1
|
Yang L, Xia Y, Fei C, Shahzad K, Niu M, Feng J, Ma J, Wang X, Song J, Feng P, Xu S, An G, Yu J. Genome-wide analysis of Class III peroxidase (PRX) family core genes and functional mechanism of GhPRXR1-A for seed development in Gossypium hirsutum. Int J Biol Macromol 2025; 295:139529. [PMID: 39761879 DOI: 10.1016/j.ijbiomac.2025.139529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Class III peroxidases (PRXs) play critical roles in plant growth and development by oxidizing various substrates with H2O2. Although many PRXs have been identified and their roles in biotic and abiotic stress responses have extensively investigated in plants. However, functional mechanisms of PRXs in seed development remain poorly understood. In this study, 14, 17, 9, and 13 PRX core genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium raimondii, respectively. Phylogenetic analysis categorized PRXs core genes of cotton into five groups. Six of the GhPRX genes co-localized with quantitative trait loci (QTLs) associated with oil or seed size, and GhPRXR1-A showed significant high expression levels in developing ovules. Heterologous overexpression of GhPRXR1-A in Arabidopsis thaliana resulted in a significant increase in thousand seed weight (Col-0: 0.015 ± 0.00085 g vs. OE-GhPRXR1-A: 0.022 ± 0.0019 g). In addition, molecular mechanism assays revealed that GhPRXR1-A is directly activated by GhGATA1 and interacts with GhNFYC4, a transcription factor of the nuclear factor Y, C subunit family that has previously been reported to mediate seed development. Collectively, these findings suggest that GhPRXR1-A is a regulator of seed development in Arabidopsis and may have similar functional role in cotton seed contributing traits.
Collapse
Affiliation(s)
- Liupeng Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yudie Xia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Chunmei Fei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Miao Niu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoping Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jikun Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Siyuan Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoyong An
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Ding W, Tu Z, Gong B, Deng Z, Liu Q, Gu Z, Yang C. Unveiling Key Genes and Unique Transcription Factors Involved in Secondary Cell Wall Formation in Pinus taeda. Int J Mol Sci 2024; 25:11805. [PMID: 39519356 PMCID: PMC11545933 DOI: 10.3390/ijms252111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pinus taeda is a key timber species, and extensive research has been conducted on its wood formation. However, a comprehensive investigation into the biosynthetic pathways of lignin, cellulose, and hemicellulose in P. taeda is lacking, resulting in an incomplete understanding of secondary cell wall (SCW) formation in this species. In this study, we systematically analyzed transcriptomic data from previously published sources and constructed detailed pathways for lignin, cellulose, and hemicellulose biosynthesis. We identified 188 lignin-related genes and 78 genes associated with cellulose and hemicellulose biosynthesis. An RT-qPCR highlighted 15 key lignin biosynthesis genes and 13 crucial genes for cellulose and hemicellulose biosynthesis. A STEM analysis showed that most essential enzyme-coding genes clustered into Profile 14, suggesting their significant role in SCW formation. Additionally, we identified seven NAC and six MYB transcription factors (TFs) from atypical evolutionary clades, with distinct expression patterns from those of the previously characterized NAC and MYB genes, indicating potentially unique functions in SCW formation. This research provides the first comprehensive overview of lignin, cellulose, and hemicellulose biosynthetic genes in P. taeda and underscores the importance of non-canonical NAC and MYB TFs, laying a genetic foundation for future studies on SCW regulatory mechanisms.
Collapse
Affiliation(s)
- Wei Ding
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhonghua Tu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Bin Gong
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhaolei Deng
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Qian Liu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Zhenjun Gu
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| | - Chunxia Yang
- Jiangxi Academy of Forestry, Nanchang 330013, China; (W.D.); (Z.T.); (B.G.); (Z.D.); (Q.L.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330013, China
| |
Collapse
|
3
|
Zheng K, Yu Z, Li Y, Liu C. Cd 2+ enhancing the bromination of bisphenol A in Brassica chinensis L.: Pathways and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174013. [PMID: 38880131 DOI: 10.1016/j.scitotenv.2024.174013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Traditional heavy metal pollution, such as cadmium, impacts the transformation and risks of bisphenol pollutants (like bisphenol A, BPA), in plants, especially due to the ubiquitous presence of bromide ion. Although it has been discovered that the bromination of phenolic pollutants occurs in plants, thereby increasing the associated risks, the influence and mechanisms of bromination under complex contamination conditions involving both heavy metals and phenolic compounds remain poorly understood. This study addresses the issue by exposing Brassica chinensis L. to cadmium ion (Cd2+, 25-100 μM), with the hydroponic solution containing BPA (15 mg/L) and bromide ion (0.5 mM) in this work. It was observed that Cd2+ primarily enhanced the bromination of BPA by elevating the levels of reactive oxygen species (ROS) and the activity of peroxidase (POD) in Brassica chinensis L. The variety of bromination products within Brassica chinensis L. increased as the concentration of Cd2+ rose from 25 to 100 μM. The substitution positions of bromine were determined using Gaussian calculations and mass spectrometry analysis. The toxicity of bromination products derived from BPA was observed to increase based on Ecological Structure-Activity Relationships analysis and HepG2 cytotoxicity assays. This study provides new insights into the risks and health hazards associated with cadmium pollution, particularly its role in enhancing the bromination of bisphenol pollutants in plants.
Collapse
Affiliation(s)
- Kai Zheng
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zelian Yu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yujiang Li
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Shandong Kenli Petrochemical Group Co., Ltd., No. 1001 Shengxing Road, Kenli District, Dongying City, Shandong Province, China.
| |
Collapse
|
4
|
Guo A, Li H, Huang Y, Ma X, Li B, Du X, Cui Y, Zhao N, Hua J. Yield-related quantitative trait loci identification and lint percentage hereditary dissection under salt stress in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:115-136. [PMID: 38573794 DOI: 10.1111/tpj.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/07/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiaoqing Ma
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Xiaoqi Du
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yanan Cui
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| |
Collapse
|
5
|
Gull S, Ali MM, Ejaz S, Ali S, Rasheed M, Yousef AF, Stępień P, Chen F. Comprehensive genomic exploration of class III peroxidase genes in guava unravels physiology, evolution, and postharvest storage responses. Sci Rep 2024; 14:1446. [PMID: 38228714 PMCID: PMC10791677 DOI: 10.1038/s41598-024-51961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Peroxidases (PRXs) play multifaceted roles in plant growth, development, and stress responses. Here, we present a comprehensive analysis of the PRX gene family in guava, a globally significant fruit. In the guava genome, we identified 37 PRX genes, a number lower than that of Arabidopsis, suggesting a distinctive gene family expansion pattern. Phylogenetic analysis unveiled close relationships with Arabidopsis PRXs, with 12 PgPRX genes forming ortholog pairs, indicating a specific expansion pattern. Predictions placed most PRX proteins in the chloroplast and extracellular regions. Structural analysis of PgPRX proteins revealed commonalities in domain structures and motif organization. Synteny analysis underscored the dynamic role of segmental duplication in the evolution of guava's PRX genes. We explored the dynamic expression of PgPRX genes across guava tissues, exposing functional diversity. Furthermore, we examined changes in peroxidase levels and gene expressions during postharvest fruit storage, providing insights for preserving fruit quality. This study offers an initial genome-wide identification and characterization of Class III peroxidases in guava, laying the foundation for future functional analyses.
