1
|
Sánchez MC, Herráiz A, Ciudad MJ, Arias M, Alonso R, Doblas C, Llama-Palacios A, Collado L. Metabolomics and Biochemical Benefits of Multivitamin and Multimineral Supplementation in Healthy Individuals: A Pilot Study. Foods 2024; 13:2207. [PMID: 39063291 PMCID: PMC11275291 DOI: 10.3390/foods13142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Scientific evidence regarding the effectiveness of vitamin and mineral supplements in healthy individuals remains scarce. In a randomized, double-blind study, 30 healthy individuals were assigned to receive a single daily dose of multivitamin and multimineral supplementation or a double daily dose for 30 days. Before and after the intake, an untargeted metabolomics assay for serum metabolites was conducted by hydrophilic interaction liquid chromatography-mass spectrometry, and clinical assessments of peripheral blood samples were performed. A paired t-test for metabolic analysis, adjusted using the false discovery rate (FDR) and p-value correction method (rate of change > 2 and FDR < 0.05), the Shapiro-Wilk test, Student's t-test, and the Mann-Whitney U test were applied depending on the variable, with a 5% significance level. An impact on oxidative stress was observed, with a significant reduction in homocysteine levels and an increment of pyridoxic acid (vitamin B6). The effect on energy metabolism was shown by a significant increase in diverse metabolites, such as linoleoylcarnitine. Serum iron and calcium levels were also impacted. Overall, we observed a nutritional balance compatible with a good state of health. In conclusion, beneficial effects on adult health were demonstrated in relation to oxidative stress, energy metabolism, and nutritional balance.
Collapse
Affiliation(s)
- María C. Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
| | - María J. Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Marta Arias
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Raquel Alonso
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Carmen Doblas
- Human Nutrition and Dietetics, Faculty of Medicine, University Complutense, 28040 Madrid, Spain;
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
2
|
Nature of the evidence base and strengths, challenges and recommendations in the area of nutrition and health claims: a position paper from the Academy of Nutrition Sciences. Br J Nutr 2022:1-18. [DOI: 10.1017/s0007114522003300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
The regulation of health claims for foods by the Nutrition and Health Claims Regulation is intended, primarily, to protect consumers from unscrupulous claims by ensuring claims are accurate and substantiated with high quality scientific evidence. In this position paper, the Academy of Nutrition Sciences uniquely recognises the strengths of the transparent, rigorous scientific assessment by independent scientists of the evidence underpinning claims in Europe, an approach now independently adopted in UK. Further strengths are the separation of risk assessment from risk management, and the extensive guidance for those submitting claims. Nevertheless, four main challenges in assessing the scientific evidence and context remain: (i) defining a healthy population, (ii) undertaking efficacy trials for foods, (iii) developing clearly defined biomarkers for some trial outcomes and (iv) ensuring the composition of a food bearing a health claim is consistent with generally accepted nutrition principles. Although the Regulation aims to protect the consumer from harm, we identify some challenges from consumer research: (i) making the wording of some health claims more easily understood and (ii) understanding the implications of the misperceptions around products bearing nutrition or health claims. Recommendations are made to overcome these challenges. Further, the Academy recommends that a dialogue is developed with the relevant national bodies about Article 12(c) in the Regulation. This should further clarify the GB Guidance to avoid the current non-level playing field between health professionals and untrained ‘influencers’ who are not covered by this Article about the communication of authorised claims within commercial communications.
Collapse
|
3
|
Zhang R, Yang Y, Min M, Li Y. Effect of dietary supplements on Se bioavailability: A comprehensive in vitro and in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113193. [PMID: 35030521 DOI: 10.1016/j.ecoenv.2022.113193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and humans, and it is present in many different forms with different levels of bioaccessibility in food. Based on the maldistribution of Se and overall low level of Se dietary intake in China, an integrated study was conducted in this thesis to provide references for the regulation of Se nutrition. An in vitro simulation test was used to monitor the concentration effects, the impacts of dietary supplement combinations on the bioaccessibility of Se were examined in rice, and a model animal experiment (in vivo) was used to evaluate the practicability of the Se nutrition regulation scheme. The main results were as follows: the bioaccessibility of Se was effectively increased by 30 mg·d-1 VE (VE), 300 mg·d-1 VC + 300 μg·d-1 VB9 (VC+VB9) and 30 mg·d-1 VE + 300 mg·d-1 VC + 300 μg·d-1 VB9 (3IN1) (P < 0.05). The results of the healthy broiler tests showed that the 3 treatments increased the weight and Se content of the broilers, and 3IN1 had the most significant effect (P < 0.05). VC+VB9 was the best at promoting GPx activity, while 3IN1 was the best at promoting SOD activity and the inhibition of MDA content in broilers. The results suggested that VE, VC+VB9 and 3IN1 can benefit the bioavailability of Se and the antioxidant capacity of the body. The results can be used as a scientific reference for Se nutrition regulation.
