1
|
Higgins M, Kristan M, Collins EL, Messenger LA, Dombrowski JG, Vanheer LN, Nolder D, Drakeley CJ, Stone W, Mahamar A, Bousema T, Delves M, Bandibabone J, N'Do S, Bantuzeko C, Zawadi B, Walker T, Sutherland CJ, Marinho CRF, Cameron MM, Clark TG, Campino S. A Pan Plasmodium lateral flow recombinase polymerase amplification assay for monitoring malaria parasites in vectors and human populations. Sci Rep 2024; 14:20165. [PMID: 39215071 PMCID: PMC11364753 DOI: 10.1038/s41598-024-71129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Robust diagnostic tools and surveillance are crucial for malaria control and elimination efforts. Malaria caused by neglected Plasmodium parasites is often underestimated due to the lack of rapid diagnostic tools that can accurately detect these species. While nucleic-acid amplification technologies stand out as the most sensitive methods for detecting and confirming Plasmodium species, their implementation in resource-constrained settings poses significant challenges. Here, we present a Pan Plasmodium recombinase polymerase amplification lateral flow (RPA-LF) assay, capable of detecting all six human infecting Plasmodium species in low resource settings. The Pan Plasmodium RPA-LF assay successfully detected low density clinical infections with a preliminary limit of detection between 10-100 fg/µl for P. falciparum. When combined with crude nucleic acid extraction, the assay can serve as a point-of-need tool for molecular xenomonitoring. This utility was demonstrated by screening laboratory-reared Anopheles stephensi mosquitoes fed with Plasmodium-infected blood, as well as field samples of An. funestus s.l. and An. gambiae s.l. collected from central Africa. Overall, our proof-of-concept Pan Plasmodium diagnostic tool has the potential to be applied for clinical and xenomonitoring field surveillance, and after further evaluation, could become an essential tool to assist malaria control and elimination.
Collapse
Affiliation(s)
- Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Human Malaria Transmission Facility, LSHTM, Keppel Street, London, WC1E 7HT, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Louisa A Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Environmental & Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA
| | - Jamille G Dombrowski
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leen N Vanheer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Malaria Reference Laboratory, UK Health Security Agency, LSHTM, London, WC1E 7HT, UK
| | - Christopher J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - William Stone
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Science, Techniques and Technologies (USTT), Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael Delves
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'Entomologie Médicale Et Parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Sud‑Kivu, Democratic Republic of the Congo
| | - Sévérin N'Do
- Médecins Sans Frontières (MSF) OCBA, Barcelona, Spain
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Chimanuka Bantuzeko
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
- Université Officielle de Bukavu (UOB), Bukavu, Democratic Republic of the Congo
| | - Bertin Zawadi
- Centre de Recherche en Sciences Naturelles de Lwiro, Sud-Kivu, Democratic Republic of the Congo
| | - Thomas Walker
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Human Malaria Transmission Facility, LSHTM, Keppel Street, London, WC1E 7HT, UK
- Malaria Reference Laboratory, UK Health Security Agency, LSHTM, London, WC1E 7HT, UK
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mary M Cameron
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, LSHTM, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
2
|
Mendoza FJ, Pérez-Écija A, Kappmeyer LS, Suarez CE, Bastos RG. New insights in the diagnosis and treatment of equine piroplasmosis: pitfalls, idiosyncrasies, and myths. Front Vet Sci 2024; 11:1459989. [PMID: 39205808 PMCID: PMC11349644 DOI: 10.3389/fvets.2024.1459989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Equine piroplasmosis (EP) is a global tick-borne disease of equids caused by the intraerythrocytic apicomplexan parasites Theileria equi and Babesia caballi, and the more recently discovered Theileria haneyi. These parasites can be transmitted by several tick species, including Dermacentor, Hyalomma, and Rhipicephalus, but iatrogenic and vertical transmission are also common. Clinical signs of EP include poor performance, fever, icterus, abortions, among others, and peracute or acute forms of infection are associated with high mortality in non-endemic areas. EP is a reportable disease and represents an important barrier for the international trade of horses and other equids, causing disruption of international equine sports. Tick control measures, serological and molecular diagnostic methods, and parasiticidal drugs are currently used against EP, while vaccines remain unavailable. Since most acaricides used in equids are non-environmentally friendly and linked to drug resistances, this is considered as an unsustainable approach. Imidocarb dipropionate (ID) and buparvaquone (BPQ) are currently the main drugs used to control the disease. However, while ID has several side and toxic effects and recurrent failures of treatment have been reported, BPQ is less effective in the clearance of T. equi infection and not available in some countries. Thus, novel alternative and effective therapeutics are needed. While current trade regulations require testing equids for EP before exportation, the lack of standardized PCR tests and limitations of the currently recommended serological assays entail a risk of inaccurate diagnosis. Hereby, we propose a combination of standardized PCR-based techniques and improved serological tests to diminish the risks of exporting EP-infected animals making equid international trade safer. In addition, this review discusses, based on scientific evidence, several idiosyncrasies, pitfalls and myths associated with EP, and identifies weaknesses of current methods of control and gaps of research, as initial steps toward developing novel strategies leading to control this disease.
