1
|
Watson OJ, Muchiri S, Ward A, Meier-Sherling C, Asua V, Katairo T, Brewer T, Cuomo-Dannenburg G, Winskill P, Bailey JA, Okell L, Scudu G, Woolsey AM. Risk of selection and timelines for the continued spread of artemisinin and partner drug resistance in Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.28.24312699. [PMID: 39252921 PMCID: PMC11383480 DOI: 10.1101/2024.08.28.24312699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The introduction of artemisinin combination therapies (ACTs) has significantly reduced the burden of Plasmodium falciparum malaria, yet the emergence of artemisinin partial resistance (ART-R) as well as partner drug resistance threatens these gains. Recent confirmations of prevalent de novo ART-R mutations in Africa, in particular in Rwanda, Uganda and Ethiopia, underscore the urgency of addressing this issue in Africa. Our objective is to characterise this evolving resistance landscape in Africa and understand the speed with which ART-R will continue to spread. We produce estimates of both ART-R and partner drug resistance by bringing together WHO, WWARN and MalariaGen Pf7k data on antimalarial resistance in combination with a literature review. We integrate these estimates within a mathematical modelling approach, aincorporating to estimate parameters known to impact the selection of ART-R for each malaria-endemic country and explore scenarios of ART-R spread and establishment. We identify 16 malaria-endemic countries in Africa to prioritise for surveillance and future deployment of alternative antimalarial strategies, based on ART-R reaching greater than 10% prevalence by 2040 under current malaria burden and effective-treatment coverage. If resistance continues to spread at current rates with no change in drug policy, we predict that partner drug resistance will emerge and the mean percentage of treatment failure across Africa will reach 30.74% by 2060 (parameter uncertainty range: 24.98% - 34.54%). This translates to an alarming number of treatment failures, with 52,980,600 absolute cases of treatment failure predicted in 2060 in Africa (parameter uncertainty range: 26,374,200 - 93,672,400) based on current effective treatment coverage. Our results provide a refined and updated prediction model for the emergence of ART-R to help guide antimalarial policy and prioritise future surveillance efforts and innovation in Africa. These results put into stark context the speed with which antimalarial resistance may spread in Africa if left unchecked, confirming the need for swift and decisive action in formulating antimalarial treatment policies focused on furthering malaria control and containing antimalarial resistance in Africa. The rise of artemisinin partial resistance (ART-R) and increasing partner drug tolerance by Plasmodium falciparum malaria in Africa threatens to undo malaria control efforts. Recent confirmations of de novo ART-R markers in Rwanda, Uganda, and Ethiopia highlight the urgent need to address this threat in Africa, where the vast majority of cases and deaths occur. This study characterises the resistance landscape and predicts the spread of antimalarial resistance across Africa. We estimate and map the current levels of resistance markers related to artemisinin and its partner drugs using WHO, WWARN, and MalariaGen Pf7k data. We combine these estimates with current malaria transmission and treatment data and use an established individual-based model of malaria resistance to simulate future resistance spread. We identify 16 African countries at highest risk of ART-R for prioritisation of enhanced surveillance and alternative antimalarial strategies. We project that, without policy changes, ART-R will exceed 10% in these regions by 2040. By 2060, if resistance spreads unchecked, we predict mean treatment failure rates will reach 30.74% (parameter uncertainty range: 24.98% - 34.54%) across Africa. This alarming spread of resistance is predicted to cause 52.98 million treatment failures (uncertainty range: 26.37 million - 93.67 million) in 2060. The impact of antimalarial resistance in Africa, if left unchecked, would hugely damage efforts to reduce malaria burden. Our results underscore the critical need for swift policy action to contain resistance and guide future surveillance and intervention efforts.
Collapse
Affiliation(s)
- Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Salome Muchiri
- Clinton Health Access Initiative, Boston, MA, 21127, USA
| | - Abby Ward
- Clinton Health Access Initiative, Boston, MA, 21127, USA
| | | | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Tom Brewer
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Lucy Okell
- MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Audibert C, Aspinall A, Tchouatieu AM, Hugo P. Evaluation of Segmentation, Rotation, and Geographic Delivery Approaches for Deployment of Multiple First-Line Treatment (MFT) to Respond to Antimalarial Drug Resistance in Africa: A Qualitative Study in Seven Sub-Sahara Countries. Trop Med Infect Dis 2024; 9:93. [PMID: 38787026 PMCID: PMC11125622 DOI: 10.3390/tropicalmed9050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Several studies recently confirmed the emergence of resistance to antimalarial drugs in sub-Saharan Africa. Multiple first-line treatment (MFT) is one of the measures envisaged to respond to the emergence and spread of this resistance. The aim of this study was to identify the perceived advantages and disadvantages of several MFT deployment strategies and to better understand potential implementation drivers and barriers. METHODS A qualitative survey was conducted in seven sub-Saharan countries amongst key opinion leaders, national decision makers, and end users. A total of 200 individual interviews were conducted and findings were analyzed following a thematic inductive approach. RESULTS From a policy perspective, the new MFT intervention would require endorsement at the global, national, and regional levels to ensure its inclusion in guidelines. Funding of the MFT intervention could be a bottleneck due to costs associated with additional training of healthcare workers, adaptation of drug delivery mechanisms, and higher costs of drugs. Concerning the MFT deployment strategies, a slight preference for the segmentation strategy was expressed over the rotation and geographic approaches, due to the perception that a segmentation approach is already in place at country level. CONCLUSIONS The findings highlighted the need for a collective approach to MFT deployment through the engagement of stakeholders at all levels of malaria management.
Collapse
Affiliation(s)
- Celine Audibert
- Medicines for Malaria Venture (MMV), Route de Pre-Bois 20, 1215 Meyrin, Switzerland; (A.A.)
| | | | | | | |
Collapse
|
3
|
Zupko RJ, Servadio JL, Nguyen TD, Tran TNA, Tran KT, Somé AF, Boni MF. Role of seasonal importation and genetic drift on selection for drug-resistant genotypes of Plasmodium falciparum in high-transmission settings. J R Soc Interface 2024; 21:20230619. [PMID: 38442861 PMCID: PMC10914515 DOI: 10.1098/rsif.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.
Collapse
Affiliation(s)
- Robert J. Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph L. Servadio
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anyirékun Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Li EZ, Nguyen TD, Tran TNA, Zupko RJ, Boni MF. Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum. Nat Commun 2024; 15:1390. [PMID: 38360803 PMCID: PMC10869733 DOI: 10.1038/s41467-024-45547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.
Collapse
Affiliation(s)
- Eric Zhewen Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Kua KP, Lee SWH, Chongmelaxme B. The impact of home-based management of malaria on clinical outcomes in sub-Saharan African populations: a systematic review and meta-analysis. Trop Med Health 2024; 52:7. [PMID: 38191459 PMCID: PMC10773121 DOI: 10.1186/s41182-023-00572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Malaria remains a significant cause of morbidity and mortality globally and continues to disproportionately afflict the African population. We aimed to evaluate the effect of home management of malaria intervention on health outcomes. METHODS In our systematic review and meta-analysis, six databases (Pubmed, Cochrane CENTRAL, EMBASE, CAB Abstracts and Global Health, CINAHL Complete, and BIOSIS) were searched for studies of home management of malaria from inception until November 15, 2023. We included before-after studies, observational studies, and randomised controlled trials of home management intervention delivered in community settings. The primary outcomes were malaria mortality and all-cause mortality. The risk of bias in individual observational studies was assessed using the ROBINS-I tool, whilst randomised controlled trials were judged using a revised Cochrane risk of bias tool and cluster-randomised controlled trials were evaluated using an adapted Cochrane risk of bias tool for cluster-randomised trials. We computed risk ratios with accompanying 95% confidence intervals for health-related outcomes reported in the studies and subsequently pooled the results by using a random-effects model (DerSimonian-Laird method). RESULTS We identified 1203 citations through database and hand searches, from which 56 articles from 47 studies encompassing 234,002 participants were included in the systematic review. All studies were conducted in people living in sub-Saharan Africa and were rated to have a low or moderate risk of bias. Pooled analyses showed that mortality rates due to malaria (RR = 0.40, 95% CI = 0.29-0.54, P = 0.00001, I2 = 0%) and all-cause mortality rates (RR = 0.62, 95% CI = 0.53-0.72, P = 0.00001, I2 = 0%) were significantly lower among participants receiving home management intervention compared to the control group. However, in children under 5 years of age, there was no significant difference in mortality rates before and after implementation of home management of malaria. In terms of secondary outcomes, home management of malaria was associated with a reduction in the risk of febrile episodes (RR = 1.27, 95% CI = 1.09-1.47, P = 0.002, I2 = 97%) and higher effective rates of antimalarial treatments (RR = 2.72, 95% CI = 1.90-3.88, P < 0.00001, I2 = 96%) compared to standard care. Home malaria management combined with intermittent preventive treatment showed a significantly lower incidence risk of malaria than home management intervention that exclusively provided treatment to individuals with febrile illness suggestive of malaria. The risks for adverse events were found to be similar for home management intervention using different antimalarial drugs. Cost-effectiveness findings depicted that home malaria management merited special preferential scale-up. CONCLUSIONS Home management of malaria intervention was associated with significant reductions in malaria mortality and all-cause mortality. The intervention could help decrease health and economic burden attributable to malaria. Further clinical studies are warranted to enable more meaningful interpretations with regard to wide-scale implementation of the intervention, settings of differing transmission intensity, and new antimalarial drugs.