Collapse
Affiliation(s)
- Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Min
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Witkamp RF. Nutrition to Optimise Human Health-How to Obtain Physiological Substantiation? Nutrients 2021; 13:2155. [PMID: 34201670 PMCID: PMC8308379 DOI: 10.3390/nu13072155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Demonstrating in an unambiguous manner that a diet, let alone a single product, 'optimizes' health, presents an enormous challenge. The least complicated is when the starting situation is clearly suboptimal, like with nutritional deficiencies, malnutrition, unfavourable lifestyle, or due to disease or ageing. Here, desired improvements and intervention strategies may to some extent be clear. However, even then situations require approaches that take into account interactions between nutrients and other factors, complex dose-effect relationships etc. More challenging is to substantiate that a diet or a specific product optimizes health in the general population, which comes down to achieve perceived, 'non-medical' or future health benefits in predominantly healthy persons. Presumed underlying mechanisms involve effects of non-nutritional components with subtle and slowly occurring physiological effects that may be difficult to translate into measurable outcomes. Most promising strategies combine classical physiological concepts with those of 'multi-omics' and systems biology. Resilience-the ability to maintain or regain homeostasis in response to stressors-is often used as proxy for a particular health domain. Next to this, quantifying health requires personalized strategies, measurements preferably carried out remotely, real-time and in a normal living environment, and experimental designs other than randomized controlled trials (RCTs), for example N-of-1 trials.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research (WUR), 6700 AA Wageningen, The Netherlands
| |
Collapse
|
5
|
Raiten DJ, Combs GF, Steiber AL, Bremer AA. Perspective: Nutritional Status as a Biological Variable (NABV): Integrating Nutrition Science into Basic and Clinical Research and Care. Adv Nutr 2021; 12:1599-1609. [PMID: 34009250 PMCID: PMC8483963 DOI: 10.1093/advances/nmab046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
The field of nutrition has evolved from one focused primarily on discovery of the identities, metabolic functions, and requirements for essential nutrients to one focused on the application of that knowledge to the development and implementation of dietary recommendations to promote health and prevent disease. This evolution has produced a deeper appreciation of not only the roles of nutrients, but also factors affecting their functions in increasingly complex global health contexts. The intersection of nutrition with an increasingly more complex global health context necessitates a view of nutritional status as a biological variable (NABV), the study of which includes an appreciation that nutritional status is: 1) not limited to dietary exposure; 2) intimately and inextricably involved in all aspects of human health promotion, disease prevention, and treatment; and 3) both an input and an outcome of health and disease. This expanded view of nutrition will inform future research by facilitating considerations of the contexts and variability associated with the many interacting factors affecting and affected by nutritional status. It will also demand new tools to study multifactorial relations to the end of increasing precision and the development of evidence-based, safe, and effective standards of health care, dietary interventions, and public health programs.
Collapse
Affiliation(s)
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA,
USA
| | | | - Andrew A Bremer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Effects of Dietary Supplements on the Bioaccessibility of Se, Zn and Cd in Rice: Preliminary Observations from In Vitro Gastrointestinal Simulation Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144978. [PMID: 32664443 PMCID: PMC7399922 DOI: 10.3390/ijerph17144978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Trace elements such as selenium (Se) and zinc (Zn) are essential elements in the human body, while cadmium (Cd) has no physiological function. A high proportion of people consume dietary supplements to enhance the performance of the body or alter the nutrient contents within the body. Therefore, this study was conducted to evaluate the interaction effects of several popular dietary supplements on the bioaccessibility of Se, Zn and Cd in rice with the hope of identifying dietary supplements that can increase rice Se and Zn bioaccessibility but decrease rice Cd bioaccessibility. The results from in vitro gastrointestinal simulation tests showed that the bioaccessibility of these elements in rice was in the order of Cd (52.07%) > Zn (36.63%) > Se (10.19%) during the gastric phase and Zn (26.82%) > Cd (18.72%) > Se (14.70%) during the intestinal phase. The bioaccessibility of Se during the intestinal phase was greater than that during the gastric phase, and the bioaccessibility of Zn and Cd were the opposite. The bioaccessibility of Se significantly increased in response to vitamin C (VC), vitamin E (VE), vitamin B6 (VB6) and vitamin B9 (VB9), especially VC, which also increased the bioaccessibility of Zn and decreased that of Cd. Procyanidins (OPC), methionine (Met) and coenzyme Q10 (Q10) significantly reduced the bioaccessibility of Se. These results suggest that the reasonable use of dietary supplements can effectively regulate the in vivo contents of trace elements, which provide valuable information for developing health interventions to address problems for specific people, especially selenium-deficient people.
Collapse
|
7
|
Mathias MG, Coelho‐Landell CDA, Scott‐Boyer M, Lacroix S, Morine MJ, Salomão RG, Toffano RBD, Almada MORDV, Camarneiro JM, Hillesheim E, de Barros TT, Camelo‐Junior JS, Campos Giménez E, Redeuil K, Goyon A, Bertschy E, Lévêques A, Oberson J, Giménez C, Carayol J, Kussmann M, Descombes P, Métairon S, Draper CF, Conus N, Mottaz SC, Corsini GZ, Myoshi SKB, Muniz MM, Hernandes LC, Venâncio VP, Antunes LMG, da Silva RQ, Laurito TF, Rossi IR, Ricci R, Jorge JR, Fagá ML, Quinhoneiro DCG, Reche MC, Silva PVS, Falquetti LL, da Cunha THA, Deminice TMM, Tambellini TH, de Souza GCA, de Oliveira MM, Nogueira‐Pileggi V, Matsumoto MT, Priami C, Kaput J, Monteiro JP. Clinical and Vitamin Response to a Short-Term Multi-Micronutrient Intervention in Brazilian Children and Teens: From Population Data to Interindividual Responses. Mol Nutr Food Res 2018; 62:e1700613. [PMID: 29368422 PMCID: PMC6120145 DOI: 10.1002/mnfr.201700613] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/02/2017] [Indexed: 12/11/2022]
Abstract
SCOPE Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. METHODS AND RESULTS A 6-week multivitamin/mineral intervention is conducted in 9-13 year olds. Participants (136) are (i) their own control (n-of-1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6-week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. CONCLUSIONS The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals.