Collapse
Affiliation(s)
- Francisco J. Mendoza
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Alejandro Pérez-Écija
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Lowell S. Kappmeyer
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Reginaldo G. Bastos
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Mahamar A, Smit MJ, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Dicko OM, Diallo M, Maguiraga SO, Sankaré Y, Keita S, Samake S, Dembele A, Lanke K, Ter Heine R, Bradley J, Dicko Y, Traore SF, Drakeley C, Dicko A, Bousema T, Stone W. Artemether-lumefantrine with or without single-dose primaquine and sulfadoxine-pyrimethamine plus amodiaquine with or without single-dose tafenoquine to reduce Plasmodium falciparum transmission: a phase 2, single-blind, randomised clinical trial in Ouelessebougou, Mali. THE LANCET. MICROBE 2024; 5:633-644. [PMID: 38705163 PMCID: PMC11217006 DOI: 10.1016/s2666-5247(24)00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali.
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Yaya Sankaré
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Samake
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Yahia Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
5
|
Moreno M, Barry A, Gmeiner M, Yaro JB, Sermé SS, Byrne I, Ramjith J, Ouedraogo A, Soulama I, Grignard L, Soremekun S, Koele S, Ter Heine R, Ouedraogo AZ, Sawadogo J, Sanogo E, Ouedraogo IN, Hien D, Sirima SB, Bradley J, Bousema T, Drakeley C, Tiono AB. Understanding and maximising the community impact of seasonal malaria chemoprevention in Burkina Faso (INDIE-SMC): study protocol for a cluster randomised evaluation trial. BMJ Open 2024; 14:e081682. [PMID: 38479748 PMCID: PMC10936478 DOI: 10.1136/bmjopen-2023-081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Seasonal malaria chemoprevention (SMC) involves repeated administrations of sulfadoxine-pyrimethamine plus amodiaquine to children below the age of 5 years during the peak transmission season in areas of seasonal malaria transmission. While highly impactful in reducing Plasmodium falciparum malaria burden in controlled research settings, the impact of SMC on infection prevalence is moderate in real-life settings. It remains unclear what drives this efficacy decay. Recently, the WHO widened the scope for SMC to target all vulnerable populations. The Ministry of Health (MoH) in Burkina Faso is considering extending SMC to children below 10 years old. We aim to assess the impact of SMC on clinical incidence and parasite prevalence and quantify the human infectious reservoir for malaria in this population. METHODS AND ANALYSIS We will perform a cluster randomised trial in Saponé Health District, Burkina Faso, with three study arms comprising 62 clusters of three compounds: arm 1 (control): SMC in under 5-year-old children, implemented by the MoH without directly observed treatment (DOT) for the full course of SMC; arm 2 (intervention): SMC in under 5-year-old children, with DOT for the full course of SMC; arm 3 (intervention): SMC in under 10-year-old children, with DOT for the full course of SMC. The primary endpoint is parasite prevalence at the end of the malaria transmission season. Secondary endpoints include the impact of SMC on clinical incidence. Factors affecting SMC uptake, treatment adherence, drug concentrations, parasite resistance markers and transmission of parasites will be determined. ETHICS AND DISSEMINATION The London School of Hygiene & Tropical Medicine's Ethics Committee (29193) and the Burkina Faso National Medical Ethics Committee (Deliberation No 2023-05-104) approved this study. The findings will be presented to the community; disease occurrence data and study outcomes will also be shared with the Burkina Faso MoH. Findings will be published irrespective of their results. TRIAL REGISTRATION NUMBER NCT05878366.
