1
|
Ashagrie YN, Chaubey KK, Tadesse MG, Dayal D, Bachheti RK, Rai N, Pramanik A, Lakhanpal S, Kandwal A, Bachheti A. Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment. Z NATURFORSCH C 2025:znc-2024-0192. [PMID: 39786973 DOI: 10.1515/znc-2024-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.
Collapse
Affiliation(s)
- Yenework Nigussie Ashagrie
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Kundan Kumar Chaubey
- School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, India
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, India
| | - Rakesh Kumar Bachheti
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, Uttarakhand, India
- University Centre for Research and Development, Chandigarh University, Gharuan 140413, Punjab, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - Anuj Kandwal
- Department of Chemistry, Harsh Vidya Mandir (P.G.) College, Sri Dev Suman Uttarakhand University, Raisi, Haridwar, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Xiao MY, Li S, Pei WJ, Gu YL, Piao XL. Natural Saponins on Cholesterol-Related Diseases: Treatment and Mechanism. Phytother Res 2025. [PMID: 39754504 DOI: 10.1002/ptr.8432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases. To review the effects of natural saponins on cholesterol-related metabolic diseases, and to deepen the understanding of the cholesterol-lowering mechanism of saponins. The literature related to saponins and cholesterol-lowering diseases was collected using keywords "saponins" and "cholesterol" from PubMed, Web of Science, and Google Scholar from January 2000 to May 2024. The total number of articles related to saponins and cholesterol-lowering diseases was 240 after excluding irrelevant articles. Natural saponins can regulate cholesterol to prevent and treat a variety of diseases, such as atherosclerosis, diabetes, liver disease, hyperlipidemia, cancer, and obesity. Mechanistically, natural saponins regulate cholesterol synthesis and uptake through the AMPK/SREBP2/3-hydroxy-3-methyl-glutaryl coenzyme A reductase pathway and PCSK9/LDLR pathway, and regulate cholesterol efflux and esterification targeting Liver X receptor/ABC pathway and ACAT family. Natural saponins have broad application prospects in regulating cholesterol metabolism, for the development of more cholesterol-lowering drugs provides a new train of thought. However, it is still necessary to further explore the molecular mechanism and expand clinical trials to provide more evidence.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Si Li
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Fatima Hashmi S, Saleem H, Khurshid U, Khursheed A, Tauquir Alam M, Imran M, Abida, Nayeem N, Shoaib Ali Gill M. Genus Berberis: A Comprehensive and Updated Review on Ethnobotanical Uses, Phytochemistry and Pharmacological Activities. Chem Biodivers 2024; 21:e202400911. [PMID: 38923729 DOI: 10.1002/cbdv.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Genus Berberis is an excellent choice for research due to its history in traditional medicine, diverse pharmacological properties, and it has potential for drug discovery. This review presents information on the ethnobotany, pharmacological activities, and many phytochemicals identified from Berberis species. It examines the existing literature on the genus Berberis, drawn from online databases, including PubMed, Web of Science, Science Direct, Elsevier, and Google Scholar, etc encompassing the data from 1960 to 2023. This review focuses on the structural details of reported phytochemicals of Berberis species and pharmacological actions. Different extraction techniques were evaluated for extracts preparation. According to literature review, phytochemical analysis exhibited the presence of alkaloids, flavonoids, and phenolic compounds. A major bioactive alkaloid, berberine exhibits its main role in treatment of many gastric, infectious, and chronic disorders. This literature indicates that Berberis genus exhibits a variety of biological activities, i.e anti-inflammatory, cytotoxic, hepatoprotective, antimicrobial, antidiabetic and antioxidant activities and utilization of these effects in the treatment and management of various diseases, like diabetes, microbial infections, inflammation, liver disorders, and cancer. However, conventional medicines, validation of traditional uses, and in-depth phytochemical analysis are areas of research in genus Berberis.
Collapse
Affiliation(s)
- Samar Fatima Hashmi
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Naira Nayeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
4
|
Althobaiti F, Taher ES, Ahmed Alkeridis L, Ibrahim AM, El-Shafai N, A Al-Shuraym L, Fericean L, Imbrea F, A Kassab M, Farrag FA, Abdeen A, Almalki DA, AL-Farga A, Afifi M, Shukry M. Exploring the NRF2/HO-1 and NF-κB Pathways: Spirulina Nanoparticles as a Novel Approach to Combat Diabetic Nephropathy. ACS OMEGA 2024; 9:23949-23962. [PMID: 38854532 PMCID: PMC11154939 DOI: 10.1021/acsomega.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ehab S. Taher
- Department
of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Lamya Ahmed Alkeridis
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ateya M. Ibrahim
- Department
of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nagi El-Shafai
- Nanotechnology
Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Laila A Al-Shuraym
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Department
of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I”
from Timişoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Department
of Crop Science Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania
| | - Mohamed A Kassab
- Department
of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Foad A. Farrag
- Department
of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Basic veterinary sciences,
Faculty of Veterinary Medicine, Delta University
for Science and Technology, Dakahlia 7730103, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty
of Veterinary
Medicine, Benha University, Toukh 13736, Egypt
| | - Daklallah A. Almalki
- Biology Department,
Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al Baha 1988, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of
Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mustafa Shukry
- Department
of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
Och A, Lemieszek MK, Cieśla M, Jedrejek D, Kozłowska A, Pawelec S, Nowak R. Berberis vulgaris L. Root Extract as a Multi-Target Chemopreventive Agent against Colon Cancer Causing Apoptosis in Human Colon Adenocarcinoma Cell Lines. Int J Mol Sci 2024; 25:4786. [PMID: 38732003 PMCID: PMC11084310 DOI: 10.3390/ijms25094786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.
Collapse
Affiliation(s)
- Anna Och
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| | | | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Aleksandra Kozłowska
- Department of Radiotherapy, Medical University of Lublin, 13 Radziwiłłowska St., 20-080 Lublin, Poland;
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Rsearch Institute, Czartoryskich 8 Street, 24-100 Puławy, Poland; (D.J.); (S.P.)
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
6
|
Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3860. [PMID: 38005756 PMCID: PMC10674704 DOI: 10.3390/plants12223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Ancient people sought out drugs in nature to prevent, cure, and treat their diseases, including mental illnesses. Plants were their primary source for meeting their healthcare needs. In Algeria, folk medicine remains a fundamental part of the local intangible knowledge. This study aims to conduct a comprehensive ethnomedicinal investigation and documentation of medicinal plants and the different plant formulations traditionally used in Algeria for the treatment of pain, psychiatric, and neurological disorders. It also intends to improve the current knowledge of Algerian folk medicine. Several scientific databases were used to accomplish this work. Based on this investigation, we identified 82 plant species belonging to 69 genera and spanning 38 distinct botanical families used as remedies to treat various psychological and neurological conditions. Their traditional uses and methods of preparation, along with their phytochemical composition, main bioactive constituents, and toxicity were noted. Therefore, this review provides a new resource of information on Algerian medicinal plants used in the treatment and management of neurological and psychological diseases, which can be useful not only for the documentation and conservation of traditional knowledge, but also for conducting future phytochemical and pharmacological studies.
