1
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
He B, Wang Z, Moreau R. Chylomicron production is repressed by RPTOR knockdown, R-α-lipoic acid and 4-phenylbutyric acid in human enterocyte-like Caco-2 cells. J Nutr Biochem 2022; 108:109087. [PMID: 35691593 DOI: 10.1016/j.jnutbio.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Although the role of mechanistic target of rapamycin complex 1 (mTORC1) in lipid metabolism has been the subject of previous research, its function in chylomicron production is not known. In this study, we created three stable human colorectal adenocarcinoma Caco-2 cell lines exhibiting normal, low or high mTORC1 kinase activity, and used these cells to investigate the consequences of manipulating mTORC1 activity on enterocyte differentiation and chylomicron-like particle production. Constitutively active mTORC1 induced Caco-2 cell proliferation and differentiation (as judged by alkaline phosphatase activity) but weakened transepithelial electrical resistance (TEER). Repressed mTORC1 activity due to the knockdown of RPTOR significantly decreased the expression of lipogenic genes FASN, DGAT1 and DGAT2, lipoprotein assembly genes APOB and MTTP, reduced protein expression of APOB, MTTP and FASN, downregulated the gene expression of very long-chain fatty acyl-CoA ligase (FATP2), acyl-CoA binding protein (DBI), and prechylomicron transport vesicle-associated proteins VAMP7 (vesicle-associated membrane protein 7) and SAR1B (secretion associated Ras related GTPase 1B) resulting in the repression of apoB-containing triacylglycerol-rich lipoprotein secretion. Exposure of Caco-2 cells harboring a constitutively active mTORC1 to short-chain fatty acid derivatives, R-α-lipoic acid and 4-phenylbutyric acid, downregulated chylomicron-like particle secretion by interfering with the lipidation and assembly of the particles, and concomitantly repressed mTORC1 activity with no change to Raptor abundance or PRAS40 (Thr246) phosphorylation. R-α-lipoic acid and 4-phenylbutyric acid may be useful to mitigate intestinal lipoprotein overproduction and associated postprandial inflammation.
Collapse
Affiliation(s)
- Bo He
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhigang Wang
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
3
|
Maciejczyk M, Żebrowska E, Nesterowicz M, Supruniuk E, Choromańska B, Chabowski A, Żendzian-Piotrowska M, Zalewska A. α-Lipoic Acid Reduces Ceramide Synthesis and Neuroinflammation in the Hypothalamus of Insulin-Resistant Rats, While in the Cerebral Cortex Diminishes the β-Amyloid Accumulation. J Inflamm Res 2022; 15:2295-2312. [PMID: 35422650 PMCID: PMC9005076 DOI: 10.2147/jir.s358799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background Oxidative stress underlies metabolic diseases and cognitive impairment; thus, the use of antioxidants may improve brain function in insulin-resistant conditions. We are the first to evaluate the effects of α-lipoic acid (ALA) on redox homeostasis, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid accumulation in the cerebral cortex and hypothalamus of insulin-resistant rats. Methods The experiment was conducted on male cmdb/outbred Wistar rats fed a high-fat diet (HFD) for 10 weeks with intragastric administration of ALA (30 mg/kg body weight) for 4 weeks. Pro-oxidant and pro-inflammatory enzymes, oxidative stress, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid level were assessed in the hypothalamus and cerebral cortex using colorimetric, fluorimetric, ELISA, and HPLC methods. Statistical analysis was performed using three-way ANOVA followed by the Tukey HSD test. Results ALA normalizes body weight, food intake, glycemia, insulinemia, and systemic insulin sensitivity in HFD-fed rats. ALA treatment reduces nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidase activity, increases ferric-reducing antioxidant power (FRAP) and thiol levels in the hypothalamus of insulin-resistant rats. In addition, it decreases myeloperoxidase, glucuronidase, and metalloproteinase-2 activity and pro-inflammatory cytokines (IL-1β, IL-6) levels, while in the cerebral cortex ALA reduces β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and caspase-3 activity. ALA improves systemic oxidative status and reduces insulin-resistant rats’ serum cytokines, chemokines, and growth factors. Conclusion ALA normalizes lipid and carbohydrate metabolism in insulin-resistant rats. At the brain level, ALA primarily affects hypothalamic metabolism. ALA improves redox homeostasis by decreasing the activity of pro-oxidant enzymes, enhancing total antioxidant potential, and reducing protein and lipid oxidative damage in the hypothalamus of HFD-fed rats. ALA also reduces hypothalamic inflammation and metalloproteinases activity, and cortical β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and neuronal apoptosis. Although further study is needed, ALA may be a potential treatment for patients with cerebral complications of insulin resistance.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, 2C Mickiewicza Street, Bialystok, Poland, Email
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Restorative Dentistry and Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Barrios V, López-Villar E, Frago LM, Canelles S, Díaz-González F, Burgos-Ramos E, Frühbeck G, Chowen JA, Argente J. Cerebral Insulin Bolus Revokes the Changes in Hepatic Lipid Metabolism Induced by Chronic Central Leptin Infusion. Cells 2021; 10:cells10030581. [PMID: 33800837 PMCID: PMC8000796 DOI: 10.3390/cells10030581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Central actions of leptin and insulin on hepatic lipid metabolism can be opposing and the mechanism underlying this phenomenon remains unclear. Both hormones can modulate the central somatostatinergic system that has an inhibitory effect on growth hormone (GH) expression, which plays an important role in hepatic metabolism. Using a model of chronic central leptin infusion, we evaluated whether an increase in central leptin bioavailability modifies the serum lipid pattern through changes in hepatic lipid metabolism in male rats in response to an increase in central insulin and the possible involvement of the GH axis in these effects. We found a rise in serum GH in leptin plus insulin-treated rats, due to an increase in pituitary GH mRNA levels associated with lower hypothalamic somatostatin and pituitary somatostatin receptor-2 mRNA levels. An augment in hepatic lipolysis and a reduction in serum levels of non-esterified fatty acids (NEFA) and triglycerides were found in leptin-treated rats. These rats experienced a rise in lipogenic-related factors and normalization of serum levels of NEFA and triglycerides after insulin treatment. These results suggest that an increase in insulin in leptin-treated rats can act on the hepatic lipid metabolism through activation of the GH axis.
Collapse
Affiliation(s)
- Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Correspondence: (V.B.); (J.A.)
| | - Elena López-Villar
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
| | - Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, E-28049 Madrid, Spain;
| | - Emma Burgos-Ramos
- Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain;
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008 Pamplona, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
- Correspondence: (V.B.); (J.A.)
| |
Collapse
|
5
|
Huang CC, Sun J, Ji H, Kaneko G, Xie XD, Chang ZG, Deng W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1631-1644. [PMID: 32651854 DOI: 10.1007/s10695-020-00795-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.
Collapse
Affiliation(s)
- Chen-Cui Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007, North Ben Wilson, Victoria, TX, 77901, USA
| | - Xing-da Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
He B, Moreau R. R-α-Lipoic Acid and 4-Phenylbutyric Acid Have Distinct Hypolipidemic Mechanisms in Hepatic Cells. Biomedicines 2020; 8:biomedicines8080289. [PMID: 32824248 PMCID: PMC7460023 DOI: 10.3390/biomedicines8080289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
The constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) leads to the overproduction of apoB-containing triacylglycerol-rich lipoproteins in HepG2 cells. R-α-lipoic acid (LA) and 4-phenylbutyric acid (PBA) have hypolipidemic function but their mechanisms of action are not well understood. Here, we reported that LA and PBA regulate hepatocellular lipid metabolism via distinct mechanisms. The use of SQ22536, an inhibitor of adenylyl cyclase, revealed cAMP’s involvement in the upregulation of CPT1A expression by LA but not by PBA. LA decreased the secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the culture media of hepatic cells and increased the abundance of LDL receptor (LDLR) in cellular extracts in part through transcriptional upregulation. Although PBA induced LDLR gene expression, it did not translate into more LDLR proteins. PBA regulated cellular lipid homeostasis through the induction of CPT1A and INSIG2 expression via an epigenetic mechanism involving the acetylation of histone H3, histone H4, and CBP-p300 at the CPT1A and INSIG2 promoters.
