two different physiological functions and strategies during hyper-osmoregulation in dSW.
Collapse
Affiliation(s)
- Georgina A Rivera-Ingraham
- Australian Rivers Institute, Griffith University, Gold Coast, 4215 Queensland, Australia; UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | - Diana Martínez-Alarcón
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Dimitri Theuerkauff
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France; Université de Mayotte, 97660 Dembeni, Mayotte, France
| | - Aude Nommick
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jehan-Hervé Lignot
- UMR 9190-MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
2
|
Qin S, Wang R, Li J, Tang D, Shi Z. Quantitative Proteomics Reveals Manganese Alleviates Heat Stress of Broiler Myocardial Cells via Regulating Nucleic Acid Metabolism. Biol Trace Elem Res 2024; 202:1187-1202. [PMID: 37369963 DOI: 10.1007/s12011-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Heat stress threatens severely cardiac function by caused myocardial injury in poultry. Our previous study has showed that manganese (Mn) has a beneficial effect on heat-stress resistance of broiler. Therefore, we tried to confirm the alleviation mechanism through proteomic analysis after heat stress exposure to primary broiler myocardial cells pretreated with Mn. The experiment was divided into four groups: CON group (37 °C, cells without any treatment), HS group (43 °C, cells treatment with heat stress for 4 h), HS+MnCl2 group (cells treated with 20 μM MnCl2 before heat stress), and HS+Mn-AA group (cells treated with 20 μM Mn compound amino acid complex before heat stress). Proteome analysis using DIA identified 300 differentially expressed proteins (DEPs) between CON group and HS group; 93 and 121 DEPs were identified in inorganic manganese treatment group and organic manganese treatment group, respectively; in addition, there were 53 DEPs identified between inorganic and organic manganese group. Gene Ontology (GO) analysis showed that DEPs were mainly involved in binding, catalytic activity, response to stimulus, and metabolic process. DEPs of manganese pretreatment involved in a variety of biological regulatory pathways, and significantly influenced protein processing and repair in endoplasmic reticulum, apoptosis, and DNA replication and repair. These all seem to imply that manganese may help to resist cell damage induced by heat stress by regulating key node proteins. These findings contribute to a better understanding of the effects of manganese on overall protein changes during heat-stress and the possible mechanisms, as well as how to better use manganese to protect heart function in high temperature.
Collapse
Affiliation(s)
- Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Rui Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jinlu Li
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Defu Tang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
3
|
Dos Santos AC, França TCS, Venzon L, Polli V, Polleti G, Trembulak E, Pilati SFM, da Silva LM. Are silymarin and N-acetylcysteine able to prevent liver damage mediated by multiple factors? Findings against ethanol plus LPS-induced liver injury in mice. J Biochem Mol Toxicol 2024; 38:e23560. [PMID: 37860953 DOI: 10.1002/jbt.23560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of N-acetylcysteine (NAC) and silymarin (SIL) in the liver of mice exposed to ethanol and lipopolysaccharides (LPS). Mice were divided into four groups (n = 6): naive, vehicle, NAC (200 mg/kg), and SIL (200 mg/kg). Treatments were given orally (po) once daily for 10 days. Liver injury was induced by administration of ethanol (30%, po) for 10 days, once daily, followed by a single administration of LPS (2 mg/kg, ip) 24 h before euthanasia. After the treatment period, animals were euthanized, and liver and blood samples were collected. NAC, but not SIL, prevented the increase in oxalacetic glutamic transaminase (OGT) and pyruvic glutamic transaminase (PGT) serum levels. NAC and SIL did not restore levels of reduced glutathione or hepatic malonaldehyde. The treatments with NAC or SIL showed no difference in the activity of glutathione S-transferase, superoxide dismutase, and catalase compared to vehicle group. Myeloperoxidase and N-acetylglucosaminidase activities are increased, as well as the IL-6 and IL-10 levels in the liver. The treatment with NAC, but not SIL, reduced the N-acetylglucosamines activity and the IL-6 and IL-10 amount in the liver. Histological findings revealed microsteatosis in the vehicle group, which was not prevented by SIL but was partially reduced in animals receiving NAC. Unlike other liver injury models, NAC (200 mg/kg) or SIL (200 mg/kg) did not positively affect antioxidant patterns in liver tissue of animals exposed to ethanol plus LPS, but NAC treatment displays anti-inflammatory properties in this model.
Collapse
Affiliation(s)
- Ana Caroline Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Vitor Polli
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gustavo Polleti
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Erica Trembulak
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Luísa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
- LaFaTI-Laboratório de Farmacologia do Trato Gastrointestinal e suas Interações, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Elsayed S, Elsaid KA. Protein phosphatase 2A regulates xanthine oxidase-derived ROS production in macrophages and influx of inflammatory monocytes in a murine gout model. Front Pharmacol 2022; 13:1033520. [PMID: 36467056 PMCID: PMC9712728 DOI: 10.3389/fphar.2022.1033520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Gout is a common arthritis, due to deposition of monosodium urate (MSU) crystals which results in IL-1β secretion by tissue-resident macrophages. Xanthine oxidase (XO) catalyzes uric acid (UA) production and in the process, reactive oxygen species (ROS) are generated which contributes to NLRP3 inflammasome activation. Protein phosphatase 2A (PP2A) may be involved in regulating inflammatory pathways in macrophages. The objective of this study was to investigate whether PP2A regulates gout inflammation, mediated by XO activity modulation. We studied UA and ROS generations in MSU stimulated murine bone marrow derived macrophages (BMDMs) in response to fingolimod phosphate, a PP2A activator, and compared its anti-inflammatory efficacy to that of an XO inhibitor, febuxostat. Methods: BMDMs were stimulated with MSU, GM-CSF/IL-1β or nigericin ± fingolimod (2.5 μM) or febuxostat (200 μM) and UA levels, ROS, XO, and PP2A activities, Xdh (XO) expression and secreted IL-1β levels were determined. PP2A activity and IL-1β in MSU stimulated BMDMs ± N-acetylcysteine (NAC) (10 μM) ± okadaic acid (a PP2A inhibitor) were also determined. M1 polarization of BMDMs in response to MSU ± fingolimod treatment was assessed by a combination of iNOS expression and multiplex cytokine assay. The in vivo efficacy of fingolimod was assessed in a murine peritoneal model of acute gout where peritoneal lavages were studied for pro-inflammatory classical monocytes (CMs), anti-inflammatory nonclassical monocytes (NCMs) and neutrophils by flow cytometry and IL-1β by ELISA. Results: Fingolimod reduced intracellular and secreted UA levels (p < 0.05), Xdh expression (p < 0.001), XO activity (p < 0.001), ROS generation (p < 0.0001) and IL-1β secretion (p < 0.0001), whereas febuxostat enhanced PP2A activity (p < 0.05). NAC treatment enhanced PP2A activity and reduced XO activity and PP2A restoration mediated NAC's efficacy as co-treatment with okadaic acid increased IL-1β secretion (p < 0.05). Nigericin activated caspase-1 and reduced PP2A activity (p < 0.001) and fingolimod reduced caspase-1 activity in BMDMs (p < 0.001). Fingolimod reduced iNOS expression (p < 0.0001) and secretion of IL-6 and TNF-α (p < 0.05). Fingolimod reduced CMs (p < 0.0001), neutrophil (p < 0.001) and IL-1β (p < 0.05) lavage levels while increasing NCMs (p < 0.001). Conclusion: Macrophage PP2A is inactivated in acute gout by ROS and a PP2A activator exhibited a broad anti-inflammatory effect in acute gout in vitro and in vivo.
Collapse
|
5
|
In Vivo Assessment of the Ameliorative Impact of Some Medicinal Plant Extracts on Lipopolysaccharide-Induced Multiple Sclerosis in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051608. [PMID: 35268709 PMCID: PMC8911946 DOI: 10.3390/molecules27051608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.