Collapse
Affiliation(s)
- Farida Larit
- Laboratoire d’Obtention de Substances Thérapeutiques (LOST), Université Frères Mentouri-Constantine 1, Route de Ain El Bey, Constantine 25017, Algeria
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
7
|
Rostami H, Babaali F, Moradi L, Golfakhrabadi F, Abdi L. Evaluation of the Effect of Barberry Root (Berberis Vulgaris) on the Prevention of Metabolic Syndrome Caused by Atypical Antipsychotic Drugs in Patients with Schizophrenia: A Three-Blind Placebo-Controlled Clinical Trial. IRANIAN JOURNAL OF PSYCHIATRY 2023; 18:362-368. [PMID: 37575603 PMCID: PMC10422947 DOI: 10.18502/ijps.v18i3.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 08/15/2023]
Abstract
Objective: Metabolic syndrome is a potential side effect of atypical antipsychotics which are the current standard treatment for schizophrenia. Therefore, we aimed to examine the effect of barberry root (Berberis vulgaris) on the prevention of metabolic syndrome caused by atypical antipsychotic drugs in patients with schizophrenia. Method : Our research was a three-blind randomized clinical trial. The participants included all patients who were diagnosed with schizophrenia through the SCID-5 questionnaire and based on the DSM-5-TR criteria by two psychiatric experts. These patients were randomly divided into intervention and placebo groups. During a three-month treatment period, the intervention group received three 500 mg capsules of barberry root extract daily, whereas the placebo group received the same capsules containing 500 mg of starch powder. Metabolic syndrome variables including fasting blood glucose, serum lipids (triglyceride and cholesterol), blood pressure, weight and waist circumference were measured before and after the treatment as outcome measure. Chi-square and t-tests were used for data analysis using SPSS-22 software. Results: At the beginning of the study, there was no significant difference between the intervention group (n = 41) and the placebo group (n = 47) in terms of demographic factors, and pre-treatment assessments including weight, waist size, fasting blood HDL, fasting blood triglycerides and systolic and diastolic blood pressure and fasting blood glucose (P > 0.05). Within group analysis showed that some metabolic factors significantly increased in both groups after the treatment (P < 0.05). Indeed, in both groups, metabolic syndrome measures worsened after the three-month treatment period. The parameters of weight and waist size were significantly higher in the intervention group than the placebo group after treatment (P < 0.05). Conclusion: Barberry root extract was not able to control the Effects of antipsychotic drugs on metabolic syndrome in schizophrenia.
Collapse
Affiliation(s)
- Hamzeh Rostami
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzaneh Babaali
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Moradi
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Golfakhrabadi
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Abdi
- Department of Psychiatry, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Rasool S, Al Meslmani B, Alajlani M. Determination of Hypoglycemic, Hypolipidemic and Nephroprotective Effects of Berberis Calliobotrys in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:molecules28083533. [PMID: 37110767 PMCID: PMC10146706 DOI: 10.3390/molecules28083533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Many plants of the Berberis genus have been reported pharmacologically to possess anti-diabetic potential, and Berberis calliobotrys has been found to be an inhibitor of α-glucosidase, α-amylase and tyrosinase. Thus, this study investigated the hypoglycemic effects of Berberis calliobotrys methanol extract/fractions using in vitro and In vivo methods. Bovine serum albumin (BSA), BSA-methylglyoxal and BSA-glucose methods were used to assess anti-glycation activity in vitro, while in vivo hypoglycemic effects were determined by oral glucose tolerance test (OGTT). Moreover, the hypolipidemic and nephroprotective effects were studied and phenolics were detected using high performance liquid chromatography (HPLC). In vitro anti-glycation showed a significant reduction in glycated end-products formation at 1, 0.25 and 0.5 mg/mL. In vivo hypoglycemic effects were tested at 200, 400 and 600 mg/kg by measuring blood glucose, insulin, hemoglobin (Hb) and HbA1c. The synergistic effect of extract/fractions (600 mg/kg) with insulin exhibited a pronounced glucose reduction in alloxan diabetic rats. The oral glucose tolerance test (OGTT) demonstrated a decline in glucose concentration. Moreover, extract/fractions (600 mg/kg) exhibited an improved lipid profile, increased Hb, HbA1c levels and body weight for 30 days. Furthermore, diabetic animals significantly exhibited an upsurge in total protein, albumin and globulin levels, along with a significant improvement in urea and creatinine after extract/fractions administration for 42 days. Phytochemistry revealed alkaloids, tannins, glycosides, flavonoids, phenols, terpenoids and saponins. HPLC showed the presence of phenolics in ethyl acetate fraction that could be accountable for pharmacological actions. Therefore, it can be concluded that Berberis calliobotrys possesses strong hypoglycemic, hypolipidemic and nephroprotective effects, and could be a potential therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Shahid Rasool
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Bassam Al Meslmani
- Institute of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauer Street 4., 91058 Erlangen, Germany
| | - Muaaz Alajlani
- Faculty of Pharmacy, Al-Sham Private University, Al-Tal 5910011, Syria
| |
Collapse
|
9
|
The hypocholesterolemic effect of methanolic extract of Bassia muricata l. on hypercholesterolemic rats. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
AbstractHypercholesterolemia is correlated with cardiovascular diseases. The search for effective alternatives for lipid-lowering drugs is continuous. We investigated the hypocholesterolemic activity of Bassia muricata methanolic extract (BMME) in a model of hyperlipidemia. B. muricata was extracted with methanol. Male rats were randomly divided into six groups: normal control group (G1) was fed normal diet, negative control group (G2) was fed high cholesterol and fat diet (HCFD), positive control group (G3) was fed HCFD and treated with atorvastatin (20 mg/kg), a fourth, fifth and sixth groups (G4, G5, and G6) were fed HCFD and treated with 10, 30 and 100 mg/Kg of BMME, respectively. All rat groups received, for 4 weeks, the appropriate daily dose after initial two weeks of feeding normal diet or HCFD. Body weight, lipid profile, serum glucose, liver enzymes were measured weekly. HCFD caused an increased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and glucose, decreased triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C), and blunted the normal gain of body weight. BMME doses restored the normal gain of body weight, caused significant decrease in serum TC, LDL-C, and increased HDL-C when compared to G2. 10 mg/kg and 30 mg/kg of BMME failed to induce any change in alkaline phosphatase whereas 100 mg/Kg of BMME caused a significant increase in alanine transaminase. 10 mg/kg and 30 mg/kg of BMME significantly decreased serum glucose whereas 100 mg/kg BMME significantly increased it. BMME had significant hypocholesterolemic effect and 100 mg/kg BMME increased alanine transaminase, TG and glucose in rats.
Graphical abstract
Collapse
|
10
|
Saleh R, Abbey L, Ofoe R, Ampofo J, Gunupuru LR. Effects of preharvest factors on antidiabetic potential of some foods and herbal plants. BRAZ J BIOL 2023; 84:e269583. [PMID: 36722681 DOI: 10.1590/1519-6984.269583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 02/02/2023] Open
Abstract
Diabetes is a metabolic disorder with no definite treatment, but it can be controlled by changing lifestyle and diet. Consumption of high-fiber and nutrient-rich foods including vegetables have been shown to reduce risks of obesity and Type II Diabetes Mellitus (T2DM). Also, many herbal plants have been associated with reduced risks of T2DM because of their composition of secondary metabolites. Antioxidant activities of some secondary metabolites have potent inhibitory effects against inflammation linked with insulin resistance and oxidative stress. More than 800 known medicinal plants are used to control diabetes and its relevant complications. However, variations in preharvest factors including plant genotype, growing medium properties, climatic factors, and management practices can influence plant growth and their accumulation of phytochemicals with health-promoting properties. However, the effects of these preharvest factors on the antidiabetic properties of plant secondary metabolites are neither explicit nor easily accessible in the literature. Therefore, this review aims to document recent studies that reported on under-exploited medicinal plants with antidiabetic properties. We reviewed several important preharvest factors that can potentially affect the synthesis of phytoconstituents which possess antidiabetic properties. This review will help identify gaps for future research in phytomedicine and functional foods.
Collapse
Affiliation(s)
- R Saleh
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - L Abbey
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - R Ofoe
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| | - J Ampofo
- McGill University, Department of Bioresource Engineering, Ste-Anne-de-Bellevue, Quebec, Canada
| | - L R Gunupuru
- Dalhousie University, Faculty of Agriculture, Department of Plant, Food, Environmental Sciences, Truro, Nova Scotia, Canada
| |
Collapse
|
11
|
Abdedayem W, Patpour M, Laribi M, Justesen AF, Kouki H, Fakhfakh M, Hovmøller MS, Yahyaoui AH, Hamza S, Ben M’Barek S. Wheat Stem Rust Detection and Race Characterization in Tunisia. PLANTS (BASEL, SWITZERLAND) 2023; 12:552. [PMID: 36771636 PMCID: PMC9919909 DOI: 10.3390/plants12030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Climate changes over the past 25 years have led to conducive conditions for invasive and transboundary fungal disease occurrence, including the re-emergence of wheat stem rust disease, caused by Puccinia graminis f.sp. tritici (Pgt) in East Africa, Europe, and the Mediterranean basin. Since 2018, sporadic infections have been observed in Tunisia. In this study, we investigated Pgt occurrence at major Tunisian wheat growing areas. Pgt monitoring, assessment, and sampling from planted trap nurseries at five different locations over two years (2021 and 2022) revealed the predominance of three races, namely TTRTF (Clade III-B), TKKTF (Clade IV-F), and TKTTF (Clade IV-B). Clade III-B was the most prevalent in 2021 as it was detected at all locations, while in 2022 Pgt was only reported at Beja and Jendouba, with the prevalence of Clade IV-B. The low levels of disease incidence during these two years and Pgt population diversity suggest that this fungus most likely originated from exotic incursions and that climate factors could have caused disease establishment in Tunisia. Further evaluation under the artificial disease pressure of Tunisian wheat varieties and weather-based modeling for early disease detection in the Mediterranean area could be helpful in monitoring and predicting wheat stem rust emergence and epidemics.