Collapse
Affiliation(s)
| | | | - Marie‐Pier Scott‐Boyer
- The Microsoft Research, Centre for Computational and Systems Biology (COSBI)University of TrentoRoveretoItaly
| | - Sébastien Lacroix
- The Microsoft Research, Centre for Computational and Systems Biology (COSBI)University of TrentoRoveretoItaly
| | - Melissa J. Morine
- The Microsoft Research, Centre for Computational and Systems Biology (COSBI)University of TrentoRoveretoItaly
- Department of MathematicsUniversity of TrentoTrentoItaly
| | - Roberta Garcia Salomão
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | | | | | - Elaine Hillesheim
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nelly Conus
- Nestlé Institute of Health SciencesLausanneSwitzerland
| | | | | | | | - Mariana Mendes Muniz
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | - Vinícius Paula Venâncio
- School of Pharmaceutical Science of Ribeirao PretoUniversity of São PauloRibeirao PretoBrazil
| | | | | | - Taís Fontellas Laurito
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | - Isabela Ribeiro Rossi
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | - Raquel Ricci
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | - Jéssica Ré Jorge
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | - Mayara Leite Fagá
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | | | | | - Letícia Lima Falquetti
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | | | | | | | | | - Vicky Nogueira‐Pileggi
- Department of PediatricsFaculty of MedicineNutrition and MetabolismUniversity of São Paulo
| | | | - Corrado Priami
- The Microsoft Research, Centre for Computational and Systems Biology (COSBI)University of TrentoRoveretoItaly
- Department of MathematicsUniversity of TrentoTrentoItaly
| | - Jim Kaput
- Nestlé Institute of Health SciencesLausanneSwitzerland
| | | |
Collapse
|
8
|
van den Broek TJ, Bakker GCM, Rubingh CM, Bijlsma S, Stroeve JHM, van Ommen B, van Erk MJ, Wopereis S. Ranges of phenotypic flexibility in healthy subjects. GENES & NUTRITION 2017; 12:32. [PMID: 29225708 PMCID: PMC5718019 DOI: 10.1186/s12263-017-0589-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/14/2022]
Abstract
BACKGROUND A key feature of metabolic health is the ability to adapt upon dietary perturbations. A systemic review defined an optimal nutritional challenge test, the "PhenFlex test" (PFT). Recently, it has been shown that the PFT enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of metabolic health. Furthermore, it was demonstrated that quantification of PFT response was more sensitive as compared to fasting markers in demonstrating reduced phenotypic flexibility in metabolically impaired type 2 diabetes subjects. METHODS This study aims to demonstrate that quantification of PFT response can discriminate between different states of health within the healthy range of the population. Therefore, 100 healthy subjects were enrolled (50 males, 50 females) ranging in age (young, middle, old) and body fat percentage (low, medium, high), assuming variation in phenotypic flexibility. Biomarkers were selected to quantify main processes which characterize phenotypic flexibility in response to PFT: flexibility in glucose, lipid, amino acid and vitamin metabolism, and metabolic stress. Individual phenotypic flexibility was visualized using the "health space" by representing the four processes on the health space axes. By quantifying and presenting the study subjects in this space, individual phenotypic flexibility was visualized. RESULTS Using the "health space" visualization, differences between groups as well as within groups from the healthy range of the population can be easily and intuitively assessed. The health space showed a different adaptation to the metabolic PhenFlex test in the extremes of the recruited population; persons of young age with low to normal fat percentage had a markedly different position in the health space as compared to persons from old age with normal to high fat percentage. CONCLUSION The results of the metabolic PhenFlex test in conjunction with the health space reliably assessed health on an individual basis. This quantification can be used in the future for personalized health quantification and advice.
Collapse
Affiliation(s)
| | | | - C. M. Rubingh
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - S. Bijlsma
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | | | - B. van Ommen
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - M. J. van Erk
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - S. Wopereis
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| |
Collapse
|
9
|
Laville M, Segrestin B, Alligier M, Ruano-Rodríguez C, Serra-Majem L, Hiesmayr M, Schols A, La Vecchia C, Boirie Y, Rath A, Neugebauer EAM, Garattini S, Bertele V, Kubiak C, Demotes-Mainard J, Jakobsen JC, Djurisic S, Gluud C. Evidence-based practice within nutrition: what are the barriers for improving the evidence and how can they be dealt with? Trials 2017; 18:425. [PMID: 28893297 PMCID: PMC5594518 DOI: 10.1186/s13063-017-2160-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Evidence-based clinical research poses special barriers in the field of nutrition. The present review summarises the main barriers to research in the field of nutrition that are not common to all randomised clinical trials or trials on rare diseases and highlights opportunities for improvements. METHODS Systematic academic literature searches and internal European Clinical Research Infrastructure Network (ECRIN) communications during face-to-face meetings and telephone conferences from 2013 to 2017 within the context of the ECRIN Integrating Activity (ECRIN-IA) project. RESULTS Many nutrients occur in multiple forms that differ in biological activity, and several factors can alter their bioavailability which raises barriers to their assessment. These include specific difficulties with blinding procedures, with assessments of dietary intake, and with selecting appropriate outcomes as patient-centred outcomes may occur decennia into the future. The methodologies and regulations for drug trials are, however, applicable to nutrition trials. CONCLUSIONS Research on clinical nutrition should start by collecting clinical data systematically in databases and registries. Measurable patient-centred outcomes and appropriate study designs are needed. International cooperation and multistakeholder engagement are key for success.
Collapse
Affiliation(s)
- Martine Laville
- Centre de Recherche en Nutrition Humaine Rhone-Alpes, French Obesity Centre of Excellence (FCRIN-FORCE), Lyon 1 University, Hospices Civils de Lyon, Lyon, France
| | - Berenice Segrestin
- Centre de Recherche en Nutrition Humaine Rhone-Alpes, French Obesity Centre of Excellence (FCRIN-FORCE), Lyon 1 University, Hospices Civils de Lyon, Lyon, France
| | - Maud Alligier
- Centre de Recherche en Nutrition Humaine Rhone-Alpes, French Obesity Centre of Excellence (FCRIN-FORCE), Lyon 1 University, Hospices Civils de Lyon, Lyon, France
| | - Cristina Ruano-Rodríguez
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN, CB06/03), Instituto de Salud Carlos III (ISCII), Spanish Goverment, Madrid, Spain
| | - Lluis Serra-Majem
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN, CB06/03), Instituto de Salud Carlos III (ISCII), Spanish Goverment, Madrid, Spain
| | - Michael Hiesmayr
- Division of Cardiac, Thoracic, Vascular Anaesthesia and Intensive Care, Vienna General Hospital, Währinger Gürtel, Vienna, Austria
| | - Annemie Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano Via Vanzetti, Milan, Italy
| | - Yves Boirie
- Service de Nutrition Clinique, CHU de Clermont-Ferrand, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Ana Rath
- Orphanet, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Edmund A M Neugebauer
- Brandenburg Medical School, Neuruppin, and Witten/Herdecke University, Witten, Germany
| | - Silvio Garattini
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Vittorio Bertele
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Christine Kubiak
- European Clinical Research Infrastructure Network (ECRIN), Paris, France
| | | | - Janus C Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK 2100, Copenhagen, Denmark.,Department of Cardiology, Holbæk Hospital, Holbaek, Denmark
| | - Snezana Djurisic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK 2100, Copenhagen, Denmark.