Collapse
Affiliation(s)
- Shaista Gull
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Majeeda Rasheed
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Piotr Stępień
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Zhang M, Xing Y, Ma J, Zhang Y, Yu J, Wang X, Jia X. Investigation of the response of Platycodongrandiflorus (Jacq.) A. DC to salt stress using combined transcriptomics and metabolomics. BMC PLANT BIOLOGY 2023; 23:589. [PMID: 38001405 PMCID: PMC10675982 DOI: 10.1186/s12870-023-04536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Platycodon grandiflorus (Jacq.) A. DC is a famous traditional Chinese medicine in China and an authentic medicine in Inner Mongolia. It has been traditionally used as an expectorant in cough and also has anti-inflammatory and other pharmacological effects. As a homologous plant of medicine and food, P. grandiflorus is widely planted in Northeast China. Soil salinity isa limiting factor for its cultivation. In this study, we comprehensively described the physiological characteristics of P. grandiflorus and combined transcriptomics and metabolomics to study the response of roots of P. grandiflorus to salt stress. RESULTS Overall, 8,988 differentially expressed genes were activated and significantly altered the metabolic processes. In total, 428 differentially abundant metabolites were affected by salt stress. After moderate and severe salt stress, most of the differentially abundant metabolites were enriched in the L-phenylalanine metabolic pathway. Through the comprehensive analysis of the interaction between key genes and metabolites, the main pathways such as lignin compound biosynthesis and triterpene saponin biosynthesis were completed. The relative content of compounds related to lignin biosynthesis, such as caffeic acid, coniferin, and syringing, increased under salt stress, and the related genes such as PAL, C4H, and the key enzyme gene UGT72E2 were activated to adapt to the salt stress. Platycodon saponin is one of the major triterpene saponins in P. grandiflorus, and Platycodin D is its most abundant major bioactive component. Under severe salt stress, Platycodin D level increased by nearly 1.77-fold compared with the control group. Most of the genes involved insynthetic pathway of Platycodin D, such as HMGCR, GGPS, SE, and LUP, were upregulated under salt stress. CONCLUSION Salt stress led to a decrease in the biomass and affected the activities of antioxidant enzymes and contents of osmotic regulators in the plant. These results provided not only novel insights into the underlying mechanisms of response of P. grandiflorus to salt stress but also a foundation for future studies on the function of genes related to salt tolerance in the triterpenoid saponin biosynthesis pathway.
Collapse
Affiliation(s)
- Meixi Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yushu Xing
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jiannan Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ying Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Juan Yu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqin Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China.
| | - Xin Jia
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
7
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Wang YY, Head DJ, Hauser BA. During Water Stress, Fertility Modulated by ROS Scavengers Abundant in Arabidopsis Pistils. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112182. [PMID: 37299161 DOI: 10.3390/plants12112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Hours after watering plants with 75 mM NaCl, the water potential of reproductive structures precipitously decreases. In flowers with mature gametes, this change in water potential did not alter the rate of fertilization but caused 37% of the fertilized ovules to abort. We hypothesize that the accumulation of reactive oxygen species (ROS) in ovules is an early physiological manifestation associated with seed failure. In this study, we characterize ROS scavengers that were differentially expressed in stressed ovules to determine whether any of these genes regulate ROS accumulation and/or associate with seed failure. Mutants in an iron-dependent superoxide dismutase (FSD2), ascorbate peroxidase (APX4), and three peroxidases (PER17, PER28, and PER29) were evaluated for changes in fertility. Fertility was unchanged in apx4 mutants, but the other mutants grown under normal conditions averaged a 140% increase in seed failure. In pistils, PER17 expression increases three-fold after stress, while the other genes decreased two-fold or more following stress; this change in expression accounts for differences in fertility between healthy and stressed conditions for different genotypes. In pistils, H2O2 levels rose in per mutants, but only in the triple mutant was there a significant increase, indicating that other ROS or their scavengers be involved in seed failure.
Collapse
Affiliation(s)
- Ya-Ying Wang
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donald J Head
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Bernard A Hauser
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Yu X, Wei P, Zhao S, Chen Z, Li X, Zhang W, Liu C, Yang Y, Li X, Liu X. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. PLANT CELL REPORTS 2023; 42:879-893. [PMID: 36973418 DOI: 10.1007/s00299-023-03005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Positive selection genes are related to metabolism, while differentially expressed genes are related to photosynthesis, suggesting that genetic adaptation and expression regulation may play independent roles in different gene classes. Genome-wide investigation of the molecular mechanisms for high-altitude adaptation is an intriguing topic in evolutionary biology. The Qinghai-Tibet Plateau (QTP) with its extremely variable environments is an ideal site for studying high-altitude adaptation. Here, we used transcriptome data of 100 individuals from 20 populations collected from various altitudes on the QTP to investigate the adaptive mechanisms of the aquatic plant Batrachium bungei at both the genetic and transcriptional level. To explore genes and biological pathways that may contribute to QTP adaptation, we employed a two-step approach, in which we identified positively selected genes and differentially expressed genes using the landscape genomic and differential expression approaches. The positive selection analysis showed that genes involved in metabolic regulation played a crucial role in B. bungei adaptation to the extreme environments of the QTP, especially intense ultraviolet radiation. Altitude-based differential expression analysis suggested that B. bungei could increase the rate of energy dissipation or reduce the efficiency of light energy absorption by down regulating the expression of photosynthesis-related genes to adapt to the strong ultraviolet radiation. Weighted gene co-expression network analysis identified ribosomal genes as hubs of altitude adaptation in B. bungei. Only a small part of genes (about 10%) overlapped between positively selected genes and differentially expressed genes in B. bungei, suggesting that genetic adaptation and gene expression regulation might play relatively independent roles in different categories of functional genes. Taken together, this study enriches our understanding of the high-altitude adaptation mechanism of B. bungei on the QTP.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China.