Collapse
|
6
|
Kim DH, Park J, Kim S, Yoon MY, Ma HW, Park IS, Son M, Kim JH, Kim TI, Kim WH, Yoon SS, Kim SW, Cheon JH. An Escherichia coli strain with extra catalase activity protects against murine colitis by scavenging hydrogen peroxide and regulating regulatory t cell/interleukin-17 pathways. Free Radic Biol Med 2021; 174:110-120. [PMID: 34358646 DOI: 10.1016/j.freeradbiomed.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract whose occurrence is attributed to various factors, including genetic factors, immune response, microbial changes, and oxidative stress. Microbial-targeted therapy has emerged as an alternative to immunosuppressive therapy for IBD. METHODS The effects of an atypical commensal Escherichia coli strain harboring an additional catalase gene (compared to typical E. coli strain) on dextran sulfate sodium (DSS)-induced colitis were explored in mice. RESULTS The atypical E. coli (atEc) significantly restored body weight, reduced disease activity score, and improved histological scores in mice with colitis. Hydrogen peroxide levels in colitis mice were noticeably decreased when the mice were administered atEc. The proinflammatory cytokine levels were decreased and regulatory T cell numbers were increased after the administration of atEc. The abundance of Firmicutes was significantly recovered, while that of Proteobacteria decreased in atEc -treated mice compared with that in vehicle-treated wild-type mice. To investigate the role of interleukin (IL)-17A in mediating the anti-inflammatory effects of the atEc, IL-17A‒knockout mice were orally administered atEc. Clinical and immune responses and microbial composition were significantly reduced in IL-17A‒knockout mice compared with those in wild-type mice. CONCLUSIONS atEc ameliorates colonic inflammation by controlling hydrogen peroxide levels, immune responses (including regulatory T cells and IL-17A), and microbial composition. atEc could be a novel candidate of probiotic for IBD treatment.
Collapse
Affiliation(s)
- Da Hye Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Soochan Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Young Yoon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Sun Yoon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Quan J, Kang Y, Li L, Zhao G, Sun J, Liu Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteomics 2020; 233:104079. [PMID: 33346158 DOI: 10.1016/j.jprot.2020.104079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aquaculture of rainbow trout (Oncorhynchus mykiss) is severely hampered by high temperatures in summer, and understanding the regulatory mechanisms controlling responses to chronic heat stress may assist the development of measures to relieve heat stress. In the present study, biochemical parameters revealed a strong stress response in rainbow trout at 24 °C, including activation of stress defence and immune systems. Liver proteome analysis under heat stress (24 °C) and control (18 °C) conditions using DIA/SWATH identified precursors (90,827), peptides (67,028), proteins (6770) and protein groups (5124), among which 460 differentially abundant proteins (DAPs; q-value < 0.05, fold change >1.5), 201 and 259 were up- and down-regulated, respectively. Many were related to heat shock proteins (HSPs), metabolism and immunity. Gene Ontology (GO) analysis showed that some DAPs induced at high temperature were involved in regulating cell homeostasis, metabolism, adaptive stress and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified metabolic pathways, protein processing in endoplasmic reticulum, PPAR signalling, and complement and coagulation cascades. Protein-protein interaction (PPI) network analysis indicated that HSP90b1 and C3 may cooperative to affect cell membrane integrity under heat stress. Our findings assist the development of strategies to relieve heat stress in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
8
|
Zhang D, Yang XY, Qin YZ, Wu GD, Ning GB, Huo NR, Tian WX. Antagonistic effect of N-acetyl-L-cysteine against cadmium-induced cytotoxicity and abnormal immune response on chicken peritoneal macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111185. [PMID: 32890923 DOI: 10.1016/j.ecoenv.2020.111185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a highly toxic metal threatening human and animal health. N-acetyl-L-cysteine (NAC) was reported to play a positive role in disease treatment and immune regulation. The present study aimed to explore the effect of NAC administration on Cd-induced cytotoxicity and abnormal immune response on chicken peritoneal macrophages. Peritoneal macrophages isolated from Isa Brown male chickens were exposed to CdCl2 (20 or 50 μM) and/or NAC (500 μM) for different time periods. Results showed that Cd caused dose-dependent damage on chicken peritoneal macrophages characterized by morphologic and ultrastructural alterations, increased cell apoptosis, reactive oxygen species accumulation and mitochondrial injury. Cd exposure inhibited phagocytic activity of chicken peritoneal macrophages, and promoted transcriptional status of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in both unactivated macrophages and cells in response to lipopolysaccharide (LPS) stimuli. Pretreatment with 500 μM NAC did not affect growth of normal chicken peritoneal macrophages, while remarkably inhibiting Cd-caused cell death, oxidative stress, and mitochondrial membrane depolarization. NAC pretreatment significantly prevented intracellular Cd2+ accumulation in the Cd-exposed macrophages. Inhibitory effects of NAC on Cd-induced ROS accumulation and mitochondrial injury on chicken macrophages were confirmed in HD-11 macrophage cell line. In addition, NAC pretreatment promoted the phagocytic activity of Cd-exposed chicken peritoneal macrophages, and significantly inhibited expression of pro-inflammatory factors (IL-1β, IL-6 and TNF-α) in both Cd-exposed macrophages and Cd-treated cells in response to LPS stimuli. In conclusion, the present study firstly demonstrated the antagonistic effect of NAC against Cd-caused damage and abnormal immune response on chicken peritoneal macrophages. Protective effect of NAC on chicken macrophages was highly related to its suppression on Cd-induced ROS overproduction, pro-inflammatory reaction and intracellular Cd2+ accumulation.
Collapse
Affiliation(s)
- Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China.
| | - Xiao-Yu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Ying-Ze Qin
- Second hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Guo-Dong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Guan-Bao Ning
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Nai-Rui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
9
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
10
|
Harandi VM, Moreira Soares Oliveira B, Allamand V, Friberg A, Fontes-Oliveira CC, Durbeej M. Antioxidants Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy. Antioxidants (Basel) 2020; 9:antiox9030244. [PMID: 32197453 PMCID: PMC7139799 DOI: 10.3390/antiox9030244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe neuromuscular disorder without a cure. Using transcriptome and proteome profiling as well as functional assays, we previously demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Reactive oxygen species (ROS) increase when oxygen homeostasis is not maintained and, here, we investigate whether oxidative stress indeed is involved in the pathogenesis of LAMA2-CMD. We also analyze the effects of two antioxidant molecules, N-acetyl-L-cysteine (NAC) and vitamin E, on disease progression in the dy2J/dy2J mouse model of LAMA2-CMD. We demonstrate increased ROS levels in LAMA2-CMD mouse and patient skeletal muscle. Furthermore, NAC treatment (150 mg/kg IP for 6 days/week for 3 weeks) led to muscle force loss prevention, reduced central nucleation and decreased the occurrence of apoptosis, inflammation, fibrosis and oxidative stress in LAMA2-CMD muscle. In addition, vitamin E (40 mg/kg oral gavage for 6 days/week for 2 weeks) improved morphological features and reduced inflammation and ROS levels in dy2J/dy2J skeletal muscle. We suggest that NAC and to some extent vitamin E might be potential future supportive treatments for LAMA2-CMD as they improve numerous pathological hallmarks of LAMA2-CMD.