Collapse
|
7
|
Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract 2020; 74:e13493. [PMID: 32091656 DOI: 10.1111/ijcp.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There are numerous trials reported the effect of alpha-lipoic acid (ALA) on obesity measurements; while no summarised dose-response meta-analysis is available to address the effects of dose and duration of ALA supplementation on obesity measurements. We aimed to summarise the results of studies evaluating the effects of ALA supplementation on obesity measurements in a systematic review and dose-response meta-analysis. METHODS AND MATERIALS In a systematic search from Scopus, PubMed, Embase, Proquest electronic databases up to January 2020 relevant studies were retrieved. Randomised, placebo-controlled trials investigating the effect of ALA supplementation on obesity measurements including weight, body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and fat mass (FM) were included. Two class and dose-response meta-analysis were performed to data analysis. RESULTS Totally, 18, 21 and 8 studies were included for the meta-analysis of ALA-weight, ALA-BMI, ALA-WC, respectively. In the two-class meta-analysis, ALA treatment significantly reduced weight (WMD: -2.29 kg, 95% CI: -2.98, 1.60, P < .01) and BMI (WMD: -0.49 kg/m2 , 95% CI:-0.83,-0.15, P = .005) but no effect on WC (WMD: -2.57 cm, 95% CI: -8.91, 3.76; P = .426). While the dose-response meta-analysis revealed that the duration of ALA treatment is a significant factor affecting WC reduction (Pnon-linearity = .047). While no evidence of departure from linearity was observed for other variables; moreover, subgrouping also revealed that gender could be an important factor affecting the ALA impact on WC which was significant among women (WMD: -4.099; CI: -7.837, -0.361; P = .032). CONCLUSION According to our finding, ALA treatment significantly reduced BMI, weight in a two-class meta-analysis without evidence of departure from linearity in terms of dose or duration. While the association of ALA treatment on WC is dependent to the duration of the study. Although further trials evaluating the other obesity measurements specially central obesity will be helpful to infer a more reliable result.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Haghighatdoost F, Gholami A, Hariri M. Alpha-lipoic acid effect on leptin and adiponectin concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2020; 76:649-657. [PMID: 32040596 DOI: 10.1007/s00228-020-02844-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND New evidence suggests that dysregulation of adipocytokines caused by excess adiposity plays an important role in the pathogenesis of various obesity comorbidities. Our aim in this meta-analysis was to determine the effect of alpha-lipoic acid (ALA) supplementation on serum levels of leptin and adiponectin. METHODS We searched Scopus, PubMed, Google Scholar, and ISI Web of Science from inception up to July 2019. Mean difference for leptin and adiponectin were calculated by subtracting the change from baseline in each study group. Summary estimates for the overall effect of ALA on serum leptin and adiponectin concentrations were calculated using random effects model. Results were presented as weighted mean difference (WMD) and their 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 statistics. RESULT Eight studies were included in systematic review and seven studies in meta-analysis. The overall effect suggested a significant decrement in serum leptin concentrations (WMD = - 3.63; 95% CI, - 5.63, - 1.64 μg/ml; I2 = 80.7%) and a significant increase in serum levels of adiponectin (WMD = 1.98 μg/ml; 95% CI, 0.92, 3.04; I2 = 95.7%). Subgroup analyses based on age showed a significant reduction in leptin levels only in younger adults, and subgroup analysis based on duration indicated in studies with a duration of more than 8 weeks adiponectin levels increased significantly and leptin levels decreased significantly. CONCLUSION Our results revealed ALA decreased leptin and increased adiponectin especially in studies lasted more than 8 weeks. We still need more studies with different ALA dose, intervention duration, and separately on male and female.
Collapse
Affiliation(s)
- Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gholami
- Department of Epidemiology & Biostatistics, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mitra Hariri
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Rahmanabadi A, Mahboob S, Amirkhizi F, Hosseinpour-Arjmand S, Ebrahimi-Mameghani M. Oral α-lipoic acid supplementation in patients with non-alcoholic fatty liver disease: effects on adipokines and liver histology features. Food Funct 2019; 10:4941-4952. [PMID: 31343010 DOI: 10.1039/c9fo00449a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considering the importance of adipokines in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), and due to the possible beneficial effects of α-lipoic acid (α-LA) on these adipose-derived hormones, this study aimed to investigate the effect of α-LA supplementation on adipokines and liver steatosis in obese patients with NAFLD. In a double-blind, placebo-controlled randomized clinical trial with two parallel groups, fifty patients with NAFLD were randomized to receive daily supplementation with either two capsules of α-LA (each capsule containing 600 mg α-LA) or two placebo capsules, daily for 12 weeks. At the baseline, all participants received consultation on how to implement a healthy diet into their daily lives. Anthropometric measures, dietary intakes, liver enzymes and adipokines were assessed at the baseline and after 12 weeks of intervention. A significant reduction was observed in the serum levels of insulin (P = 0.024) and leptin (P = 0.019) in the α-LA group compared to the placebo group, but changes in anthropometric and body composition measures, serum glucose (FSG), resistin, irisin and liver enzymes did not differ between the groups. α-LA supplementation resulted in a statistically significant elevation in the quantitative insulin sensitivity check index (QUICKI) (P = 0.033), serum levels of adiponectin (P = 0.008) and adiponectin-to-leptin ratio (P = 0.007) compared to the placebo. The liver steatosis intensity improved significantly. Nonetheless, no significant differences were observed between the study groups in the liver steatosis intensity, at the end of the study. According to the results, α-LA supplementation for 12 weeks improved insulin resistance, serum levels of insulin, adiponectin and leptin without changing anthropometric measures, serum liver enzymes, resistin and irisin.
Collapse
Affiliation(s)
- Alireza Rahmanabadi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
10
|
Castro MC, Villagarcía HG, Massa ML, Francini F. Alpha-lipoic acid and its protective role in fructose induced endocrine-metabolic disturbances. Food Funct 2019; 10:16-25. [PMID: 30575838 DOI: 10.1039/c8fo01856a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent decades a worldwide increase has been reported in the consumption of unhealthy high calorie diets associated with marked changes in meal nutrient composition, such as a higher intake of refined carbohydrates, which leads to the speculatation that changes in food habits have contributed to the current epidemic of obesity and type 2 diabetes. Among these refined carbohydrates, fructose has been deeply investigated and murine models of high fructose diet have emerged as useful tools to study dietary-induced insulin resistance, impaired glucose tolerance, dyslipidemia and alterations in glucose metabolism. Since oxidative stress has been demonstrated to play a key pathogenic role in the alterations described above, several lines of research have focused on the possible preventive effects of antioxidant/redox state regulation therapy, among which alpha-lipoic acid has been extensively investigated. The following references discussed support the fact that co-administration of alpha-lipoic acid normalized the changes generated by fructose rich diets, thereby making this compound a good therapeutic tool, also administered as a food supplement, to prevent endocrine-metabolic disturbances triggered by high fructose associated with obesity and type 2 diabetes at an early stage of development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada, UNLP-CONICET La Plata-FCM) (Centro asociado CICPBA), 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
11
|
Hosseinpour-Arjmand S, Amirkhizi F, Ebrahimi-Mameghani M. The effect of alpha-lipoic acid on inflammatory markers and body composition in obese patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. J Clin Pharm Ther 2018; 44:258-267. [DOI: 10.1111/jcpt.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonya Hosseinpour-Arjmand
- Student Research Committee, School of Nutrition and Food Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farshad Amirkhizi
- Department of Nutrition, School of Public Health; Zabol University of Medical Sciences; Zabol Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, School of Nutrition and Food Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
12
|
Akbari M, Ostadmohammadi V, Lankarani KB, Tabrizi R, Kolahdooz F, Khatibi SR, Asemi Z. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism 2018; 87:56-69. [PMID: 29990473 DOI: 10.1016/j.metabol.2018.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effect of alpha-lipoic acid (ALA) supplementation on glycemic control and lipid profiles among patients with metabolic diseases. METHODS We searched the following databases till October 2017: MEDLINE, EMBASE, Web of Science and Cochrane Central Register of Controlled Trials. The relevant data were extracted and assessed for quality of the studies according to the Cochrane risk of bias tool. Data were pooled using the inverse variance method and expressed as standardized mean difference (SMD) with 95% confidence intervals (95% CI). Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I2). Twenty-four studies were included in the meta-analyses. RESULTS The findings of this meta-analysis showed that ALA supplementation among patients with metabolic diseases significantly decreased fasting glucose (SMD -0.54; 95% CI, -0.89, -0.19; P = 0.003), insulin (SMD -1.01; 95% CI, -1.70, -0.31; P = 0.006), homeostasis model assessment of insulin resistance (SMD -0.76; 95% CI, -1.15, -0.36; P < 0.001) and hemoglobin A1c (SMD -1.22; 95% CI, -2.01, -0.44; P = 0.002), triglycerides (SMD -0.58; 95% CI, -1.00, -0.16; P = 0.006), total- (SMD -0.64; 95% CI, -1.01, -0.27; P = 0.001), low density lipoprotein-cholesterol (SMD -0.44; 95% CI, -0.76, -0.11; P = 0.008). We found no detrimental effect of ALA supplementation on high density lipoprotein-cholesterol (HDL-cholesterol) levels (SMD 0.57; 95% CI, -0.14, 1.29; P = 0.11). CONCLUSIONS Overall, the current meta-analysis demonstrated that ALA administration may lead to an improvement in glucose homeostasis parameters and lipid profiles except HDL-cholesterol levels.