| |
Collapse
|
10
|
Yang B, Sun S, Li S, Zeng J, Xu F. RNA-seq study reveals the signaling and carbohydrate metabolism regulators involved in dormancy release by warm stratification in Paris polyphylla var. yunnanensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:355-365. [PMID: 37283615 PMCID: PMC10240920 DOI: 10.5511/plantbiotechnology.22.0824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/24/2022] [Indexed: 06/08/2023]
Abstract
Long-term seed dormancy of Paris polyphylla var. yunnanensis limits its large-scale artificial cultivation. It is crucial to understand the regulatory genes involving in dormancy release for artificial cultivation in this species. In this study, seed dormancy of Paris polyphylla var. yunnanensis was effectively released by warm stratification (20°C) for 90 days. The freshly harvested seeds (dormant) and stratified seeds (non-dormant) were used to sequence, and approximately 147 million clean reads and 28,083 annotated unigenes were detected. In which, a total of 10,937 differentially expressed genes (DEGs) were identified between dormant and non-dormant seeds. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classification revealed that the majority unigenes involved in signaling transduction and carbohydrate metabolism. Of them, the signaling transduction-related DEGs were mainly hormones-, reactive oxygen species (ROS)-, and transcription factor (TF)-related genes. The largest number of signaling transduction-related DEGs were auxin-responsive genes (SAUR, AUX/IAA, and ARF) and AP2-like ethylene-responsive transcription factor (ERF/AP2). Moreover, at least 29 DEGs such as α-amylase (AMY), β-glucosidase (Bglb/Bglu/Bglx), and endoglucanase (Glu) were identified involving in carbohydrate metabolism. These identified genes provide a valuable resource to investigate the molecular basis of dormancy release in Paris polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shengyu Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiali Zeng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
11
|
Jeong YJ, Kim YC, Lee JS, Kim DG, Lee JH. Reduced Expression of PRX2/ ATPRX1, PRX8, PRX35, and PRX73 Affects Cell Elongation, Vegetative Growth, and Vasculature Structures in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2022; 11:3353. [PMID: 36501391 PMCID: PMC9740967 DOI: 10.3390/plants11233353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Class III peroxidases (PRXs) are involved in a broad spectrum of physiological and developmental processes throughout the life cycle of plants. However, the specific function of each PRX member in the family remains largely unknown. In this study, we selected four class III peroxidase genes (PRX2/ATPRX1, PRX8, PRX35, and PRX73) from a previous genome-wide transcriptome analysis, and performed phenotypic and morphological analyses, including histochemical staining, in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi plants. The reduced mRNA levels of corresponding PRX genes in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi seedlings resulted in elongated hypocotyls and roots, and slightly faster vegetative growth. To investigate internal structural changes in the vasculature, we performed histochemical staining, which revealed alterations in cell wall structures in the main vasculature of hypocotyls, stems, and roots of each PRXRNAi plant compared to wild-type (Col-0) plants. Furthermore, we found that PRX35RNAi plants displayed the decrease in the cell wall in vascular regions, which are involved in downregulation of lignin biosynthesis and biosynthesis-regulated genes' expression. Taken together, these results indicated that the reduced expression levels of PRX2/ATPRX1, PRX8, PRX35, and PRX73 affected hypocotyl and root elongation, vegetative growth, and the vasculature structures in hypocotyl, stem, and root tissues, suggesting that the four class III PRX genes play roles in plant developmental processes.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - June Seung Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
12
|
Abdirad S, Wu Y, Ghorbanzadeh Z, Tazangi SE, Amirkhani A, Fitzhenry MJ, Kazemi M, Ghaffari MR, Koobaz P, Zeinalabedini M, Habibpourmehraban F, Masoomi-Aladizgeh F, Atwell BJ, Mirzaei M, Salekdeh GH, Haynes PA. Proteomic analysis of the meristematic root zone in contrasting genotypes reveals new insights in drought tolerance in rice. Proteomics 2022; 22:e2200100. [PMID: 35920597 DOI: 10.1002/pmic.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Esmaeili Tazangi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehrbano Kazemi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
13
|
Chen Y, Feng J, Qu Y, Zhang J, Zhang L, Liang D, Yang Y, Huang J. Genome-wide identification and functional analysis of class III peroxidases in Gossypium hirsutum. PeerJ 2022; 10:e13635. [PMID: 35795174 PMCID: PMC9252181 DOI: 10.7717/peerj.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Class III peroxidase (PRX) genes play essential roles in various processes, such as auxin catabolism, removal of H2O2, crosslinking cell wall components, and response to biotic and abiotic stresses. In this study, we identified 166, 78 and 89 PRX genes from G. hirsutum, G. arboretum and G. raimondii, respectively. These PRX genes were classified into seven subfamilies based on phylogenetic tree analysis and the classification of PRX genes in Arabidopsis. Segmental duplication and purifying selection were the major factors driving the evolution of GhPRXs. GO and KEGG enrichment analysis revealed that GhPRX genes were mainly associated with responding to oxidative stresses, peroxidase activities and phenylpropanoid biosynthesis pathways. Transcriptome data analysis showed that GhPRX genes expression were significantly different in microspore development between the sterility line-JinA and the maintainer line MB177. We confirmed the up-regulation of GhPRX107 and down-regulation of GhPRX128 in the sterile line compared to its maintainer line using qRT-PCR, suggesting their roles in pollen fertility. In addition, silencing GhPRX107 in cotton showed a significant decrease of the reactive oxygen species (ROS) levels of microsporocyte stage anthers compared to control. Overexpressing GhPRX107 in Arabidopsis significantly increased the ROS levels of anthers compared to wild type. In conclusion, we identified GhPRX107 as a determinant of ROS levels in anther. This work sets a foundation for PRX studies in pollen development.
Collapse
|
14
|
Molecular Regulation of Cotton Fiber Development: A Review. Int J Mol Sci 2022; 23:ijms23095004. [PMID: 35563394 PMCID: PMC9101851 DOI: 10.3390/ijms23095004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton (Gossypium spp.) is an economically important natural fiber crop. The quality of cotton fiber has a substantial effect on the quality of cotton textiles. The identification of cotton fiber development-related genes and exploration of their biological functions will not only enhance our understanding of the elongation and developmental mechanisms of cotton fibers but also provide insights that could aid the cultivation of new cotton varieties with improved fiber quality. Cotton fibers are single cells that have been differentiated from the ovule epidermis and serve as a model system for research on single-cell differentiation, growth, and fiber production. Genes and fiber formation mechanisms are examined in this review to shed new light on how important phytohormones, transcription factors, proteins, and genes linked to fiber development work together. Plant hormones, which occur in low quantities, play a critically important role in regulating cotton fiber development. Here, we review recent research that has greatly contributed to our understanding of the roles of different phytohormones in fiber development and regulation. We discuss the mechanisms by which phytohormones regulate the initiation and elongation of fiber cells in cotton, as well as the identification of genes involved in hormone biosynthetic and signaling pathways that regulate the initiation, elongation, and development of cotton fibers.
Collapse
|
15
|
Zhao X, Sun XF, Zhao LL, Huang LJ, Wang PC. Morphological, transcriptomic and metabolomic analyses of Sophora davidii mutants for plant height. BMC PLANT BIOLOGY 2022; 22:144. [PMID: 35337273 PMCID: PMC8951708 DOI: 10.1186/s12870-022-03503-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 05/28/2023]
Abstract
Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.
Collapse
Affiliation(s)
- Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiao-Fu Sun
- Weining Plateau Grassland Test Station, Weining, 553100, China
| | - Li-Li Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Li-Juan Huang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pu-Chang Wang
- Guizhou Institute of Prataculture, Guiyang, 550006, China.
| |
Collapse
|
16
|
Zhao W, Wang K, Chang Y, Zhang B, Li F, Meng Y, Li M, Zhao Q, An S. OsHyPRP06/R3L1 regulates root system development and salt tolerance via apoplastic ROS homeostasis in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2022; 45:900-914. [PMID: 34490900 DOI: 10.1111/pce.14180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 05/03/2023]
Abstract
Plant root morphology is constantly reshaped in response to triggers from the soil environment. Such modifications in root system architecture involve changes in the abundance of reactive oxygen species (ROS) in the apoplast and in cell wall (CW) composition. The hybrid proline-rich proteins (HyPRPs) gene family in higher plants is considered important in the regulation of CW structure. However, the functions of HyPRPs remain to be characterized. We therefore analysed the functions of OsR3L1 (Os04g0554500) in rice. qRT-PCR and GUS staining revealed that OsR3L1 is expressed in roots. While the r3l1 mutants had a defective root system with fewer adventitious roots (ARs) and lateral roots (LRs) than the wild type, lines overexpressing OsR3L1 (R3L1-OE) showed more extensive LR formation but with a shorter root length. The expression of OsR3L1 was initiated by the OsMADS25 transcription factor. Moreover, the abundance of OsR3L1 transcripts was increased by NaCl. The R3L1-OE-3 line exhibited enhanced salt tolerance, whereas the r3l1-2 mutant showed greater salt sensitivity. The addition of H2 O2 increased the levels of OsR3L1 transcripts. Data are presented indicating that OsR3L1 modulates H2 O2 accumulation in the apoplast. We conclude that OsR3L1 regulates salt tolerance through regulation of peroxidases and apoplastic H2 O2 metabolism.