Collapse
Affiliation(s)
- Vahid M. Harandi
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Correspondence: ; Tel.: +46-462-220-679
| | - Bernardo Moreira Soares Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Functional Genomics & Metabolism Unit, Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Valérie Allamand
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, UMRS974, 75013 Paris, France
| | - Ariana Friberg
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Cibely C. Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (B.M.S.O.); (V.A.); (A.F.); (C.C.F.-O.); (M.D.)
| |
Collapse
|
11
|
El-Sissi AF, Mohamed FH, Danial NM, Gaballah AQ, Ali KA. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech 2020; 10:88. [PMID: 32089983 DOI: 10.1007/s13205-020-2076-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to improve the potency of inactivated Rift Valley Fever Virus (RVFV) vaccine using chitosan (CS) or chitosan nanoparticles (CNP) as adjuvants. Chitosan nanoparticles were prepared by ionic gelation method. Rift Valley Fever Virus (RVFV) inactivated antigen was loaded on CS and CNP to form two vaccine formulations, RVFV-chitosan nanoparticles based vaccine (RVFV-CNP) and RVFV chitosan based vaccine (RVFV-CS). Five groups of mice were used in this study, each group was injected with one of the following: phosphate buffer saline (group1 G1), RVFV-CNP (G2), (RVF-CS) (G3), RVFV-Alum based vaccine (RVFV-Alum) (G4) and adjuvant free RVFV inactivated antigen (RVFV-Ag) (G5). The immunization was performed twice with 2 weeks interval. The results showed that, RVFV-CNP vaccine enhanced strongly the phagocytic activity of peritoneal macrophage (PM), neutralization antibodies titer against RVFV and IgG values against RVFV nucleoprotein than other vaccine formulations did. In addition, the RVFV-CNP and RVF-CS vaccines upregulate the gene expression of IL-2, IFN-γ (which promote cell mediated immunity) and IL-4 (which promote humeral immunity), while RVFV-Alum vaccine upregulate the gene expression of IL-4 only. These findings indicated that CS and CNP were comparable to the alum as adjuvant in efficacy but superior to it in inducing cell-mediated immune response and might be a candidate adjuvant for inactivated RVFV vaccine.
Collapse
Affiliation(s)
- Ashgan F El-Sissi
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Farida H Mohamed
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Nadia M Danial
- Department of Virology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Ali Q Gaballah
- 3Holding Company for Biological products and Vaccines (VACSERA), Giza, Egypt
| | - Korany A Ali
- 4Applied Organic Chemistry Department, Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, 12622 Egypt
| |
Collapse
|
12
|
Winanta A, Hertiani T. <i>In vivo </i>Immunomodulatory Activity of Faloak Bark Extract (<i>Sterculia quadrifida </i>R.Br). Pak J Biol Sci 2020; 22:590-596. [PMID: 31930858 DOI: 10.3923/pjbs.2019.590.596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Faloak (Sterculia quadrifida R.Br) is widely used as traditional medicine in Indonesia to improve stamina (reduce tiredness for heavy workers). However, no scientific reports so far on the immunomodulatory effect. The aim of this study was to determine the effect of the bark of faloak as immunomodulatory agents by evaluating their effect on BALB/c mice lymphocytes proliferation, the activity of macrophage, nitric oxide production and the immunoglobulin G titer by in vivo techniques. MATERIALS AND METHODS Decoction of the faloak bark was used for the in vivo assay. BALB/c mice were divided into 5 dose groups, each consisting of 5 mice. One group was chosen as the baseline, 3 groups were used for the group treated with the test substance at doses of 7.5, 11.75 and 17.5 g kg-1 of body weight of mice (p.o) and a positive control group was treated with Phyllanthus niruri Linn. (PN) extract (Stimuno®) 0.585 g kg-1 b.wt., (p.o). The test samples were given every day. All mice were induced by hepatitis B vaccine at day 7 and 14. The activity of in vivo assay was determined at day 19. The activity of immunomodulatory effect is expressed in phagocytic capacity, phagocytosis index, nitric oxide, OD of lymphocyte proliferation and IgG titers. RESULTS The macrophage phagocytic capacity and phagocytosis index were significantly increased (p<0.05), nitric oxide production were altered significantly (p<0.05), but OD of lymphocyte proliferation and production of IgG titers were unchanged (p>0.05). CONCLUSION This study showed that the faloak bark could increase the macrophages phagocytic activity, but no effect on lymphocyte cells and therefore did not influence the adaptive immune response.
Collapse
|
13
|
Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109708. [PMID: 31351160 DOI: 10.1016/j.pnpbp.2019.109708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Major antioxidant responses to increased levels of inflammatory, oxidative and nitrosative stress (ONS) are detailed. In response to increasing levels of nitric oxide, S-nitrosylation of cysteine thiol groups leads to post-transcriptional modification of many cellular proteins and thereby regulates their activity and allows cellular adaptation to increased levels of ONS. S-nitrosylation inhibits the function of nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor-mediated signalling and the activity of several mitogen-activated protein kinases, while activating nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2); in turn, the redox-regulated activation of Nrf2 leads to increased levels and/or activity of key enzymes and transporter systems involved in the glutathione system. The Nrf2/Kelch-like ECH-associated protein-1 axis is associated with upregulation of NAD(P)H:quinone oxidoreductase 1, which in turn has anti-inflammatory effects. Increased Nrf2 transcriptional activity also leads to activation of haem oxygenase-1, which is associated with upregulation of bilirubin, biliverdin and biliverdin reductase as well as increased carbon monoxide signalling, anti-inflammatory and antioxidant activity. Associated transcriptional responses, which may be mediated by retrograde signalling owing to elevated hydrogen peroxide, include the unfolded protein response (UPR), mitohormesis and the mitochondrial UPR; the UPR also results from increasing levels of mitochondrial and cytosolic reactive oxygen species and reactive nitrogen species leading to nitrosylation, glutathionylation, oxidation and nitration of crucial cysteine and tyrosine causing protein misfolding and the development of endoplasmic reticulum stress. It is shown how these mechanisms co-operate in forming a co-ordinated rapid and prolonged compensatory antioxidant response system.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Walker
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Michael Maes
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
14
|
Itoh K. Development of Nasunin Recovery Method from Spent Eggplant Pre-pickling Solution and Manufacture Method of Pulverized Material. J JPN SOC FOOD SCI 2019. [DOI: 10.3136/nskkk.66.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Itoh
- Industrial Technology Center of Tochigi prefecture
| |
Collapse
|
15
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
16
|
Huang P, Wei S, Huang W, Wu P, Chen S, Tao A, Wang H, Liang Z, Chen R, Yan J, Zhang Q. Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int Immunopharmacol 2019; 74:105646. [PMID: 31200337 DOI: 10.1016/j.intimp.2019.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maintaining an airway clear of bacteria, foreign particles and apoptotic cells by alveolar macrophages is very essential for lung homeostasis. In asthma, the phagocytic capacity of alveolar macrophages is significantly reduced, which is thought to be associated with increased oxidative stress. Hydrogen (H2) has been shown to exert potent antioxidant and anti-inflammatory effects, yet its effects on phagocytosis of alveolar macrophages are unknown. This study is aimed to evaluate the beneficial effects of hydrogen gas inhalation on alveolar macrophage phagocytosis in an ovalbumin (OVA)-induced murine asthma model. METHODS Female C57BL/6 mice were intraperitoneally sensitized with OVA before they were subject to airway challenge with aerosolized OVA. Hydrogen gas was delivered to the mice through inhalation twice a day (2 h once) for 7 consecutive days. Phagocytic function of alveolar macrophages isolated from bronchoalveolar lavage fluid was assessed by fluorescence-labeled Escherichia coli as well as flow cytometry. RESULTS Alveolar macrophages isolated from OVA-induced asthmatic mice showed decreased phagocytic capacity to Escherichia coli when compared with those of control mice. Defective phagocytosis in asthmatic mice was reversed by hydrogen gas inhalation. Hydrogen gas inhalation significantly alleviated OVA-induced airway hyperresponsiveness, inflammation and goblet cell hyperplasia, diminished TH2 response and decreased IL-4 as well as IgE levels, reduced malondialdehyde (MDA) production and increased superoxide dismutase (SOD) activity. Concomitantly, hydrogen gas inhalation inhibited NF-κB activation and markedly activated Nrf2 pathway in OVA-induced asthmatic mice. CONCLUSIONS Our findings demonstrated that hydrogen gas inhalation enhanced alveolar macrophage phagocytosis in OVA-induced asthmatic mice, which may be associated with the antioxidant effects of hydrogen gas and the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Peikai Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiratory Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Shushan Wei
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihua Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Penghui Wu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuyu Chen
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Wang
- Firestone Institute for Respiratory Health, The Research Institute of St. Joe's Hamilton, St. Joseph's Healthcare; Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Yan
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Qingling Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Alsina-Beauchamp D, Escós A, Fajardo P, González-Romero D, Díaz-Mora E, Risco A, Martín-Serrano MA, Del Fresno C, Dominguez-Andrés J, Aparicio N, Zur R, Shpiro N, Brown GD, Ardavín C, Netea MG, Alemany S, Sanz-Ezquerro JJ, Cuenda A. Myeloid cell deficiency of p38γ/p38δ protects against candidiasis and regulates antifungal immunity. EMBO Mol Med 2018; 10:e8485. [PMID: 29661910 PMCID: PMC5938613 DOI: 10.15252/emmm.201708485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.