Collapse
Affiliation(s)
- Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Kamran B Lankarani
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Seyed Reza Khatibi
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
13
|
α -Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats. Nutr Res 2017; 48:49-64. [DOI: 10.1016/j.nutres.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023]
|
14
|
Usta Atmaca H, Akbas F. THE EFFECT OF SHORT TERM ALPHA LIPOIC ACID ADMINISTRATION ON ADIPONECTIN AND BODY WEIGHT IN TYPE 2 DIABETES MELLITUS PATIENTS. ACTA ENDOCRINOLOGICA-BUCHAREST 2017; 13:461-466. [PMID: 31149217 DOI: 10.4183/aeb.2017.461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Alpha lipoic acid (ALA) acts as essential co-factor for mitochondrion respiratory enzymes. It has an increasing importance in diabetic neuropathy treatment. Its positive effects on weight gain and metabolic parameters have also been discussed. In this study, we aimed to search for the effect of ALA on weight, appetite, adiponectin and metabolic parameters in type 2 diabetes mellitus patients. Methods This study is designed as a randomised, double-blind, placebo controlled, prospective study. 23 type 2 diabetes mellitus patients with peripheral neuropathy (6 normal weight, 17 obese) and 21 normal weight control group were included in the study. Patients were given 600mg/day oral ALA for 6 weeks, added to their routine therapy. Body mass index (BMI), adiponectin, fasting plasma glucose, HbA1C, lipid parameters and CRP levels were tested before and after ALA treatment. Results were evaluated using SPSS 15.0 for Windows. Results Adiponectin levels were statistically significantly lower and CRP levels were higher in diabetes group when compared to control group. Although ALA treatment caused a slight weight loss, it was not statistically significant. Appetite scores were decreased in the diabetes group but it did not cause statistically significant weight loss. There was no significant change in metabolic parameters or adiponectin after the treatment. Conclusions 600mg/dL ALA treatment for 6 weeks did not favor for metabolic parameters in type 2 diabetes patients. This result might be due to the dose or the duration of the treatment, genetic predisposition or dietery habits. Trial of higher doses for long terms might be needed for recovery.
Collapse
Affiliation(s)
- H Usta Atmaca
- Istanbul Training and Research Hospital, Dept. of Internal Medicine, Samatya, Istanbul, Turkey
| | - F Akbas
- Istanbul Training and Research Hospital, Dept. of Internal Medicine, Samatya, Istanbul, Turkey
| |
Collapse
|
15
|
Does Alpha-Lipoic Acid Comsumption Improve Lipid Profile In Patients With Stroke? A Randomized, Double Blind, Placebo-Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.58765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Ghelani H, Razmovski-Naumovski V, Nammi S. Chronic treatment of (R)- α-lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats. Pharmacol Res Perspect 2017; 5:e00306. [PMID: 28603627 PMCID: PMC5464337 DOI: 10.1002/prp2.306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/11/2017] [Indexed: 12/16/2022] Open
Abstract
(R)‐ α ‐lipoic acid (ALA), an essential cofactor in mitochondrial respiration and a potential antioxidant, possesses a wide array of metabolic benefits including anti‐obesity, glucose lowering, insulin‐sensitizing, and lipid‐lowering effects. In this study, the curative effects of ALA (100 mg/kg) on a spectrum of conditions related to metabolic syndrome and type 2 diabetes (T2D) were investigated in a high‐fat diet (HFD)‐fed and low‐dose streptozotocin (STZ)‐induced rat model of metabolic syndrome and T2D. The marked rise in the levels of glucose, triglycerides, total‐cholesterol, LDL‐cholesterol, and VLDL‐cholesterol in the blood of HFD‐fed and low‐dose STZ‐injected rats were significantly reduced by ALA treatment. Furthermore, ALA treatment significantly increased the serum HDL‐cholesterol levels and tended to inhibit diabetes‐induced weight reduction. Mathematical computational analysis revealed that ALA also significantly improved insulin sensitivity and reduced the risk of atherosclerotic lesions and coronary atherogenesis. This study provides scientific evidence to substantiate the use of ALA to mitigate the glucose and lipid abnormality in metabolic syndrome and T2D.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia.,South Western Sydney Clinical School School of Medicine University of New South Wales New South Wales 2052 Australia
| | - Srinivas Nammi
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia
| |
Collapse
|
17
|
Ide T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr 2017; 57:1545-1561. [DOI: 10.1007/s00394-017-1440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
|
18
|
Roberts JL, He B, Erickson A, Moreau R. Improvement of mTORC1-driven overproduction of apoB-containing triacylglyceride-rich lipoproteins by short-chain fatty acids, 4-phenylbutyric acid and (R)-α-lipoic acid, in human hepatocellular carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:166-76. [DOI: 10.1016/j.bbalip.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/24/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023]
|
19
|
Xia M, Erickson A, Yi X, Moreau R. Mapping the response of human fibroblast growth factor 21 (FGF21) promoter to serum availability and lipoic acid in HepG2 hepatoma cells. Biochim Biophys Acta Gen Subj 2015; 1860:498-507. [PMID: 26691139 DOI: 10.1016/j.bbagen.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
Abstract
The hormone-like polypeptide, fibroblast growth factor 21 (FGF21), is a major modulator of lipid and glucose metabolism and an exploratory treatment strategy for obesity related metabolic disorders. The costs of recombinant FGF21 and mode of delivery by injection are important constraints to its wide therapeutic use. The stimulation of endogenous FGF21 production through diet is being explored as an alternative approach. To that end, we examined the mechanism(s) by which serum manipulation and lipoic acid (a dietary activator of FGF21) induce FGF21 in human hepatocellular carcinoma HepG2 cells. Serum withdrawal markedly induced FGF21 mRNA levels (88 fold) and FGF21 secreted in the media (19 fold). Lipoic acid induced FGF21 mRNA 7 fold above DMSO-treated control cells and FGF21 secretion 3 fold. These effects were several-fold greater than those of PPARα agonist, Wy14643, which failed to induce FGF21 above and beyond the induction seen with serum withdrawal. The use of transcription inhibitor, actinomycin D, revealed that de novo mRNA synthesis drives FGF21 secretion in response to serum starvation. Four previously unrecognized loci in FGF21 promoter were nucleosome depleted and enriched in acetylated histone H3 revealing their role as transcriptional enhancers and putative transcription factor binding sites. FGF21 did not accumulate to a significant degree in induced HepG2 cells, which secreted FGF21 time dependently in media. We conclude that lipoic acid cell signaling connects with the transcriptional upregulation of FGF21 and it may prove to be a safe and affordable means to stimulate FGF21 production.