Collapse
Affiliation(s)
- Wenli Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kun Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanpeng Chang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bo Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fei Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yuxuan Meng
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mengqi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
18
|
Yang T, Zhang P, Pan J, Amanullah S, Luan F, Han W, Liu H, Wang X. Genome-Wide Analysis of the Peroxidase Gene Family and Verification of Lignin Synthesis-Related Genes in Watermelon. Int J Mol Sci 2022; 23:ijms23020642. [PMID: 35054827 PMCID: PMC8775647 DOI: 10.3390/ijms23020642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Watermelon (Citrullus lanatus) is an important horticultural crop worldwide, but peel cracking caused by peel hardness severely decreases its quality. Lignification is one of the important functions of class III peroxidase (PRX), and its accumulation in the plant cell wall leads to cell thickening and wood hardening. For in-depth physiological and genetical understanding, we studied the relationship between peel hardness and lignin accumulation and the role of PRXs affecting peel lignin biosynthesis using genome-wide bioinformatics analysis. The obtained results showed that lignin accumulation gradually increased to form the peel stone cell structure, and tissue lignification led to peel hardness. A total of 79 ClPRXs (class III) were identified using bioinformatics analysis, which were widely distributed on 11 chromosomes. The constructed phylogenetics indicated that ClPRXs were divided into seven groups and eleven subclasses, and gene members of each group had highly conserved intron structures. Repeated pattern analysis showed that deletion and replication events occurred during the process of ClPRX amplification. However, in the whole-protein sequence alignment analysis, high homology was not observed, although all contained four conserved functional sites. Repeated pattern analysis showed that deletion and replication events occurred during ClPRXs' amplification process. The prediction of the promoter cis-acting element and qRT-PCR analysis in four tissues (leaf, petiole, stem, and peel) showed different expression patterns for tissue specificity, abiotic stress, and hormone response by providing a genetic basis of the ClPRX gene family involved in a variety of physiological processes in plants. To our knowledge, we for the first time report the key roles of two ClPRXs in watermelon peel lignin synthesis. In conclusion, the extensive data collected in this study can be used for additional functional analysis of ClPRXs in watermelon growth and development and hormone and abiotic stress response.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Pengyu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jiahui Pan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wenhao Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (H.L.); (X.W.)
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
19
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
20
|
Cai K, Liu H, Chen S, Liu Y, Zhao X, Chen S. Genome-wide identification and analysis of class III peroxidases in Betula pendula. BMC Genomics 2021; 22:314. [PMID: 33932996 PMCID: PMC8088069 DOI: 10.1186/s12864-021-07622-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. RESULTS We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. CONCLUSIONS The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.
Collapse
Affiliation(s)
- Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Huixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Zhou F, Zheng B, Wang F, Cao A, Xie S, Chen X, Schick JA, Jin X, Li H. Genome-Wide Analysis of MDHAR Gene Family in Four Cotton Species Provides Insights into Fiber Development via Regulating AsA Redox Homeostasis. PLANTS 2021; 10:plants10020227. [PMID: 33503886 PMCID: PMC7912408 DOI: 10.3390/plants10020227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Monodehydroasorbate reductase (MDHAR) (EC1.6.5.4), a key enzyme in ascorbate-glutathione recycling, plays important roles in cell growth, plant development and physiological response to environmental stress via control of ascorbic acid (AsA)-mediated reduction/oxidation (redox) regulation. Until now, information regarding MDHAR function and regulatory mechanism in Gossypium have been limited. Herein, a genome-wide identification and comprehensive bioinformatic analysis of 36 MDHAR family genes in four Gossypium species, Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, were performed, indicating their close evolutionary relationship. Expression analysis of GhMDHARs in different cotton tissues and under abiotic stress and phytohormone treatment revealed diverse expression features. Fiber-specific expression analysis showed that GhMDHAR1A/D, 3A/D and 4A/D were preferentially expressed in fiber fast elongating stages to reach peak values in 15-DPA fibers, with corresponding coincident observances of MDHAR enzyme activity, AsA content and ascorbic acid/dehydroascorbic acid (AsA/DHA) ratio. Meanwhile, there was a close positive correlation between the increase of AsA content and AsA/DHA ratio catalyzed by MDHAR and fiber elongation development in different fiber-length cotton cultivars, suggesting the potential important function of MDHAR for fiber growth. Following H2O2 stimulation, GhMDHAR demonstrated immediate responses at the levels of mRNA, enzyme, the product of AsA and corresponding AsA/DHA value, and antioxidative activity. These results for the first time provide a comprehensive systemic analysis of the MDHAR gene family in plants and the four cotton species and demonstrate the contribution of MDHAR to fiber elongation development by controlling AsA-recycling-mediated cellular redox homeostasis.
Collapse
Affiliation(s)
- Fangfang Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Bowen Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
| | - Joel A. Schick
- Genetics and Cellular Engineering Group, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany;
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Correspondence: (X.J.); (H.L.)
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (F.Z.); (B.Z.); (F.W.); (A.C.); (S.X.); (X.C.)
- Correspondence: (X.J.); (H.L.)
| |
Collapse
|
22
|
Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family in Potato ( Solanum tuberosum L.). Front Genet 2020; 11:593577. [PMID: 33343634 PMCID: PMC7744636 DOI: 10.3389/fgene.2020.593577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Class III peroxidases (PRXs) are plant-specific enzymes and play important roles in plant growth, development and stress response. In this study, a total of 102 non-redundant PRX gene members (StPRXs) were identified in potato (Solanum tuberosum L.). They were divided into 9 subfamilies based on phylogenetic analysis. The members of each subfamily were found to contain similar organizations of the exon/intron structures and protein motifs. The StPRX genes were not equally distributed among chromosomes. There were 57 gene pairs of segmental duplication and 26 gene pairs of tandem duplication. Expression pattern analysis based on the RNA-seq data of potato from public databases indicated that StPRX genes were expressed differently in various tissues and responded specifically to heat, salt and drought stresses. Most of the StPRX genes were expressed at significantly higher levels in root than in other tissues. In addition, real-time quantitative PCR (qRT-PCR) analysis for 7 selected StPRX genes indicated that these genes displayed various expression levels under abiotic stresses. Our results provide valuable information for better understanding the evolution of StPRX gene family in potato and lay the vital foundation for further exploration of PRX gene function in plants.