Collapse
Affiliation(s)
- Kok Pim Kua
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, 94305, USA
- MIT Alumni Association, Massachusetts Institute of Technology, Cambridge, MA, 02139-4822, USA
- Pharmacy Unit, Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, 47100, Puchong, Selangor, Malaysia
- A.S. Watson Group, Watson's Personal Care Stores, 55188, Kuala Lumpur, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Asian Center for Evidence Synthesis in Population, Implementation, and Clinical Outcomes (PICO), Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Gerontechnology Laboratory, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Lakeside CampusSelangor, Malaysia
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bunchai Chongmelaxme
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Watson OJ, Tran TNA, Zupko RJ, Symons T, Thomson R, Visser T, Rumisha S, Dzianach PA, Hathaway N, Kim I, Juliano JJ, Bailey JA, Slater H, Okell L, Gething P, Ghani A, Boni MF, Parr JB, Cunningham J. Global risk of selection and spread of Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.21.23297352. [PMID: 37905102 PMCID: PMC10615018 DOI: 10.1101/2023.10.21.23297352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the thirteen years since the first report of pfhrp2-deleted parasites in 2010, the World Health Organization (WHO) has found that 40 of 47 countries surveyed worldwide have reported pfhrp2/3 gene deletions. Due to a high prevalence of pfhrp2/3 deletions causing false-negative HRP2 RDTs, in the last five years, Eritrea, Djibouti and Ethiopia have switched or started switching to using alternative RDTs, that target pan-specific-pLDH or P. falciparum specific-pLDH alone of in combination with HRP2. However, manufacturing of alternative RDTs has not been brought to scale and there are no WHO prequalified combination tests that use Pf-pLDH instead of HRP2 for P. falciparum detection. For these reasons, the continued spread of pfhrp2/3 deletions represents a growing public health crisis that threatens efforts to control and eliminate P. falciparum malaria. National malaria control programmes, their implementing partners and test developers desperately seek pfhrp2/3 deletion data that can inform their immediate and future resource allocation. In response, we use a mathematical modelling approach to evaluate the global risk posed by pfhrp2/3 deletions and explore scenarios for how deletions will continue to spread in Africa. We incorporate current best estimates of the prevalence of pfhrp2/3 deletions and conduct a literature review to estimate model parameters known to impact the selection of pfhrp2/3 deletions for each malaria endemic country. We identify 20 countries worldwide to prioritise for surveillance and future deployment of alternative RDT, based on quickly selecting for pfhrp2/3 deletions once established. In scenarios designed to explore the continued spread of deletions in Africa, we identify 10 high threat countries that are most at risk of deletions both spreading to and subsequently being rapidly selected for. If HRP2-based RDTs continue to be relied on for malaria case management, we predict that the major route for pfhrp2 deletions to spread is south out from the current hotspot in the Horn of Africa, moving through East Africa over the next 20 years. We explore the variation in modelled timelines through an extensive parameter sensitivity analysis and despite wide uncertainties, we identify three countries that have not yet switched RDTs (Senegal, Zambia and Kenya) that are robustly identified as high risk for pfhrp2/3 deletions. These results provide a refined and updated prediction model for the emergence of pfhrp2/3 deletions in an effort to help guide pfhrp2/3 policy and prioritise future surveillance efforts and innovation.
Collapse
Affiliation(s)
- Oliver J Watson
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Robert J Zupko
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tasmin Symons
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | | | | | - Susan Rumisha
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Paulina A Dzianach
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Nicholas Hathaway
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Isaac Kim
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | | | - Lucy Okell
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Gething
- Malaria Atlas Project, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, Bentley, Australia
| | - Azra Ghani
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
Jiang TT, Li JC. Review on the systems biology research of Yin-deficiency-heat syndrome in traditional Chinese medicine. Anat Rec (Hoboken) 2023; 306:2939-2944. [PMID: 31909899 DOI: 10.1002/ar.24354] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Traditional Chinese medicine (TCM) is a systematic medical method that has existed for more than 3,000 years. Unlike Western medicine, the disease diagnosis in TCM is carried out by inspection, auscultation, olfaction, interrogation, and palpation. The patient is then treated according to the disease and corresponding TCM syndrome. However, the development of Chinese medicine is stagnated, partially because it can be influenced by subjective factors, such as the experience and knowledge of TCM practitioners, and there is a lack of relevant biological research on TCM syndromes. Yin-deficiency-heat (YDH) syndrome in TCM is characterized by a series of pathological changes caused by the insufficiency of Yin-fluid, inability to moisturize, and the failure to suppress Yang. In recent years, systems biology research on TCM syndromes has gradually become the focus of TCM research, including syndrome differentiation and functional research using systems biology methodologies such as proteomics, transcriptomics, and metabolomics. This journal aims to publish a series of issues on the systems biology research of TCM syndromes that can provide biological indicators for the syndrome differentiation of YDH syndrome and can provide perspectives on the biological research of YDH syndrome.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, China
- Department of Anatomy and Embryology, Zhejiang University Medical School, Hangzhou, China
| | - Ji-Cheng Li
- Department of Anatomy and Embryology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
8
|
Zupko RJ, Nguyen TD, Ngabonziza JCS, Kabera M, Li H, Tran TNA, Tran KT, Uwimana A, Boni MF. Modeling policy interventions for slowing the spread of artemisinin-resistant pfkelch R561H mutations in Rwanda. Nat Med 2023; 29:2775-2784. [PMID: 37735560 PMCID: PMC10667088 DOI: 10.1038/s41591-023-02551-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Artemisinin combination therapies (ACTs) are highly effective at treating uncomplicated Plasmodium falciparum malaria, but the emergence of the new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite clearance, suggests that interventions are needed to slow its spread. Using a Rwanda-specific spatial calibration of an individual-based malaria model, we evaluate 26 strategies aimed at minimizing treatment failures and delaying the spread of R561H after 3, 5 and 10 years. Lengthening ACT courses and deploying multiple first-line therapies (MFTs) reduced treatment failures after 5 years when compared to the current approach of a 3-d course of artemether-lumefantrine. The best among these options (an MFT policy) resulted in median treatment failure counts that were 49% lower and a median R561H allele frequency that was 0.15 lower than under baseline. New approaches to resistance management, such as triple ACTs or sequential courses of two different ACTs, were projected to have a larger impact than longer ACT courses or MFT; these were associated with median treatment failure counts in 5 years that were 81-92% lower than the current approach. A policy response to currently circulating artemisinin-resistant genotypes in Africa is urgently needed to prevent a population-wide rise in treatment failures.
Collapse
Affiliation(s)
- Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - J Claude S Ngabonziza
- Research, Innovation and Data Science Division, Rwanda Biomedical Center (RBC), Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | - Michee Kabera
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Haojun Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
- Louvain Drug Research Institute, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Modeling to guide drug policy response to artemisinin-resistant malaria in Rwanda. Nat Med 2023; 29:2716-2717. [PMID: 37821688 DOI: 10.1038/s41591-023-02619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
|
10
|
Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TNA, White NJ, Dondorp AM, Boni MF, Aguas R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun 2023; 14:4568. [PMID: 37516752 PMCID: PMC10387089 DOI: 10.1038/s41467-023-39914-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023] Open
Abstract
Increasing levels of artemisinin and partner drug resistance threaten malaria control and elimination globally. Triple artemisinin-based combination therapies (TACTs) which combine artemisinin derivatives with two partner drugs are efficacious and well tolerated in clinical trials, including in areas of multidrug-resistant malaria. Whether early TACT adoption could delay the emergence and spread of antimalarial drug resistance is a question of vital importance. Using two independent individual-based models of Plasmodium falciparum epidemiology and evolution, we evaluated whether introduction of either artesunate-mefloquine-piperaquine or artemether-lumefantrine-amodiaquine resulted in lower long-term artemisinin-resistance levels and treatment failure rates compared with continued ACT use. We show that introduction of TACTs could significantly delay the emergence and spread of artemisinin resistance and treatment failure, extending the useful therapeutic life of current antimalarial drugs, and improving the chances of malaria elimination. We conclude that immediate introduction of TACTs should be considered by policy makers in areas of emerging artemisinin resistance.
Collapse
Affiliation(s)
- Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Nguyen TD, Tran TNA, Parker DM, White NJ, Boni MF. Antimalarial mass drug administration in large populations and the evolution of drug resistance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002200. [PMID: 37494337 PMCID: PMC10370688 DOI: 10.1371/journal.pgph.0002200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Mass drug administration (MDA) with antimalarials has been shown to reduce prevalence and interrupt transmission in small populations, in populations with reliable access to antimalarial drugs, and in populations where sustained improvements in diagnosis and treatment are possible. In addition, when MDA is effective it eliminates both drug-resistant parasites and drug-sensitive parasites, which has the long-term benefit of extending the useful therapeutic life of first-line therapies for all populations, not just the focal population where MDA was carried out. However, in order to plan elimination measures effectively, it is necessary to characterize the conditions under which failed MDA could exacerbate resistance. We use an individual-based stochastic model of Plasmodium falciparum transmission to evaluate this risk for MDA using dihydroartemisinin-piperaquine (DHA-PPQ), in populations where access to antimalarial treatments may not be uniformly high and where re-importation of drug-resistant parasites may be common. We find that artemisinin-resistance evolution at the kelch13 locus can be accelerated by MDA when all three of the following conditions are met: (1) strong genetic bottlenecking that falls short of elimination, (2) re-importation of artemisinin-resistant genotypes, and (3) continued selection pressure during routine case management post-MDA. Accelerated resistance levels are not immediate but follow the rebound of malaria cases post-MDA, if this is allowed to occur. Crucially, resistance is driven by the selection pressure during routine case management post-MDA and not the selection pressure exerted during the MDA itself. Second, we find that increasing treatment coverage post-MDA increases the probability of local elimination in low-transmission regions (prevalence < 2%) in scenarios with both low and high levels of drug-resistance importation. This emphasizes the importance of planning for and supporting high coverage of diagnosis and treatment post-MDA.