Collapse
Affiliation(s)
- Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xiaohua Yi
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
20
|
Activation of hepatic CREBH and Insig signaling in the anti-hypertriglyceridemic mechanism of R-α-lipoic acid. J Nutr Biochem 2015; 26:921-8. [PMID: 26007286 DOI: 10.1016/j.jnutbio.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
The activation of sterol regulatory element binding proteins (SREBPs) is regulated by insulin-induced genes 1 and 2 (Insig-1 and Insig-2) and SCAP. We previously reported that feeding R-α-lipoic acid (LA) to Zucker diabetic fatty (ZDF) rats improves severe hypertriglyceridemia. In this study, we investigated the role of cyclic AMP-responsive element binding protein H (CREBH) in the lipid-lowering mechanism of LA and its involvement in the SREBP-1c and Insig pathway. Incubation of McA cells with LA (0.2 mM) or glucose (6 mM) stimulated activation of CREBH. LA treatment further induced mRNA expression of Insig-1 and Insig-2a, but not Insig-2b, in glucose-treated cells. In vivo, feeding LA to obesity-induced hyperlipidemic ZDF rats activated hepatic CREBH and stimulated transcription and translation of Insig-1 and Insig-2a. Activation of CREBH and Insigs induced by LA suppressed processing of SREBP-1c precursor into nuclear SREBP-1c, which subsequently inhibited expression of genes involved in fatty acid synthesis, including FASN, ACC and SCD-1, and reduced triglyceride (TG) contents in both glucose-treated cells and ZDF rat livers. Additionally, LA treatment also decreased abundances of very low density lipoprotein (VLDL)-associated apolipoproteins, apoB100 and apoE, in glucose-treated cells and livers of ZDF rats, leading to decreased secretion of VLDL and improvement of hypertriglyceridemia. This study unveils a novel molecular mechanism whereby LA lowers TG via activation of hepatic CREBH and increased expression of Insig-1 and Insig-2a to inhibit de novo lipogenesis and VLDL secretion. These findings provide novel insight into the therapeutic potential of LA as an anti-hypertriglyceridemia dietary molecule.
Collapse
|
21
|
Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol 2015; 93:1029-41. [PMID: 26235242 DOI: 10.1139/cjpp-2014-0480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Considering the current obesity epidemic in the United States (>100 million adults are overweight or obese), the prevalence of hypertriglyceridemia is likely to grow beyond present statistics of ∼30% of the population. Conventional therapies for managing hypertriglyceridemia include lifestyle modifications such as diet and exercise, pharmacological approaches, and nutritional supplements. It is critically important to identify new strategies that would be safe and effective in lowering hypertriglyceridemia. α-Lipoic acid (LA) is a naturally occurring enzyme cofactor found in the human body in small quantities. A growing body of evidence indicates a role of LA in ameliorating metabolic dysfunction and lipid anomalies primarily in animals. Limited human studies suggest LA is most efficacious in situations where blood triglycerides are markedly elevated. LA is commercially available as dietary supplements and is clinically shown to be safe and effective against diabetic polyneuropathies. LA is described as a potent biological antioxidant, a detoxification agent, and a diabetes medicine. Given its strong safety record, LA may be a useful nutraceutical, either alone or in combination with other lipid-lowering strategies, when treating severe hypertriglyceridemia and diabetic dyslipidemia. This review examines the current evidence regarding the use of LA as a means of normalizing blood triglycerides. Also presented are the leading mechanisms of action of LA on triglyceride metabolism.
Collapse
Affiliation(s)
- Anjeza Pashaj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
22
|
Li Z, Dungan CM, Carrier B, Rideout TC, Williamson DL. Alpha-lipoic acid supplementation reduces mTORC1 signaling in skeletal muscle from high fat fed, obese Zucker rats. Lipids 2014; 49:1193-201. [PMID: 25366515 DOI: 10.1007/s11745-014-3964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is hyperactive in liver, adipose and skeletal muscle tissues of obese rodents. Alpha-lipoic acid (αLA) has been well accepted as a weight-loss treatment, though there are limited studies on its effect on mTOR signaling in high-fat fed, obese rodents. Therefore, the goal of this study was to determine mTOR signaling and oxidative protein alterations in skeletal muscle of high-fat fed, obese rats after αLA supplementation. Phosphorylation of the mTOR substrate, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and eIF4B were significantly reduced (p < 0.05) in muscle from αLA supplemented rats. Activation of AMP-activated protein kinase (AMPK), an mTOR inhibitory kinase, was higher (p < 0.05) in the αLA group. Protein expression of markers of oxidative metabolism, acetyl CoA carboxylase (ACC), cytochrome c oxidase IV (COX IV), peroxisome proliferator-activated receptor (PPAR), and PPAR gamma coactivator 1-alpha (PGC-1α) were significantly higher (p < 0.05) after αLA supplementation compared to non-supplemented group. Our findings show that αLA supplementation limits the negative ramifications of consuming a high fat diet on skeletal muscle markers of oxidative metabolism and mTORC1 signaling.
Collapse
Affiliation(s)
- Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, SUNY, 2 Sherman Hall (Office)/5 Sherman Hall (Lab), Buffalo, NY, 14214, USA
| | | | | | | | | |
Collapse
|
23
|
Effect of dietary α-lipoic acid on the mRNA expression of genes involved in drug metabolism and antioxidation system in rat liver. Br J Nutr 2014; 112:295-308. [DOI: 10.1017/s0007114514000841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the present study, the mRNA levels of hepatic proteins involved in the drug metabolism of rats fed α-lipoic acid were evaluated by DNA microarray and real-time PCR analyses. Experimental diets containing 0, 0·1, 0·25 and 0·5 % (w/w) α-lipoic acid were fed to four groups of rats consisting of seven animals each for 21 d. DNA microarray analysis revealed that the diet containing 0·5 % α-lipoic acid significantly (P< 0·05) increased the mRNA levels of various phase I drug-metabolising enzymes up to 15-fold and phase II enzymes up to 52-fold in an isoenzyme-specific manner. α-Lipoic acid also up-regulated the mRNA levels of some members of the ATP-binding cassette transporter superfamily, presumed to be involved in the exportation of xenobiotics, up to 6·6-fold. In addition, we observed that α-lipoic acid increased the mRNA levels of many proteins involved in antioxidation, such as members of the thiol redox system (up to 5·5-fold), metallothioneins (up to 12-fold) and haeme oxygenase 1 (1·5-fold). These results were confirmed using real-time PCR analysis, and α-lipoic acid dose dependently increased the mRNA levels of various proteins involved in drug metabolism and antioxidation. Consistent with these observations, α-lipoic acid dose dependently increased the hepatic concentration of glutathione and the activities of glutathione reductase and glutathione transferase measured using 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates, but decreased the hepatic and serum concentrations of malondialdehyde. In conclusion, the present study unequivocally demonstrated that α-lipoic acid increases the mRNA expression of proteins involved in drug metabolism and antioxidation in the liver.
Collapse
|
24
|
Alpha-lipoic acid reduces LDL-particle number and PCSK9 concentrations in high-fat fed obese Zucker rats. PLoS One 2014; 9:e90863. [PMID: 24595397 PMCID: PMC3942488 DOI: 10.1371/journal.pone.0090863] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia.
Collapse
|
25
|
The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol 2013; 718:469-74. [PMID: 23911880 DOI: 10.1016/j.ejphar.2013.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 01/31/2023]
Abstract
Osteoporosis is a high mortality and morbidity ranged skeletal disease and results in high costs of medical care in the European Union. We evaluated the possible protective effect of alpha-lipoic acid (ALA) on rat bone metabolism in ovariectomy and inflammation-mediated osteoporosis models. Groups were designed as: (1) sham; (2) sham+inflammation; (3) ovariectomy (OVX); (4) ovariectomy+ALA-25mg/kg; (5) ovariectomy+ALA-50mg/kg; (6) ovariectomy+inflammation; (7) ovariectomy+inflammation+ALA-25mg/kg; and (8) ovariectomy+inflammation+ALA-50mg/kg groups. OVX groups were allowed to recover for two months. Then, inflammation was induced in inflammation groups by subcutaneous talc injection. ALA-25mg/kg and 50mg/kg were administered to drug groups chronically. The skeletal response was assessed by bone mineral density (BMD), osteopontin and osteocalcin measurements. Pro-inflammatory cytokine measurements (interleukin (IL)-1 beta, interleukin-6, and tumor necrosis factor-alpha) were performed to observe inflammatory process. In OVX, INF and OVX+INF groups, BMD levels were lowest and osteocalcin, osteopontin, IL-1 beta, IL-6, and TNF-alpha levels were highest when compared to sham group. ALA administration increased BMD levels and decreased osteocalcin, osteopontin, IL-1 beta, IL-6, and TNF-alpha levels versus OVX and OVX+INF control groups. Both in senile and postmenopausal osteoporosis, the balance in coupling were destroyed on behalf of bone resorption. ALA had a protective effect on both senile and postmenopausal osteoporosis. The positive effect of this drug in these osteoporosis models might originate from its positive effects on bone turnover markers and cytokine levels. From this perspective, ALA may be a candidate for radical osteoporosis treatment both in senile and postmenopausal types clinically at the end of advanced studies.