Collapse
Affiliation(s)
| | - Alejandra Escós
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Pilar Fajardo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Diego González-Romero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ester Díaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - Carlos Del Fresno
- Immunobiology of Inflammation Laboratory Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jorge Dominguez-Andrés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Noelia Aparicio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Rafal Zur
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Natalia Shpiro
- Medical Research Council Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gordon D Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | - Carlos Ardavín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Susana Alemany
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
18
|
Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by Ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microb Pathog 2018; 115:239-250. [DOI: 10.1016/j.micpath.2017.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
|
19
|
Komatsu W, Itoh K, Akutsu S, Kishi H, Ohhira S. Nasunin inhibits the lipopolysaccharide-induced pro-inflammatory mediator production in RAW264 mouse macrophages by suppressing ROS-mediated activation of PI3 K/Akt/NF-κB and p38 signaling pathways. Biosci Biotechnol Biochem 2017; 81:1956-1966. [DOI: 10.1080/09168451.2017.1362973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Nasunin is a major anthocyanin in eggplant peel. The purpose of this study was to examine the anti-inflammatory effects of nasunin in lipopolysaccharide (LPS)-stimulated RAW264 macrophages and to identify the molecular mechanisms underlying these effects. We found that nasunin reduced the LPS-induced secretion of tumor necrosis factor-α, interleukin-6 and nitric oxide, and expression of inducible nitric oxide synthase in a dose-dependent manner. Nasunin diminished LPS-induced nuclear factor-κB (NF-κB) activation by suppressing the degradation of inhibitor of κB-α and nuclear translocation of p65 subunit of NF-κB. Nasunin also attenuated the phosphorylation of Akt and p38, signaling molecules involved in pro-inflammatory mediator production. Moreover, nasunin inhibited the intracellular accumulation of ROS, leading to the suppression of NF-κB activation, Akt and p38 phosphorylation, and subsequent pro-inflammatory mediator production. These findings suggest that nasunin exerts an anti-inflammatory effect and this effect is mediated, at least in part, by its antioxidant activity.
Collapse
Affiliation(s)
- Wataru Komatsu
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuko Itoh
- Food Technology Division, Industrial Technology Center of Tochigi Prefecture, Tochigi, Japan
| | - Satomi Akutsu
- Food Technology Division, Industrial Technology Center of Tochigi Prefecture, Tochigi, Japan
| | - Hisashi Kishi
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Laboratory of International Environmental Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
20
|
Martinez de Lizarrondo S, Gakuba C, Herbig BA, Repessé Y, Ali C, Denis CV, Lenting PJ, Touzé E, Diamond SL, Vivien D, Gauberti M. Potent Thrombolytic Effect of N-Acetylcysteine on Arterial Thrombi. Circulation 2017; 136:646-660. [PMID: 28487393 DOI: 10.1161/circulationaha.117.027290] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/26/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Platelet cross-linking during arterial thrombosis involves von Willebrand Factor (VWF) multimers. Therefore, proteolysis of VWF appears promising to disaggregate platelet-rich thrombi and restore vessel patency in acute thrombotic disorders such as ischemic stroke, acute coronary syndrome, or acute limb ischemia. N-Acetylcysteine (NAC, a clinically approved mucolytic drug) can reduce intrachain disulfide bonds in large polymeric proteins. In the present study, we postulated that NAC might cleave the VWF multimers inside occlusive thrombi, thereby leading to their dissolution and arterial recanalization. METHODS Experimental models of thrombotic stroke induced by either intra-arterial thrombin injection or ferric chloride application followed by measurement of cerebral blood flow using a combination of laser Doppler flowmetry and MRI were performed to uncover the effects of NAC on arterial thrombi. To investigate the effect of NAC on larger vessels, we also performed ferric chloride-induced carotid artery thrombosis. In vitro experiments were performed to study the molecular bases of NAC thrombolytic effect, including platelet aggregometry, platelet-rich thrombi lysis assays, thromboelastography (ROTEM), and high-shear VWF string formation using microfluidic devices. We also investigated the putative prohemorrhagic effect of NAC in a mouse model of intracranial hemorrhage induced by in situ collagenase type VII injection. RESULTS We demonstrated that intravenous NAC administration promotes lysis of arterial thrombi that are resistant to conventional approaches such as recombinant tissue-type plasminogen activator, direct thrombin inhibitors, and antiplatelet treatments. Through in vitro and in vivo experiments, we provide evidence that the molecular target underlying the thrombolytic effects of NAC is principally the VWF that cross-link platelets in arterial thrombi. Coadministration of NAC and a nonpeptidic GpIIb/IIIa inhibitor further improved its thrombolytic efficacy, essentially by accelerating thrombus dissolution and preventing rethrombosis. Thus, in a new large-vessel thromboembolic stroke model in mice, this cotreatment significantly improved ischemic lesion size and neurological outcome. It is important to note that NAC did not worsen hemorrhagic stroke outcome, suggesting that it exerts thrombolytic effects without significantly impairing normal hemostasis. CONCLUSIONS We provide evidence that NAC is an effective and safe alternative to currently available antithrombotic agents to restore vessel patency after arterial occlusion.
Collapse
Affiliation(s)
- Sara Martinez de Lizarrondo
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Clément Gakuba
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Bradley A Herbig
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Yohann Repessé
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Carine Ali
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Cécile V Denis
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Peter J Lenting
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Emmanuel Touzé
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Scott L Diamond
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Denis Vivien
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.)
| | - Maxime Gauberti
- From Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Caen, France (S.M.d.L., C.G., Y.R., C.A., E.T., D.V., M.G.); CHU de Caen, Department of Anesthesiology and Critical Care Medicine, CHU de Caen Côte de Nacre, France (C.G.); Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia (B.A.H., S.L.D.); Laboratoire d'Hématologie, CHU de Caen, France (Y.R.); Institut National de la Santé et de la Recherche Médicale, UMR_S 1176, Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France (C.V.D., P.J.L.); CHU Caen, Neurology Department, CHU de Caen Côte de Nacre, France (E.T.); CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, France (D.V.); and CHU Caen, Department of Diagnostic Imaging and Interventional Radiology, CHU de Caen Côte de Nacre, France (M.G.).
| |
Collapse
|
21
|
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2840643. [PMID: 27974950 PMCID: PMC5126438 DOI: 10.1155/2016/2840643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.
Collapse
|
22
|
Zhuang C, Liu D, Yang X, Wang H, Han L, Li Y. The immunotoxicity of aluminum trichloride on rat peritoneal macrophages via β2-adrenoceptors/cAMP pathway acted by norepinephrine. CHEMOSPHERE 2016; 149:34-40. [PMID: 26844663 DOI: 10.1016/j.chemosphere.2016.01.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
The previous research found that norepinephrine (NE) enhanced the immunotoxicity of aluminum trichloride (AlCl3) on rat peritoneal macrophages in vitro through activating the β2-adrenoceptors (β2-AR)/cAMP pathway. On that basis, the experiment in vivo was conducted in this experiment. Eighty Wistar rats were orally exposed to 0 (control group); 0.4 mg/mL (low-dose group); 0.8 mg/mL (mid-dose group) and 1.6 mg/mL (high-dose group) AlCl3 for 120 days, respectively. Aluminum (Al), NE, macrophage migration inhibitory factor (MIF) and tumor necrosis factor-α (TNF-α) contents in serum, cAMP content, β2-AR density, mRNA expressions of TNF-α, MIF and β2-AR in rat peritoneal macrophages were examined. These results showed that AlCl3 increased serum Al and NE contents, peritoneal macrophages cAMP content, the density and mRNA expression of the β2-AR, and decreased serum MIF and TNF-α contents, peritoneal macrophages mRNA expressions of MIF and TNF-α. Serum NE content was negatively correlated with serum TNF-α and MIF contents and peritoneal macrophages mRNA expressions of TNF-α and MIF, but positively correlated with cAMP content, density of β2-AR and mRNA expression of β2-AR of peritoneal macrophages. It indicated that AlCl3 suppresses peritoneal macrophages function of rats through β2-AR/cAMP pathway acted by NE.