Collapse
Affiliation(s)
- Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Research Unit, Wellcome Trust Major Overseas Programme, Mahidol University, Bangkok, Thailand
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Zhan W, Li D, Subramanyaswamy SB, Liu YJ, Yang C, Zhang H, Harris JC, Wang R, Zhu S, Rocha H, Sherman J, Qin J, Herring M, Simwela NV, Waters AP, Sukenick G, Cui L, Rodriguez A, Deng H, Nathan CF, Kirkman LA, Lin G. Dual-pharmacophore artezomibs hijack the Plasmodium ubiquitin-proteasome system to kill malaria parasites while overcoming drug resistance. Cell Chem Biol 2023; 30:457-469.e11. [PMID: 37148884 PMCID: PMC10240386 DOI: 10.1016/j.chembiol.2023.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/08/2023]
Abstract
Artemisinins (ART) are critical anti-malarials and despite their use in combination therapy, ART-resistant Plasmodium falciparum is spreading globally. To counter ART resistance, we designed artezomibs (ATZs), molecules that link an ART with a proteasome inhibitor (PI) via a non-labile amide bond and hijack parasite's own ubiquitin-proteasome system to create novel anti-malarials in situ. Upon activation of the ART moiety, ATZs covalently attach to and damage multiple parasite proteins, marking them for proteasomal degradation. When damaged proteins enter the proteasome, their attached PIs inhibit protease function, potentiating the parasiticidal action of ART and overcoming ART resistance. Binding of the PI moiety to the proteasome active site is enhanced by distal interactions of the extended attached peptides, providing a mechanism to overcome PI resistance. ATZs have an extra mode of action beyond that of each component, thereby overcoming resistance to both components, while avoiding transient monotherapy seen when individual agents have disparate pharmacokinetic profiles.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Daqiang Li
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | | - Yi Jing Liu
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jacob C Harris
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hedy Rocha
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Julian Sherman
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mikayla Herring
- Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA
| | - Nelson V Simwela
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P Waters
- School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Division of Infectious Diseases, 1300 York Avenue, New York, NY 10065, USA.
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Kaboré JMT, Siribié M, Hien D, Soulama I, Barry N, Baguiya A, Tiono AB, Burri C, Tchouatieu AM, Sirima SB. Feasibility and Acceptability of a Strategy Deploying Multiple First-Line Artemisinin-Based Combination Therapies for Uncomplicated Malaria in the Health District of Kaya, Burkina Faso. Trop Med Infect Dis 2023; 8:tropicalmed8040195. [PMID: 37104321 PMCID: PMC10145444 DOI: 10.3390/tropicalmed8040195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
(1) Background: Effective malaria case management relies on World Health Organization (WHO) recommended artemisinin-based combination therapies (ACTs), but partial resistance to artemisinin has emerged and is spreading, threatening malaria control and elimination efforts. The strategy of deploying multiple first-line therapies (MFT) may help mitigate this threat and extend the therapeutic life of current ACTs. (2) Methods: A district-wide pilot quasi-experimental study was conducted, deploying three different ACTs at the public health facility (PHF) level for uncomplicated malaria treatment from December 2019 to December 2020 in the health district (HD) of Kaya, Burkina Faso. Mixed methods, including household and health facility-based quantitative and qualitative surveys, were used to evaluate the pilot programme. (3) Results: A total of 2008 suspected malaria patients were surveyed at PHFs, of which 79.1% were tested by rapid diagnostic test (RDT) with 65.5% positivity rate. In total, 86.1% of the confirmed cases received the appropriate ACT according to the MFT strategy. The adherence level did not differ by study segment (p = 0.19). Overall, the compliance level of health workers (HWs) with MFT strategy was 72.7% (95% CI: 69.7–75.5). The odds of using PHF as the first source of care increased after the intervention (aOR = 1.6; 95% CI, 1.3–1.9), and the reported adherence to the 3-day treatment regimen was 82.1%; (95% CI: 79.6–84.3). Qualitative results showed a high acceptance of the MFT strategy with positive opinions from all stakeholders. (4) Conclusions: Implementing an MFT strategy is operationally feasible and acceptable by stakeholders in the health systems in Burkina Faso. This study provides evidence to support the simultaneous use of multiple first-line artemisinin combination therapies in malaria-endemic countries such as Burkina Faso.
Collapse
Affiliation(s)
- Jean Moïse Tanga Kaboré
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Mohamadou Siribié
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
| | - Denise Hien
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
| | - Issiaka Soulama
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
- Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou 7192, Burkina Faso
| | - Nouhoun Barry
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
| | - Adama Baguiya
- Institut de Recherche en Sciences de la Santé (IRSS), Ouagadougou 7192, Burkina Faso
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | | | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (J.M.T.K.)
- Correspondence: ; Tel.: +226-70200444
| |
Collapse
|
14
|
Zupko RJ, Nguyen TD, Wesolowski A, Gerardin J, Boni MF. National-scale simulation of human movement in a spatially coupled individual-based model of malaria in Burkina Faso. Sci Rep 2023; 13:321. [PMID: 36609584 PMCID: PMC9822930 DOI: 10.1038/s41598-022-26878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Malaria due to the Plasmodium falciparum parasite remains a threat to human health despite eradication efforts and the development of anti-malarial treatments, such as artemisinin combination therapies. Human movement and migration have been linked to the propagation of malaria on national scales, highlighting the need for the incorporation of human movement in modeling efforts. Spatially couped individual-based models have been used to study how anti-malarial resistance evolves and spreads in response to drug policy changes; however, as the spatial scale of the model increases, the challenges associated with modeling of movement also increase. In this paper we discuss the development, calibration, and validation of a movement model in the context of a national-scale, spatial, individual-based model used to study the evolution of drug resistance in the malaria parasite.
Collapse
Affiliation(s)
- Robert J Zupko
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Boni MF. Breaking the cycle of malaria treatment failure. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1041896. [PMID: 38455307 PMCID: PMC10910953 DOI: 10.3389/fepid.2022.1041896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/28/2022] [Indexed: 03/09/2024]
Abstract
Treatment of symptomatic malaria became a routine component of the clinical and public health response to malaria after the second world war. However, all antimalarial drugs deployed against malaria eventually generated enough drug resistance that they had to be removed from use. Chloroquine, sulfadoxine-pyrimethamine, and mefloquine are well known examples of antimalarial drugs to which resistance did and still does ready evolve. Artemisinin-based combination therapies (ACTs) are currently facing the same challenge as artemisinin resistance is widespread in Southeast Asia and emerging in Africa. Here, I review some aspects of drug-resistance management in malaria that influence the strength of selective pressure on drug-resistant malaria parasites, as well as an approach we can take in the future to avoid repeating the common mistake of deploying a new drug and waiting for drug resistance and treatment failure to arrive. A desirable goal of drug-resistance management is to reduce selection pressure without reducing the overall percentage of patients that are treated. This can be achieved by distributing multiple first-line therapies (MFT) simultaneously in the population for the treatment of uncomplicated falciparum malaria, thereby keeping treatment levels high but the overall selection pressure exerted by each individual therapy low. I review the primary reasons that make MFT a preferred resistance management option in many malaria-endemic settings, and I describe two exceptions where caution and additional analyses may be warranted before deploying MFT. MFT has shown to be feasible in practice in many endemic settings. The continual improvement and increased coverage of genomic surveillance in malaria may allow countries to implement custom MFT strategies based on their current drug-resistance profiles.
Collapse
Affiliation(s)
- Maciej F. Boni
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Watson OJ, Gao B, Nguyen TD, Tran TNA, Penny MA, Smith DL, Okell L, Aguas R, Boni MF. Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study. THE LANCET. MICROBE 2022; 3:e701-e710. [PMID: 35931099 PMCID: PMC9436785 DOI: 10.1016/s2666-5247(22)00155-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Artemisinin-resistant genotypes of Plasmodium falciparum have now emerged a minimum of six times on three continents despite recommendations that all artemisinins be deployed as artemisinin combination therapies (ACTs). Widespread resistance to the non-artemisinin partner drugs in ACTs has the potential to limit the clinical and resistance benefits provided by combination therapy. We aimed to model and evaluate the long-term effects of high levels of partner-drug resistance on the early emergence of artemisinin-resistant genotypes. METHODS Using a consensus modelling approach, we used three individual-based mathematical models of Plasmodium falciparum transmission to evaluate the effects of pre-existing partner-drug resistance and ACT deployment on the evolution of artemisinin resistance. Each model simulates 100 000 individuals in a particular transmission setting (malaria prevalence of 1%, 5%, 10%, or 20%) with a daily time step that updates individuals' infection status, treatment status, immunity, genotype-specific parasite densities, and clinical state. We modelled varying access to antimalarial drugs if febrile (coverage of 20%, 40%, or 60%) with one primary ACT used as first-line therapy: dihydroartemisinin-piperaquine (DHA-PPQ), artesunate-amodiaquine (ASAQ), or artemether-lumefantrine (AL). The primary outcome was time until 0·25 580Y allele frequency for artemisinin resistance (the establishment time). FINDINGS Higher frequencies of pre-existing partner-drug resistant genotypes lead to earlier establishment of artemisinin resistance. Across all models, a 10-fold increase in the frequency of partner-drug resistance genotypes on average corresponded to loss of artemisinin efficacy 2-12 years earlier. Most reductions in time to artemisinin resistance establishment were observed after an increase in frequency of the partner-drug resistance genotype from 0·0 to 0·10. INTERPRETATION Partner-drug resistance in ACTs facilitates the early emergence of artemisinin resistance and is a major public health concern. Higher-grade partner-drug resistance has the largest effect, with piperaquine resistance accelerating the early emergence of artemisinin-resistant alleles the most. Continued investment in molecular surveillance of partner-drug resistant genotypes to guide choice of first-line ACT is paramount. FUNDING Schmidt Science Fellowship in partnership with the Rhodes Trust; Bill & Melinda Gates Foundation; Wellcome Trust.