Collapse
Affiliation(s)
- Wided Abdedayem
- National Agronomic Institute of Tunisia (INAT), 43 Avenue Charles Nicolle, Tunis 1002, Tunisia
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark
| | - Marwa Laribi
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | | | - Hajer Kouki
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | - Moez Fakhfakh
- Comptoir Multiservices Agricoles, 82, Avenue Louis Brailles, Tunis 1002, Tunisia
| | | | - Amor H. Yahyaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
- Borlaug Training Foundation, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Sonia Hamza
- National Agronomic Institute of Tunisia (INAT), 43 Avenue Charles Nicolle, Tunis 1002, Tunisia
| | - Sarrah Ben M’Barek
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
- Laboratory of ‘Appui à la Durabilité des Systèmes de Production Agricole Dans la Région du Nord-Ouest’, Higher School of Agriculture of Kef (ESAK), Regional Field Crops Research Center of Beja (CRRGC) BP 350, Beja 9000, Tunisia
| |
Collapse
|
12
|
Elekofehinti OO, Aladenika YV, Iwaloye O, Okon EIA, Adanlawo IG. Bambusa vulgaris leaves reverse mitochondria dysfunction in diabetic rats through modulation of mitochondria biogenic genes. Horm Mol Biol Clin Investig 2023:hmbci-2022-0053. [PMID: 36591918 DOI: 10.1515/hmbci-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/11/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES There is evidence that mitochondrial dysfunction mediated by hyperglycemia increases the incidence of diabetes and age-related insulin resistance. Thus, maintaining mitochondrial integrity may provide alternative therapeutic approach in diabetes treatment. This study aimed to evaluate the effect of Bambusa vulgaris leaf extract on mitochondrial biogenesis in the pancreas of diabetic rats. METHODS 11 weeks old male rats (n=30) were purchased, and sorted into the following groups: control, diabetic control, diabetes + metformin (100 mg/kg), diabetes + Aq. B. vulgaris (100 mg/kg), diabetes + Aq. B. vulgaris (200 mg/kg), and diabetes + Aq. B. vulgaris (300 mg/kg). Diabetes was induced in the rats by a single dose of 65 mg/kg streptozotocin (STZ). The mRNA expression of genes related to mitochondria biogenesis (pgc-1α, Nrf2, GSK3β, AMPK and SIRT2) and genes of Nrf2-Keap1-ARE signaling pathway were determined by reverse transcriptase polymerase chain reaction. Molecular docking studies including lock and key docking and prime MM-GBSA were incorporated to identify the lead chemical compounds in Bambusa vulgari. RESULTS The results showed that B. vulgaris leaf extract promotes mitochondrial biogenesis via altering the mRNA expression of mitochondrial master regulator pgc-1α, other upstream genes, and the Nrf2-Keap1-ARE antioxidant pathway. Through molecular docking results, cryptochlorogenic acid, hesperidin, orientin, vitexin, scopolin, and neochlorogenic were found as the crucial chemicals in B. vulgaris with the most modulating effect on PGC-1α, AMPK, and GSK3. CONCLUSIONS This study thus suggests that B. vulgaris leaf extract restores the integrity of mitochondria in diabetic rats.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | | | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Enoabasi Ima-Abasi Okon
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Isaac Gbadura Adanlawo
- Department of Biochemistry, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
13
|
Anshika, Pandey RK, Singh L, Kumar S, Singh P, Pathak M, Jain S. Plant bioactive compounds and their mechanistic approaches in the treatment of diabetes: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Diabetes mellitus (DM) is a growing disease across the world; diabetes is a complex metabolic disorder in which blood glucose concentration level increases and continue for a prolonged period due to a decrease secretion of insulin or action, resulting in the disorder of carbohydrate, lipid, and protein metabolism. The plant-related bioactive compounds have proven their efficacy with least toxicities and can be utilized for the disease treatment. Our objective is to elucidate the mechanism of action of plant bioactive compounds which can give future direction in diabetes treatment.
Main body
In this review paper, we briefly study more than 200 research papers related to disease and bioactive compounds that have therapeutic applicability in treatment. The plant contains many bio-active compounds which possess in vitro and in vivo anti-diabetic effect which may be responsible for the hypoglycaemic property by inhibiting the digestive enzyme i.e. alpha-amylase and alpha-glucosidase, by producing mimetic action of insulin, by reducing the oxidative stress, by showing antihyperglycemic activity and hypolipidemic activity, by inhibition of aldose reductase, and by increasing or enhancing glucose uptake and insulin secretion.
Conclusion
Our study revealed that terpenes, tannin, flavonoids, saponin, and alkaloids are important bioactive constituents for anti-diabetic activity. The mechanistic approach on alpha-glucosidase and alpha-amylase, hypolipidemic activity, and AR inhibitory action clear-cut explain the therapeutic applicability of these bioactive compounds in disease. Plants that contain these bioactive compounds can be good drug candidates for future research on diabetes treatment.
Collapse
|
14
|
Seyedin SMV, Mojtahedi M, Farhangfar SH, Ghavipanje N. Partial substitution of alfalfa hay by Berberis vulgaris leaf modulated the growth performance, meat quality and antioxidant status of fattening lambs. Vet Med Sci 2022; 8:2605-2615. [PMID: 36112758 PMCID: PMC9677374 DOI: 10.1002/vms3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Undoubtedly, global warming has caused a decrease in the production of agricultural commodities. This problem has increased the price of animal feed due to competition with human consumption. Meanwhile, the physiology of ruminants gives them the ability to use by-products and agricultural waste and supply their requirements for growth, maintenance and even production. Berberis vulgaris is a plant native to Iran, and after separating the fruit, its waste (mainly leaf) is unused and causes environmental pollution. The leaves of this plant contain significant amounts of phenolic compounds, alkaloids and anthocyanins that have antioxidant properties. OBJECTIVES This experiment was conducted with the aim of determining the chemical properties of barberry leaves, such as crude protein, phenolic compounds, tannins and alkaloids. The effects of substituting of B. vulgaris leaf (BVL) in the diet on performance characteristics of fattening Baluchi lambs were evaluated. The quality and antioxidant status of meat and blood parameters such as glucose, cholesterol, blood urea nitrogen and liver enzymes were investigated. MATERIAL AND METHODS A total of 21 male of 5-6 months old lambs with a mean body weight of 30.60 ± 1.28 kg were randomly assigned to one of three dietary treatments with different levels of BVL: 1-diet without BVL (control), 2-diet containing 7.5% BVL (BVL7.5), and 3-diet containing 15% BVL (BVL15; dry matter [DM] basis). Blood samples were harvested after overnight fasting from the jugular vein at 0, 28, 56 and 84 days. The lambs were slaughtered after 84 days of feeding trial and longissimus dorsi (LD) muscle was dissected. Meat quality and antioxidant stability status were measured. RESULTS 15% substitution of alfalfa hay by BVL (BVL15) increased DM intake) and decreased average daily gain (p ≤ 0.05). The LD muscle (p ≤ 0.05), liver (p ≤ 0.01) and plasma (p ≤ 0.05) samples of lambs fed either BVL7.5 or BVL15 displayed a greater total antioxidant capacity than that of lambs fed the control diet. Also, malondialdehyde concentration was decreased in plasma (p ≤ 0.01) and LD muscle of lambs (p ≤ 0.05) fed both BVL7.5 and BVL15. In addition, higher a* and C* values (p ≤ 0.05) were observed in the meat of lambs fed BVL15 than those fed with the control, while the lightness (L*) in BVL15 was lower, compared to other experimental diets CONCLUSIONS: Overall, our results indicated that 7.5% substitution of alfalfa hay by BVL may positively modulate the antioxidant status of fattening lambs and improve the colour stability of meat without negative effects on performance characteristics.