Collapse
|
26
|
Manning PJ, Sutherland WHF, Williams SM, Walker RJ, Berry EA, De Jong SA, Ryalls AR. The effect of lipoic acid and vitamin E therapies in individuals with the metabolic syndrome. Nutr Metab Cardiovasc Dis 2013; 23:543-549. [PMID: 22402059 DOI: 10.1016/j.numecd.2011.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/01/2011] [Accepted: 11/17/2011] [Indexed: 12/31/2022]
Abstract
The metabolic syndrome is associated with abnormal glucose and lipid metabolism, insulin resistance, increased oxidative stress and pro-inflammatory activity that increase the risk of type 2 diabetes and cardiovascular disease. The aim of this study was to investigate the effect of treatment with the antioxidant α-lipoic acid (ALA) with or without vitamin E supplementation, on markers of insulin resistance and systemic inflammation and plasma nonesterified fatty acid (NEFA) concentrations in individuals with the metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, subjects with the metabolic syndrome received ALA (600 mg/day, n = 34), vitamin E (100 IU/day, n = 36), both ALA and vitamin E (n = 41), or matching placebo (n = 40) for 1 year. Fasting circulating concentrations of glucose and insulin were measure every 3 months and NEFA, markers of inflammation, adiponectin and vitamin E were measured at 6 monthly intervals. Plasma NEFA concentrations decreased [-10 (-18, 0)%] at a marginal level of significance (p = 0.05) in those who received ALA alone compared with placebo and decreased [-8 (-14, -1)% (95% CI)] significantly (P = 0.02) in participants who were randomised to ALA with and without vitamin E compared with those who did not receive ALA. Fasting glucose, insulin, homeostatic model assessment of insulin resistance, adiponectin, and markers of inflammation did not change significantly during the study. These data suggest that prolonged treatment with ALA may modestly reduce plasma NEFA concentrations but does not alter insulin or glucose levels in individuals with the metabolic syndrome.
Collapse
Affiliation(s)
- P J Manning
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fernández-Galilea M, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Antiobesity effects of α-lipoic acid supplementation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Xu J, Gao H, Song L, Yang W, Chen C, Deng Q, Huang Q, Yang J, Huang F. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard. Lipids Health Dis 2013; 12:58. [PMID: 23634883 PMCID: PMC3698061 DOI: 10.1186/1476-511x-12-58] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. METHODS LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague-Dawley rats were fed for 10 weeks and then killed for liver collection. RESULTS Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. CONCLUSION The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Product Processing and Nutriology, Oil Crops Research Institute, CAAS, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ide T, Azechi A, Suzuki N, Kunimatsu Y, Nakajima C, Kitade S. Effects of dietary α-lipoic acid enantiomers on hepatic fatty acid metabolism in rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Xu J, Yang W, Deng Q, Huang Q, Yang J, Huang F. Flaxseed oil and α-lipoic acid combination reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis 2012; 11:148. [PMID: 23113997 PMCID: PMC3502139 DOI: 10.1186/1476-511x-11-148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atherosclerosis is a major manifestation of the pathophysiology underlying cardiovascular disease. Flaxseed oil (FO) and α-lipoic acid (LA) have been reported to exert potential benefit to cardiovascular system. This study tried to assess the effect of supplement of FO and LA combination on the atherosclerosis risk factors in rats fed a high-fat diet. METHODS LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO+LA) when used. The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (HFD group), or 75% lard and 25% FO+LA (L-FO+LA group), or 50% lard and 50% FO+LA (M-FO+LA group), or FO+LA (H-FO+LA group). Animals were fed for 10 weeks and then killed for blood collection. RESULTS Supplement of FO and LA combination significantly enhanced plasma antioxidant defense capacities, as evaluated by the marked increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant reduction in lipid peroxidation. Simultaneous intake of FO and LA also reduced plasma TG, TC and LDL-C contents and elevated the ratio of HDL-C/LDL-C. Besides, in parallel with the increase of FO and LA combination, plasma IL-6 and CRP levels were remarkably reduced. CONCLUSION Supplement of FO and LA combination may contribute to prevent atherogenesis by improving plasma oxidative stress, lipid profile and inflammation.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Product Processing and Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | | | | | | | | | | |
Collapse
|
31
|
Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta Gen Subj 2012; 1830:2226-32. [PMID: 23085069 DOI: 10.1016/j.bbagen.2012.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND To evaluate whether co-administration of R/S-α-lipoic acid can prevent the development of oxidative stress and metabolic changes induced by a fructose-rich diet (F). METHODS We assessed glycemia in the fasting state and during an oral glucose tolerance test, triglyceridemia and insulinemia in rats fed with standard diet (control) and fructose without or with R/S-α-lipoic acid. Insulin resistance and hepatic insulin sensitivity were also calculated. In liver, we measured reduced glutathione, protein carbonyl groups, antioxidant capacity by ABTS assay, antioxidant enzymes (catalase and superoxide dismutase 1 and 2), uncoupling protein 2, PPARδ and PPARγ protein expressions, SREBP-1c, fatty acid synthase and glycerol-3-phosphate acyltransferase-1 gene expression, and glucokinase activity. RESULTS R/S-α-lipoic acid co-administration to F-fed rats a) prevented hyperinsulinemia, hypertriglyceridemia and insulin resistance, b) improved hepatic insulin sensitivity and glucose tolerance, c) decreased liver oxidative stress and increased antioxidant capacity and antioxidant enzymes expression, d) decreased uncoupling protein 2 and PPARδ protein expression and increased PPARγ levels, e) restored the basal gene expression of PPARδ, SREBP-1c and the lipogenic genes fatty acid synthase and glycerol-3-phosphate acyltransferase, and f) decreased the fructose-mediated enhancement of glucokinase activity. CONCLUSIONS Our results suggest that fructose-induced oxidative stress is an early phenomenon associated with compensatory hepatic metabolic mechanisms, and that treatment with an antioxidant prevented the development of such changes. GENERAL SIGNIFICANCE This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced oxidative stress and to develop effective strategies to prevent and treat, at early stages, obesity and type 2 diabetes mellitus.