Collapse
Affiliation(s)
- Oliver J Watson
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | - David L Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Lucy Okell
- Medical Research Council Centre for Global Infectious Disease Analysis, Faculty of Medicine, Imperial College London, London, UK
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maciej F Boni
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
17
|
Zupko RJ, Nguyen TD, Somé AF, Tran TNA, Gerardin J, Dudas P, Giang DDH, Tran KT, Wesolowski A, Ouédraogo JB, Boni MF. Long-term effects of increased adoption of artemisinin combination therapies in Burkina Faso. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000111. [PMID: 36962300 PMCID: PMC10021447 DOI: 10.1371/journal.pgph.0000111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Artemisinin combination therapies (ACTs) are the WHO-recommended first-line therapies for uncomplicated Plasmodium falciparum malaria. The emergence and spread of artemisinin-resistant genotypes is a major global public health concern due to the increased rate of treatment failures that result. This is particularly germane for WHO designated 'high burden to high impact' (HBHI) countries, such as Burkina Faso, where there is increased emphasis on improving guidance, strategy, and coordination of local malaria response in an effort to reduce the prevalence of P. falciparum malaria. To explore how the increased adoption of ACTs may affect the HBHI malaria setting of Burkina Faso, we added spatial structure to a validated individual-based stochastic model of P. falciparum transmission and evaluated the long-term effects of increased ACT use. We explored how de novo emergence of artemisinin-resistant genotypes, such as pfkelch13 580Y, may occur under scenarios in which private-market drugs are eliminated or multiple first-line therapies (MFT) are deployed. We found that elimination of private market drugs would result in lower treatment failures rates (between 11.98% and 12.90%) when compared to the status quo (13.11%). However, scenarios incorporating MFT with equal deployment of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PPQ) may accelerate near-term drug resistance (580Y frequency ranging between 0.62 to 0.84 in model year 2038) and treatment failure rates (26.69% to 34.00% in 2038), due to early failure and substantially reduced treatment efficacy resulting from piperaquine-resistant genotypes. A rebalanced MFT approach (90% AL, 10% DHA-PPQ) results in approximately equal long-term outcomes to using AL alone but may be difficult to implement in practice.
Collapse
Affiliation(s)
- Robert J. Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Anyirékun Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo Dioulasso, Burkina Faso
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, United States of America
| | - Patrick Dudas
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, United States of America
| | - Dang Duy Hoang Giang
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | | | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, United States of America
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Reiker T, Golumbeanu M, Shattock A, Burgert L, Smith TA, Filippi S, Cameron E, Penny MA. Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria. Nat Commun 2021; 12:7212. [PMID: 34893600 PMCID: PMC8664949 DOI: 10.1038/s41467-021-27486-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator. We demonstrate our approach by optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Our approach quickly outperforms previous calibrations, yielding an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability.
Collapse
Affiliation(s)
- Theresa Reiker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrew Shattock
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lydia Burgert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Ewan Cameron
- Malaria Atlas Project, Big Data Institute, University of Oxford, Oxford, UK
- Curtin University, Perth, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2021; 20:353-372. [PMID: 34348573 DOI: 10.1080/14787210.2021.1962291] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Since the spread of chloroquine resistance in Plasmodium falciparum in the 1960s, recommendations have been made on how to respond to antimalarial resistance. Only with the advent of artemisinin partial resistance were large scale efforts made in the Greater Mekong Subregion to carry out recommendations in a coordinated and well-funded manner. Independent emergence of parasites partially resistant to artemisinins has now been reported in Rwanda. AREAS COVERED We reviewed past recommendations and activities to respond to resistance as well as the research ongoing into new ways to stop or delay the spread of resistant parasites. EXPERT OPINION Inadequate information limits the options and support for a strong, coordinated response to artemisinin partial resistance in Africa, making better phenotypic and genotypic surveillance a priority. A response to resistance needs to address factors that may have hastened the emergence and could speed the spread, including overuse of drugs and lack of access to quality treatment. New ways to use the existing treatments in the response to resistance such as multiple first-lines are currently impeded by the limited number of drugs available.
Collapse
Affiliation(s)
| | - Pedro Alonso
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
20
|
Whitlock AOB, Juliano JJ, Mideo N. Immune selection suppresses the emergence of drug resistance in malaria parasites but facilitates its spread. PLoS Comput Biol 2021; 17:e1008577. [PMID: 34280179 PMCID: PMC8321109 DOI: 10.1371/journal.pcbi.1008577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/29/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Although drug resistance in Plasmodium falciparum typically evolves in regions of low transmission, resistance spreads readily following introduction to regions with a heavier disease burden. This suggests that the origin and the spread of resistance are governed by different processes, and that high transmission intensity specifically impedes the origin. Factors associated with high transmission, such as highly immune hosts and competition within genetically diverse infections, are associated with suppression of resistant lineages within hosts. However, interactions between these factors have rarely been investigated and the specific relationship between adaptive immunity and selection for resistance has not been explored. Here, we developed a multiscale, agent-based model of Plasmodium parasites, hosts, and vectors to examine how host and parasite dynamics shape the evolution of resistance in populations with different transmission intensities. We found that selection for antigenic novelty (“immune selection”) suppressed the evolution of resistance in high transmission settings. We show that high levels of population immunity increased the strength of immune selection relative to selection for resistance. As a result, immune selection delayed the evolution of resistance in high transmission populations by allowing novel, sensitive lineages to remain in circulation at the expense of the spread of a resistant lineage. In contrast, in low transmission settings, we observed that resistant strains were able to sweep to high population prevalence without interference. Additionally, we found that the relationship between immune selection and resistance changed when resistance was widespread. Once resistance was common enough to be found on many antigenic backgrounds, immune selection stably maintained resistant parasites in the population by allowing them to proliferate, even in untreated hosts, when resistance was linked to a novel epitope. Our results suggest that immune selection plays a role in the global pattern of resistance evolution. Drug resistance in the malaria parasite, Plasmodium falciparum, presents an ongoing public health challenge, but aspects of its evolution are poorly understood. Although antimalarial resistance is common worldwide, it can typically be traced to just a handful of evolutionary origins. Counterintuitively, although Sub Saharan Africa bears 90% of the global malaria burden, resistance typically originates in regions where transmission intensity is low. In high transmission regions, infections are genetically diverse, and hosts have significant standing adaptive immunity, both of which are known to suppress the frequency of resistance within infections. However, interactions between immune-driven selection, transmission intensity, and resistance have not been investigated. Using a multiscale, agent-based model, we found that high transmission intensity slowed the evolution of resistance via its effect on host population immunity. High host immunity strengthened selection for antigenic novelty, interfering with selection for resistance and allowing sensitive lineages to suppress resistant lineages in untreated hosts. However, once resistance was common in the circulating parasite population, immune selection maintained it in the population at a high prevalence. Our findings provide a novel explanation for observations about the origin of resistance and suggest that adaptive immunity is a critical component of selection.
Collapse
Affiliation(s)
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Kunkel A, White M, Piola P. Novel anti-malarial drug strategies to prevent artemisinin partner drug resistance: A model-based analysis. PLoS Comput Biol 2021; 17:e1008850. [PMID: 33764971 PMCID: PMC8023453 DOI: 10.1371/journal.pcbi.1008850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/06/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Emergence of resistance to artemisinin and partner drugs in the Greater Mekong Subregion has made elimination of malaria from this region a global priority; it also complicates its achievement. Novel drug strategies such as triple artemisinin combination therapies (ACTs) and chemoprophylaxis have been proposed to help limit resistance and accelerate elimination. The objective of this study was to better understand the potential impacts of triple ACTs and chemoprophylaxis, using a mathematical model parameterized using data from Cambodia. We used a simple compartmental model to predict trends in malaria incidence and resistance in Cambodia from 2020-2025 assuming no changes in transmission since 2018. We assessed three scenarios: a status quo scenario with artesunate-mefloquine (ASMQ) as treatment; a triple ACT scenario with dihydroartemisinin-piperaquine (DP) plus mefloquine (MQ) as treatment; and a chemoprophylaxis scenario with ASMQ as treatment plus DP as chemoprophylaxis. We predicted MQ resistance to increase under the status quo scenario. Triple ACT treatment reversed the spread of MQ resistance, but had no impact on overall malaria incidence. Joint MQ-PPQ resistance declined under the status quo scenario for the baseline parameter set and most sensitivity analyses. Compared to the status quo, triple ACT treatment limited spread of MQ resistance but also slowed declines in PPQ resistance in some sensitivity analyses. The chemoprophylaxis scenario decreased malaria incidence, but increased the spread of strains resistant to both MQ and PPQ; both effects began to reverse after the intervention was removed. We conclude that triple ACTs may limit spread of MQ resistance in the Cambodia, but would have limited impact on malaria incidence and might slow declines in PPQ resistance. Chemoprophylaxis could have greater impact on incidence but also carries higher risks of resistance. Aggressive strategies to limit transmission the GMS are needed to achieve elimination goals, but any intervention should be accompanied by monitoring for drug resistance.