Collapse
Affiliation(s)
| | - Mohsen Mojtahedi
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| | | | - Navid Ghavipanje
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| |
Collapse
|
15
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
16
|
Prasad M, Jayaraman S, Eladl MA, El-Sherbiny M, Abdelrahman MAE, Veeraraghavan VP, Vengadassalapathy S, Umapathy VR, Jaffer Hussain SF, Krishnamoorthy K, Sekar D, Palanisamy CP, Mohan SK, Rajagopal P. A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules 2022; 27:molecules27051595. [PMID: 35268696 PMCID: PMC8911698 DOI: 10.3390/molecules27051595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body’s healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia; (M.E.-S.); (M.A.E.A.)
| | | | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 602105, India;
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600100, India;
| | | | - Kalaiselvi Krishnamoorthy
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
| | - Durairaj Sekar
- Cellular and Molecular Research Centre, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China;
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| |
Collapse
|
17
|
Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, Cho DH. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life (Basel) 2022; 12:277. [PMID: 35207564 PMCID: PMC8880704 DOI: 10.3390/life12020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein-protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein-protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM.
Collapse
Affiliation(s)
- Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Byeong-Bae Jeon
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Ki-Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh;
| | - Md. Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (B.-B.J.); (K.-K.O.)
| |
Collapse
|
18
|
Azam K, Rasheed MA, Omer MO, Altaf I, Akhlaq A. Anti-hyperlipidemic and anti-diabetic evaluation of ethanolic leaf extract of Catharanthus roseus alone and in combination therapy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000118672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Khadija Azam
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | | | | | - Imran Altaf
- University Of Veterinary and Animal Sciences Lahore, Pakistan
| | - Amina Akhlaq
- University of Veterinary and Animal Sciences Lahore, Pakistan
| |
Collapse
|
19
|
Ardalani H, Hejazi Amiri F, Hadipanah A, Kongstad KT. Potential antidiabetic phytochemicals in plant roots: a review of in vivo studies. J Diabetes Metab Disord 2021; 20:1837-1854. [PMID: 34900828 PMCID: PMC8630315 DOI: 10.1007/s40200-021-00853-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Background Medicinal plants are used to treat various disorders, including diabetes, globally in a range of formulations. While attention has mainly been on the aerial plant parts, there are only a few review studies to date that are focused on the natural constituents present in the plant roots with health benefits. Thus, the present study was performed to review in vivo studies investigating the antidiabetic potential of the natural compounds in plant roots. Methods We sorted relevant data in 2001-2019 from scientific databases and search engines, including Web of Knowledge, PubMed, ScienceDirect, Medline, Reaxys, and Google Scholar. The class of phytochemicals, plant families, major compounds, active constituents, effective dosages, type of extracts, time of experiments, and type of diabetic induction were described. Results In our literature review, we found 104 plants with determined antidiabetic activity in their root extracts. The biosynthesis pathways and mechanism of actions of the most frequent class of compounds were also proposed. The results of this review indicated that flavonoids, phenolic compounds, alkaloids, and phytosteroids are the most abundant natural compounds in plant roots with antidiabetic activity. Phytochemicals in plant roots possess different mechanisms of action to control diabetes, including inhibition of α-amylase and α-glucosidase enzymes, oxidative stress reduction, secretion of insulin, improvement of diabetic retinopathy/nephropathy, slow the starch digestion, and contribution against hyperglycemia. Conclusion This review concludes that plant roots are a promising source of bioactive compounds which can be explored to develop against diabetes and diabetes-related complications. Graphical abstract
Collapse
Affiliation(s)
- Hamidreza Ardalani
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Fatemeh Hejazi Amiri
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Amin Hadipanah
- Department of Plant Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
The Effects of Berberis integerrima Fruit Extract on Glycemic Control Parameters in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5583691. [PMID: 34285701 PMCID: PMC8275404 DOI: 10.1155/2021/5583691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/13/2023]
Abstract
Background Berberis integerrima Bunge fruits have been utilized in traditional medicine to control diabetes mellitus (DM). However, no clinical survey has been done in this regard. This study was conducted to clinically evaluate the effects of fruit extract of this plant in improving glycemic control indices in patients with type 2 DM (T2DM). Methods In a randomized controlled clinical trial, patients with T2DM who met the inclusion criteria were randomly divided into two groups of drug (Berberis) and control to receive the extract solution 5 ml twice daily (equivalent to 1000 mg of dry extract) with standard treatment (metformin) or only standard treatment, respectively, for 8 weeks. Before and after the intervention, fasting blood sugar (FBS), serum glycosylated hemoglobin (HbA1c), serum insulin, the homeostasis assessment model for insulin resistance (HOMA-IR), body mass index (BMI), and systolic and diastolic blood pressure were determined and compared between the two groups. Results During the study, 30 and 35 patients in the drug and control groups, respectively, completed the study. Although no significant changes occurred in any parameter within each group, postintervention FBS (117.5 [107–128.8] versus 134 [120–142], P = 0.001) and HbA1c (7 [6.4–7.7] versus 7.5 [6.8–7.9], P = 0.045) were significantly lower in the drug group than in the control one. In terms of other parameters, there were no significant differences between the groups. Conclusion Consumption of B. integerrima Bunge fruit extract at a dosage of 1000 mg daily decreases FBS and HbA1c but does not affect HOMA-IR in patients with type 2 diabetes mellitus.
Collapse
|
21
|
Managa MG, Shai J, Thi Phan AD, Sultanbawa Y, Sivakumar D. Impact of Household Cooking Techniques on African Nightshade and Chinese Cabbage on Phenolic Compounds, Antinutrients, in vitro Antioxidant, and β-Glucosidase Activity. Front Nutr 2021; 7:580550. [PMID: 33409289 PMCID: PMC7779405 DOI: 10.3389/fnut.2020.580550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Different household cooking techniques (boiling, steaming, stir frying, and microwave) were tested on the changes of targeted phenolic compounds, antioxidant property (ferric reducing-antioxidant power (FRAP) activity), α-glucosidase activity, antinutritive compounds, and sensory properties in commonly consumed traditional leafy vegetables in Southern Africa, the non-heading Chinese cabbage (Brassica rapa L. subsp. chinensis) and African nightshade (Solanum retroflexum Dun). Stir frying increased kaempferol-3-O-hydroxyferuloyl-trihexoside, kaempferol-dihexoside, sinapoyl malate, rutin, and isorhamnetin-O-dihexoside in Chinese cabbage leaves, followed by steaming. Similarly, stir frying increased kaempferol-3-O-rutinoside, chlorogenic acid, caffeoylmalic acid, and quercetin-3-O-xylosyl-rutinoside in nightshade, followed by steaming. Biomarkers, sinapoyl malate (Chinese cabbage) and caffeoylmalic acid (nightshade), separated the stir frying from the other cooking techniques. Steaming and stir-frying techniques significantly increased the FRAP activity; whereas boiling and microwaving reduced the tannin, oxalate, and phytate contents in both leafy vegetables and steroidal saponins in nightshade. Stir-fried nightshade leaf extract showed the most effective inhibition against α-glucosidase activity, with an IC50 of 26.4 μg ml-1, which was higher than acarbose, a synthetic compound (positive control; IC50 69.83 μg ml-1). Sensory panelists preferred the stir-fried Chinese cabbage and nightshade leaves, followed by steamed, microwaved, and boiled vegetables.