Collapse
Affiliation(s)
- Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dawei Liu
- Heilongjiang Province Hospital, Harbin 150036, China; School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Han
- ICareVet Pet Hospital, Shenyang 110014, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Mitterstiller AM, Haschka D, Dichtl S, Nairz M, Demetz E, Talasz H, Soares MP, Einwallner E, Esterbauer H, Fang FC, Geley S, Weiss G. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol 2016; 18:1374-89. [PMID: 26866925 DOI: 10.1111/cmi.12578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Abstract
Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.
Collapse
Affiliation(s)
- Anna-Maria Mitterstiller
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Heribert Talasz
- Division of Clinical Biochemistry, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | | | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Ferric C Fang
- University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7735, USA
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Farag SA, El-Rayes T. Effect of Bee-pollen Supplementation on Performance, Carcass Traits and Blood Parameters of Broiler Chickens. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajava.2016.168.177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Jang YJ, Won JH, Back MJ, Fu Z, Jang JM, Ha HC, Hong S, Chang M, Kim DK. Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells. Biomol Ther (Seoul) 2015; 23:407-13. [PMID: 26336579 PMCID: PMC4556199 DOI: 10.4062/biomolther.2015.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023] Open
Abstract
Paraquat dichloride (N,N-dimethyl-4-4′-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and 150 μM), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.
Collapse
Affiliation(s)
- Yeo Jin Jang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jong Hoon Won
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Moon Jung Back
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Zhicheng Fu
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Ji Min Jang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hae Chan Ha
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - SeungBeom Hong
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Minsun Chang
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Dae Kyong Kim
- Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
26
|
Nishimiya H, Yamada M, Ueda T, Sakurai K. N-acetyl cysteine alleviates inflammatory reaction of oral epithelial cells to poly (methyl methacrylate) extract. Acta Odontol Scand 2015; 73:616-25. [PMID: 25915728 DOI: 10.3109/00016357.2015.1021834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The purpose of this in vitro study was to determine whether the cytotoxicity of self-curing polymethyl methacrylate (PMMA) dental resin to oral epithelial cells was eliminated by mixing the antioxidant amino acid derivative, N-acetyl cysteine (NAC) with the material. MATERIALS AND METHODS Rat and human oral epithelial cells cultured on polystyrene were incubated in culture medium with or without extract from self-curing PMMA dental resin, with or without pre-mixing with NAC. On day 1, the cultures were evaluated for cellular damage, intracellular formaldehyde invasion, cellular redox status and pro-inflammatory cytokine production. Formaldehyde content and the amount of released NAC in the extract were evaluated. RESULTS Rat epithelial cells cultured with PMMA extract showed marked increases in lactate dehydrogenase (LDH) release, intracellular formaldehyde and lysosomal levels and reductions in attached cell number and the amount of E-cadherin compared with those in the culture without the extract; these adverse biological effects were alleviated or prevented by pre-mixing the resin with NAC. In human oral epithelial cells cultured with PMMA extract, the addition of NAC into the resin prevented the intracellular elevation of reactive oxygen species and the reduction in cellular glutathione levels. Human cell cultures with the extract produced higher levels of various pro-inflammatory cytokines than cultures without the extract; this was prevented by mixing the resin with NAC. The extract from PMMA pre-mixed with NAC contained a lower concentration of formaldehyde and a substantial amount of antioxidants. CONCLUSION The cytotoxicity of self-curing PMMA dental resin to oral epithelial cells was eliminated by mixing the resin with NAC.
Collapse
Affiliation(s)
- Hiroko Nishimiya
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College , Tokyo , Japan
| | | | | | | |
Collapse
|
27
|
Li M, Yang X, Zhuang C, Cao Z, Ren L, Xiu C, Li Y, Zhu Y. NE strengthens the immunosuppression induced by AlCl₃ through β₂-AR/cAMP pathway in cultured rat peritoneal macrophages. Biol Trace Elem Res 2015; 164:234-41. [PMID: 25556934 DOI: 10.1007/s12011-014-0217-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023]
Abstract
To investigate the effect of noradrenaline (NE) on the immunosuppression induced by aluminum trichloride (AlCl3), the peritoneal macrophages were cultured with RPMI-1640 medium containing 0.97 mM AlCl3 (1/10 IC50). NE was added to the medium at the final concentrations of 0 (control group, N-C), 0.1 (low-dose group, N-L), 1 (mid-dose group, N-M), and 10 (high-dose group, N-H) nM, respectively. No addition of both AlCl3 and NE serviced as blank group (D-C). Chemotaxis, adhesion, phagocytosis, tumor necrosis factor α (TNF-α) secretion, cyclic adenosine monophosphate (cAMP) content, β2 adrenergic receptors (β2-AR) density, and messenger RNA (mRNA) expression of macrophages were detected. The results showed that AlCl3 reduced the chemotaxis, adhesion, phagocytosis, and TNF-α secretion and increased the cAMP content, β2-AR density, and mRNA expression of peritoneal macrophages. Meanwhile, the chemotaxis, adhesion, phagocytosis, TNF-α secretion, β2-AR density, and mRNA expression were reduced while the cAMP content was increased in NE-treated groups than those in N-C group. The results indicated that NE strengthens the immunosuppression induced by AlCl3 in cultured rat peritoneal macrophages through the β2-AR/cAMP pathway.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Aluminum Chloride
- Aluminum Compounds/pharmacology
- Animals
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/immunology
- Chlorides/pharmacology
- Cyclic AMP/immunology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/immunology
- Immune Tolerance/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Norepinephrine/pharmacology
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/immunology
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Miao Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ullewar MP, Umathe SN. A possible role of endogenous central corticotrophin releasing factor in lipopolysaccharide induced thymic involution and cell apoptosis: effect of peripheral injection of corticotrophin releasing factor. J Neuroimmunol 2015; 280:58-65. [PMID: 25773157 DOI: 10.1016/j.jneuroim.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
The aim of the study was to investigate the role of endogenous peripheral and central corticotrophin-releasing factor (CRF) following lipopolysaccharide (LPS) challenge on thymic involution and apoptosis. Administration of LPS (100 μg/mouse, ip) led to thymic involution, to a decrease of CD4+CD8+ thymocyte subset, and to fragmentation of thymic DNA. Pretreatment of LPS challenged mice with intracerebroventricular α-helical CRF (a CRF antagonist) attenuated the effect of LPS however, intraventricular administered α-helical CRF failed to affect LPS response on thymus. Moreover, the effects of LPS on thymus, examined on 1, 7 and 14 days were wholly abrogated by prior administration of intraventricular CRF (10 μg/animal). The plasma corticosterone levels were found to be decreased with single dose of peripheral CRF in LPS challenged mice. These findings indicate that central endogenous CRF involved in LPS induced thymic atrophy. However, peripheral CRF offers protective effect on LPS induced thymic involution and cell apoptosis.