Collapse
Affiliation(s)
- Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Aissata Barry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Markus Gmeiner
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Samuel S Sermé
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Isabel Byrne
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Lynn Grignard
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Seyi Soremekun
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Simon Koele
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | - Jean Sawadogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Edith Sanogo
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - Denise Hien
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - John Bradley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alfred B Tiono
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| |
Collapse
|
6
|
Vanheer LN, Mahamar A, Manko E, Niambele SM, Sanogo K, Youssouf A, Dembele A, Diallo M, Maguiraga SO, Phelan J, Osborne A, Spadar A, Smit MJ, Bousema T, Drakeley C, Clark TG, Stone W, Dicko A, Campino S. Genome-wide genetic variation and molecular surveillance of drug resistance in Plasmodium falciparum isolates from asymptomatic individuals in Ouélessébougou, Mali. Sci Rep 2023; 13:9522. [PMID: 37308503 DOI: 10.1038/s41598-023-36002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.
Collapse
Affiliation(s)
- Leen N Vanheer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Emilia Manko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Anton Spadar
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - William Stone
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
7
|
Barber BE, Abd-Rahman AN, Webster R, Potter AJ, Llewellyn S, Marquart L, Sahai N, Leelasena I, Birrell GW, Edstein MD, Shanks GD, Wesche D, Moehrle JJ, McCarthy JS. Characterizing the Blood-Stage Antimalarial Activity of Tafenoquine in Healthy Volunteers Experimentally Infected With Plasmodium falciparum. Clin Infect Dis 2023; 76:1919-1927. [PMID: 36795050 PMCID: PMC10249991 DOI: 10.1093/cid/ciad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of the Sunshine Coast, Morayfield, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Nischal Sahai
- University of the Sunshine Coast, Morayfield, Australia
| | | | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
8
|
Calit J, Araújo JE, Deng B, Miura K, Gaitán XA, Araújo MDS, Medeiros JF, Long CA, Simeonov A, Eastman RT, Bargieri DY. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Ookluc. Antimicrob Agents Chemother 2023; 67:e0146522. [PMID: 36856421 PMCID: PMC10112123 DOI: 10.1128/aac.01465-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Safe and effective malaria transmission-blocking chemotherapeutics would allow a community-level approach to malaria control and eradication efforts by targeting the mosquito sexual stage of the parasite life cycle. However, only a single drug, primaquine, is currently approved for use in reducing transmission, and drug toxicity limits its widespread implementation. To address this limitation in antimalarial chemotherapeutics, we used a recently developed transgenic Plasmodium berghei line, Ookluc, to perform a series of high-throughput in vitro screens for compounds that inhibit parasite fertilization, the initial step of parasite development within the mosquito. Screens of antimalarial compounds, approved drug collections, and drug-like molecule libraries identified 185 compounds that inhibit parasite maturation to the zygote form. Seven compounds were further characterized to block gametocyte activation or to be cytotoxic to formed zygotes. These were further validated in mosquito membrane-feeding assays using Plasmodium falciparum and P. vivax. This work demonstrates that high-throughput screens using the Ookluc line can identify compounds that are active against the two most relevant human Plasmodium species and provides a list of compounds that can be explored for the development of new antimalarials to block transmission.
Collapse
Affiliation(s)
- Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jessica E. Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiomara A. Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maisa da Silva Araújo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen F. Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fundação Oswaldo Cruz-Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Carucci M, Duez J, Tarning J, García-Barbazán I, Fricot-Monsinjon A, Sissoko A, Dumas L, Gamallo P, Beher B, Amireault P, Dussiot M, Dao M, Hull MV, McNamara CW, Roussel C, Ndour PA, Sanz LM, Gamo FJ, Buffet P. Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening. Nat Commun 2023; 14:1951. [PMID: 37029122 PMCID: PMC10082216 DOI: 10.1038/s41467-023-37359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Mario Carucci
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | | | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Aurélie Fricot-Monsinjon
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Abdoulaye Sissoko
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Lucie Dumas
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pablo Gamallo
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | - Babette Beher
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pascal Amireault
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
| | - Michael Dussiot
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Camille Roussel
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Laboratoire d'Hématologie générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Papa Alioune Ndour
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Laura Maria Sanz
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | | | - Pierre Buffet
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France.
- Department of Infectious & Tropical Disease, AP-HP, Necker Hospital, 75015, Paris, France.