Collapse
Affiliation(s)
- Millicent G Managa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Jerry Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Anh Dao Thi Phan
- Agricultural Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmina Sultanbawa
- Agricultural Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa.,Agricultural Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Choudhary N, Khatik GL, Suttee A. The Possible Role of Saponin in Type-II Diabetes- A Review. Curr Diabetes Rev 2021; 17:107-121. [PMID: 32416696 DOI: 10.2174/1573399816666200516173829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The possible role of secondary metabolites in the management of diabetes is a great concern and constant discussion. This characteristic seems relevant and should be the subject of thorough discussion with respect to saponin. OBJECTIVE The current data mainly focus on the impact of saponin in the treatment of type-II diabetes. The majority of studies emphasize on other secondary metabolites such as alkaloids and flavonoids, but very few papers are there representing the possible role of saponin as these papers express the narrow perspective of saponin phytoconstituents but lacking in providing the complete information on various saponin plants. The aim of the study was to summarize all available data concerning the saponin containing plant in the management of type-II diabetes. METHODS All relevant papers on saponin were selected. This review summarizes the saponin isolation method, mechanism of action, clinical significance, medicinal plants and phytoconstituents responsible for producing a therapeutic effect in the management of diabetes. RESULTS The saponin is of high potential with structural diversity and inhibits diabetic complications along with reducing the hyperglycemia through different mechanisms thereby providing scope for improving the existing therapy and developing the novel medicinal agents for curing diabetes. CONCLUSION Saponins having potential therapeutic benefits and are theorized as an alternative medication in decreasing serum blood glucose levels in the patient suffering from diabetes.
Collapse
Affiliation(s)
- Neeraj Choudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
23
|
Mohi-Ud-Din R, Mir RH, Mir PA, Farooq S, Raza SN, Raja WY, Masoodi MH, Singh IP, Bhat ZA. Ethnomedicinal uses, Phytochemistry and Pharmacological Aspects of the Genus Berberis Linn: A Comprehensive Review. Comb Chem High Throughput Screen 2020; 24:624-644. [PMID: 33143603 DOI: 10.2174/1386207323999201102141206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. OBJECTIVE The present review is focussed to summarize and collect the updated review of information of Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. CONCLUSION A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, antiinflammatory both in vitro and in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Saeema Farooq
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Syed Naiem Raza
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER), S.A.S. Nagar, Mohali-160062, Punjab, India
| | - Weekar Younis Raja
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Inder Pal Singh
- Amritsar Pharmacy College, 12 KM stone Amritsar Jalandhar GT Road, Mandwala-143001, India
| | - Zulfiqar Ali Bhat
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| |
Collapse
|
24
|
Çakır Ö, Karabulut A. Comparison of two wild‐grown Berberis varieties based on biochemical characterization. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Özlem Çakır
- Food Engineering Department Bayburt University Bayburt Turkey
| | | |
Collapse
|
25
|
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front Pharmacol 2020; 11:41. [PMID: 32132921 PMCID: PMC7040237 DOI: 10.3389/fphar.2020.00041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
The incidences of diabetic mellitus and other metabolic diseases such as hypertension and hyperlipidemia are increasing worldwide; however, the current treatment is not able to control the rapidly increasing trend in diabetes mortality and morbidity. Studies related to the effectiveness of extracts and pure compounds obtained from plants have shown promising responses in preclinical and clinical studies related to these metabolic diseases. Plants belonging to the genus Berberis (Family: Berberidaceae) are widely distributed with nearly 550 species worldwide. Extracts and compounds obtained from Berberis species, especially Berberine alkaloid, showed effectiveness in the management of diabetes and other metabolic diseases. Various pharmacological experiments have been performed to evaluate the effects of Berberis extracts, berberine, and its natural and chemically synthesized derivatives against various cell and animal disease models with promising results. Various clinical trials conducted so far also showed preventive effects of Berberis extracts and berberine against metabolic diseases. The present review focuses on i) research updates on traditional uses, ii) phytopharmacology and clinical studies on Berberis species, and iii) active metabolites in the prevention and treatment of diabetes and other metabolic diseases with a detailed mechanism of action. Furthermore, the review critically analyzes current research gaps in the therapeutic use of Berberis species and berberine and provides future recommendations.
Collapse
Affiliation(s)
- Tarun Belwal
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Aarti Bisht
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Aseesh Pandey
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, India
| | - Indra Dutt Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
26
|
The Antibacterial Activity of Barberry Root and Fennel Seed Extracts Individually and in Combination with Nisin and Sodium Diacetate Against Escherichia coli O157:H7. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.55078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Salehi B, Selamoglu Z, Sener B, Kilic M, Kumar Jugran A, de Tommasi N, Sinisgalli C, Milella L, Rajkovic J, Flaviana B Morais-Braga M, F Bezerra C, E Rocha J, D M Coutinho H, Oluwaseun Ademiluyi A, Khan Shinwari Z, Ahmad Jan S, Erol E, Ali Z, Adrian Ostrander E, Sharifi-Rad J, de la Luz Cádiz-Gurrea M, Taheri Y, Martorell M, Segura-Carretero A, Cho WC. Berberis Plants-Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology. Foods 2019; 8:522. [PMID: 31652576 PMCID: PMC6836240 DOI: 10.3390/foods8100522] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
The genus Berberis includes about 500 different species and commonly grown in Europe, the United States, South Asia, and some northern areas of Iran and Pakistan. Leaves and fruits can be prepared as food flavorings, juices, and teas. Phytochemical analysis of these species has reported alkaloids, tannins, phenolic compounds and oleanolic acid, among others. Moreover, p-cymene, limonene and ocimene as major compounds in essential oils were found by gas chromatography. Berberis is an important group of the plants having enormous potential in the food and pharmaceutical industry, since they possess several properties, including antioxidant, antimicrobial, anticancer activities. Here we would like to review the biological properties of the phytoconstituents of this genus. We emphasize the cultivation control in order to obtain the main bioactive compounds, the antioxidant and antimicrobial properties in order to apply them for food preservation and for treating several diseases, such as cancer, diabetes or Alzheimer. However, further study is needed to confirm the biological efficacy as well as, the toxicity.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240 Nigde, Turkey.
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Mehtap Kilic
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey.
| | - Arun Kumar Jugran
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar 246174, Uttarakhand, India.
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Chiara Sinisgalli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | | | - Camila F Bezerra
- Laboratory of Applied Micology of Cariri-LMAC, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Janaína E Rocha
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Henrique D M Coutinho
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil.
| | - Adedayo Oluwaseun Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Nigeria.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
- Department of Biotechnology, Hazara University Mansehra, Khyber Pakhtunkhwa 21120, Pakistan.
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University Mansehra, Khyber Pakhtunkhwa 21120, Pakistan.
| | - Ebru Erol
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48121, Turkey.
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49501, USA.
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran.
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| |
Collapse
|
28
|
Barberry (Berberis vulgaris L.) is a safe approach for management of lipid parameters: A systematic review and meta‐analysis of randomized controlled trials. Complement Ther Med 2019; 43:117-124. [DOI: 10.1016/j.ctim.2019.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
|
29
|
Kuttiappan A, Lakshmi S, Satyanarayana SV. Antioxidant potential of ethanolic extract of Canavalia species in high-fat diet and streptozotocin-induced diabetic rats. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_46_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 2019; 9:4. [PMID: 30555770 DOI: 10.1007/s13205-018-1528-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023] Open
Abstract
Medicinal plants have a vast potential in the treatment of various ailments due to the presence of therapeutically important phytochemicals. Diabetes is a serious metabolic disorder and several marketed medications are available to alleviate the symptoms of diabetes. However, these over the counter drugs are expensive and associated with several complications. Herbal medicines are gaining importance as they are cost-effective and also display improved therapeutic effects with lesser side effects. The present review includes the reports available on medicinal plants used for treating diabetes complications. The aim of the review is to categorize and summarize the available information on medicinal plants with anti-diabetic properties and suggesting outlooks for future research. A systematic search was performed on medicinal plants with anti-diabetic properties using several search engines such as Google Scholar, PubMed, Science Direct and other online journals and books. All the plants listed in this review are native to Asian countries and are routinely used by the traditional practitioners for the treatment of various ailments. Based on the literature data available, a total of 81 medicinal plants with anti-diabetic, anti-hyperglycemic, hypoglycemic, anti-lipidemic and insulin mimetic properties have been compiled in this review. This review provides useful information about the different medicinal plants for treating diabetes-associated complications. Further research can be carried out to study the active constituents and mechanism of these plants.