Collapse
Affiliation(s)
- Xuanshong Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Wenbin Luo
- The Crop Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Mingyue Qin
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Weiren Wu
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.,Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture & Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Gu Q, Ke H, Liu Z, Lv X, Sun Z, Zhang M, Chen L, Yang J, Zhang Y, Wu L, Li Z, Wu J, Wang G, Meng C, Zhang G, Wang X, Ma Z. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3395-3408. [PMID: 32894321 DOI: 10.1007/s00122-020-03676-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 05/18/2023]
Abstract
A high-density linkage map of an intraspecific RIL population was constructed using 6187 bins to identify QTLs for fibre quality- and yield-related traits in upland cotton by whole-genome resequencing. Good fibre quality and high yield are important production goals in cotton (Gossypium hirsutum L.), which is a leading natural fibre crop worldwide. However, a greater understanding of the genetic variants underlying fibre quality- and yield-related traits is still required. In this study, a large-scale population including 588 F7 recombinant inbred lines, derived from an intraspecific cross between the upland cotton cv. Nongdamian13, which exhibits high quality, and Nongda601, which exhibits a high yield, was genotyped by using 232,946 polymorphic single-nucleotide polymorphisms obtained via a whole-genome resequencing strategy with 4.3-fold genome coverage. We constructed a high-density bin linkage map containing 6187 bin markers spanning 4478.98 cM with an average distance of 0.72 cM. We identified 58 individual quantitative trait loci (QTLs) and 25 QTL clusters harbouring 94 QTLs, and 119 previously undescribed QTLs controlling 13 fibre quality and yield traits across eight environments. Importantly, the QTL counts for fibre quality in the Dt subgenome were more than two times that in the At subgenome, and chromosome D02 harboured the greatest number of QTLs and clusters. Furthermore, we discovered 24 stable QTLs for fibre quality and 12 stable QTLs for yield traits. Four novel major stable QTLs related to fibre length, fibre strength and lint percentage, and seven previously unreported candidate genes with significantly differential expression between the two parents were identified and validated by RNA-seq. Our research provides valuable information for improving the fibre quality and yield in cotton breeding.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liting Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
24
|
Li Q, Qin X, Qi J, Dou W, Dunand C, Chen S, He Y. CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification. HORTICULTURE RESEARCH 2020; 7:192. [PMID: 33328465 PMCID: PMC7705758 DOI: 10.1038/s41438-020-00415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 05/21/2023]
Abstract
Citrus bacterial canker (CBC) results from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production. Class III peroxidases (CIII Prxs) are key proteins to the environmental adaptation of citrus plants to a range of exogenous pathogens, but the role of CIII Prxs during plant resistance to CBC is poorly defined. Herein, we explored the role of CsPrx25 and its contribution to plant defenses in molecular detail. Based on the expression analysis, CsPrx25 was identified as an apoplast-localized protein that is differentially regulated by Xcc infection, salicylic acid, and methyl jasmone acid in the CBC-susceptible variety Wanjincheng (C. sinensis) and the CBC-resistant variety Calamondin (C. madurensis). Transgenic Wanjincheng plants overexpressing CsPrx25 were generated, and these transgenic plants exhibited significantly increased CBC resistance compared with the WT plants. In addition, the CsPrx25-overexpressing plants displayed altered reactive oxygen species (ROS) homeostasis accompanied by enhanced H2O2 levels, which led to stronger hypersensitivity responses during Xcc infection. Moreover, the overexpression of CsPrx25 enhanced lignification as an apoplastic barrier for Xcc infection. Taken together, the results highlight how CsPrx25-mediated ROS homeostasis reconstruction and cell wall lignification can enhance the resistance of sweet orange to CBC.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, 31320, France
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
25
|
Hernaández-Esquivel AA, Castro-Mercado E, Valencia-Cantero E, Alexandre G, García-Pineda E. Application of Azospirillum brasilense Lipopolysaccharides to Promote Early Wheat Plant Growth and Analysis of Related Biochemical Responses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.579976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Cheng G, Zhang L, Wei H, Wang H, Lu J, Yu S. Transcriptome Analysis Reveals a Gene Expression Pattern Associated with Fuzz Fiber Initiation Induced by High Temperature in Gossypium barbadense. Genes (Basel) 2020; 11:genes11091066. [PMID: 32927688 PMCID: PMC7565297 DOI: 10.3390/genes11091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gossypium barbadense is an important source of natural textile fibers, as is Gossypium hirsutum. Cotton fiber development is often affected by various environmental factors, such as abnormal temperature. However, little is known about the underlying mechanisms of temperature regulating the fuzz fiber initiation. In this study, we reveal that high temperatures (HT) accelerate fiber development, improve fiber quality, and induced fuzz initiation of a thermo-sensitive G. barbadense variety L7009. It was proved that fuzz initiation was inhibited by low temperature (LT), and 4 dpa was the stage most susceptible to temperature stress during the fuzz initiation period. A total of 43,826 differentially expressed genes (DEGs) were identified through comparative transcriptome analysis. Of these, 9667 were involved in fiber development and temperature response with 901 transcription factor genes and 189 genes related to plant hormone signal transduction. Further analysis of gene expression patterns revealed that 240 genes were potentially involved in fuzz initiation induced by high temperature. Functional annotation revealed that the candidate genes related to fuzz initiation were significantly involved in the asparagine biosynthetic process, cell wall biosynthesis, and stress response. The expression trends of sixteen genes randomly selected from the RNA-seq data were almost consistent with the results of qRT-PCR. Our study revealed several potential candidate genes and pathways related to fuzz initiation induced by high temperature. This provides a new view of temperature-induced tissue and organ development in Gossypium barbadense.
Collapse
Affiliation(s)
- Gongmin Cheng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
27
|
Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC PLANT BIOLOGY 2020; 20:392. [PMID: 32847515 PMCID: PMC7449071 DOI: 10.1186/s12870-020-02602-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/16/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response. RESULTS In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress. CONCLUSIONS The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jun Yan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| |
Collapse
|
28
|
Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar KM, Mujtaba M. Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. Int J Biol Macromol 2020; 163:1301-1313. [PMID: 32679330 DOI: 10.1016/j.ijbiomac.2020.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023]
Abstract
Cotton is among the most important fiber crops for the textile-based industry, thanks to its cellulose-rich mature fibers. The fiber initiation and elongation are one of the best models for deciphering mechanisms of single-cell differentiation and growth, that also target of fiber development programs. During the last couple of decades, high yielding omics approaches (genomics, transcriptomics, and proteomics), have helped in the identification of several genes and gene products involved in fiber development along with functional relationship to phytohormones. For example, MYB transcription factor family and Sus gene family have been evidenced by controlling cotton fiber initiation. Most importantly, the biosynthesis, responses, and transporting of phytohormones is documented to participate in the initiation of cotton fibers. Herein, in this review, the reliable genetic evidence by manipulating the above genes in cotton have been summarized to describe the relationships among key phytohormones, transcription factors, proteins, and downstream fiber growth-related genes such as Sus. The effect of other important factors such as ROS, fatty acid metabolism, and actin (globular multi-functional proteins) over fiber development has also been discussed. The challenges and deficiencies in the research of cotton fiber development have been mentioned along with a future perspective to discover new crucial genes using multiple omics analysis.