Collapse
Affiliation(s)
- Meenal P Ullewar
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur 440 033 MS, India
| | - Sudhir N Umathe
- Kamla Nehru College of Pharmacy, Borkhedi Gate, Near Railway Crossing, Butibori, Nagpur, 441108 MS, India.
| |
Collapse
|
29
|
Cheng X, Gao DX, Song JJ, Ren FZ, Mao XY. Casein glycomacropeptide hydrolysate exerts cytoprotection against H2O2-induced oxidative stress in RAW 264.7 macrophages via ROS-dependent heme oxygenase-1 expression. RSC Adv 2015. [DOI: 10.1039/c4ra10034d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Casein glycomacropeptide hydrolysate had antioxidant activity and exerted protective actions against H2O2-induced oxidative stress via induction of Nrf2-mediated HO-1 expression in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Xue Cheng
- Key Laboratory of Functional Dairy
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Dong-Xiao Gao
- Key Laboratory of Functional Dairy
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Jia-Jia Song
- Key Laboratory of Functional Dairy
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Xue-Ying Mao
- Key Laboratory of Functional Dairy
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
30
|
Li W, Li H, Mu Q, Zhang H, Yao H, Li J, Niu X. Protective effect of sanguinarine on LPS-induced endotoxic shock in mice and its effect on LPS-induced COX-2 expression and COX-2 associated PGE2 release from peritoneal macrophages. Int Immunopharmacol 2014; 22:311-7. [PMID: 25063710 DOI: 10.1016/j.intimp.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Abstract
The quaternary ammonium salt, sanguinarine (SG) was reported to possess widespread anti-microbial and anti-inflammatory effects in experimental animals and it has been used to treat many inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory effect and the possible mechanisms underlying the anti-inflammatory activity of SG. Experimentally-induced mice ES model and LPS-induced peritoneal macrophages were used to examine the anti-inflammatory function of SG. In this study, SG pretreatment significantly increased the survival rate of mice from 25% to 58%, 75% and 91% respectively. The production of PGE2 in BALF, the lung MPO activity and the (W/D) weight ratios were also markedly reduced. In addition, immunohistochemical analysis showed that the expression of COX-2 was significantly suppressed in vivo. We also evaluated the effect of SG in LPS-induced peritoneal macrophages to clarify the possible mechanism. The data indicated that SG greatly inhibited the production of PGE2, and it also decreased COX-2 protein expression, without affecting COX-1 expression, in LPS-stimulated peritoneal macrophages. Taken all together, SG potently protected against LPS-induced ES, and our results suggest that the possible mechanism may be relevant to COX-2 regulation.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Huani Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingli Mu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jiaoshe Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
31
|
Acharya M, Lau-Cam CA. Comparative Evaluation of the Effects of Taurine and Thiotaurine on Alterations of the Cellular Redox Status and Activities of Antioxidant and Glutathione-Related Enzymes by Acetaminophen in the Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:199-215. [DOI: 10.1007/978-1-4614-6093-0_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Paludo FJO, Simões-Pires A, Alho CS, Gelain DP, Moreira JCF. Participation of 47C>T SNP (Ala-9Val polymorphism) of the SOD2 gene in the intracellular environment of human peripheral blood mononuclear cells with and without lipopolysaccharides. Mol Cell Biochem 2012; 372:127-35. [PMID: 22983815 DOI: 10.1007/s11010-012-1453-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 09/05/2012] [Indexed: 01/24/2023]
Abstract
The outcome of sepsis occurs due to influence of environmental and genetic factors besides genes variants whose expression support its outcome or not. Oxidative stress is associated to the pathogenicity of sepsis, occurring when there is a reactive species overproduction associated with inflammation. The aim of this study was to characterize the cellular redox status of human peripheral blood mononuclear cells (PBMCs) with either -9Ala (AA) or -9Val (VV) SOD2 genotypes and evaluate their response to oxidative stress induced by lipopolysaccharide (LPS). The PBMCs were isolated from the blood of 30 healthy human volunteers (15 volunteers for each allele) and the following assays were performed: antioxidant enzyme activities (superoxide dismutase; catalase; glutathione peroxidase), total radical-trapping antioxidant parameter, non-enzymatic antioxidant capacity (total antioxidant reactivity), and quantification of conjugated dienes (lipid peroxidation). At basal conditions (i.e., not stimulated by LPS), cells from 47C allele carriers showed higher activities of CAT and SOD, as well as higher TAR compared to 47T allele. However, when 47CC cells were challenged with LPS, we observed a higher shift toward a pro-oxidant state compared to 47TT cells. The CAT activity and lipid peroxidation were increased in cells with both alleles, but SOD activity increased significantly only in 47TT cells. These results demonstrate that SOD2 polymorphisms are associated with different cellular redox environments at both basal and LPS-stimulated states, and identification of this polymorphism may be important for a better understanding of pro-inflammatory conditions.
Collapse
Affiliation(s)
- Francis Jackson O Paludo
- Centro de Estudos em Estresse Oxidativo (CEEO), Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600-ANEXO, Porto Alegre, RS 90035-003, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Myeloid heme oxygenase-1 haploinsufficiency reduces high fat diet-induced insulin resistance by affecting adipose macrophage infiltration in mice. PLoS One 2012; 7:e38626. [PMID: 22761690 PMCID: PMC3382977 DOI: 10.1371/journal.pone.0038626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity.
Collapse
|
34
|
Carnesecchi S, Pache JC, Barazzone-Argiroffo C. NOX enzymes: potential target for the treatment of acute lung injury. Cell Mol Life Sci 2012; 69:2373-85. [PMID: 22581364 PMCID: PMC7095984 DOI: 10.1007/s00018-012-1013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), is characterized by acute inflammation, disruption of the alveolar-capillary barrier, and in the organizing stage by alveolar pneumocytes hyperplasia and extensive lung fibrosis. The cellular and molecular mechanisms leading to the development of ALI/ARDS are not completely understood, but there is evidence that reactive oxygen species (ROS) generated by inflammatory cells as well as epithelial and endothelial cells are responsible for inflammatory response, lung damage, and abnormal repair. Among all ROS-producing enzymes, the members of NADPH oxidases (NOXs), which are widely expressed in different lung cell types, have been shown to participate in cellular processes involved in the maintenance of lung integrity. It is not surprising that change in NOXs’ expression and function is involved in the development of ALI/ARDS. In this context, the use of NOX inhibitors could be a possible therapeutic perspective in the management of this syndrome. In this article, we summarize the current knowledge concerning some cellular aspects of NOXs localization and function in the lungs, consider their contribution in the development of ALI/ARDS and discuss the place of NOX inhibitors as potential therapeutical target.
Collapse
Affiliation(s)
- Stéphanie Carnesecchi
- Department of Pediatrics/Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
35
|
Arranz L, Guayerbas N, Siboni L, De la Fuente M. Effect of Acupuncture Treatment on the Immune Function Impairment Found in Anxious Women. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 35:35-51. [PMID: 17265549 DOI: 10.1142/s0192415x07004606] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is presently accepted that emotional disturbances lead to immune system impairment, and that therefore their treatment could restore the immune response. Thus, the aim of the present work was to study the effect of an acupuncture treatment, designed specifically to relieve the emotional symptoms stemming from anxiety, on several functions (adherence, chemotaxis, phagocytosis, basal and stimulated superoxide anion levels, lymphocyte proliferation in response to phytohemagglutinin A (PHA) and natural killer (NK) activity) of leukocytes (neutrophils and lymphocytes) from anxious women. The acupuncture protocol consisted of manual needle stimulation of 19 acupoints, with each session lasting 30 min. It was performed on 34 female 30–60 year old patients, suffering from anxiety, as determined by the Beck Anxiety Inventory (BAI). Before and 72 hours after receiving the first acupuncture session, peripheral blood samples were drawn. In 12 patients, samples were also collected immediately after the first single acupuncture session and one month after the end of the whole acupuncture treatment, which consisted of 10 sessions during a year, until the complete remission of anxiety. Twenty healthy non-anxious women in the same age range were used as controls. The results showed that the most favorable effects of acupuncture on the immune functions appear 72 hours after the single session and persist one month after the end of the complete treatment. Impaired immune functions in anxious women (chemotaxis, phagocytosis, lymphoproliferation and NK activity) were significantly improved by acupuncture, and augmented immune parameters (superoxide anion levels and lymphoproliferation of the patient subgroup whose values had been too high) were significantly diminished. Acupuncture brought the above mentioned parameters to values closer to those of healthy controls, exerting a modulatory effect on the immune system.