Collapse
|
31
|
In Vitro Investigation of Potential Anti-Diabetic Activity of the Corm Extract of Hypoxis Argentea Harv. Ex Baker. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:389-407. [PMID: 31259706 DOI: 10.2478/acph-2018-0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
The corms of Hypoxis argentea are widely used as a traditional remedy for diabetes mellitus in South Africa. In this study, we investigated the effects of non-toxic concentrations (12.5-100 μg mL-1) of the aqueous extract of H. argentea (HAA) corms on glucose uptake, pancreatic beta cell proliferation, and adipocyte differentiation. HAA stimulated glucose uptake in HepG2 cells up to 19.6 % and 17.0 % in L6 myotubes. Live-cell imaging microscopy revealed significant increases (p < 0.001) in total INS-1 cell numbers exposed to HAA, although no effect was observed on adipogenesis in 3T3-L1 pre-adipocytes. HAA produced weak to moderate inhibition of porcine pancreatic α-amylase, α-glucosidase, porcine pancreatic lipase, dipeptidyl peptidase IV (DPP IV) activities, as well as protein glycation. Our results suggest that the acclaimed anti-diabetic effects of H. argentea could be mediated by its promotion of glucose utilization and preservation of pancreatic beta cell populations while preventing fat accumulation in adipocytes.
Collapse
|
32
|
Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 2018; 101:833-841. [DOI: 10.1016/j.biopha.2018.02.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022] Open
|
33
|
The Effects of Active Ingredients of Barberry Root (Berberine) on Glycemic Control and Insulin Resistance in Type 2 Diabetic Patients. Jundishapur J Nat Pharm Prod 2018. [DOI: 10.5812/jjnpp.64180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Hamedi A, Moheimani SM, Sakhteman A, Etemadfard H, Moein M. An Overview on Indications and Chemical Composition of Aromatic Waters (Hydrosols) as Functional Beverages in Persian Nutrition Culture and Folk Medicine for Hyperlipidemia and Cardiovascular Conditions. J Evid Based Complementary Altern Med 2017; 22:544-561. [PMID: 29228785 PMCID: PMC5871258 DOI: 10.1177/2156587216686460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/04/2016] [Indexed: 02/05/2023] Open
Abstract
Hydrosol beverages in Persian nutrition culture and ethnomedicine are the side products of essential oil industry that are used as delicious drinks or safe remedies. To investigate indications and chemical composition of hydrosol beverages for hyperlipidemia and cardiovascular conditions, Fars province was selected as the field of study. Ethnomedical data were gathered by questionnaires. The constituents of hydrosols were extracted with liquid/liquid extraction and analyzed by gas chromatography-mass spectrometry. Statistical analysis were used to cluster their constituents and find the relevance of their composition. A literature survey was also performed on plants used to prepare them. Thymol was the major or second major component of these beverages, except for wormwood and olive leaf hydrosols. Based on clustering methods, although some similarities could be found, composition of barberry, will fumitory, dill, and aloe hydrosols have more differences than others. These studies may help in developing some functional beverages or new therapeutics.
Collapse
Affiliation(s)
- Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Moheimani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Etemadfard
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoodreza Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Rahimi-Madiseh M, Lorigoini Z, Zamani-gharaghoshi H, Rafieian-kopaei M. Berberis vulgaris: specifications and traditional uses. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:569-587. [PMID: 28656092 PMCID: PMC5478785 DOI: 10.22038/ijbms.2017.8690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 04/14/2017] [Indexed: 12/26/2022]
Abstract
The medicinal plants from genus Berberis are particularly important in traditional medicine and the food basket of Iranians. Given various plants from genus Berberis and their economic, nutritional, and medicinal status in Iran, this study seeks to investigate the findings of recent studies on the phytochemical characteristics, specifications, and uses of Berberis vulgaris. In this review article, 350 articles were initially retrieved from reliable scientific databases using relevant search terms. Then, 230 articles were selected and 120 were excluded after a primary analysis. Finally, 98 articles related to the subject under study were meticulously examined and the required data were extracted and classified according to the research purposes. The findings were divided into eight separate sections: Introducing Berberidaceae family, different species of Berberis, pharmaceutical organs, B. vulgaris nutrition facts and minerals, the antioxidants and alkaloids compounds in fruit and other organs, action mechanisms of preventing and treating diseases, traditional uses of B. vulgaris, and its properties reported by recent studies. The results briefly indicate that B. vulgaris contains a large number of phytochemical materials including ascorbic acid, vitamin K, several triterpenoids, more than 10 phenolic compounds and more than 30 alkaloids. Therefore B. vulgaris may have anti-cancer, anti-inflammatory, antioxidant, antidiabetic, antibacterial, analgesic and anti-nociceptive and hepato-protective effects. Regarding the use of different organs of B. vulgaris in traditional medicine and their confirmed effects in the recent studies, it is possible to use different organs of B. vulgaris, especially fruit, to develop new drugs.
Collapse
Affiliation(s)
| | - Zahra Lorigoini
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
36
|
Antioxidant and Synergistic Antidiabetic Activities of a Three-Plant Preparation Used in Cameroon Folk Medicine. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017; 2017:9501675. [PMID: 28529969 PMCID: PMC5424193 DOI: 10.1155/2017/9501675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 01/24/2023]
Abstract
Introduction. Several plant preparations like a mixture of aqueous extracts of Spilanthes africana; Portulaca oleracea; and Sida rhombifolia are currently utilized in Foumban (West Cameroon) to manage diabetes. The aim of this study is to investigate the antidiabetic property of the aqueous mixture of three plant extracts (1 : 1 : 1) on streptozotocin induced diabetes rats. Methods. Diabetes was induced to rats by intraperitoneal (i.p.) injection of streptozotocin (STZ) at a dose of 50 mg/kg b.w. The diabetic rats received different dosages of the mixture of extracts for 21 days and glibenclamide 6.5 mg/kg b.w. as positive control. Results. The results showed that the mixture of extracts significantly (p < 0.05) decreased the level of the glycaemia, the total cholesterol, triglyceride, and LDL-cholesterol as well as MDA, AST, ALT, and creatinine levels. It also increased significantly the concentration of HDL-cholesterol, glutathione, and TAOS. A great reduction of the atherogenic indexes CT/HDL and LDL/HDL of the treated groups was observed. Each extract and the mixture demonstrated significant scavenging property on DPPH and OH radicals and present a good antioxidant property. Conclusion. The mixture of plant extracts has hypoglycemic, antioxidant, and hypolipidemic properties and can be used for the management of diabetes mellitus.
Collapse
|
37
|
Balasubramanian T, Karthikeyan M, Muhammed Anees KP, Kadeeja CP, Jaseela K. Antidiabetic and Antioxidant Potentials of Amaranthus hybridus in Streptozotocin-Induced Diabetic Rats. J Diet Suppl 2017; 14:395-410. [PMID: 28129002 DOI: 10.1080/19390211.2016.1265037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Amaranthus hybridus (Amaranthaceae) has been used as a folk medicine in southern parts of India for the treatment of diabetes. OBJECTIVE This research evaluates the antidiabetic and antioxidant effects of Amaranthus hybridus ethanol leaf extract (AHELE) in streptozotocin-induced diabetic rats. METHODS Blood glucose levels of diabetic rats were measured on days 1, 4, 7, and 15 after oral administration of AHELE at doses of 200 and 400 mg/kg for 14 days. The effects of extract were observed on serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, serum alkaline phosphatase, cholesterol, high- and low-density lipoprotein, antioxidant potential, and histopathological changes. RESULT AHELE (200 and 400 mg/kg) caused a significant (p < 0.001) reduction in blood glucose levels on day 15 (152.2 and 181.2 mg/dL, respectively versus diabetic control 287.0 mg/dL). The extract also improved serum biochemical parameters associated with diabetes. A significant (p < 0.001) decrease in malondialdehyde protein (liver: 15.92, 12.29 nmol/mg, and kidney: 13.92, 10.29 nmol/mg vs. diabetic control 25.49, 24.49 nmol/mg), increase in superoxide dismutase protein (14.01; 17.47 IU/mg, and 25.01; 37.47 IU/mg vs. diabetic control 9.65; 15.65 IU/mg), catalase protein (35.80, 44.49, and 39.80, 49.69 nmol/min/mg vs. diabetic control 18.45, 20.85 nmol/min/mg) and reduced glutathione protein (44.77, 55.08 and 40.77, 51.08 μM/gm vs. diabetic control 29.81, 26.50 μM/gm) were observed. CONCLUSIONS The study reveals that treatment of diabetic rats with AHELE significantly reduced hyperglycemia-associated oxidative damage. This could provide a rationale for the use of the plant to treat diabetes in folk medicine.