Collapse
Affiliation(s)
- Lichen Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Guifeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China; Shandong Cotton Production Technical Guidance Station, Jinan, Shandong 250100, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Sumeyye Altunok
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey
| | - Zongqin Feng
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06100 Ankara, Turkey
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey.
| |
Collapse
|
29
|
Xiao H, Wang C, Khan N, Chen M, Fu W, Guan L, Leng X. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics 2020; 21:444. [PMID: 32600251 PMCID: PMC7325284 DOI: 10.1186/s12864-020-06828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. RESULTS We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. CONCLUSIONS In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.
Collapse
Affiliation(s)
- Huilin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Yantai Academy of Agricultural Sciences, Yantai, 264000, P. R. China
| | - Chaoping Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mengxia Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| |
Collapse
|
30
|
Hu R, Sun P, Yu H, Cheng Y, Wang R, Chen X, Kjellberg F. Similitudes and differences between two closely related Ficus species in the synthesis by the ostiole of odors attracting their host-specific pollinators: A transcriptomic based investigation. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, Xie S, Chen X, Jin X, Li H. GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, Involves in Cell Elongation Under Control of Ethylene. Cells 2019; 8:cells8091039. [PMID: 31492030 PMCID: PMC6769745 DOI: 10.3390/cells8091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Lihua Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Rendi Ma
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiaoyu Zuo
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Aiping Cao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Shuangquan Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xifeng Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
32
|
Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics 2019; 20:666. [PMID: 31438842 PMCID: PMC6704529 DOI: 10.1186/s12864-019-6006-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Background The class III peroxidase (PRX) gene family is a plant-specific member of the PRX superfamily that is closely related to various physiological processes, such as cell wall loosening, lignification, and abiotic and biotic stress responses. However, its classification, evolutionary history and gene expression patterns are unclear in wheat and Aegilops tauschii. Results Here, we identified 374, 159 and 169 PRXs in Triticum aestivum, Triticum urartu and Ae. tauschii, respectively. Together with PRXs detected from eight other plants, they were classified into 18 subfamilies. Among subfamilies V to XVIII, a conserved exon-intron structure within the “001” exon phases was detected in the PRX domain. Based on the analysis, we proposed a phylogenetic model to infer the evolutionary history of the exon-intron structures of PRX subfamilies. A comparative genomics analysis showed that subfamily VII could be the ancient subfamily that originated from green algae (Chlamydomonas reinhardtii). Further integrated analysis of chromosome locations and collinearity events of PRX genes suggested that both whole genome duplication (WGD) and tandem duplication (TD) events contributed to the expansion of T. aestivum PRXs (TaePRXs) during wheat evolution. To validate functions of these genes in the regulation of various physiological processes, the expression patterns of PRXs in different tissues and under various stresses were studied using public microarray datasets. The results suggested that there were distinct expression patterns among different tissues and PRXs could be involved in biotic and abiotic responses in wheat. qRT-PCR was performed on samples exposed to drought, phytohormone treatments and Fusarium graminearum infection to validate the microarray predictions. The predicted subcellular localizations of some TaePRXs were consistent with the confocal microscopy results. We predicted that some TaePRXs had hormone-responsive cis-elements in their promoter regions and validated these predicted cis-acting elements by sequencing promoters. Conclusion In this study, identification, classification, evolution, and expression patterns of PRXs in wheat and relative plants were performed. Our results will provide information for further studies on the evolution and molecular mechanisms of wheat PRXs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6006-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Guilian Xiao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
33
|
Salih H, Gong W, He S, Xia W, Odongo MR, Du X. Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics 2019; 20:661. [PMID: 31426741 PMCID: PMC6700839 DOI: 10.1186/s12864-019-5978-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Wang Xia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Magwanga Richard Odongo
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| |
Collapse
|
34
|
Genome-Wide Identification and Analysis of Class III Peroxidases in Allotetraploid Cotton ( Gossypium hirsutum L.) and their Responses to PK Deficiency. Genes (Basel) 2019; 10:genes10060473. [PMID: 31234429 PMCID: PMC6627342 DOI: 10.3390/genes10060473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/19/2023] Open
Abstract
Class III peroxidases (PODs), commonly known as secretable class III plant peroxidases, are plant-specific enzymes that play critical roles in not only plant growth and development but also the responses to biotic and abiotic stress. In this study, we identified 198 nonredundant POD genes, designated GhPODs, with 180 PODs being predicted to secrete into apoplast. These POD genes were divided into 10 sub-groups based on their phylogenetic relationships. We performed systematic bioinformatic analysis of the POD genes, including analysis of gene structures, phylogenetic relationships, and gene expression profiles. The GhPODs are unevenly distributed on both upland cotton sub-genome A and D chromosomes. Additionally, these genes have undergone 15 segmental and 12 tandem duplication events, indicating that both segmental and tandem duplication contributed to the expansion of the POD gene family in upland cotton. Ka/Ks analysis suggested that most duplicated GhPODs experienced negative selection, with limited functional divergence during the duplication events. High-throughput RNA-seq data indicated that most highly expressed genes might play significant roles in root, stem, leaf, and fiber development. Under K or P deficiency conditions, PODs showed different expression patterns in cotton root and leaf. This study provides useful information for further functional analysis of the POD gene family in upland cotton.
Collapse
|
35
|
Zhang H, He Y, Tan X, Xie K, Li L, Hong G, Li J, Cheng Y, Yan F, Chen J, Sun Z. The Dual Effect of the Brassinosteroid Pathway on Rice Black-Streaked Dwarf Virus Infection by Modulating the Peroxidase-Mediated Oxidative Burst and Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:685-696. [PMID: 30540528 DOI: 10.1094/mpmi-10-18-0285-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone brassinosteroid (BR) not only plays key roles in regulating plant growth and development but is also involved in modulating the plant defense system in response to pathogens. We previously found that BR application made rice plants more susceptible to the devastating pathogen rice black-streaked dwarf virus (RBSDV), but the mechanism of BR-mediated susceptibility remains unclear. We now show that both BR-deficient and -insensitive mutants are resistant to RBSDV infection. High-throughput sequencing showed that the defense hormone salicylic acid and jasmonic acid pathways were activated in the RBSDV-infected BR mutant. Meanwhile, a number of class III peroxidases (OsPrx) were significantly changed and basal reactive oxygen species (ROS) accumulated in BR mutants. Treatment with exogenous hormones and other chemicals demonstrated that the BR pathway could suppress the levels of OsPrx and the ROS burst by directly binding the promoters of OsPrx genes. Together, our findings indicate that BR-mediated susceptibility is at least partly caused by inhibition of the action of defense hormones, preventing the accumulation of the peroxidase-mediated oxidative burst.