Collapse
|
32
|
Alhazzaa R, Bridle AR, Carter CG, Nichols PD. Sesamin modulation of lipid class and fatty acid profile in early juvenile teleost, Lates calcarifer, fed different dietary oils. Food Chem 2012; 134:2057-65. [DOI: 10.1016/j.foodchem.2012.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/02/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
|
33
|
Valdecantos MP, Pérez-Matute P, González-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martínez JA. Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 2012; 20:1974-83. [PMID: 22327056 DOI: 10.1038/oby.2012.32] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatosis is an important hepatic complication of obesity linked to mitochondrial dysfunction and oxidative stress. Lipoic acid (LA) has been reported to have beneficial effects on mitochondrial function and to attenuate oxidative stress. The sirtuin (SIRT) family has been demonstrated to play an important role in the regulation of mitochondrial function and in the activation of antioxidant defenses. In this study, we analyzed the potential protective effect of LA supplementation, via the modulation of mitochondrial defenses through the SIRT pathway, against oxidative stress associated with high-fat feeding. Wistar rats were fed a standard diet (control group (C), n = 10), a high-fat diet (obese group (OB), n = 10) and a high-fat diet supplemented with LA (OLIP, n = 10). A group pair-fed to the latter group (pair-fed OLIP group (PFO), n = 6) was also included. LA prevented hepatic triglyceride (TG) accumulation (-68.2%) and liver oxidative damage (P < 0.01) through the inhibition of hydroperoxide (H(2)O(2)) production (P < 0.001) and the stimulation of mitochondrial antioxidant defenses. LA treatment upregulated manganese superoxide dismutase (SOD2) (60.6%) and glutathione peroxidase (GPx) (100.2%) activities, and increased the reduced glutathione (GSH): oxidized glutathione (GSSG) ratio and UCP2 mRNA levels (P < 0.001-P < 0.01). Moreover, this molecule reduced oxidative damage in mitochondrial DNA (mtDNA) and increased mitochondrial copy number (P < 0.001- P < 0.01). LA treatment decreased the acetylation levels of Forkhead transcription factor 3a (Foxo3a) and PGC1β (P < 0.001- P < 0.01) through the stimulation of SIRT3 and SIRT1 (P < 0.001). In summary, our results demonstrate that the beneficial effects of LA supplementation on hepatic steatosis could be mediated by its ability to restore the oxidative balance by increasing antioxidant defenses through the deacetylation of Foxo3a and PGC1β by SIRT1 and SIRT3.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Alpha-lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway. Mol Biol Rep 2012; 39:6857-66. [PMID: 22302393 DOI: 10.1007/s11033-012-1511-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
An infectious burden has been suggested to be associated with atherosclerosis in humans, based on the shared and underlying inflammatory responses during infection and atherosclerosis. However, the efficacy of anti-atherogenic drugs is yet to be tested against atherosclerosis in a scenario involving an infectious burden. We have examined alpha-lipoic acid (ALA) for anti-atherogenic effects in a hypercholesterolemic diet-induced atherosclerotic mouse model with inflammatory stimulation. C57BL/6 mice were fed with a hypercholesterolemic diet for 12 weeks to induce atherosclerosis. Lipopolysaccharide was intraperitoneally injected for the 1st week of study to simulate underlying infectious burden during development of atherosclerosis. ALA treatment alleviated atherosclerotic pathologies and reduced serum cholesterol and inflammatory cytokines. Consistently, atherosclerotic markers were improved by ALA treatment. In addition, ALA attenuated the proliferation and migration of vascular smooth muscle cells upon platelet-derived growth factor stimulation through the targeting of the Ras-MEK1/2-ERK1/2 pathway. This study demonstrates the efficacy of ALA on atherosclerosis with immunological complication, by showing that ALA modulates multiple pathogenic aspects of atherosclerosis induced by a hypercholesterolemic diet with inflammatory stimulation consisting of hypercholesterolemia, inflammation and VSMC activation.
Collapse
|
35
|
Ide T, Azechi A, Kitade S, Kunimatsu Y, Suzuki N, Nakajima C. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats. Eur J Nutr 2012; 52:1015-27. [DOI: 10.1007/s00394-012-0408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
|
36
|
Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Alfredo Martínez J, Moreno-Aliaga MJ. Effects of lipoic acid on AMPK and adiponectin in adipose tissue of low- and high-fat-fed rats. Eur J Nutr 2012; 52:779-87. [PMID: 22664981 DOI: 10.1007/s00394-012-0384-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/17/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lipoic acid (LA) is an antioxidant with antiobesity and antidiabetic properties. Adiponectin is an adipokine with potent anti-inflammatory and insulin-sensitizing properties. AMP-activated protein kinase (AMPK) is a key enzyme involved in cellular energy homeostasis. Activation of AMPK has been considered as a target to reverse the metabolic abnormalities associated with obesity and type 2 diabetes. AIM OF THE STUDY The aim of this study was to determine the effects of LA on AMPK phosphorylation and adiponectin production in adipose tissue of low-fat (control diet) and high-fat diet-fed rats. RESULTS Dietary supplementation with LA reduced body weight and adiposity in control and high-fat-fed rats. LA also reduced basal hyperinsulinemia as well as the homeostasis model assessment (HOMA) levels, an index of insulin resistance, in high-fat-fed rats, which was in part independent of their food intake lowering actions. Furthermore, AMPK phosphorylation was increased in white adipose tissue (WAT) from LA-treated rats as compared with pair-fed animals. Dietary supplementation with LA also upregulated adiponectin gene expression in WAT, while a negative correlation between adiposity-corrected adiponectin levels and HOMA index was found. Our present data suggest that the ability of LA supplementation to prevent insulin resistance in high-fat diet-fed rats might be related in part to the stimulation of AMPK and adiponectin in WAT.
Collapse
Affiliation(s)
- Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, Wongsiriroj N, Nagy HM, Ivanova PT, Scott SA, Knittelfelder O, Rechberger GN, Birner-Gruenberger R, Eder S, Brown HA, Haemmerle G, Oberer M, Lass A, Kershaw EE, Zimmermann R, Zechner R. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 2012; 15:691-702. [PMID: 22560221 PMCID: PMC3361708 DOI: 10.1016/j.cmet.2012.04.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/17/2012] [Accepted: 04/10/2012] [Indexed: 12/12/2022]
Abstract
Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.
Collapse
Affiliation(s)
- Manju Kumari
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Finlay LA, Michels AJ, Butler JA, Smith EJ, Monette JS, Moreau RF, Petersen SK, Frei B, Hagen TM. R-α-lipoic acid does not reverse hepatic inflammation of aging, but lowers lipid anabolism, while accentuating circadian rhythm transcript profiles. Am J Physiol Regul Integr Comp Physiol 2011; 302:R587-97. [PMID: 22049228 DOI: 10.1152/ajpregu.00393.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To determine the effects of age and lipoic acid supplementation on hepatic gene expression, we fed young (3 mo) and old (24 mo) male Fischer 344 rats a diet with or without 0.2% (wt/wt) R-α-lipoic acid (LA) for 2 wk. Total RNA isolated from liver tissue was analyzed by Affymetrix microarray to examine changes in transcriptional profiles. Results showed elevated proinflammatory gene expression in the aging liver and evidence for increased immune cell activation and tissue remodeling, together representing 45% of the age-related transcriptome changes. In addition, age-related increases in transcripts of genes related to fatty acid, triglyceride, and cholesterol synthesis, including acetyl-CoA carboxylase-β (Acacb) and fatty acid synthase (Fasn), were observed. Supplementation of old animals with LA did not reverse the necroinflammatory phenotype but, intriguingly, altered the expression of genes governing circadian rhythm. Most notably, Arntl, Npas2, and Per changed in a coordinated manner with respect to rhythmic transcription. LA further caused a decrease in transcripts of several bile acid and lipid synthesis genes, including Acacb and Fasn, which are regulated by first-order clock transcription factors. Similar effects of LA supplementation on bile acid and lipid synthesis genes were observed in young animals. Transcript changes of lipid metabolism genes were corroborated by a decrease in FASN and ACC protein levels. We conclude that advanced age is associated with a necroinflammatory phenotype and increased lipid synthesis, while chronic LA supplementation influences hepatic genes associated with lipid and energy metabolism and circadian rhythm, regardless of age.
Collapse
Affiliation(s)
- Liam A Finlay
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State Univ., Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cold exposure down-regulates adiponutrin/PNPLA3 mRNA expression and affects its nutritional regulation in adipose tissues of lean and obese Zucker rats. Br J Nutr 2011; 107:1283-95. [PMID: 21914237 DOI: 10.1017/s000711451100434x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adiponutrin/PNPLA3 is a protein highly produced in adipose tissue whose expression is under tight nutritional regulation. It possesses lipogenic/lipolytic capacity and, although adiponutrin polymorphisms are related to obesity, its physiological role is not clear. To help clarify its role, we studied the effect of acute cold exposure on adiponutrin mRNA expression in different adipose tissues of lean/obese Zucker rats subjected to feeding/fasting/refeeding. The effect of cold on the expression of key lipogenic enzymes and on uncoupling protein-1 (UCP1) was evaluated in selected adipose depots. Adiponutrin mRNA levels were also determined in the adipose tissue of isoprenaline-treated rats and in cultured adipocytes treated with noradrenaline, isoprenaline and a selective β3-adrenoceptor (AR) agonist. Adiponutrin expression was strongly down-regulated by cold in the different adipose depots in lean animals, while this down-regulation was impaired in obese rats. Adiponutrin pattern of expression in response to cold correlated positively with that of the lipogenic enzymes and negatively with UCP1 expression. Acute intraperitoneal administration of isoprenaline also produced a decrease in adiponutrin expression in adipose tissue. In vitro data suggest that adiponutrin's inhibitory effect could be mediated, at least in part, by the sympathetic system via β1/β2-AR. In addition, improvement in metabolic parameters related to obesity in cold-exposed animals was related to an improvement in adiponutrin nutritional regulation. Thus, cold inhibition of adiponutrin expression in adipose tissue (which correlates with the response of lipogenic enzymes) supports a physiological role for this protein in lipogenesis. Moreover, alterations in adiponutrin expression and regulation in adipose tissue are related to obesity.