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK 2100, Copenhagen, Denmark.
| |
Collapse
|
10
|
van Ommen B, van den Broek T, de Hoogh I, van Erk M, van Someren E, Rouhani-Rankouhi T, Anthony JC, Hogenelst K, Pasman W, Boorsma A, Wopereis S. Systems biology of personalized nutrition. Nutr Rev 2017; 75:579-599. [PMID: 28969366 PMCID: PMC5914356 DOI: 10.1093/nutrit/nux029] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Personalized nutrition is fast becoming a reality due to a number of technological, scientific, and societal developments that complement and extend current public health nutrition recommendations. Personalized nutrition tailors dietary recommendations to specific biological requirements on the basis of a person's health status and goals. The biology underpinning these recommendations is complex, and thus any recommendations must account for multiple biological processes and subprocesses occurring in various tissues and must be formed with an appreciation for how these processes interact with dietary nutrients and environmental factors. Therefore, a systems biology-based approach that considers the most relevant interacting biological mechanisms is necessary to formulate the best recommendations to help people meet their wellness goals. Here, the concept of "systems flexibility" is introduced to personalized nutrition biology. Systems flexibility allows the real-time evaluation of metabolism and other processes that maintain homeostasis following an environmental challenge, thereby enabling the formulation of personalized recommendations. Examples in the area of macro- and micronutrients are reviewed. Genetic variations and performance goals are integrated into this systems approach to provide a strategy for a balanced evaluation and an introduction to personalized nutrition. Finally, modeling approaches that combine personalized diagnosis and nutritional intervention into practice are reviewed.
Collapse
Affiliation(s)
- Ben van Ommen
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Tim van den Broek
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Iris de Hoogh
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Marjan van Erk
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Eugene van Someren
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Tanja Rouhani-Rankouhi
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | | | - Koen Hogenelst
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Wilrike Pasman
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - André Boorsma
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Suzan Wopereis
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| |
Collapse
|
11
|
van den Broek TJ, Kremer BHA, Marcondes Rezende M, Hoevenaars FPM, Weber P, Hoeller U, van Ommen B, Wopereis S. The impact of micronutrient status on health: correlation network analysis to understand the role of micronutrients in metabolic-inflammatory processes regulating homeostasis and phenotypic flexibility. GENES AND NUTRITION 2017; 12:5. [PMID: 28194237 PMCID: PMC5299688 DOI: 10.1186/s12263-017-0553-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/19/2017] [Indexed: 01/06/2023]
Abstract
Background Vitamins and carotenoids are key micronutrients facilitating the maintenance of health, as evidenced by the increased risk of disease with low intake. Optimal phenotypic flexibility, i.e., the ability to respond to a physiological challenge, is an essential indicator of health status. Therefore, health can be measured by applying a challenge test and monitoring the response of relevant phenotypic processes. In this study, we assessed the correlation of three fat-soluble vitamins, (i.e., vitamin A or retinol, vitamin D3, two homologues of vitamin E) and four carotenoids (i.e., α-carotene, β-carotene, β-cryptoxanthin, and lycopene), with characteristics of metabolic and inflammatory parameters at baseline and in response to a nutritional challenge test (NCT) in a group of 36 overweight and obese male subjects, using proteomics and metabolomics platforms. The phenotypic flexibility concept implies that health can be measured by the ability to adapt to a NCT, which may offer a more sensitive way to assess changes in health status of healthy subjects. Results Correlation analyses of results after overnight fasting revealed a rather evenly distributed network in a number of relatively strong correlations per micronutrient, with minor overlap between correlation profiles of each compound. Correlation analyses of challenge response profiles for metabolite and protein parameters with micronutrient status revealed a network that is more skewed towards α-carotene and γ-tocopherol suggesting a more prominent role for these micronutrients in the maintenance of phenotypic flexibility. Comparison of the networks revealed that there is merely overlap of two parameters (inositol and oleic acid (C18:1)) affirming that there is a specific biomarker response profile upon NCT. Conclusions Our study shows that applying the challenge test concept is able to reveal previously unidentified correlations between specific micronutrients and health-related processes, with potential relevance for maintenance of health that were not observed by correlating homeostatic measurements. This approach will contribute to insights on the influence of micronutrients on health and help to create efficient micronutrient intervention programs. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0553-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim J van den Broek
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Bas H A Kremer
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Marisa Marcondes Rezende
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Femke P M Hoevenaars
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Peter Weber
- DSM Nutritional Products, Analytical Research Centre and Human Nutrition and Health Department, Basel, Switzerland
| | - Ulrich Hoeller
- DSM Nutritional Products, Analytical Research Centre and Human Nutrition and Health Department, Basel, Switzerland
| | - Ben van Ommen
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Suzan Wopereis
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| |
Collapse
|
12
|
Kaput J, Perozzi G, Radonjic M, Virgili F. Propelling the paradigm shift from reductionism to systems nutrition. GENES & NUTRITION 2017; 12:3. [PMID: 28138347 PMCID: PMC5264346 DOI: 10.1186/s12263-016-0549-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
The complex physiology of living organisms represents a challenge for mechanistic understanding of the action of dietary bioactives in the human body and of their possible role in health and disease. Animal, cell, and microbial models have been extensively used to address questions that could not be pursued experimentally in humans, posing an additional level of complexity in translation of the results to healthy and diseased metabolism. The past few decades have witnessed a surge in development of increasingly sensitive molecular techniques and bioinformatic tools for storing, managing, and analyzing increasingly large datasets. Application of such powerful means to molecular nutrition research led to a major leap in study designs and experimental approaches yielding experimental data connecting dietary components to human health. Scientific journals bear major responsibilities in the advancement of science. As primary actors of dissemination to the scientific community, journals can impose rigid criteria for publishing only sound, reliable, and reproducible data. Journal policies are meant to guide potential authors to adopt the most updated standardization guidelines and shared best practices. Such policies evolve in parallel with the evolution of novel approaches and emerging challenges and therefore require constant updating. We highlight in this manuscript the major scientific issues that led to formulating new, updated journal policies for Genes & Nutrition, a journal which targets the growing field of nutritional systems biology interfacing personalized nutrition and preventive medicine, with the ultimate goal of promoting health and preventing or treating disease. We focus here on relevant issues requiring standardization in nutrition research. We also introduce new sections on human genetic variation and nutritional bioinformatics which follow the evolution of nutritional science into the twenty-first century.