Collapse
Affiliation(s)
- Amber Kunkel
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- * E-mail:
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris, France
| | - Patrice Piola
- Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
22
|
Siribie M, Tchouatieu AM, Soulama I, Kaboré JMT, Nombré Y, Hien D, Kiba Koumaré A, Barry N, Baguiya A, Héma A, Dianda F, Savadogo Y, Kouanda S, Tiono AB, Sirima SB. Protocol for a quasi-experimental study to assess the feasibility, acceptability and costs of multiple first-lines artemisinin-based combination therapies for uncomplicated malaria in the Kaya health district, Burkina Faso. BMJ Open 2021; 11:e040220. [PMID: 33589447 PMCID: PMC7887347 DOI: 10.1136/bmjopen-2020-040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION As demonstrated in mathematical models, the simultaneous deployment of multiple first-line therapies (MFT) for uncomplicated malaria, using artemisinin-based combination therapies (ACTs), may extend the useful therapeutic life of the current ACTs. This is possible by reducing drug pressure and slowing the spread of resistance without putting patients' life at risk. We hypothesised that a simultaneous deployment of three different ACTs is feasible, acceptable and can achieve high coverage rate if potential barriers are properly identified and addressed. METHODS AND ANALYSIS We plan to conduct a quasi-experimental study in the Kaya health district in Burkina Faso. We will investigate a simultaneous deployment of three ACTs, artemether-lumefantrine, pyronaridine-artesunate, dihydroartesinin-piperaquine, targeting three segments of the population: pregnant women, children under five and individuals aged five years and above. The study will include four overlapping phases: the formative phase, the MFT deployment phase, the monitoring and evaluation phase and the post-evaluation phase. The formative phase will help generate baseline information and develop MFT deployment tools. It will be followed by the MFT deployment phase in the study area. The monitoring and evaluation phase will be conducted as the deployment of MFT progresses. Cross-sectional surveys including desk reviews as well as qualitative and quantitative research methods will be used to assess the study outcomes. Quantitatives study outcomes will be measured using univariate, bivariate and multivariate analysis, including logistic regression and interrupted time series analysis approach. Content analysis will be performed on the qualitative data. ETHICS AND DISSEMINATION The Health Research Ethics Committee in Burkina Faso approved the study (Clearance no. 2018-8-113). Study findings will be disseminated through feedback meetings with local communities, national workshops, oral presentations at congresses, seminars and publications in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT04265573.
Collapse
Affiliation(s)
- Mohamadou Siribie
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | | | - Issiaka Soulama
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Jean Moise Tanga Kaboré
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Yacouba Nombré
- Programme National de Lutte contre le Paludisme, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Denise Hien
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Alice Kiba Koumaré
- Programme National de Lutte contre le Paludisme, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Nouhoun Barry
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Adama Baguiya
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS), Kaya, Burkina Faso
| | - Alimatou Héma
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Frédéric Dianda
- Programme National de Lutte contre le Paludisme, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Yacouba Savadogo
- Programme National de Lutte contre le Paludisme, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Seni Kouanda
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Sané (IRSS), Ouagadougou, Burkina Faso
| | - Alfred Bewendtaoré Tiono
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| | - Sodiomon Bienvenu Sirima
- Département Biomédical et Santé Publique, Groupe de Recherche Action en Sante (GRAS), Ouagadougou, Burkina Faso
| |
Collapse
|
23
|
Watson OJ, Okell LC, Hellewell J, Slater HC, Unwin HJT, Omedo I, Bejon P, Snow RW, Noor AM, Rockett K, Hubbart C, Nankabirwa JI, Greenhouse B, Chang HH, Ghani AC, Verity R. Evaluating the Performance of Malaria Genetics for Inferring Changes in Transmission Intensity Using Transmission Modeling. Mol Biol Evol 2021; 38:274-289. [PMID: 32898225 PMCID: PMC7783189 DOI: 10.1093/molbev/msaa225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.
Collapse
Affiliation(s)
- Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Joel Hellewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - H Juliette T Unwin
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Irene Omedo
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute—Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Kirk Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Hastings IM, Hardy D, Kay K, Sharma R. Incorporating genetic selection into individual-based models of malaria and other infectious diseases. Evol Appl 2020; 13:2723-2739. [PMID: 33294019 PMCID: PMC7691459 DOI: 10.1111/eva.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Control strategies for human infections are often investigated using individual-based models (IBMs) to quantify their impact in terms of mortality, morbidity and impact on transmission. Genetic selection can be incorporated into the IBMs to track the spread of mutations whose origin and spread are driven by the intervention and which subsequently undermine the control strategy; typical examples are mutations which encode drug resistance or diagnosis- or vaccine-escape phenotypes. METHODS AND RESULTS We simulated the spread of malaria drug resistance using the IBM OpenMalaria to investigate how the finite sizes of IBMs require strategies to optimally incorporate genetic selection. We make four recommendations. Firstly, calculate and report the selection coefficients, s, of the advantageous allele as the key genetic parameter. Secondly, use these values of "s" to calculate the wait time until a mutation successfully establishes itself in the pathogen population. Thirdly, identify the inherent limits of the IBM to robustly estimate small selection coefficients. Fourthly, optimize computational efficacy: when "s" is small, fewer replicates of larger IBMs may be more efficient than a larger number of replicates of smaller size. DISCUSSION The OpenMalaria IBM of malaria was an exemplar and the same principles apply to IBMs of other diseases.
Collapse
Affiliation(s)
| | - Diggory Hardy
- Swiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | | | - Raman Sharma
- Liverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
25
|
Godman B, McCabe H, D Leong T. Fixed dose drug combinations - are they pharmacoeconomically sound? Findings and implications especially for lower- and middle-income countries. Expert Rev Pharmacoecon Outcomes Res 2020; 20:1-26. [PMID: 32237953 DOI: 10.1080/14737167.2020.1734456] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: There are positive aspects regarding the prescribing of fixed dose combinations (FDCs) versus prescribing the medicines separately. However, these have to be balanced against concerns including increased costs and their irrationality in some cases. Consequently, there is a need to review their value among lower- and middle-income countries (LMICs) which have the greatest prevalence of both infectious and noninfectious diseases and issues of affordability.Areas covered: Review of potential advantages, disadvantages, cost-effectiveness, and availability of FDCs in high priority disease areas in LMICs and possible initiatives to enhance the prescribing of valued FDCs and limit their use where there are concerns with their value.Expert commentary: FDCs are valued across LMICs. Advantages include potentially improved response rates, reduced adverse reactions, increased adherence rates, and reduced costs. Concerns include increased chances of drug:drug interactions, reduced effectiveness, potential for imprecise diagnoses and higher unjustified prices. Overall certain FDCs including those for malaria, tuberculosis, and hypertension are valued and listed in the country's essential medicine lists, with initiatives needed to enhance their prescribing where currently low prescribing rates. Proposed initiatives include robust clinical and economic data to address the current paucity of pharmacoeconomic data. Irrational FDCs persists in some countries which are being addressed.
Collapse
Affiliation(s)
- Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa.,Division of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Holly McCabe
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trudy D Leong
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
26
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
27
|
Agarwal D, Singh S, Gupta RD, Awasthi SK. In vitro synergistic interaction of potent 4-aminoquinolines in combination with dihydroartemisinin against chloroquine-resistant Plasmodium falciparum. Acta Trop 2019; 199:105109. [PMID: 31351071 DOI: 10.1016/j.actatropica.2019.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
High-grade chloroquine (CQ) resistance has been reported in malaria endemic geographical regions such as Papua New Guinea, northern Papua, and eastern and western provinces of Indonesia, along with low-level resistance in Vietnam, South Korea, Turkey, Burma, South America, and Madagascar. Studies on CQ drug resistance have revealed the association of P. falciparum chloroquine resistance transporter protein. Thus, we are in dire need of alternate chemotherapeutic agents which in combination with artemisinin (or its analogues) are efficacious against chloroquine-resistant strains. Such combinations may thwart the emergence of drug resistant strains, along with reducing the malaria burden. Hypothesizing that newer 4-aminoquinolines, earlier reported by our group, could be part of a combination therapy to efficiently treat malaria, we sought to evaluate these compounds, viz. 1m, 1o, 2c, and 2j against the erythrocytic stages of Plasmodium falciparum, strain 3D7 (chloroquine-sensitive) and strain Dd2 (chloroquine-resistant), in combination with dihydroartemisinin (DHA). Results revealed substantially synergistic interactions between the combination partners, which could be further established by their potential to inhibit hemozoin formation with increased efficiency when combined, as compared to the compounds assessed individually. Furthermore, aminoquinolines and DHA show distinct stage-specific profiles. Our results stand in strong support of the potential of these aminoquinoline derivatives to serve as partner drugs in antimalarial combinations to treat multiple-drug-resistant Plasmodium strains.
Collapse
Affiliation(s)
- Drishti Agarwal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shailja Singh
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rinkoo D Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| |
Collapse
|
28
|
Okell LC, Reiter LM, Ebbe LS, Baraka V, Bisanzio D, Watson OJ, Bennett A, Verity R, Gething P, Roper C, Alifrangis M. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Glob Health 2018; 3:e000999. [PMID: 30397515 PMCID: PMC6202998 DOI: 10.1136/bmjgh-2018-000999] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/04/2022] Open
Abstract
Artemether–lumefantrine (AL) and artesunate–amodiaquine (AS-AQ) are the most commonly used artemisinin-based combination therapies (ACT) for treatment of Plasmodium falciparum in Africa. Both treatments remain efficacious, but single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multidrug resistance 1 (Pfmdr1) gene may compromise sensitivity. AL and AS-AQ exert opposing selective pressures: parasites with genotype 86Y, Y184 and 1246Y are partially resistant to AS-AQ treatment, while N86, 184 F and D1246 are favoured by AL treatment. Through a systematic review, we identified 397 surveys measuring the prevalence of Pfmdr1 polymorphisms at positions 86 184 or 1246 in 30 countries in Africa. Temporal trends in SNP frequencies after introduction of AL or AS-AQ as first-line treatment were analysed in 32 locations, and selection coefficients estimated. We examined associations between antimalarial policies, consumption, transmission intensity and rate of SNP selection. 1246Y frequency decreased on average more rapidly in locations where national policy recommended AL (median selection coefficient(s) of −0.083), compared with policies of AS-AQ or both AL and AS-AQ (median s=−0.035 and 0.021, p<0.001 respectively). 86Y frequency declined markedly after ACT policy introduction, with a borderline significant trend for a more rapid decline in countries with AL policies (p=0.055). However, these trends could also be explained by a difference in initial SNP frequencies at the time of ACT introduction. There were non-significant trends for faster selection of N86 and D1246 in areas with higher AL consumption and no trend with transmission intensity. Recorded consumption of AS-AQ was low in the locations and times Pfmdr1 data were collected. SNP trends in countries with AL policies suggest a broad increase in sensitivity of parasites to AS-AQ, by 7–10 years after AL introduction. Observed rates of selection have implications for planning strategies to cycle drugs or use multiple first-line therapies to maintain drug efficacy.