- Centre Médical de l'Institut Pasteur (CMIP), Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
10
|
Webster R, Mitchell H, Peters JM, Heunis J, O'Neill B, Gower J, Lynch S, Jennings H, Amante FH, Llewellyn S, Marquart L, Potter AJ, Birrell GW, Edstein MD, Shanks GD, McCarthy JS, Barber BE. Transmission Blocking Activity of Low-dose Tafenoquine in Healthy Volunteers Experimentally Infected With Plasmodium falciparum. Clin Infect Dis 2023; 76:506-512. [PMID: 35731843 DOI: 10.1093/cid/ciac503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Blocking the transmission of parasites from humans to mosquitoes is a key component of malaria control. Tafenoquine exhibits activity against all stages of the malaria parasite and may have utility as a transmission blocking agent. We aimed to characterize the transmission blocking activity of low-dose tafenoquine. METHODS Healthy adults were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Piperaquine was administered on days 9 and 11 to clear asexual parasitemia while allowing gametocyte development. A single 50-mg oral dose of tafenoquine was administered on day 25. Transmission was determined by enriched membrane feeding assays predose and at 1, 4, and 7 days postdose. Artemether-lumefantrine was administered following the final assay. Outcomes were the reduction in mosquito infection and gametocytemia after tafenoquine and safety parameters. RESULTS Six participants were enrolled, and all were infective to mosquitoes before tafenoquine, with a median 86% (range, 22-98) of mosquitoes positive for oocysts and 57% (range, 4-92) positive for sporozoites. By day 4 after tafenoquine, the oocyst and sporozoite positivity rate had reduced by a median 35% (interquartile range [IQR]: 16-46) and 52% (IQR: 40-62), respectively, and by day 7, 81% (IQR 36-92) and 77% (IQR 52-98), respectively. The decline in gametocyte density after tafenoquine was not significant. No significant participant safety concerns were identified. CONCLUSIONS Low-dose tafenoquine (50 mg) reduces P. falciparum transmission to mosquitoes, with a delay in effect.
Collapse
Affiliation(s)
- Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Hayley Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jenny M Peters
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Juanita Heunis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Brighid O'Neill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jeremy Gower
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sean Lynch
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Helen Jennings
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | |
Collapse
|
11
|
Mungkalasut P, Kiatamornrak P, Jugnam-Ang W, Krudsood S, Cheepsunthorn P, Cheepsunthorn CL. Haematological profile of malaria patients with G6PD and PKLR variants (erythrocytic enzymopathies): a cross-sectional study in Thailand. Malar J 2022; 21:250. [PMID: 36038921 PMCID: PMC9426002 DOI: 10.1186/s12936-022-04267-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PKLR) deficiencies are common causes of erythrocyte haemolysis in the presence of antimalarial drugs such as primaquine and tafenoquine. The present study aimed to elucidate such an association by thoroughly investigating the haematological indices in malaria patients with G6PD and PKLRR41Q variants. Methods Blood samples from 255 malaria patients from Thailand, Myanmar, Laos, and Cambodia were collected to determine haematological profile, G6PD enzyme activity and G6PD deficiency variants. The multivariate analysis was performed to investigate the association between anaemia and G6PD MahidolG487A, the most common mutation in this study. Results The prevalence of G6PD deficiency was 11.1% (27/244) in males and 9.1% (1/11) in female. The MAFs of the G6PD MahidolG487A and PKLRR41Q variants were 7.1% and 2.6%, respectively. Compared with patients with wildtype G6PD after controlling for haemoglobinopathies, G6PD-deficient patients with hemizygous and homozygous G6PD MahidolG487A exhibited anaemia with low levels of haemoglobin (11.16 ± 2.65 g/dl, p = 0.041). These patients also exhibited high levels of reticulocytes (3.60%). The median value of G6PD activity before treatment (Day 0) was significantly lower than that of after treatment (Day 28) (5.51 ± 2.54 U/g Hb vs. 6.68 ± 2.45 U/g Hb; p < 0.001). Reticulocyte levels on Day 28 were significantly increased compared to that of on Day 0 (2.14 ± 0.92% vs 1.57 ± 1.06%; p < 0.001). PKLRR41Q had no correlation with anaemia in malaria patients. The risk of anaemia inpatients with G6PDMahidolG487A was higher than wildtype patients (OR = 3.48, CI% 1.24–9.75, p = 0.018). Univariate and multivariate analyses confirmed that G6PDMahidolG487A independently associated with anaemia (< 11 g/dl) after adjusted by age, gender, Plasmodium species, parasite density, PKLRR41Q, and haemoglobinopathies (p < 0.001). Conclusions This study revealed that malaria patients with G6PD MahidolG487A, but not with PKLRR41Q, had anaemia during infection. As a compensatory response to haemolytic anaemia after malaria infection, these patients generated more reticulocytes. The findings emphasize the effect of host genetic background on haemolytic anaemia and the importance of screening patients for erythrocyte enzymopathies and related mutations prior to anti-malarial therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04267-7.
Collapse
Affiliation(s)
- Punchalee Mungkalasut
- Interdisciplinary Programme of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patcharakorn Kiatamornrak
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watcharapong Jugnam-Ang
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene and Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|