Collapse
Affiliation(s)
- Jim Kaput
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Fabio Virgili
- CREA-NUT, Food & Nutrition Research Centre, Rome, Italy
| |
Collapse
|
13
|
Scott-Boyer MP, Lacroix S, Scotti M, Morine MJ, Kaput J, Priami C. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases. Sci Rep 2016; 6:19633. [PMID: 26777674 PMCID: PMC4726080 DOI: 10.1038/srep19633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900's at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases.
Collapse
Affiliation(s)
- Marie Pier Scott-Boyer
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy
| | - Sébastien Lacroix
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy
| | - Marco Scotti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.,GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Melissa J Morine
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy
| | - Jim Kaput
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.,Department of Mathematics, University of Trento, Italy
| |
Collapse
|
14
|
Monteiro JP, Kussmann M, Kaput J. The genomics of micronutrient requirements. GENES & NUTRITION 2015; 10:466. [PMID: 25981693 PMCID: PMC4434349 DOI: 10.1007/s12263-015-0466-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 01/04/2023]
Abstract
Healthy nutrition is accepted as a cornerstone of public health strategies for reducing the risk of noncommunicable conditions such as obesity, cardiovascular disease, and related morbidities. However, many research studies continue to focus on single or at most a few factors that may elicit a metabolic effect. These reductionist approaches resulted in: (1) exaggerated claims for nutrition as a cure or prevention of disease; (2) the wide use of empirically based dietary regimens, as if one fits all; and (3) frequent disappointment of consumers, patients, and healthcare providers about the real impact nutrition can make on medicine and health. Multiple factors including environment, host and microbiome genetics, social context, the chemical form of the nutrient, its (bio)availability, and chemical and metabolic interactions among nutrients all interact to result in nutrient requirement and in health outcomes. Advances in laboratory methodologies, especially in analytical and separation techniques, are making the chemical dissection of foods and their availability in physiological tissues possible in an unprecedented manner. These omics technologies have opened opportunities for extending knowledge of micronutrients and of their metabolic and endocrine roles. While these technologies are crucial, more holistic approaches to the analysis of physiology and environment, novel experimental designs, and more sophisticated computational methods are needed to advance our understanding of how nutrition influences health of individuals.
Collapse
Affiliation(s)
- Jacqueline Pontes Monteiro
- />Department of Pediatrics, Faculty of Medicine, Nutrition and Metabolism, University of São Paulo, Bandeirantes Avenue, HCFMRP Campus USP, 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Martin Kussmann
- />Nestlé Institute of Health Sciences, Innovation Square, EPFL Campus, 1015 Lausanne, Switzerland
- />Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Jim Kaput
- />Nestlé Institute of Health Sciences, Innovation Square, EPFL Campus, 1015 Lausanne, Switzerland
- />Service d’endorcrinologie, diabetologie et metabolosime du CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Ojeda AG, Wrobel K, Escobosa ARC, Elguera JCT, Garay-Sevilla ME, Wrobel K. Molybdenum and copper in four varieties of common bean (Phaseolus vulgaris): new data of potential utility in designing healthy diet for diabetic patients. Biol Trace Elem Res 2015; 163:244-54. [PMID: 25433581 DOI: 10.1007/s12011-014-0191-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 11/20/2014] [Indexed: 01/15/2023]
Abstract
Experimental evidence indicates that diabetic patients and individuals with impaired copper homeostasis could be at risk of molybdenum toxicity. A self-administered food frequency questionnaire revealed that in central Mexico, diabetic patients with severe complications tend to consume beans more often than individuals with less advanced disease. Four varieties of Phaseolus vulgaris were comparatively evaluated as the dietary sources of two elements; the results showed molybdenum concentration decreasing in the order peruvian > pinto > mayflower > black, whereas for copper, the order was peruvian > pinto ∼ black > mayflower. The two elements were determined in pre-soaking water, cooked legumes, and broth obtained in cooking procedure; an in vitro gut model was also applied to assess potentially bioavailable fraction of both elements in cooked beans. The results indicated that the black variety would be the healthiest bean choice for diabetic patients and individuals susceptible to Mo toxicity. Relatively low total molybdenum was found in this variety (2.9 ± 1.4 versus 4.3-10.9 μg g(-1) in other types), element availability was also low (15 % in supernatant from enzymolysis, 24.9 % in combined broth + supernatant fractions), and the molar ratio of Cu/Mo was the highest among four types (41, versus Cu/Mo <10 in peruvian, pinto, or mayflower). Considering peruvian and pinto beans, broth elimination would help to lower molybdenum intake with marginal effect on Cu/Mo molar ratio. This recommendation would be especially important for peruvian variety, which provided 1090, 803, and 197 μg day(-1) of molybdenum in raw grains, broth + supernatant, and supernatant, respectively (based on 100-g portion), exceeding the recommended daily allowance of 45 μg day(-1).