Collapse
Affiliation(s)
- Lucy C Okell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Lisa Malene Reiter
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lene Sandø Ebbe
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vito Baraka
- Department of Biomedical Sciences, National Institute for Medical Research, Tanga, United Republic of Tanzania
| | - Donal Bisanzio
- RTI International, Washington, District of Columbia, USA
| | - Oliver J Watson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of San FranciscO, San Francisco, California, USA
| | - Robert Verity
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Peter Gething
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cally Roper
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Bushman M, Antia R, Udhayakumar V, de Roode JC. Within-host competition can delay evolution of drug resistance in malaria. PLoS Biol 2018; 16:e2005712. [PMID: 30130363 PMCID: PMC6103507 DOI: 10.1371/journal.pbio.2005712] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
In the malaria parasite P. falciparum, drug resistance generally evolves first in low-transmission settings, such as Southeast Asia and South America. Resistance takes noticeably longer to appear in the high-transmission settings of sub-Saharan Africa, although it may spread rapidly thereafter. Here, we test the hypothesis that competitive suppression of drug-resistant parasites by drug-sensitive parasites may inhibit evolution of resistance in high-transmission settings, where mixed-strain infections are common. We employ a cross-scale model, which simulates within-host (infection) dynamics and between-host (transmission) dynamics of sensitive and resistant parasites for a population of humans and mosquitoes. Using this model, we examine the effects of transmission intensity, selection pressure, fitness costs of resistance, and cross-reactivity between strains on the establishment and spread of resistant parasites. We find that resistant parasites, introduced into the population at a low frequency, are more likely to go extinct in high-transmission settings, where drug-sensitive competitors and high levels of acquired immunity reduce the absolute fitness of the resistant parasites. Under strong selection from antimalarial drug use, however, resistance spreads faster in high-transmission settings than low-transmission ones. These contrasting results highlight the distinction between establishment and spread of resistance and suggest that the former but not the latter may be inhibited in high-transmission settings. Our results suggest that within-host competition is a key factor shaping the evolution of drug resistance in P. falciparum. The malaria parasite Plasmodium falciparum has evolved resistance to most antimalarial drugs, greatly complicating treatment and control of the disease. Curiously, although sub-Saharan Africa accounts for the majority of the global burden of malaria, the evolution of drug resistance in Africa has been markedly delayed compared to Asia and the Americas. One reason might be that, in a population in which the prevalence of infection is high, a newly emerged drug-resistant strain faces a high risk of extinction due to competition from drug-sensitive parasites that already “occupy” most of the host population. Using a mathematical model, we confirm that drug-resistant parasites face a much greater risk of extinction in a “high-transmission” setting like sub-Saharan Africa than in a “low-transmission” setting like Southeast Asia. However, we also find that when drug-resistant parasites manage to avoid extinction, their subsequent spread may be more rapid in high-transmission settings than in low-transmission settings, especially when selection is strong. These results offer a novel explanation for global patterns of drug resistance evolution in malaria and suggest a new dimension to consider in resistance prevention and containment efforts: namely, the intrinsic favorability of low- and high-transmission settings for establishment and spread of drug resistance.
Collapse
Affiliation(s)
- Mary Bushman
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacobus C. de Roode
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
30
|
Smith NR, Trauer JM, Gambhir M, Richards JS, Maude RJ, Keith JM, Flegg JA. Agent-based models of malaria transmission: a systematic review. Malar J 2018; 17:299. [PMID: 30119664 PMCID: PMC6098619 DOI: 10.1186/s12936-018-2442-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/04/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Much of the extensive research regarding transmission of malaria is underpinned by mathematical modelling. Compartmental models, which focus on interactions and transitions between population strata, have been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-based approaches, which model hosts, vectors and/or their interactions on an individual level. One reason for the increasing popularity of such models is their potential to provide enhanced realism by allowing system-level behaviours to emerge as a consequence of accumulated individual-level interactions, as occurs in real populations. METHODS A systematic review of 90 articles published between 1998 and May 2018 was performed, characterizing agent-based models (ABMs) relevant to malaria transmission. The review provides an overview of approaches used to date, determines the advantages of these approaches, and proposes ideas for progressing the field. RESULTS The rationale for ABM use over other modelling approaches centres around three points: the need to accurately represent increased stochasticity in low-transmission settings; the benefits of high-resolution spatial simulations; and heterogeneities in drug and vaccine efficacies due to individual patient characteristics. The success of these approaches provides avenues for further exploration of agent-based techniques for modelling malaria transmission. Potential extensions include varying elimination strategies across spatial landscapes, extending the size of spatial models, incorporating human movement dynamics, and developing increasingly comprehensive parameter estimation and optimization techniques. CONCLUSION Collectively, the literature covers an extensive array of topics, including the full spectrum of transmission and intervention regimes. Bringing these elements together under a common framework may enhance knowledge of, and guide policies towards, malaria elimination. However, because of the diversity of available models, endorsing a standardized approach to ABM implementation may not be possible. Instead it is recommended that model frameworks be contextually appropriate and sufficiently described. One key recommendation is to develop enhanced parameter estimation and optimization techniques. Extensions of current techniques will provide the robust results required to enhance current elimination efforts.
Collapse
Affiliation(s)
- Neal R Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - James M Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Manoj Gambhir
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- IBM Research Australia, Melbourne, Australia
| | - Jack S Richards
- Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | - Jonathan M Keith
- School of Mathematical Sciences, Monash University, Clayton, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| |
Collapse
|
31
|
Scott N, Ataide R, Wilson DP, Hellard M, Price RN, Simpson JA, Fowkes FJI. Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model. Malar J 2018; 17:279. [PMID: 30071877 PMCID: PMC6071336 DOI: 10.1186/s12936-018-2418-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong Subregion, an area of relatively low transmission, but has yet to be reported in Africa. A population-based mathematical model was used to investigate the relationship between P. falciparum prevalence, exposure-acquired immunity and time-to-emergence of artemisinin resistance. The possible implication for the emergence of resistance across Africa was assessed. METHODS The model included human and mosquito populations, two strains of malaria ("wild-type", "mutant"), three levels of human exposure-acquired immunity (none, low, high) with two types of immunity for each level (sporozoite/liver stage immunity and blood-stage/gametocyte immunity) and drug pressure based on per-capita treatment numbers. RESULTS The model predicted that artemisinin-resistant strains may circulate up to 10 years longer in high compared to low P. falciparum prevalence areas before resistance is confirmed. Decreased time-to-resistance in low prevalence areas was explained by low genetic diversity and immunity, which resulted in increased probability of selection and spread of artemisinin-resistant strains. Artemisinin resistance was estimated to be established by 2020 in areas of Africa with low (< 10%) P. falciparum prevalence, but not for 5 or 10 years later in moderate (10-25%) or high (> 25%) prevalence areas, respectively. CONCLUSIONS Areas of low transmission and low immunity give rise to a more rapid expansion of artemisinin-resistant parasites, corroborating historical observations of anti-malarial resistance emergence. Populations where control strategies are in place that reduce malaria transmission, and hence immunity, may be prone to a rapid emergence and spread of artemisinin-resistant strains and thus should be carefully monitored.
Collapse
Affiliation(s)
- Nick Scott
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ricardo Ataide
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, 3004, Australia
| | - David P Wilson
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Margaret Hellard
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Freya J I Fowkes
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, 3004, Australia.