Collapse
Affiliation(s)
- Lorena Arranz
- Department of Physiology (Animal Physiology II), Faculty of Biological Science, Complutense University of Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Li DY, Xue MY, Geng ZR, Chen PY. The suppressive effects of Bursopentine (BP5) on oxidative stress and NF-ĸB activation in lipopolysaccharide-activated murine peritoneal macrophages. Cell Physiol Biochem 2012; 29:9-20. [PMID: 22415070 DOI: 10.1159/000337581] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Bursopentine (BP5) is a novel thiol-containing pentapeptide isolated from chicken bursa of Fabricius, and is reported to exert immunomodulatory effects on B and T lymphocytes. It has been found that some thiol compounds, such as glutathione (GSH) and N-acetylcysteine (NAC) protect living cells from oxidative stress. This led us to investigate whether BP5 had any ability to protect macrophages from oxidative stress as well as any mechanism that might underlie this process. METHODS Murine peritoneal macrophages activated by lipopolysaccharide (LPS) (2 μg/ml) were treated with single bouts (0, 25, 50, and 100 μM) of BP5. RESULTS BP5 potently suppressed the markers for oxidative stress, including nitric oxide (NO), reactive oxygen species (ROS), lipid peroxidation, and protein oxidation. It also decreased the expression and activity of inducible nitric oxide synthase (iNOS) and promoted a protective antioxidant state by elevating GSH content and by activating the expression and activity of certain key antioxidant and redox enzymes, including glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT). This suppressive effect on oxidative stress was accompanied by down-regulated expression and activity of nuclear factor kappa B (NF-κB). CONCLUSION These findings demonstrate that BP5 can protect LPS-activated murine peritoneal macrophages from oxidative stress. BP5 may have applications as an anti-oxidative stress reagent.
Collapse
Affiliation(s)
- De-yuan Li
- Key Laboratory of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | | | | | | |
Collapse
|
37
|
Hu C, Li J, Zhu Y, Sun H, Zhao H, Shao B, Li Y. Effects of aluminum exposure on the adherence, chemotaxis, and phagocytosis capacity of peritoneal macrophages in rats. Biol Trace Elem Res 2011; 144:1032-8. [PMID: 21625918 DOI: 10.1007/s12011-011-9088-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/16/2011] [Indexed: 01/30/2023]
Abstract
To investigate the effects of aluminum (Al) exposure on peritoneal macrophages of Wistar rats, four groups of ten rats each were orally exposed to 0, 13, 26, and 52 mg kg(-1) Al(3+) in form of aluminum trichloride (AlCl(3)) in drinking water for 120 days. At the end of the experimental period, the Al concentration in serum, the adherence, chemotaxis, and phagocytosis capacity of peritoneal macrophages were determined. The results showed that the Al concentration in serum significantly increased in a dose-dependent manner; the adherence, chemotaxis, and phagocytosis capacity of peritoneal macrophages decreased with the increase of Al dose, and present a dose-effective relationship. Further, they were significantly lower in the high-dose groups (P < 0.01) compared with the control group. It indicates that Al was toxic to peritoneal macrophages of rats, and the adherence, chemotaxis, and phagocytosis capacity of peritoneal macrophages in rats were significantly suppressed by exposure to 52 mg kg(-1) day Al(3+).
Collapse
Affiliation(s)
- Chongwei Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2752-9. [PMID: 21641397 DOI: 10.1016/j.ajpath.2011.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and limits inflammation and injury in response to many pulmonary insults. To test the hypothesis that EC-SOD has an important role in bacterial infections, wild-type and EC-SOD knockout (KO) mice were infected with Escherichia coli to induce pneumonia. Although mice in the EC-SOD KO group demonstrated greater pulmonary inflammation than did wild-type mice, there was less clearance of bacteria from their lungs after infection. Macrophages and neutrophils express EC-SOD; however, its function and subcellular localization in these inflammatory cells is unclear. In the present study, immunogold electron microscopy revealed EC-SOD in membrane-bound vesicles of phagocytes. These findings suggest that inflammatory cell EC-SOD may have a role in antibacterial defense. To test this hypothesis, phagocytes from wild-type and EC-SOD KO mice were evaluated. Although macrophages lacking EC-SOD produced more reactive oxygen species than did cells expressing EC-SOD after stimulation, they demonstrated significantly impaired phagocytosis and killing of bacteria. Overall, this suggests that EC-SOD facilitates clearance of bacteria and limits inflammation in response to infection by promoting bacterial phagocytosis.
Collapse
|
39
|
Lopes-Pires ME, Casarin AL, Pereira-Cunha FG, Lorand-Metze I, Antunes E, Marcondes S. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation. Platelets 2011; 23:195-201. [PMID: 21806496 DOI: 10.3109/09537104.2011.603065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.
Collapse
Affiliation(s)
- M Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas (SP), Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 2011; 60:695-704. [DOI: 10.1007/s00011-011-0323-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/11/2011] [Accepted: 02/28/2011] [Indexed: 11/25/2022] Open
|
41
|
Nitric oxide-mediated intracellular growth restriction of pathogenic Rhodococcus equi can be prevented by iron. Infect Immun 2011; 79:2098-111. [PMID: 21383050 DOI: 10.1128/iai.00983-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhodococcus equi is an intracellular pathogen which causes pneumonia in young horses and in immunocompromised humans. R. equi arrests phagosome maturation in macrophages at a prephagolysosome stage and grows inside a privileged compartment. Here, we show that, in murine macrophages activated with gamma interferon and lipopolysaccharide, R. equi does not multiply but stays viable for at least 24 h. Whereas infection control of other intracellular pathogens by activated macrophages is executed by enhanced phagosome acidification or phagolysosome formation, by autophagy or by the interferon-inducible GTPase Irgm1, none of these mechanisms seems to control R. equi infection. Growth control by macrophage activation is fully mimicked by treatment of resting macrophages with nitric oxide donors, and inhibition of bacterial multiplication by either activation or nitric oxide donors is annihilated by cotreatment of infected macrophages with ferrous sulfate. Transcriptional analysis of the R. equi iron-regulated gene iupT demonstrates that intracellular R. equi encounters iron stress in activated, but not in resting, macrophages and that this stress is relieved by extracellular addition of ferrous sulfate. Our results suggest that nitric oxide is central to the restriction of bacterial access to iron in activated macrophages.
Collapse
|
42
|
Pires KMP, Bezerra FS, Machado MN, Zin WA, Porto LC, Valença SS. N-(2-mercaptopropionyl)-glycine but not Allopurinol prevented cigarette smoke-induced alveolar enlargement in mouse. Respir Physiol Neurobiol 2011; 175:322-30. [DOI: 10.1016/j.resp.2010.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/18/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
|
43
|
Riahi B, Rafatpanah H, Mahmoudi M, Memar B, Fakhr A, Tabasi N, Karimi G. Evaluation of suppressive effects of paraquat on innate immunity in Balb/c mice. J Immunotoxicol 2011; 8:39-45. [DOI: 10.3109/1547691x.2010.543095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Mondo CK, Zhang Y, de Macedo Possamai V, Miao Y, Schyvens CG, McKenzie KUS, Hu L, Guo Z, Whitworth JA. N-Acetylcysteine Antagonizes the Development But Does Not Reverse ACTH-Induced Hypertension in the Rat. Clin Exp Hypertens 2009; 28:73-84. [PMID: 16546835 DOI: 10.1080/10641960500468219] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We investigated the effect of antioxidant N-acetylcysteine (NAC) on adrenocorticotropic hormone (ACTH)-hypertension. Male Sprague-Dawley rats received NAC (10 mg/L) or water 4 days before ACTH/saline treatment for 13 days (prevention study). In a reversal study, NAC commenced on day 8 of ACTH/saline treatment and continued for 5 days. ACTH increased systolic blood pressure (SBP) in water drinking rats (111 +/- 1 to 131 +/- 3 mmHg, p < 0.001). In the prevention study, NAC + ACTH increased SBP (108 +/- 2 to 120 +/- 2 mmHg, p < 0.001) but less than ACTH alone (p' < 0.05). In the reversal study, NAC had no significant effect (132 +/- 4 to 124 +/- 3 mmHg, ns). Thus, NAC partially prevented but did not reverse ACTH-induced hypertension.