Collapse
Affiliation(s)
- Hehong Zhang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoxiang Tan
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaili Xie
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Lulu Li
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junmin Li
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Ye Cheng
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Fei Yan
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
| | - Jianping Chen
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zongtao Sun
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 2 Institute of Plant Virology, Ningbo University, Ningbo, China; and
- 3 The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China and Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
36
|
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene 2019; 700:149-162. [DOI: 10.1016/j.gene.2019.02.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
|
37
|
Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species. DATA 2018. [DOI: 10.3390/data3040055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poppies are well-known plants in the family Papaveraceae that are rich in alkaloids. This family contains 61 species, and in this study we sequenced the transcriptomes of four species’ (Papaver rhoeas, Papaver nudicaule, Papaver fauriei, and Papaver somniferum) leaves. These transcripts were systematically assessed for the expression of secondary metabolite biosynthesis (SMB) genes and cytochromes, and their expression profiles were assessed for use in bioinformatics analyses. This study contributed 265 Gb (13 libraries with three biological replicates) of leaf transcriptome data from three Papaver plant developmental stages. Sequenced transcripts were assembled into 815 Mb of contigs, including 226 Mb of full-length transcripts. The transcripts for 53 KEGG pathways, 55 cytochrome superfamilies, and benzylisoquinoline alkaloid biosynthesis (BIA) were identified and compared to four other alkaloid-rich genomes. Additionally, 22 different alkaloids and their relative expression profiles in three developmental stages of Papaver species were assessed by targeted metabolomics using LC-QTOF-MS/MS. Collectively, the results are given in co-occurrence heat-maps to help researchers obtain an overview of the transcripts and their differential expression in the Papaver development life cycle, particularly in leaves. Moreover, this dataset will be a valuable resource to derive hypotheses to mitigate an array of Papaver developmental and secondary metabolite biosynthesis issues in the future.
Collapse
|
38
|
Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G. Recent insights into cotton functional genomics: progress and future perspectives. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:699-713. [PMID: 29087016 PMCID: PMC5814580 DOI: 10.1111/pbi.12856] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 05/11/2023]
Abstract
Functional genomics has transformed from futuristic concept to well-established scientific discipline during the last decade. Cotton functional genomics promise to enhance the understanding of fundamental plant biology to systematically exploit genetic resources for the improvement of cotton fibre quality and yield, as well as utilization of genetic information for germplasm improvement. However, determining the cotton gene functions is a much more challenging task, which has not progressed at a rapid pace. This article presents a comprehensive overview of the recent tools and resources available with the major advances in cotton functional genomics to develop elite cotton genotypes. This effort ultimately helps to filter a subset of genes that can be used to assemble a final list of candidate genes that could be employed in future novel cotton breeding programme. We argue that next stage of cotton functional genomics requires the draft genomes refinement, re-sequencing broad diversity panels with the development of high-throughput functional genomics tools and integrating multidisciplinary approaches in upcoming cotton improvement programmes.
Collapse
Affiliation(s)
- Javaria Ashraf
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Dongyun Zuo
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiaolian Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Waqas Malik
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Youping Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Muhammad Ali Abid
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Hailiang Cheng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiuhong Yang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Guoli Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| |
Collapse
|
39
|
Tao C, Jin X, Zhu L, Xie Q, Wang X, Li H. Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. Mol Genet Genomics 2018; 293:685-697. [PMID: 29307114 PMCID: PMC5948307 DOI: 10.1007/s00438-017-1413-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/23/2017] [Indexed: 12/19/2022]
Abstract
Ascorbate peroxidase (APX) is a member of heme-containing peroxidases which catalyze the H2O2-dependent oxidation of a wide range of substrates in plants and animals. As is known, H2O2 acts as a signaling molecule in the regulation of fiber development. Our previous work reported that ascorbate peroxidase 1 (GhAPX1) was important for cotton fiber elongation. However, knowledge about APX gene family members and their evolutionary and functional characteristics in cotton is limited. Here, we report 26 GhAPX genes by genome-wide investigation of tetraploid cotton Gossypium hirsutum. Phylogenetic and gene structure analyses classified these APX members into five clades and syntenic analysis suggested two duplication events. Expression profiling of the 26 APXs revealed that ten members are expressed in cotton fibers. Notably, GhAPX10A, GhAPX10D, GhAPX12A, and GhAPX12D showed high expression levels in 30-day fiber, while GhAPX1A/D, GhAPX3A/D, and GhAPX6A/D showed very low expression levels. The enzyme activity and H2O2 content assays revealed that cotton fiber kept high enzyme activity and the lowest H2O2 level in 30-day fibers, indicating that other than GhAPX1, the newly reported APX members are responsible for the reactive oxygen species homeostasis in the cotton fiber maturation stages. Expression profiling of ten fiber-expressed APXs after phytohormone treatments revealed their regulation patterns by different stimuli, suggesting that GhAPX1, GhAPX12A, and GhAPX12D are responsible to most phytohormone treatments. Our data provided evolutionary and functional information of GhAPX gene family members and revealed that different members are responsible to redox homeostasis during different cotton fiber development stages.
Collapse
Affiliation(s)
- Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Liping Zhu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China. .,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
40
|
Li PT, Wang M, Lu QW, Ge Q, Rashid MHO, Liu AY, Gong JW, Shang HH, Gong WK, Li JW, Song WW, Guo LX, Su W, Li SQ, Guo XP, Shi YZ, Yuan YL. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 2017; 18:705. [PMID: 28886694 PMCID: PMC5591532 DOI: 10.1186/s12864-017-4077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. Results In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the “oxidation-reduction process”, which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. Conclusions The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4077-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Quan-Wei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei-Wu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Li-Xue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei Su
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiao-Ping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| |
Collapse
|
41
|
Hande AS, Katageri IS, Jadhav MP, Adiger S, Gamanagatti S, Padmalatha KV, Dhandapani G, Kanakachari M, Kumar PA, Reddy VS. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.). BMC Genomics 2017; 18:675. [PMID: 28859611 PMCID: PMC5580217 DOI: 10.1186/s12864-017-4066-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array. Result Scanning electron microscopy (SEM) analysis uncovered the occurrence of few fibre cell initials in the Fl line as compared to many in Normal FL at −2 and 0 dpa. However, at 10 dpa there were no fibre cells found elongated in Fl but many elongated cells were found in FL line. Up-regulation of transcription factors, AP2-EREBP, C2H2, C3H, HB and WRKY was observed at 0 dpa whereas in 10 dpa transcription factors, AP2-EREBP, AUX/IAA, bHLH, C2H2, C3H, HB, MYB, NAC, Orphans, PLATZ and WRKY were found down regulated in Fl line. These transcription factors were mainly involved in metabolic pathways such as phytohormone signaling, energy metabolism of cell, fatty acid metabolism, secondary metabolism and other signaling pathways and are related directly or indirectly in fiber development. Quantitative real-time PCR was performed to check fold up or down-regulation of these genes and transcription factors (TFs) down regulated in mutants as compared to normal at 0 and 10 dpa. Conclusion This study elucidates that the up-regulation of transcription factors like AP2-EREBP, C2H2, C3H, HB, WRKY and phytohormone signaling genes at 0 dpa and their down-regulation at the 10 dpa might have constrain the fibre elongation in fuzzy-lintless line. Along with this the down-regulation of genes involved in synthesis of VLCFA chain, transcripts necessary for energy and cell wall metabolism, EXPANSINs, arabinogalactan proteins (AGPs), tubulin might also be the probable reason for reduced growth of fibres in the Fl. Plant receptor-like kinases (RLKs), Leucine Rich Repeats) LRR- family protein and signal transduction coding for mitogen-activated protein kinase (MAPK) cascade, have been engaged in coordination of cell elongation and SCW biosynthesis, down-regulation of these might loss the function leads to reduced fibre growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4066-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atul S Hande
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Sateesh Adiger
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Gurusamy Dhandapani
- National Research Centre on Plant Biotechnology (NRCPB), IARI, New Delhi, India
| | | | | | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
42
|
Li R, Xin S, Tao C, Jin X, Li H. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation. Int J Mol Sci 2017; 18:E1346. [PMID: 28644407 PMCID: PMC5535839 DOI: 10.3390/ijms18071346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H₂O₂, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Shan Xin
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hongbin Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
43
|
Zhang M, Cao HZ, Hou L, Song SQ, Zeng JY, Pei Y. In vivo imaging of Ca 2+ accumulation during cotton fiber initiation using fluorescent indicator YC3.60. PLANT CELL REPORTS 2017; 36:911-918. [PMID: 28275854 DOI: 10.1007/s00299-017-2122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Non-tip-focused Ca 2+ gradient indicated by genetically expressing a FRET-based calcium sensor YC3.60 was established in spherical expanding cotton fibers, which is vital for cotton fiber initiation. Cotton fiber is a single cell elongated from ovule epidermis. It is not only the most important natural fiber used in the textile industry but also an ideal model for studying cell differentiation and elongation. Before linear cell growth, cotton fibers undergo spherical expansion at the beginning of initiation. Ca2+, as an important secondary messenger, plays a central role in polarized cell growth including cotton fiber elongation. However, the role of Ca2+ in fiber initiation is far from well understood. In this paper, through ovule culture we demonstrate that Ca2+ is crucial for fiber initiation. Using transgenic cotton expressing the fluorescent Ca2+ indicator YC3.60, we show cellular and intracellular distribution of Ca2+ in cotton ovule epidermis and fiber cells. In the initiating fiber cell, Ca2+ accumulated mainly at the base of the cell, while in the fast elongating cell, the Ca2+ was enriched in the tip region. This cellular distribution of Ca2+ reported by YC3.60 was confirmed by the staining with a Ca2+-sensitive dye fluo-3/AM. Compared to the fluorescent dye staining, the YC3.60 system can reveal more detailed information on the intracellular distribution without photobleaching. Taken together, our data suggest that Ca2+ plays an important role in spherical expansion of cotton fiber initials.