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Infectious Diseases, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
32
|
Goldlust SM, Thuan PD, Giang DDH, Thang ND, Thwaites GE, Farrar J, Thanh NV, Nguyen TD, Grenfell BT, Boni MF, Hien TT. The decline of malaria in Vietnam, 1991-2014. Malar J 2018; 17:226. [PMID: 29880051 PMCID: PMC5992833 DOI: 10.1186/s12936-018-2372-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/04/2023] Open
Abstract
Background Despite the well-documented clinical efficacy of artemisinin-based combination therapy (ACT) against malaria, the population-level effects of ACT have not been studied thoroughly until recently. An ideal case study for these population-level effects can be found in Vietnam’s gradual adoption of artemisinin in the 1990s. Methods and results Analysis of Vietnam’s national annual malaria reports (1991–2014) revealed that a 10% increase in artemisinin procurement corresponded to a 32.8% (95% CI 27.7–37.5%) decline in estimated malaria cases. There was no consistent national or regional effect of vector control on malaria. The association between urbanization and malaria was generally negative and sometimes statistically significant. Conclusions The decline of malaria in Vietnam can largely be attributed to the adoption of artemisinin-based case management. Recent analyses from Africa showed that insecticide-treated nets had the greatest effect on lowering malaria prevalence, suggesting that the success of interventions is region-specific. Continuing malaria elimination efforts should focus on both vector control and increased access to ACT. Electronic supplementary material The online version of this article (10.1186/s12936-018-2372-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra M Goldlust
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Department of Biology, Georgetown University, Washington, DC, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Phung Duc Thuan
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Dang Duy Hoang Giang
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Ngo Duc Thang
- National Institutes for Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,The Wellcome Trust, London, UK
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Tran Dang Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Maciej F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Lang L, Hu Q, Wang J, Liu Z, Huang J, Lu W, Huang Y. Coptisine, a natural alkaloid from Coptidis Rhizoma
, inhibits plasmodium falciparum dihydroorotate dehydrogenase. Chem Biol Drug Des 2018; 92:1324-1332. [DOI: 10.1111/cbdd.13197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/22/2018] [Accepted: 03/17/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Li Lang
- Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Qian Hu
- Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Zehui Liu
- Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design; School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology; Institute of Biomedical Sciences and School of Life Sciences; East China Normal University; Shanghai China
| | - Ying Huang
- Guangdong Institute for Drug Control; Guangzhou Guangdong China
| |
Collapse
|
34
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
35
|
Basnyat B, Caws M, Udwadia Z. Tuberculosis in South Asia: a tide in the affairs of men. Multidiscip Respir Med 2018; 13:10. [PMID: 29599974 PMCID: PMC5868053 DOI: 10.1186/s40248-018-0122-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) remains the most common cause of infectious disease deaths worldwide. What is perhaps less appreciated is that the caseload of tuberculosis patients in South Asia is staggering.South Asia has almost 40% of the global TB burden with 4,028,165 cases in 2015. This region also has a disproportionate share of TB deaths (681,975 deaths, 38% of the global burden). Worldwide just 12.5% of TB cases are in HIV positive individuals, but much research and investment has focused on HIV-associated TB. Only 3.5% of patients with tuberculosis in South Asia have HIV co-infection. Not surprisingly with such a huge burden of disease, this region has an estimated 184,336 multi drug resistant (MDR) cases among notified TB cases which accounts for a third of global MDR burden. Crucially, at least 70% of the estimated MDR cases remain untreated in this region and MDR treatment success ranged from only 46% for India to 88% for Sri Lanka in the 2012 cohort that received treatment. This region represents many of the drivers of the modern TB epidemic: rapid urbanization and high density populations with dramatically rising incidence of diabetes, a burgeoning and largely unregulated private sector with escalating drug resistance and high air pollution both outdoor and household. Conclusion From bacterial biochemistry to policy implementation, we suggest ways in which South Asia can seize the opportunity lead global TB elimination by demonstrating feasibility in some of the world's most densely populated cities and remotest reaches of the Himalayas. Clearly political will is essential, but we cannot defeat TB without understanding how to eliminate it in South Asia.
Collapse
Affiliation(s)
- Buddha Basnyat
- 1Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,2Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Lalitpur, Nepal.,Global Antibiotic Resistance Partnership, Kathmandu, Nepal
| | - Maxine Caws
- 4Liverpool School of Tropical Medicine, Liverpool, UK.,British Nepal Medical Trust, Kathmandu, Nepal
| | | |
Collapse
|
36
|
Baraka V, Mavoko HM, Nabasumba C, Francis F, Lutumba P, Alifrangis M, Van geertruyden JP. Impact of treatment and re-treatment with artemether-lumefantrine and artesunate-amodiaquine on selection of Plasmodium falciparum multidrug resistance gene-1 polymorphisms in the Democratic Republic of Congo and Uganda. PLoS One 2018; 13:e0191922. [PMID: 29390014 PMCID: PMC5794077 DOI: 10.1371/journal.pone.0191922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The emergence of resistance against artemisinin combination treatment is a major concern for malaria control. ACTs are recommended as the rescue treatment, however, there is limited evidence as to whether treatment and re-treatment with ACTs select for drug-resistant P. falciparum parasites. Thus, the purpose of the present study is to investigate the impact of (re-)treatment using artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) on the selection of P. falciparum multidrug resistance-1 (Pfmdr1) alleles in clinical settings. METHODS P. falciparum positive samples were collected from children aged 12-59 months in a clinical trial in DR Congo and Uganda. Pfmdr1 single nucleotide polymorphisms (SNPs) analysis at codons N86Y, Y184F, and D1246Y were performed at baseline and post-treatment with either AL or ASAQ as a rescue treatment using nested PCR followed by restriction fragment length polymorphism (RFLP) assays. RESULTS The pre-treatment prevalence of Pfmdr1 N86 and D1246Y varied significantly between the sites, (p>0.001) and (p = 0.013), respectively. There was borderline significant directional selection for Pfmdr1 184F in recurrent malaria infections after treatment with AL in Uganda site (p = 0.05). Pfmdr1 NFD haplotype did not significantly change in post-treatment infections after re-treatment with either AL or ASAQ. Comparison between pre-treatment and post-treatment recurrences did not indicate directional selection of Pfmdr1 N86, D1246 alleles in the pre-RCT, RCT and post-RCT phases in both AL and ASAQ treatment arms. Pfmdr1 86Y was significantly associated with reduced risk of AL treatment failure (RR = 0.34, 95% CI:0.11-1.05, p = 0.04) while no evidence for D1246 allele (RR = 1.02; 95% CI: 0.42-2.47, p = 1.0). Survival estimates showed that the Pfmdr1 alleles had comparable mean-time to PCR-corrected recrudescence and new infections in both AL and ASAQ treatment arms. CONCLUSION We found limited impact of (re-)treatment with AL or ASAQ on selection for Pfmdr1 variants and haplotypes associated with resistance to partner drugs. These findings further supplement the evidence use of same or alternative ACTs as a rescue therapy for recurrent P.falciparum infections. Continued monitoring of genetic signatures of resistance is warranted to timely inform malaria (re-)treatment policies and guidelines.
Collapse
Affiliation(s)
- Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, United Republic of Tanzania
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Hypolite Muhindo Mavoko
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- Département de Médecine Tropicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Carolyn Nabasumba
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- Epicentre Mbarara Research Base, Mbarara, Uganda
| | - Filbert Francis
- National Institute for Medical Research, Tanga Centre, Tanga, United Republic of Tanzania
| | - Pascal Lutumba
- Département de Médecine Tropicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Michael Alifrangis
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, National University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
37
|
Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc Biol Sci 2018; 284:rspb.2016.2562. [PMID: 28356449 PMCID: PMC5378080 DOI: 10.1098/rspb.2016.2562] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
Why is drug resistance common and vaccine resistance rare? Drugs and vaccines both impose substantial pressure on pathogen populations to evolve resistance and indeed, drug resistance typically emerges soon after the introduction of a drug. But vaccine resistance has only rarely emerged. Using well-established principles of population genetics and evolutionary ecology, we argue that two key differences between vaccines and drugs explain why vaccines have so far proved more robust against evolution than drugs. First, vaccines tend to work prophylactically while drugs tend to work therapeutically. Second, vaccines tend to induce immune responses against multiple targets on a pathogen while drugs tend to target very few. Consequently, pathogen populations generate less variation for vaccine resistance than they do for drug resistance, and selection has fewer opportunities to act on that variation. When vaccine resistance has evolved, these generalities have been violated. With careful forethought, it may be possible to identify vaccines at risk of failure even before they are introduced.
Collapse
Affiliation(s)
- David A Kennedy
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
38
|
Abstract
Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal responses to drugs and insecticides are both spreading geographically and emerging independently and are being seen at increasing intensities. Whilst resistance is unavoidable, its effects can be mitigated through resistance management practices, such as exposing the parasite or vector to more than one selective agent. Resistance contributed to the failure of the 20th century Global Malaria Eradication Programme, and yet the global response to this issue continues to be slow and poorly coordinated-too often, too little, too late. The Malaria Eradication Research Agenda (malERA) Refresh process convened a panel on resistance of both insecticides and antimalarial drugs. This paper outlines developments in the field over the past 5 years, highlights gaps in knowledge, and proposes a research agenda focused on managing resistance. A deeper understanding of the complex biological processes involved and how resistance is selected is needed, together with evidence of its public health impact. Resistance management will require improved use of entomological and parasitological data in decision making, and optimisation of the useful life of new and existing products through careful implementation, combination, and evaluation. A proactive, collaborative approach is needed from basic science and the development of new tools to programme and policy interventions that will ensure that the armamentarium of drugs and insecticides is sufficient to deal with the challenges of malaria control and its elimination.