Collapse
Affiliation(s)
- Charles K Mondo
- Institute of Cardiology, 2nd Hospital, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo L, Wang Y, Feng Q, Zhang H, Xue B, Shen J, Ye Y, Han X, Ma H, Xu J, Chen D, Yin Z. Recombinant protein glutathione S-transferases P1 attenuates inflammation in mice. Mol Immunol 2008; 46:848-57. [PMID: 18962899 DOI: 10.1016/j.molimm.2008.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/10/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
Abstract
We have reported that intracellular glutathione S-transferases P1 (GSTP1) suppresses LPS (lipopolysaccharide)-induced excessive production of pro-inflammatory factors by inhibiting LPS-stimulated MAPKs (mitogen-activated protein kinases) as well as NF-kappaB activation. But under pathogenic circumstances, physiologic levels of GSTP1 are insufficient to stem pro-inflammatory signaling. Here we show that LPS-induced up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW246.7 cells is significantly reduced by incubating cells with recombinant GSTP1 protein. In vivo study demonstrates that treatment of mice (i.p.) with recombinant GSTP1 protein effectively suppresses the devastating effects of acute inflammation, which includes reduction of mortality rate of endotoxic shock, alleviation of LPS-induced acute lung injury and abrogation of thioglycolate (TG)-induced peritoneal deposition of leukocytes and polymorphonuclear cells (PMNs). Meanwhile, GSTP1 prevented LPS-induced TNF-alpha, IL-1beta, MCP-1 and NO production. Further investigation by using confocal microscopy and flow cytometry shows that recombinant GSTP1 protein can be delivered into RAW246.7 cells, mouse peritoneal macrophages and HEK 293 cells suggesting that extracellular GSTP1 protein could be transported across plasma membrane and act as a cytosolic protein. In conclusion our research demonstrates a new finding that increasing cellular GSTP1 level by supplement of recombinant GSTP1 effectively suppresses the devastating effects of acute inflammation.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ikarisoside A inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-kappaB signaling pathways. Eur J Pharmacol 2008; 601:171-8. [PMID: 18929556 DOI: 10.1016/j.ejphar.2008.09.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/03/2008] [Accepted: 09/22/2008] [Indexed: 11/22/2022]
Abstract
This study examined the anti-inflammatory properties of Ikarisoside A, isolated from Epimedium koreanum (Berberidaceae), in lipopolysaccharide (LPS)-stimulated macrophages. Ikarisoside A inhibited the expression of LPS-stimulated inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in LPS-stimulated RAW 264.7 cells and mouse bone marrow-derived macrophages (BMMs) in a concentration-dependent manner. In addition, Ikarisoside A reduced the release of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). Furthermore, Ikarisoside A inhibited the activity of p38 kinase and nuclear factor-kappaB (NF-kappaB), which are signaling molecules involved in NO production. NO production was inhibited when the cells were treated with LPS and either SB 203580 (a p38 inhibitor) or Bay 11-7082 (an inhibitory kappaB kinase 2 inhibitor). These results suggest that Ikarisoside A inhibits the production of NO by inhibiting the activity of p38 MAPK and NF-kappaB. As a result of these properties, Ikarisoside A has the potential to be used as an effective anti-inflammatory agent.
Collapse
|
47
|
Dipyrithione inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in macrophages and protects against endotoxic shock in mice. FEBS Lett 2008; 582:1643-50. [DOI: 10.1016/j.febslet.2008.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/09/2008] [Accepted: 04/11/2008] [Indexed: 01/22/2023]
|
48
|
Umathe S, Dixit P, Wanjari M, Ullewar M. Leuprolide -a GnRH agonist prevents restraint stress-induced immunosuppression via sex steroid-independent peripheral mechanism in mice. Int Immunopharmacol 2008; 8:71-9. [DOI: 10.1016/j.intimp.2007.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/01/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
|
49
|
Demiralay R, Gürsan N, Ozbilim G, Erdogan G, Demirci E. Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury. J Appl Toxicol 2007; 26:301-8. [PMID: 16489578 DOI: 10.1002/jat.1133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was carried out to investigate comparatively the frequency of apoptosis in lung epithelial cells after intratracheal instillation of endotoxin [lipopolysaccharide (LPS)] in rats and the role of tumor necrosis factor alpha (TNF-alpha) on apoptosis, and the effects of erdosteine and N-acetylcysteine on the regulation of apoptosis. Female Wistar rats were given oral erdosteine (10-500 mg kg(-1)) or N-acetylcysteine (10-500 mg kg(-1)) once a day for 3 consecutive days. Then the rats were intratracheally instilled with LPS (5 mg kg(-1)) to induce acute lung injury. The rats were killed at 24 h after LPS administration. Lung tissue samples were stained with hematoxylin-eosin for histopathological assessments. The apoptosis level in the lung bronchial and bronchiolar epithelium was determined using the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabelling) method. Cytoplasmic TNF-alpha was evaluated by immunohistochemistry. Pretreatment with erdosteine and pretreatment with N-acetylcysteine at a dose of 10 mg kg(-1) had no protective effect on LPS-induced lung injury. When the doses of drugs increased, the severity of the lung damage caused by LPS decreased. It was found that as the pretreatment dose of erdosteine was increased, the rate of apoptosis induced by LPS in lung epithelial cells decreased and this decrease was statistically significant in doses of 300 mg kg(-1) and 500 mg kg(-1). Pretreatment with N-acetylcysteine up to a dose of 500 mg kg(-1) did not show any significant effect on apoptosis regulation. It was noticed that both antioxidants had no significant effect on the local production level of TNF-alpha. These findings suggest that erdosteine could be a possible therapeutic agent for acute lethal lung injury and its mortality.
Collapse
Affiliation(s)
- Rezan Demiralay
- Süleyman Demirel University, School of Medicine, Department of Pulmonary Medicine, Isparta, Turkey.
| | | | | | | | | |
Collapse
|
50
|
de Souza LF, Ritter C, Pens Gelain D, Andrades M, Bernard EA, Moreira JCF, Dal-Pizzol F. Mitochondrial Superoxide Production Is Related to the Control of Cytokine Release from Peritoneal Macrophage After Antioxidant Treatment in Septic Rats. J Surg Res 2007; 141:252-6. [PMID: 17490683 DOI: 10.1016/j.jss.2006.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/22/2006] [Accepted: 10/12/2006] [Indexed: 01/21/2023]
Abstract
BACKGROUND Reactive oxygen species are involved in several intracellular pathways that ultimately lead to the activation of the innate immune system. In addition, oxidized proteins and lipids could stimulate cytokine release from macrophages through the activation of membrane receptors. Thus we here describe the effects of antioxidant administration to septic rats on peritoneal macrophage parameters of oxidative stress and cytokine release. MATERIALS AND METHODS Peritoneal macrophages from Wistar rats subjected to cecal ligation and puncture (CLP). The animals were divided into four groups: sham operated, CLP, basic support (saline plus antibiotics), basic support plus N-acetylcysteine, and deferoxamine. Several times after CLP macrophages were cultured to the determination of thiobarbituric acid reactive species (TBARS), protein carbonyls, mitochondrial superoxide production, catalase, superoxide dismutase activities, and released cytokines. RESULTS Sepsis increased TBARS, protein carbonyls, and mitochondrial superoxide production in macrophages and this was associated with an increase release of pro-inflammatory cytokines. Basic support reversed TBARS and protein carbonyls content, but not mitochondrial superoxide production. The addition of antioxidants prevented all oxidative parameters in macrophages, and this was associated with lower cytokine release. Catalase and superoxide dismutase were modulated in the basic support group, but not in the antioxidant treated animals. CONCLUSIONS Mitochondrial superoxide production seemed to be the differential oxidative parameter associated with antioxidant-induced modulation of cytokine release.
Collapse
Affiliation(s)
- Luiz Fernando de Souza
- Laboratório de Transdução de Sinais, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|