Collapse
Affiliation(s)
- T Balasubramanian
- a Department of Pharmacology , Al Shifa College of Pharmacy , Kerala , India
| | - M Karthikeyan
- a Department of Pharmacology , Al Shifa College of Pharmacy , Kerala , India
| | - K P Muhammed Anees
- a Department of Pharmacology , Al Shifa College of Pharmacy , Kerala , India
| | - C P Kadeeja
- a Department of Pharmacology , Al Shifa College of Pharmacy , Kerala , India
| | - K Jaseela
- a Department of Pharmacology , Al Shifa College of Pharmacy , Kerala , India
| |
Collapse
|
38
|
Kishore L, Kaur N, Singh R. Renoprotective effect ofBacopa monnieri viainhibition of advanced glycation end products and oxidative stress in STZ-nicotinamide-induced diabetic nephropathy. Ren Fail 2016; 38:1528-1544. [DOI: 10.1080/0886022x.2016.1227920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
An invivo study on the hepato-protective effects of Crocus sativus, Ziziphus jujuba and Berberis vulgaris against acute acetaminophen and rifampicin-induced hepatotoxicity. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Emam-Djomeh Z, Seddighi A, Askari G. Influence of Process Conditions on the Functional Properties of Spray-Dried Seedless Black Barberry (Berberis vulgaris
) Juice Powder. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Emam-Djomeh
- Transfer Phenomena Laboratory (TPL) Department of Food Science; Technology and Engineering Faculty of Agricultural Engineering and Technology University College of Agriculture and Natural Resources University of Tehran; Tehran Islamic Republic of Iran
| | - Ameneh Seddighi
- Transfer Phenomena Laboratory (TPL) Department of Food Science; Technology and Engineering Faculty of Agricultural Engineering and Technology University College of Agriculture and Natural Resources University of Tehran; Tehran Islamic Republic of Iran
| | - Golamreza Askari
- Transfer Phenomena Laboratory (TPL) Department of Food Science; Technology and Engineering Faculty of Agricultural Engineering and Technology University College of Agriculture and Natural Resources University of Tehran; Tehran Islamic Republic of Iran
| |
Collapse
|
41
|
Phanse MA, Patil MJ, Abbulu K. The isolation, Characterization and Preclinical Studies of Metal Complex of Thespesia populnea for the Potential Peroxisome Proliferator-activated Receptors-γ Agonist Activity. Pharmacogn Mag 2016; 11:S434-8. [PMID: 26929578 PMCID: PMC4745214 DOI: 10.4103/0973-1296.168984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Diabetes mellitus is an international public health problem since ancient days. The condition is predominantly more severe in developing countries like India where, life is more sedentary due to the even changing lifestyles in this fast-paced global scenario. Thespesia populnea is widely used in the ayurvedic system of medicine for treatment of diabetes mellitus in India for years. The aim of this work is to explore the anti-diabetic activity of the isolated compound. MATERIALS AND METHODS The sesquiterpene isolated from hexane fraction of bark of T. populnea modified synthetically then identified by using analytical techniques such as electron paramagnetic resonance spectra for confirmation and the anti-diabetic activity was evaluated by anti-hyperglycemic, hypoglycemic potential. RESULT In the present work, we have studied the anti-hyperglycemic and hypoglycemic activity of the vanadium complex in glucose loaded and normal animals were shown significantly decreased in plasma blood glucose level. The results derived from preclinical studies confirm the potential of new sesquiterpene. CONCLUSION The findings could provide evidence regarding the anti-diabetic potential of T. populnea by lowering blood glucose level. SUMMARY Thespesia populnea is widely used in the ayurvedic system of medicine for treatment of diabetes in India. Present study aimed to explore the anti diabetic potential of isolated compound. Isolation of sesquiterpene from hexane fraction of bark of Thespesia populnea and modified synthetically then authenticated by using analytical techniques such as electron paramagnetic resonance spectra for confirmation. The modified complex was further assessed for its anti diabetic property in glucose loaded rats. Vanadium complex demonstrated significant reduction in plasma blood glucose level in glucose loaded animals. The results derived from preclinical studies confirm the potential of new sesquiterpene. The present findings conclude that anti diabetic potential of Thespesia populnea could be due to lowering blood glucose level by acting on PPAR-γ receptor.
Collapse
Affiliation(s)
| | - Manohar Janardhan Patil
- Department of Pharmacognosy, Maratha Mitramandal College of Pharmacy, Kalewadi, Pune, Maharashtra, India
| | - Konde Abbulu
- Department of Pharmaceutics, Mallareddy Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Hemmati M, Serki E, Gholami M, Hoshyar R. Effects of an ethanolic extract of Berberis vulgaris fruits on hyperglycemia and related gene expression in streptozotocin-induced diabetic rats. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Hemmati M, Zohoori E, Mehrpour O, Karamian M, Asghari S, Zarban A, Nasouti R. Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions. EXCLI JOURNAL 2015; 14:908-15. [PMID: 26600752 PMCID: PMC4650949 DOI: 10.17179/excli2015-232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/26/2015] [Indexed: 11/10/2022]
Abstract
Atherogenic dyslipidemia, characterized by an increased level of lipoprotein (a) and a decreased level of adiponectin, is a major risk factor for cardiovascular diseases in diabetic patients. To reduce cardiovascular risk in diabetic patients, use of agents with antidiabetic and anti-atherogenic potential is required. Using an animal model of diabetes, we investigated the antiatherogenic potential of extracts of three medicinal plants: jujube, barberry, and saffron. For this, serum level of fasting blood glucose, lipid profile, malondialdehyde, total antioxidant capacity, adiponectin and lipoprotein (a) in diabetic control and extract treated groups were measured. Statistical analysis of measurements showed that serum levels of fasting blood glucose, triglyceride, and VLDL decreased significantly (P < 0.05) in all treated groups. Treatment with all extracts reduced lipid peroxidation and increased antioxidant capacity of the experimental diabetic groups. Serum adiponectin levels increased in all treated groups, whereas lipoprotein (a) levels decreased, most markedly when treated with jujube extract. Jujube, saffron, and barberry extracts are beneficial in ameliorating oxidative stress and atherogenic risk of diabetic rats. This highlights the benefits of further investigating the cardio-protective potential of medicinal plant extracts and evaluating their usefulness as cardio protective agents in clinical practice.
Collapse
Affiliation(s)
- Mina Hemmati
- Atherosclerosis and Coronary Artery Research Center, Birjand University of Medical Sciences, Birjand, Iran ; Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Zohoori
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Atherosclerosis and Coronary Artery Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Karamian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Somaye Asghari
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Roya Nasouti
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
44
|
Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2015; 2:411-20. [PMID: 23569941 DOI: 10.1016/s2221-1691(12)60067-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/27/2011] [Accepted: 09/03/2011] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is not a single disease but is a group of metabolic disorders affecting a huge number of population in the world. It is mainly characterized by chronic hyperglycemia, resulting from defects in insulin secretion or insulin action. It is predicated that the number of diabetes person in the world could reach upto 366 million by the year 2030. Even though the cases of diabetes are increasing day by day, except insulin and oral hypoglycemic drugs no other way of treatment has been successfully developed so far. Thus, the objective of the present review is to provide an insight over the pathophysiological and etiological aspects of diabetes mellitus along with the remedies available for this metabolic disorder. The review also contains brief idea about diabetes mellitus and the experimental screening model with their relevant mechanism and significance mainly used nowadays. Alloxan and streptozotocin are mainly used for evaluating the antidiabetic activity of a particular drug. This review contain list of medicinal plants which have been tested for their antidiabetic activity in the alloxan induced diabetic rat model. From the available data in the literature, it was found that plant having antidiabetic activity is mainly due to the presence of the secondary metabolite. Thus, the information provided in this review will help the researchers for the development of an alternative methods rather than insulin and oral hypoglycemic agents for the treatment of diabetes mellitus, which will minimize the complication associated with the diabetes and related disorder.