Collapse
|
39
|
Achan J, Mwesigwa J, Edwin CP, D'alessandro U. Malaria medicines to address drug resistance and support malaria elimination efforts. Expert Rev Clin Pharmacol 2017; 11:61-70. [PMID: 28965427 DOI: 10.1080/17512433.2018.1387773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antimalarial drugs are essential weapons to fight malaria and have been used effectively since the 17th century. However, P.falciparum resistance has been reported to almost all available antimalarial drugs, including artemisinin derivatives, raising concerns that this could jeopardize malaria elimination. Areas covered: In this article, we present a historical perspective of antimalarial drug resistance, review current evidence of resistance to available antimalarial drugs and discuss possible mitigating strategies to address this challenge. Expert commentary: The historical approach to drug resistance has been to change the national treatment policy to an alternative treatment. However, alternatives to artemisinin-based combination treatment are currently extremely limited. Innovative approaches utilizing available schizonticidal drugs such as triple combination therapies or multiple first line treatments could delay the emergence and spread of drug resistance. Transmission blocking drugs like primaquine may play a key role if given to a substantial proportion of malaria infected persons. Deploying antimalarial medicines in mass drug administration or mass screening and treatment campaigns could also contribute to containment efforts by eliminating resistant parasites in some settings. Ultimately, response to drug resistance should also include further investment in the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Jane Achan
- a Disease Control and Elimination Theme , Medical Research Council Unit , Banjul , The Gambia
| | - Julia Mwesigwa
- a Disease Control and Elimination Theme , Medical Research Council Unit , Banjul , The Gambia
| | | | - Umberto D'alessandro
- a Disease Control and Elimination Theme , Medical Research Council Unit , Banjul , The Gambia.,c Department of Disease Control , London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
40
|
Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J 2017; 284:2569-2578. [PMID: 28580606 PMCID: PMC5575457 DOI: 10.1111/febs.14127] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
Abstract
Over the past 50 years, Plasmodium falciparum has developed resistance against all antimalarial drugs used against it: chloroquine, sulphadoxine-pyrimethamine, quinine, piperaquine and mefloquine. More recently, resistance to the artemisinin derivatives and the resulting failure of artemisinin-based combination therapy (ACT) are threatening all major gains made in malaria control. Each time resistance has developed progressively, with delayed clearance of parasites first emerging only in a few regions, increasing in prevalence and geographic range, and then ultimately resulting in the complete failure of that antimalarial. Drawing from this repeated historical chain of events, this article presents context-specific approaches for combating drug-resistant P. falciparum malaria. The approaches begin with a context of drug-sensitive parasites and focus on the prevention of the emergence of drug resistance. Next, the approaches address a scenario in which resistance has emerged and is increasing in prevalence and geographic extent, with interventions focused on disrupting transmission through vector control, early diagnosis and treatment, and the use of new combination therapies. Elimination is also presented as an approach for addressing the imminent failure of all available antimalarials. The final drug resistance context presented is one in which all available antimalarials have failed; leaving only personal protection and the use of new antimalarials (or new combinations of antimalarials) as a viable strategy for dealing with complete resistance. All effective strategies and contexts require a multipronged, holistic approach.
Collapse
Affiliation(s)
- Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
41
|
A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio 2017; 8:mBio.00303-17. [PMID: 28487425 PMCID: PMC5424201 DOI: 10.1128/mbio.00303-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.
Collapse
|
42
|
Slater HC, Okell LC, Ghani AC. Mathematical Modelling to Guide Drug Development for Malaria Elimination. Trends Parasitol 2017; 33:175-184. [PMID: 27727128 PMCID: PMC5347022 DOI: 10.1016/j.pt.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
Mathematical models of the dynamics of a drug within the host are now frequently used to guide drug development. These generally focus on assessing the efficacy and duration of response to guide patient therapy. Increasingly, antimalarial drugs are used at the population level, to clear infections, provide chemoprevention, and to reduce onward transmission of infection. However, there is less clarity on the extent to which different drug properties are important for these different uses. In addition, the emergence of drug resistance poses new threats to longer-term use and highlights the need for rational drug development. Here, we argue that integrating within-host pharmacokinetic and pharmacodynamic (PK/PD) models with mathematical models for the population-level transmission of malaria is key to guiding optimal drug design to aid malaria elimination.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Lucy C Okell
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK.
| |
Collapse
|
43
|
Thanh NV, Thuy-Nhien N, Tuyen NTK, Tong NT, Nha-Ca NT, Dong LT, Quang HH, Farrar J, Thwaites G, White NJ, Wolbers M, Hien TT. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 2017; 16:27. [PMID: 28086775 PMCID: PMC5237149 DOI: 10.1186/s12936-017-1680-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/04/2017] [Indexed: 12/03/2022] Open
Abstract
Background Artemisinin resistant Plasmodium falciparum has emerged in the countries of the Greater Mekong sub-region posing a serious threat to global malaria elimination efforts. The relationship of artemisinin resistance to treatment failure has been unclear. Methods In annual studies conducted in three malaria endemic provinces in the south of Vietnam (Binh Phuoc, Ninh Thuan and Gia Lai) between 2011 and 2015, 489 patients with uncomplicated P. falciparum malaria were enrolled in detailed clinical, parasitological and molecular therapeutic response assessments with 42 days follow up. Patients received the national recommended first-line treatment dihydroartemisinin-piperaquine for three days. Results Over the 5 years the proportion of patients with detectable parasitaemia on day 3 rose steadily from 38 to 57% (P < 0.001). In Binh Phuoc province, the parasite clearance half-life increased from 3.75 h in 2011 to 6.60 h in 2015 (P < 0.001), while treatment failures rose from 0% in 2012 and 2013, to 7% in 2014 and 26% in 2015 (P < 0.001). Recrudescence was associated with in vitro evidence of artemisinin and piperaquine resistance. In the treatment failures cases of 2015, all 14 parasite isolates carried the C580Y Pfkelch 13 gene, marker of artemisinin resistance and 93% (13/14) of them carried exoE415G mutations, markers of piperaquine resistance. Conclusions In the south of Vietnam recent emergence of piperaquine resistant P. falciparum strains has accelerated the reduced response to artemisinin and has led to treatment failure rates of up to 26% to dihydroartemisinin-piperaquine, Vietnam’s current first-line ACT. Alternative treatments are urgently needed. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1680-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ngo Viet Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy-Nhien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.
| | - Nguyen Thi Kim Tuyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thuy Nha-Ca
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Le Thanh Dong
- Institute of Malariology, Parasitology, and Entomology, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology, and Entomology, Qui Nhon, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.,Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Gobbi F, Buonfrate D, Menegon M, Lunardi G, Angheben A, Severini C, Gori S, Bisoffi Z. Failure of dihydroartemisinin-piperaquine treatment of uncomplicated Plasmodium falciparum malaria in a traveller coming from Ethiopia. Malar J 2016; 15:525. [PMID: 27809844 PMCID: PMC5094029 DOI: 10.1186/s12936-016-1572-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022] Open
Abstract
Background Artemisinin combination therapy (ACT) is used worldwide as the first-line treatment against uncomplicated Plasmodium falciparum malaria. Despite the success of ACT in reducing the global burden of malaria, the emerging of resistance to artemisinin threatens its use. Case report This report describes the first case of failure of dihydroartemisinin-piperaquine (DHA-PPQ) for the treatment of P. falciparum malaria diagnosed in Europe. It occurred in an Italian tourist returned from Ethiopia. She completely recovered after the DHA-PPQ treatment but 32 days after the end of therapy she had a recrudescence. The retrospective analysis indicated a correct DHA-PPQ absorption and genotyping demonstrated that the same P. falciparum strain was responsible for the both episodes. Conclusion In consideration of the growing number of cases of resistance to ACT, it is important to consider a possible recrudescence, that can manifest also several weeks after treatment.
Collapse
Affiliation(s)
- Federico Gobbi
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy.
| | - Dora Buonfrate
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases (MIPI), Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Gianluigi Lunardi
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy
| | - Andrea Angheben
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases (MIPI), Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Stefania Gori
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy
| | - Zeno Bisoffi
- Centre for Tropical Diseases, Hospital Sacro Cuore-Don Calabria, Via Sempreboni 5, Negrar, 37024, Verona, Italy
| |
Collapse
|
45
|
Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev 2016; 41:34-48. [PMID: 27613271 PMCID: PMC5424521 DOI: 10.1093/femsre/fuw037] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/11/2016] [Accepted: 07/31/2016] [Indexed: 11/25/2022] Open
Abstract
Artemisinins are the most rapidly acting of currently available antimalarial drugs. Artesunate has become the treatment of choice for severe malaria, and artemisinin-based combination therapies (ACTs) are the foundation of modern falciparum malaria treatment globally. Their safety and tolerability profile is excellent. Unfortunately, Plasmodium falciparum infections with mutations in the ‘K13’ gene, with reduced ring-stage susceptibility to artemisinins, and slow parasite clearance in patients treated with ACTs, are now widespread in Southeast Asia. We review clinical efficacy data from the region (2000–2015) that provides strong evidence that the loss of first-line ACTs in western Cambodia, first artesunate-mefloquine and then DHA-piperaquine, can be attributed primarily to K13 mutated parasites. The ring-stage activity of artemisinins is therefore critical for the sustained efficacy of ACTs; once it is lost, rapid selection of partner drug resistance and ACT failure are inevitable consequences. Consensus methods for monitoring artemisinin resistance are now available. Despite increased investment in regional control activities, ACTs are failing across an expanding area of the Greater Mekong subregion. Although multiple K13 mutations have arisen independently, successful multidrug-resistant parasite genotypes are taking over and threaten to spread to India and Africa. Stronger containment efforts and new approaches to sustaining long-term efficacy of antimalarial regimens are needed to prevent a global malaria emergency. Artemisinin resistance in Plasmodium falciparum malaria is causing failure of artemisinin-based combination therapies across an expanding area of Southeast Asia, undermining control and elimination efforts. The potential global consequences can only be avoided by new approaches that ensure sustained efficacy for antimalarial regimens in malaria affected populations.
Collapse
Affiliation(s)
- Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6, Rajvithi Road, Bangkok 10400, Thailand
| |
Collapse
|
46
|
Abstract
Maciej F. Boni and colleagues propose deploying multiple first-line combination therapies against malaria within a community to delay drug-resistance evolution.
Collapse
|
47
|
Jagoe G, Amuasi JH. Saving lives through improved use of ACTs. Lancet Glob Health 2015; 3:e727-8. [PMID: 26545448 DOI: 10.1016/s2214-109x(15)00208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Affiliation(s)
- George Jagoe
- Medicines for Malaria Venture (MMV), Geneva, Switzerland.
| | - John H Amuasi
- African Research Network for Neglected Tropical Diseases (ARNTD), Kumasi, Ghana; Kumasi Collaborative Center for Research in Tropical Medicine (KCCR), Kumasi, Ghana; Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|