Collapse
Affiliation(s)
- Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China
| | - Hui-Zhen Cao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China
| | - Shui-Qing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China
| | - Jian-Yan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Rd, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
44
|
Man W, Zhang L, Li X, Xie X, Pei W, Yu J, Yu S, Zhang J. A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum × Gossypium barbadense population. Mol Genet Genomics 2016; 291:1749-67. [PMID: 27256327 DOI: 10.1007/s00438-016-1216-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/13/2016] [Indexed: 01/23/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is the most important fiber crop, and its lint-yield improvement is impeded due to its narrow genetic base and the lack of understanding of the genetic basis of yield. Backcross inbred lines (BILs) or near-isogenic lines (NILs) in the same genetic background differing in lint yield, developed through advanced backcrossing, provide an important genomic resource to study the molecular genetic basis of lint yield. In the present study, a high-yield (HY) group and a low-yield (LY) group each with three BILs were selected from a BIL population between G. hirsutum and G. barbadense. Using a microarray-based comparative transcriptome analysis on developing fibers at 10 days post-anthesis (DPA) between the two groups, 1486 differentially expressed genes (DEGs) were identified. A total of 212 DEGs were further mapped in the regions of 24 yield QTL and 11 yield trait QTL hotspots as reported previously, and 81 DEGs mapped with the 7 lint-yield QTL identified in the BIL population from which the two sets of BILs were selected. Gene Ontology annotations and Blast-Mapping-Annotation-KEGG analysis via Blast2GO revealed that more DEGs were associated with catalytic activity and binding, followed by transporters, nucleic acid binding transcription factors, structural molecules and molecular transducer activities. Six DEGs were chosen for a quantitative RT-PCR assay, and the results were consistent with the microarray analysis. The development of DEGs-based markers revealed that 7 single strand conformation polymorphism-based single nucleotide polymorphic (SSCP-SNP) markers were associated with yield traits, and 3 markers with lint yield. In the present study, we identified a number of yield and yield component QTL-co-localizing DEGs and developed several DEG-based SSCP-SNP markers for the traits, thereby providing a set of candidate genes for molecular breeding and genetic manipulation of lint yield in cotton.
Collapse
Affiliation(s)
- Wu Man
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Liyuan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xihua Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xiaobing Xie
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.,Wuyang A & F Bureau, Luohe, Henan, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
45
|
Salih H, Leng X, He SP, Jia YH, Gong WF, Du XM. Characterization of the early fiber development gene, Ligon-lintless 1 (Li1), using microarray. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class III peroxidases. THE NEW PHYTOLOGIST 2016; 209:1395-402. [PMID: 26542837 DOI: 10.1111/nph.13738] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/28/2015] [Indexed: 05/22/2023]
Abstract
Higher plants contain plant-specific peroxidases (class III peroxidase; Prxs) that exist as large multigene families. Reverse genetic studies to characterize the function of each Prx have revealed that Prxs are involved in lignification, cell elongation, stress defense and seed germination. However, the underlying mechanisms associated with plant phenotypes following genetic engineering of Prx genes are not fully understood. This is because Prxs can function as catalytic enzymes that oxidize phenolic compounds while consuming hydrogen peroxide and/or as generators of reactive oxygen species. Moreover, biochemical efforts to characterize Prxs responsible for lignin polymerization have revealed specialized activities of Prxs. In conclusion, not only spatiotemporal regulation of gene expression and protein distribution, but also differentiated oxidation properties of each Prx define the function of this class of peroxidases.
Collapse
Affiliation(s)
- Jun Shigeto
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
47
|
|
48
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
49
|
Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 2015; 566:95-108. [PMID: 25895479 DOI: 10.1016/j.gene.2015.04.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
Abstract
Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize.
Collapse
|
50
|
Richards SL, Wilkins KA, Swarbreck SM, Anderson AA, Habib N, Smith AG, McAinsh M, Davies JM. The hydroxyl radical in plants: from seed to seed. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:37-46. [PMID: 25294918 DOI: 10.1093/jxb/eru398] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The hydroxyl radical (OH(•)) is the most potent yet short-lived of the reactive oxygen species (ROS) radicals. Just as hydrogen peroxide was once considered to be simply a deleterious by-product of oxidative metabolism but is now acknowledged to have signalling roles in plant cells, so evidence is mounting for the hydroxyl radical as being more than merely an agent of destruction. Its oxidative power is harnessed to facilitate germination, growth, stomatal closure, reproduction, the immune response, and adaptation to stress. It features in plant cell death and is a key tool in microbial degradation of plant matter for recycling. Production of the hydroxyl radical in the wall, at the plasma membrane, and intracellularly is facilitated by a range of peroxidases, superoxide dismutases, NADPH oxidases, and transition metal catalysts. The spatio-temporal activity of these must be tightly regulated to target substrates precisely to the site of radical production, both to prevent damage and to accommodate the short half life and diffusive capacity of the hydroxyl radical. Whilst research has focussed mainly on the hydroxyl radical's mode of action in wall loosening, studies now extend to elucidating which proteins are targets in signalling systems. Despite the difficulties in detecting and manipulating this ROS, there is sufficient evidence now to acknowledge the hydroxyl radical as a potent regulator in plant cell biology.
Collapse
Affiliation(s)
- Siân L Richards
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK * Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Stéphanie M Swarbreck
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alexander A Anderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Noman Habib
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Present address: Department of Botany, Government College University, Faisalabad, Pakistan
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Present address: Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|