Collapse
Affiliation(s)
- Armando Gómez Ojeda
- Department of Chemistry, University of Guanajuato, L de Retana 5, 36000, Guanajuato, Mexico
| | | | | | | | | | | |
Collapse
|
16
|
Zhu Y, Hollis JH. Tooth loss and its association with dietary intake and diet quality in American adults. J Dent 2014; 42:1428-35. [DOI: 10.1016/j.jdent.2014.08.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/09/2023] Open
|
17
|
Abstract
The term "Translational Genomics" reflects both title and mission of this new journal. "Translational" has traditionally been understood as "applied research" or "development", different from or even opposed to "basic research". Recent scientific and societal developments have triggered a re-assessment of the connotation that "translational" and "basic" are either/or activities: translational research nowadays aims at feeding the best science into applications and solutions for human society. We therefore argue here basic science to be challenged and leveraged for its relevance to human health and societal benefits. This more recent approach and attitude are catalyzed by four trends or developments: evidence-based solutions; large-scale, high dimensional data; consumer/patient empowerment; and systems-level understanding.
Collapse
Affiliation(s)
- Martin Kussmann
- Molecular Biomarkers Core, Nestlé Institute of Health Sciences (NIHS), Lausanne, Switzerland; Faculty of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland; Faculty of Science, Interdisciplinary NanoScience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jim Kaput
- Systems Nutrition and Health Unit, Nestlé Institute of Health Sciences (NIHS), Lausanne, Switzerland; Service Endocrinol. Diabetes, Metabol. Univ. Hospital Lausanne (CHUV), Univ. Lausanne, Switzerland
| |
Collapse
|
18
|
Hurst R, Collings R, Harvey LJ, King M, Hooper L, Bouwman J, Gurinovic M, Fairweather-Tait SJ. EURRECA-Estimating selenium requirements for deriving dietary reference values. Crit Rev Food Sci Nutr 2014; 53:1077-96. [PMID: 23952089 DOI: 10.1080/10408398.2012.742861] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Current reference values for selenium, an essential micronutrient, are based on the intake of selenium that is required to achieve maximal glutathione peroxidase activity in plasma or erythrocytes. In order to assess the evidence of relevance to setting dietary reference values for selenium, the EURRECA Network of Excellence focused on systematic searches, review, and evaluation of (i) selenium status biomarkers and evidence for relationships between intake and status biomarkers, (ii) selenium and health (including the effect of intake and/or status biomarkers on cancer risk, immune function, HIV, cognition, and fertility), (iii) bioavailability of selenium from the diet, and (iv) impact of genotype/single nucleotide polymorphisms on status or health outcomes associated with selenium. The main research outputs for selenium and future research priorities are discussed further in this review.
Collapse
Affiliation(s)
- Rachel Hurst
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dhonukshe-Rutten RAM, Bouwman J, Brown KA, Cavelaars AEJM, Collings R, Grammatikaki E, de Groot LCPGM, Gurinovic M, Harvey LJ, Hermoso M, Hurst R, Kremer B, Ngo J, Novakovic R, Raats MM, Rollin F, Serra-Majem L, Souverein OW, Timotijevic L, Van't Veer P. EURRECA-Evidence-based methodology for deriving micronutrient recommendations. Crit Rev Food Sci Nutr 2014; 53:999-1040. [PMID: 23952085 DOI: 10.1080/10408398.2012.749209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The EURopean micronutrient RECommendations Aligned (EURRECA) Network of Excellence explored the process of setting micronutrient recommendations to address the variance in recommendations across Europe. Work centered upon the transparent assessment of nutritional requirements via a series of systematic literature reviews and meta-analyses. In addition, the necessity of assessing nutritional requirements and the policy context of setting micronutrient recommendations was investigated. Findings have been presented in a framework that covers nine activities clustered into four stages: stage one "Defining the problem" describes Activities 1 and 2: "Identifying the nutrition-related health problem" and "Defining the process"; stage two "Monitoring and evaluating" describes Activities 3 and 7: "Establishing appropriate methods," and "Nutrient intake and status of population groups"; stage three "Deriving dietary reference values" describes Activities 4, 5, and 6: "Collating sources of evidence," "Appraisal of the evidence," and "Integrating the evidence"; stage four "Using dietary reference values in policy making" describes Activities 8 and 9: "Identifying policy options," and "Evaluating policy implementation." These activities provide guidance on how to resolve various issues when deriving micronutrient requirements and address the methodological and policy decisions, which may explain the current variation in recommendations across Europe. [Supplementary materials are available for this article. Go to the publisher's online edition of Critical Reviews in Food Science and Nutrition for the following free supplemental files: Additional text, tables, and figures.].
Collapse
|
20
|
Van 't Veer P, Grammatikaki E, Matthys C, Raats MM, Contor L. EURRECA-Framework for Aligning Micronutrient Recommendations. Crit Rev Food Sci Nutr 2014; 53:988-98. [PMID: 23952084 DOI: 10.1080/10408398.2012.742857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is currently no standard approach for deriving micronutrient recommendations, and large variations exist across Europe, causing confusion among consumers, food producers, and policy makers. More aligned information could influence dietary behaviors and potentially lead to a healthier population. Funded by the European Commission, EURRECA (EURopean micronutrient RECommendations Aligned) has developed methods and applications to guide Nutrient Recommendation Setting Bodies through the process of setting micronutrient reference values. The EURRECA approach is crystallized into its framework that outlines a standard process for deriving and using dietary reference values for micronutrients in a transparent, systematic, and scientific way. The 9 activities of the framework can be clustered into four stages (i) defining the problem, (ii) monitoring and evaluating, (iii) deriving dietary reference values, and (iv) using dietary reference values in policy making. The EURRECA framework should not be interpreted as a prescriptive description of a linear process, but as a structured guide for checking that all issues essential for deriving requirements have at least been considered.