Collapse
|
40
|
Reciprocal effects of α-lipoic acid on adenosine monophosphate-activated protein kinase activity in obesity induced by ovariectomy in rats. Menopause 2011; 18:1010-7. [DOI: 10.1097/gme.0b013e31820db576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria P, Martínez JA, Moreno-Aliaga MJ. Effects of lipoic acid on apelin in 3T3-L1 adipocytes and in high-fat fed rats. J Physiol Biochem 2011; 67:479-86. [DOI: 10.1007/s13105-011-0087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/14/2011] [Indexed: 11/24/2022]
|
42
|
Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Martínez JA, Moreno-Aliaga MJ. Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes. Mol Nutr Food Res 2011; 55:1059-69. [DOI: 10.1002/mnfr.201000534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/17/2010] [Accepted: 01/12/2011] [Indexed: 01/27/2023]
|
43
|
Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, Schoiswohl G, Yang K, Kumari M, Gross RW, Zechner R, Kershaw EE. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res 2011; 52:318-29. [PMID: 21068004 PMCID: PMC3023552 DOI: 10.1194/jlr.m011205] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/02/2010] [Indexed: 12/11/2022] Open
Abstract
PNPLA3 (adiponutrin, calcium-independent phospholipase A(2) epsilon [iPLA(2)ε]) is an adipose-enriched, nutritionally regulated protein that belongs to the patatin-like phospholipase domain containing (PNPLA) family of lipid metabolizing proteins. Genetic variations in the human PNPLA3 gene (i.e., the rs738409 I148M allele) has been strongly and repeatedly associated with fatty liver disease. Although human PNPLA3 has triacylglycerol (TAG) hydrolase and transacylase activities in vitro, its in vivo function and physiological relevance remain controversial. The objective of this study was to determine the metabolic consequences of global targeted deletion of the Pnpla3 gene in mice. We found that Pnpla3 mRNA expression is altered in adipose tissue and liver in response to acute and chronic nutritional challenges. However, global targeted deletion of the Pnpla3 gene in mice did not affect TAG hydrolysis, nor did it influence energy/glucose/lipid homoeostasis or hepatic steatosis/injury. Experimental interventions designed to increase Pnpla3 expression (refeeding, high-sucrose diet, diet-induced obesity, and liver X receptor agonism) likewise failed to reveal differences in the above-mentioned metabolic phenotypes. Expression of the Pnpla3 paralog, Pnpla5, was increased in adipose tissue but not in liver of Pnpla3-deficient mice, but compensatory regulation of genes involved in TAG metabolism was not identified. Together these data argue against a role for Pnpla3 loss-of-function in fatty liver disease or metabolic syndrome in mice.
Collapse
Affiliation(s)
- Mahesh K. Basantani
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Mitch T. Sitnick
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Lingzhi Cai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Daniel S. Brenner
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Noah P. Gardner
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - John Zhong Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Manju Kumari
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Richard W. Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Erin E. Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
44
|
Mong MC, Chao CY, Yin MC. Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. Eur J Pharmacol 2010; 653:82-8. [PMID: 21167151 DOI: 10.1016/j.ejphar.2010.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/05/2010] [Accepted: 12/03/2010] [Indexed: 12/22/2022]
Abstract
The effects of histidine, alanine and carnosine on activity and/or mRNA expression of lipogenic enzymes and sterol regulatory element-binding proteins (SREBPs) in liver and adipose tissue from high fat diet treated mice were examined. Histidine, alanine or carnosine, each agent at 1g/l was added into drinking water for 8-wk supplement. Histidine or carnosine supplement increased hepatic levels of alanine, histidine and carnosine. High fat diet evoked lipogenesis via raising the activity and mRNA expression of glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, SREBP-1a, -1c and -2 in liver and adipose tissue (P<0.05), which consequently increased mice body weight, epididymal fat, and hepatic triglyceride and cholesterol contents (P<0.05). The intake of histidine or carnosine significantly diminished the activity and mRNA expression of malic enzyme, FAS, HMG-CoA reductase, SREBP-1c and SREBP-2, which led to lower body weight, epididymal fat, and hepatic triglyceride and cholesterol levels (P<0.05). Mice consumed high fat diet exhibited hyper-insulinemia, hyper-leptinemia, hypo-adiponectinemia and hypo-ghrelinemia. Histidine or carnosine treatments significantly improved insulin sensitivity and attenuated hyper-insulinemia (P<0.05). These results support that histidine and carnosine are effective agents for mitigating high fat diet induced hepatic steatosis.
Collapse
Affiliation(s)
- Mei-chin Mong
- Department of Health and Nutrition Biotechnology, Asia University, Taichung County, Taiwan, ROC
| | | | | |
Collapse
|
45
|
α-Lipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br J Nutr 2010; 105:31-43. [PMID: 21073761 DOI: 10.1017/s0007114510003107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Lipoic acid (ALA) has been termed the 'ideal' antioxidant, a readily absorbed and bioavailable compound capable of scavenging a number of free radicals, and it has been used for treating diseases in which oxidative stress plays a major role. The present study was designed to gain a better understanding for the positive effects of ALA on the models of acute and chronic inflammation in rats, and also determine its anti-oxidative potency. In an acute model, three doses of ALA (50, 100 and 200 mg/kg) and one dose of indomethacin (25 mg/kg) or diclofenac (25 mg/kg) were administered to rats by oral administration. The paw volumes of the animals were calculated plethysmometrically, and 0·1 ml of 1 % carrageenan (CAR) was injected into the hind paw of each animal 1 h after oral drug administration. The change in paw volume was detected as five replicates every 60 min by plethysmometry. In particular, we investigated the activities of catalase, superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), inducible NO synthase (iNOS) and myeloperoxidase (MPx), and the amounts of lipid peroxidation (LPO) or total GSH in the paw tissues of CAR-injected rats. We showed that ALA exhibited anti-inflammatory effects on both acute and chronic inflammations, and a strongly anti-oxidative potency on linoleic acid oxidation. Moreover, the administration of CAR induced oedema in the paws. ALA significantly inhibited the ability of CAR to induce: (1) the degree of acute inflammation, (2) the rise in MPx activity, (3) the increases of GST and iNOS activities and the amount of LPO and (4) the decreases of GPx, GR and SOD activities and the amount of GSH. In conclusion, these results suggest that the anti-inflammatory properties of ALA, which has a strong anti-oxidative potency, could be related to its positive effects on the antioxidant system in a variety of tissues in rats.
Collapse
|
46
|
Basantani MK, Sitnick MT, Cai L, Brenner DS, Gardner NP, Li JZ, Schoiswohl G, Yang K, Kumari M, Gross RW, Zechner R, Kershaw EE. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res 2010. [PMID: 21068004 DOI: 10.1194/jlr.m01120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PNPLA3 (adiponutrin, calcium-independent phospholipase A(2) epsilon [iPLA(2)ε]) is an adipose-enriched, nutritionally regulated protein that belongs to the patatin-like phospholipase domain containing (PNPLA) family of lipid metabolizing proteins. Genetic variations in the human PNPLA3 gene (i.e., the rs738409 I148M allele) has been strongly and repeatedly associated with fatty liver disease. Although human PNPLA3 has triacylglycerol (TAG) hydrolase and transacylase activities in vitro, its in vivo function and physiological relevance remain controversial. The objective of this study was to determine the metabolic consequences of global targeted deletion of the Pnpla3 gene in mice. We found that Pnpla3 mRNA expression is altered in adipose tissue and liver in response to acute and chronic nutritional challenges. However, global targeted deletion of the Pnpla3 gene in mice did not affect TAG hydrolysis, nor did it influence energy/glucose/lipid homoeostasis or hepatic steatosis/injury. Experimental interventions designed to increase Pnpla3 expression (refeeding, high-sucrose diet, diet-induced obesity, and liver X receptor agonism) likewise failed to reveal differences in the above-mentioned metabolic phenotypes. Expression of the Pnpla3 paralog, Pnpla5, was increased in adipose tissue but not in liver of Pnpla3-deficient mice, but compensatory regulation of genes involved in TAG metabolism was not identified. Together these data argue against a role for Pnpla3 loss-of-function in fatty liver disease or metabolic syndrome in mice.