Collapse
|
45
|
Srivastava S, Srivastava M, Misra A, Pandey G, Rawat AKS. A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI JOURNAL 2015; 14:247-67. [PMID: 26535033 PMCID: PMC4614447 DOI: 10.17179/excli2014-399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022]
Abstract
Berberis is an important genus and well known in the Indian as well as European systems of traditional medicine. It is used since ancient times for curing eye disease, fever, jaundice, rheumatism, vomiting during pregnancy, kidney and gall balder stones and various other ailments due to the presence of biologically active alkaloid berberine. Action of the root extracts of few species are believed to be as powerful as quinine in the treatment of malarial fever. A plethora of literature pertaining to the taxonomy, biology, chemistry, traditional and ethnic uses of Berberis in different countries and indigenous cultures was collected by both offline (library, journals, textbooks etc.) and online mode (electronic search of available databases). In addition to this, books on traditional medicine and ethno pharmacological knowledge were also referred to extract ancient uses of Berberis in different traditional medicine systems. Most of the folklore, traditional and ethno botanical claims about Berberis species were validated by broad spectrum in vitro and vivo pharmacological studies. The present article summarizes its usage in eye and liver disorder, fever, kidney and gall stones along with anticancer activity. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations.
Collapse
Affiliation(s)
- Sharad Srivastava
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Manjoosha Srivastava
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Ankita Misra
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Garima Pandey
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - AKS Rawat
- Pharmacognosy and Ethno pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, India
| |
Collapse
|
46
|
Elekofehinti OO. Saponins: Anti-diabetic principles from medicinal plants - A review. ACTA ACUST UNITED AC 2015; 22:95-103. [PMID: 25753168 DOI: 10.1016/j.pathophys.2015.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/25/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) represents a global health problem. It is the most common of the endocrine disorders and is characterized by chronic hyperglycemia due to relative or absolute lack of insulin secretion or insulin actions. According to the World Health Organization projections, the diabetes population is likely to increase to 300 million or more by the year 2025. Current synthetic agents and insulin used effectively for the treatment of diabetes are scarce especially in rural areas, expensive and have prominent adverse effects. Complementary and alternative approaches to diabetes management such as isolation of phytochemicals with anti-hyperglycemic activities from medicinal plants is therefore imperative. Saponins are phytochemical with structural diversity and biological activities. This paper reviews saponins and various plants from which they were isolated as well as properties that make them ideal for antidiabetic remedy.
Collapse
|
47
|
Zarei A, Changizi-Ashtiyani S, Taheri S, Ramezani M. A quick overview on some aspects of endocrinological and therapeutic effects of Berberis vulgaris L. AVICENNA JOURNAL OF PHYTOMEDICINE 2015; 5:485-97. [PMID: 26693406 PMCID: PMC4678494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many herbaceous plants contain compounds that have biological effects in addition to their medicinal properties. They have compounds with numerous properties, including hypo lipidemic, hypoglycemic, antioxidant, and hepato protective ones, which have been analyzed at different levels. One of these plants, with the scientific name of Berberis vulgaris, is barberry. The most important compounds identified in this plant are berberine, oxycontin, palmatine, bervulcine, berbamine, columbamine, jatrorrhizine, coptisine, and berbamine. In addition to alkaloids, organic acids such as chelidonic acid, citric acid, malic acid, resin, tannin, pectinic, and mucilagic substances are among the ingredients of barberry. In this paper, it was attempted to determine the role and effect of the extract of barberry on various body organs. The results showed that berberine actually increases insulin sensitivity and is capable of inhibiting alpha glucosidase, adipogenesis, and thus acts as an anti-obesity and hypoglycemic agent. Berberine reduces the density of serum cholesterol and triglycerides and can improve the function of liver enzymes, therefore, it can be suggested as a hypo lipidemic and hepato protective plant extract. The hepato protective effects of this extract are probably due to its antioxidant properties. Studies showed that barberry have numerous health benefits, including anti-inflammatory ones. Moreover, it can be used as a medicinal herb to treat a variety of disorders, such as diabetes, liver disease, gallbladder pain, digestive, urinary tract diseases, and gallstones. However, more studies on this issue and doing more focused and intensive researches in this field are recommended.
Collapse
Affiliation(s)
- Ali Zarei
- Young Researchers and Elite Club, Abadeh Branch, Islamic Azad University, Abadeh, Iran
| | - Saeed Changizi-Ashtiyani
- Department of Physiology, Arak University of Medical Sciences, Arak, Iran,Corresponding Author: Tel: 08634173526, Fax: 08634173638,
| | - Soheila Taheri
- Education Development Center, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ramezani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Ashraf H, Zare S. Preventive Effects of Aqueous Extract of Berberis integerrima Bge. Root on Liver Injury Induced by Diabetes Mellitus (Type 1) in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:335-43. [PMID: 25561940 PMCID: PMC4277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was conducted to assessthe preventive effect of aqueous extract of Berberis integerrima Bge. root (AEBIR) on liver damage and oxidative stress induced by diabetes mellitus in rats. Forty male rats were divided into 5 groups as follows: 1- normal (N); 2- normal + barberry (N+B) (they received barberry root extract for 6 weeks); 3- diabetic (D) (they received Streptozotocin (STZ), 65 mg/Kg BW /i.p.); 4- diabetic +barberry before (D+Bb) (they received barberry root extract for 3 weeks before STZ injection and continued for another three weeks); and 5- diabetic + barberry after (D+Ba) (three days after STZ injection, they received barberry root extract for 3 weeks). The experimental groups received barberry root extract (500 mg/Kg bw) intra gastric by gavage for 6 weeks. The treatment of diabetic rats with AEBIR showed a significant decreases(p<0.001) in levels of blood glucose, malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin while body weight, total protein, superoxide dismutase (SOD), catalase(CAT) and reduced glutathione (GSH) increased (p<0.001) in comparison to diabetic control rats. Consumption of AEBIR in group D+Bb caused significant improvement in all these factors, compared to the group D+Ba. Also in this study, for the first time, we demonstrated that administration of AEBIR before diabetes induction resulted in enhanced amelioration of liver complications compared to the group receiving it after induction, indicating that AEBIR can play a preventive role in such patients.
Collapse
|
49
|
Rezazad M, Farokhi F. Protective effect of Petroselinum crispum extract in abortion using prostadin-induced renal dysfunction in female rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2014; 4:312-9. [PMID: 25386393 PMCID: PMC4224708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/04/2014] [Accepted: 02/06/2014] [Indexed: 10/30/2022]
Abstract
OBJECTIVE Present study investigated the effects of parsley extract on pregnant rat kidneys which have undergone clinical abortion using prostaglandins. The renal protective effect of parsley extract was evaluated in pregnant rats which had an abortion. Parsley was used due to its antioxidant properties. MATERIALS AND METHODS Fifty-four female rats were divided in 9 groups of 6: control pregnant, two pregnant groups which received parsley extract and prostadin, two non-pregnant groups treated with parsley extract and prostadin, a group administered with both treatments, and three groups which received parsley extract in pre-implantation, implantation, and post-implantation periods of embryos. Ethanolic extract (5 mg/kg) was given daily to animals for 18 days of pregnancy period. Parameters such as malondialdehyde (MDA), total antioxidant statues (TAS), creatinine, and urea were measured using biochemical assays. Histopathologic studies were also done with Hematoxylin-Eosin staining method. RESULTS After 18 days of treatment, significant differences were observed in serum creatinine, urea, and MDA and TAS levels. Kidney cross-sections showed edema in prostadin-treated rats while improvements in parsley + prostadin -treated rats were observed. CONCLUSION These results suggested that ethanolic extract of Petroselinum crispum reduced the dysfunction in rats kidney caused by prostadin-induced abortion and could have beneficial effect in reducing the progression of prostaglandin-induced edema.
Collapse
Affiliation(s)
- Maryam Rezazad
- Department of Biology, Urmia University, Urmia, I.R. Iran
| | - Farah Farokhi
- Department of Biology, Urmia University, Urmia, I.R. Iran
| |
Collapse
|
50
|
Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin–induced diabetic rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60501-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|