Collapse
Affiliation(s)
- Pieter Van 't Veer
- Division of Human Nutrition, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Kaput J, van Ommen B, Kremer B, Priami C, Monteiro JP, Morine M, Pepping F, Diaz Z, Fenech M, He Y, Albers R, Drevon CA, Evelo CT, Hancock REW, Ijsselmuiden C, Lumey LH, Minihane AM, Muller M, Murgia C, Radonjic M, Sobral B, West KP. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life. GENES & NUTRITION 2014; 9:378. [PMID: 24363221 PMCID: PMC3896628 DOI: 10.1007/s12263-013-0378-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.
Collapse
Affiliation(s)
- Jim Kaput
- Clinical Translation Unit, Nestle Institute of Health Sciences, Lausanne, Switzerland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
24
|
Selenistasis: epistatic effects of selenium on cardiovascular phenotype. Nutrients 2013; 5:340-58. [PMID: 23434902 PMCID: PMC3635198 DOI: 10.3390/nu5020340] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 02/07/2023] Open
Abstract
Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease.
Collapse
|
25
|
Abstract
GOAL The aim of this study was to characterize the composition of the intestinal microbiota in healthy centenarians in comparison with younger adults, considering both quantitative and qualitative aspects of gut community structure. BACKGROUND The gut microbiota plays an essential role in human health. Toward seniority, its balance is affected by deep physiological changes. Long-lived people (age >90 y) have unusual features that differ from the younger elderly, so they should be considered separately when analyzing age-related features. However, they have been included in few studies and they have usually been grouped together with the younger elderly. STUDY The gut microbiota of 14 centenarians and 10 younger adults was analyzed. Cultivable bacteria belonging to the following groups were enumerated: enterobacteriaceae, Enterococcus, Staphylococcus, Lactobacillus, Bifidobacterium, Clostridium, Bacteroides, and yeast. Lactobacilli and Bifidobacteria were further characterized at the species level by pyrosequencing. RESULTS : In centenarians, we observed a reduction in the quantity of enterobacteriaceae, bifidobacteria, and bacteroides and an increase in clostridia sensu stricto (P<0.05). The number of Lactobacillus and Bifidobacterium species isolated in centenarians and younger adults was similar. The composition of the Lactobacillus subpopulation was quite different between the groups. The presence of Bifidobacterium longum in the gut seems to be a particular feature in centenarians. It is interesting to note that only 1 strain of B. longum was isolated from each centenarian subject. CONCLUSIONS The gut microbiota of centenarians has particular features that differ from both younger adults and the younger elderly. Further studies would help to understand whether the intestinal microbiota can influence life expectancy and whether the administration of probiotic bacteria could help to extend the longevity of human life.
Collapse
|
26
|
Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Aging of the human metaorganism: the microbial counterpart. AGE (DORDRECHT, NETHERLANDS) 2012; 34:247-67. [PMID: 21347607 PMCID: PMC3260362 DOI: 10.1007/s11357-011-9217-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/30/2011] [Indexed: 05/26/2023]
Abstract
Human beings have been recently reviewed as 'metaorganisms' as a result of a close symbiotic relationship with the intestinal microbiota. This assumption imposes a more holistic view of the ageing process where dynamics of the interaction between environment, intestinal microbiota and host must be taken into consideration. Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbial ecosystem. Here we review the current knowledge of the changes occurring in the gut microbiota of old people, especially in the light of the most recent applications of the modern molecular characterisation techniques. The hypothetical involvement of the age-related gut microbiota unbalances in the inflamm-aging, and immunosenescence processes will also be discussed. Increasing evidence of the importance of the gut microbiota homeostasis for the host health has led to the consideration of medical/nutritional applications of this knowledge through the development of probiotic and prebiotic preparations specific for the aged population. The results of the few intervention trials reporting the use of pro/prebiotics in clinical conditions typical of the elderly will be critically reviewed.
Collapse
Affiliation(s)
- Elena Biagi
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | | | - Claudio Franceschi
- Department of Experimental Pathology and CIG—Interdipartimental Center L. Galvani, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
27
|
Visualization and identification of health space, based on personalized molecular phenotype and treatment response to relevant underlying biological processes. BMC Med Genomics 2012; 5:1. [PMID: 22221319 PMCID: PMC3271030 DOI: 10.1186/1755-8794-5-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 01/06/2012] [Indexed: 01/02/2023] Open
Abstract
Background Being able to visualize multivariate biological treatment effects can be insightful. However the axes in visualizations are often solely defined by variation and thus have no biological meaning. This makes the effects of treatment difficult to interpret. Methods A statistical visualization method is presented, which analyses and visualizes the effects of treatment in individual subjects. The visualization is based on predefined biological processes as determined by systems-biological datasets (metabolomics proteomics and transcriptomics). This allows one to evaluate biological effects depending on shifts of either groups or subjects in the space predefined by the axes, which illustrate specific biological processes. We built validated multivariate models for each axis to represent several biological processes. In this space each subject has his or her own score on each axis/process, indicating to which extent the treatment affects the related process. Results The health space model was applied to visualize the effects of a nutritional intervention, with the goal of applying diet to improve health. The model was therefore named the 'health space' model. The 36 study subjects received a 5-week dietary intervention containing several anti-inflammatory ingredients. Plasma concentrations of 79 proteins and 145 metabolites were quantified prior to and after treatment. The principal processes modulated by the intervention were oxidative stress, inflammation, and metabolism. These processes formed the axes of the 'health space'. The approach distinguished the treated and untreated groups, as well as two different response subgroups. One subgroup reacted mainly by modulating its metabolic stress profile, while a second subgroup showed a specific inflammatory and oxidative response to treatment. Conclusions The 'health space' model allows visualization of multiple results and to interpret them. The model presents treatment group effects, subgroups and individual responses.