Collapse
Affiliation(s)
- Mahesh K Basantani
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Trattner S, Ruyter B, Ostbye TK, Kamal-Eldin A, Moazzami A, Pan J, Gjoen T, Brännäs E, Zlabek V, Pickova J. Influence of dietary sesamin, a bioactive compound on fatty acids and expression of some lipid regulating genes in Baltic Atlantic salmon (Salmo salar L.) juveniles. Physiol Res 2010; 60:125-37. [PMID: 20945950 DOI: 10.33549/physiolres.932068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effects of inclusion of sesamin / episesamin in Baltic Atlantic salmon (Salmo salar L.) diets based on vegetable oils were studied. The study was designed as a dose response study with two control diets, one diet based on fish oil (FO) and one diet based on a mixture of linseed and sunflower oil (6:4 by vol.) (MO). As experimental diets three different levels of inclusion of sesamin / episesamin (hereafter named sesamin) to the MO based diet and one diet based on sesame oil and linseed oil (SesO) (1:1 by vol.) were used. The dietary oils were mirrored in the fatty acid profile of the white muscle. Sesamin significantly decreased the levels of 18:3n-3 in the white muscle phospholipid (PL) fraction of all groups fed sesamin, no significant differences were found in the triacylglycerol fraction (TAG). Slightly increased levels of docosahexaenoic acid (22:6n-3, DHA) in PL and TAG were found in some of the sesamin fed groups. Sesamin significantly affected the expression of peroxisome proliferator-activated receptor alpha, scavenger receptor type B and hormone sensitive lipase, in agreement with previous studies on rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) hepatocytes published by our group. No significant effects on toxicological response measured as ethoxyresorufin O-deethylase activity was found. The total cytochrome P450 enzymes were significantly higher in MO 0.29 and SesO group. The amount of alpha- and gamma-tocopherols in liver and the amount of gamma-tocopherol in white muscle were significantly lower in fish fed the FO diet compared to the MO diet, but no difference after inclusion of sesamin was found in this study. Increased inclusion of sesamin increased the levels of sesamin and episesamin in the liver, but did not affect the amounts in white muscle.
Collapse
Affiliation(s)
- S Trattner
- Department of Food Science, SLU, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Masharani U, Gjerde C, Evans JL, Youngren JF, Goldfine ID. Effects of controlled-release alpha lipoic acid in lean, nondiabetic patients with polycystic ovary syndrome. J Diabetes Sci Technol 2010; 4:359-64. [PMID: 20307398 PMCID: PMC2864173 DOI: 10.1177/193229681000400218] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The purpose of this study was to determine whether a preparation of controlled-release alpha lipoic acid (CRLA) influences features of the polycystic ovary syndrome (PCOS). METHODS We administered CRLA 600 mg twice daily for 16 weeks to six lean, nondiabetic patients with PCOS. Insulin sensitivity was measured by the euglycemic, hyperinsulinemic clamp. Plasma lipids were measured by vertical ultracentrifugation. Oxidative stress markers were measured in serum. RESULTS At the end of 16 weeks of CRLA treatment, there was a 13.5% improvement in insulin sensitivity as determined by the euglycemic, hyperinsulinemic clamp (p < .03). There was also a lowering of triglyceride levels (p < .04) and a shift in the distribution of low-density lipoprotein (LDL) particles toward the larger, more buoyant LDL subclass fraction. Two of the subjects who were not on oral contraception had an increased number of menstrual cycles. Controlled-release alpha lipoic acid treatment, however, was neither associated with an increase in plasma antioxidant capacity nor with a reduction in plasma lipid oxidation products. CONCLUSIONS These data suggest that the CRLA has positive effects on the PCOS phenotype. The effects of CRLA, however, may have been exerted through a mechanism not involving changes in oxidative stress.
Collapse
Affiliation(s)
- Umesh Masharani
- Department of Medicine, University of California, San Francisco, Diabetes Center, San Francisco, California 94143 , USA.
| | | | | | | | | |
Collapse
|
49
|
Gotoh N, Nagao K, Onoda S, Shirouchi B, Furuya K, Nagai T, Mizobe H, Ichioka K, Watanabe H, Yanagita T, Wada S. Effects of three different highly purified n-3 series highly unsaturated fatty acids on lipid metabolism in C57BL/KsJ-db/db mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:11047-11054. [PMID: 19848389 DOI: 10.1021/jf9026553] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Triglycerides (TG) consisting of highly purified (>97%) n-3 series highly unsaturated fatty acids, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), were administered to C57BL/KsJ-db/db mice for 4 weeks by pair-feeding to compare their effects on lipid metabolism and to evaluate the effects of DPA on lipid metabolism. The hepatic TG level and total amount was decreased by treatment with DHA and DPA compared to the control. The efficacy of DPA was greater than that of EPA, but less than that of DHA. In contrast, EPA had the greatest serum TG reducing effect. The hepatic cytosol fraction of the DHA-treated group contained the lowest fatty acid synthase (FAS) and malic enzyme (ME) activity levels. Furthermore, the DHA-treated group contained the highest serum adiponectin concentrations. These findings indicate that the strong hepatic TG-lowering effect of DHA is due to the suppression of TG synthesis. The same tendencies were observed in DPA-treated mice, and the effect was stronger than that observed in EPA-treated mice, but equivalent to that observed in DHA-treated mice. Based on these results, DPA possesses lipid metabolism-improving effects. The beneficial effects of DPA for lipid metabolism were not superior to those of EPA and DHA, and the effect was always intermediate between those of EPA and DHA.
Collapse
Affiliation(s)
- Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion. Arch Biochem Biophys 2009; 485:63-71. [PMID: 19232511 DOI: 10.1016/j.abb.2009.01.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/20/2009] [Accepted: 01/25/2009] [Indexed: 01/22/2023]
Abstract
Elevated blood triacylglycerol (TG) is a significant contributing factor to the current epidemic of obesity-related health disorders, including type-2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. The observation that mice lacking the enzyme sn-glycerol-3-phosphate acyltransferase are protected from insulin resistance suggests the possibility that the regulation of TG synthesis be a target for therapy. Five-week-old Zucker Diabetic Fatty (ZDF) rats were fed a diet containing (R)-alpha-lipoic acid (LA, approximately 200mg/kg body weight per day) for 5 weeks. LA offset the rise in blood and liver TG by inhibiting liver lipogenic gene expression (e.g. sn-glycerol-3-phosphate acyltransferase-1 and diacylglycerol O-acyltransferase-2), lowering hepatic TG secretion, and stimulating clearance of TG-rich lipoproteins. LA-induced TG lowering was not due to the anorectic properties of LA, as pair-fed rats developed hypertriglyceridemia. Livers from LA-treated rats exhibited elevated glycogen content, suggesting dietary carbohydrates were stored as glycogen rather than becoming lipogenic substrate. Although AMP-activated protein kinase (AMPK) reportedly mediates the metabolic effects of LA in rodents, no change in AMPK activity was observed, suggesting LA acted independently of this kinase. The hepatic expression of peroxisome proliferator activated receptor alpha (PPARalpha) target genes involved in fatty acid beta-oxidation was either unchanged or decreased with LA, indicating a different mode of action than for fibrate drugs. Given its strong safety record, LA may have potential clinical applications for the treatment or prevention of hypertriglyceridemia and diabetic dyslipidemia.
Collapse
|