Collapse
|
28
|
A standardised approach towards PROving the efficacy of foods and food constituents for health CLAIMs (PROCLAIM): providing guidance. Br J Nutr 2011; 106 Suppl 2:S16-28. [DOI: 10.1017/s0007114511003618] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Biesalski HK, Aggett PJ, Anton R, Bernstein PS, Blumberg J, Heaney RP, Henry J, Nolan JM, Richardson DP, van Ommen B, Witkamp RF, Rijkers GT, Zöllner I. 26th Hohenheim Consensus Conference, September 11, 2010 Scientific substantiation of health claims: evidence-based nutrition. Nutrition 2011; 27:S1-20. [PMID: 21700425 DOI: 10.1016/j.nut.2011.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective was to define the term evidence based nutrition on the basis of expert discussions and scientific evidence. METHODS AND PROCEDURES The method used is the established Hohenheim Consensus Conference. The term "Hohenheim Consensus Conference" defines conferences dealing with nutrition-related topics. The major aim of the conference is to review the state of the art of a given topic with experts from different areas (basic science, clinicians, epidemiologists, etc.). Based on eight to 12 questions, the experts discuss short answers and try to come to a consensus. A scientifically based text is formulated that justifies the consensus answer. To discuss the requirements for the scientific substantiation of claims, the 26th Hohenheim Consensus Conference gathered the views of many academic experts in the field of nutritional research and asked these experts to address the various aspects of a claims substantiation process and the possibilities and limitations of the different approaches. RESULTS The experts spent a day presenting and discussing their views and arrived at several consensus statements that can serve as guidance for bodies performing claims assessments in the framework of regulatory systems. CONCLUSION The 26th Hohenheim Consensus Conference addresses some general aspects and describes the current scientific status from the point of view of six case studies to illustrate specific areas of scientific interest: carotenoids and vitamin A in relation to age-related macular degeneration, the quality of carbohydrates (as expressed by the glycemic index) in relation to health and well-being, probiotics in relation to intestinal and immune functions, micronutrient intake and maintenance of normal body functions, and food components with antioxidative properties and health benefits.
Collapse
Affiliation(s)
- Hans Konrad Biesalski
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aging of the human metaorganism: the microbial counterpart. AGE (DORDRECHT, NETHERLANDS) 2011. [PMID: 21347607 DOI: 10.1007/s11357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human beings have been recently reviewed as 'metaorganisms' as a result of a close symbiotic relationship with the intestinal microbiota. This assumption imposes a more holistic view of the ageing process where dynamics of the interaction between environment, intestinal microbiota and host must be taken into consideration. Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbial ecosystem. Here we review the current knowledge of the changes occurring in the gut microbiota of old people, especially in the light of the most recent applications of the modern molecular characterisation techniques. The hypothetical involvement of the age-related gut microbiota unbalances in the inflamm-aging, and immunosenescence processes will also be discussed. Increasing evidence of the importance of the gut microbiota homeostasis for the host health has led to the consideration of medical/nutritional applications of this knowledge through the development of probiotic and prebiotic preparations specific for the aged population. The results of the few intervention trials reporting the use of pro/prebiotics in clinical conditions typical of the elderly will be critically reviewed.
Collapse
|
31
|
Stumbo PJ, Weiss R, Newman JW, Pennington JA, Tucker KL, Wiesenfeld PL, Illner AK, Klurfeld DM, Kaput J. Web-enabled and improved software tools and data are needed to measure nutrient intakes and physical activity for personalized health research. J Nutr 2010; 140:2104-15. [PMID: 20980656 PMCID: PMC3139235 DOI: 10.3945/jn.110.128371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/27/2010] [Accepted: 09/16/2010] [Indexed: 02/04/2023] Open
Abstract
Food intake, physical activity (PA), and genetic makeup each affect health and each factor influences the impact of the other 2 factors. Nutrigenomics describes interactions between genes and environment. Knowledge about the interplay between environment and genetics would be improved if experimental designs included measures of nutrient intake and PA. Lack of familiarity about how to analyze environmental variables and ease of access to tools and measurement instruments are 2 deterrents to these combined studies. This article describes the state of the art for measuring food intake and PA to encourage researchers to make their tools better known and more available to workers in other fields. Information presented was discussed during a workshop on this topic sponsored by the USDA, NIH, and FDA in the spring of 2009.
Collapse
Affiliation(s)
- Phyllis J Stumbo
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matthys C, Bucchini L, Busstra MC, Cavelaars AEJM, Eleftheriou P, Garcıa-Alvarez A, Fairweather-Tait S, Gurinović M, van Ommen B, Contor L. EURRECA: development of tools to improve the alignment of micronutrient recommendations. Eur J Clin Nutr 2010; 64 Suppl 3:S26-31. [DOI: 10.1038/ejcn.2010.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
van Ommen B, El-Sohemy A, Hesketh J, Kaput J, Fenech M, Evelo CT, McArdle HJ, Bouwman J, Lietz G, Mathers JC, Fairweather-Tait S, van Kranen H, Elliott R, Wopereis S, Ferguson LR, Méplan C, Perozzi G, Allen L, Rivero D. The Micronutrient Genomics Project: a community-driven knowledge base for micronutrient research. GENES AND NUTRITION 2010; 5:285-96. [PMID: 21189865 PMCID: PMC2989004 DOI: 10.1007/s12263-010-0192-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/13/2010] [Indexed: 01/19/2023]
Abstract
Micronutrients influence multiple metabolic pathways including oxidative and inflammatory processes. Optimum micronutrient supply is important for the maintenance of homeostasis in metabolism and, ultimately, for maintaining good health. With advances in systems biology and genomics technologies, it is becoming feasible to assess the activity of single and multiple micronutrients in their complete biological context. Existing research collects fragments of information, which are not stored systematically and are thus not optimally disseminated. The Micronutrient Genomics Project (MGP) was established as a community-driven project to facilitate the development of systematic capture, storage, management, analyses, and dissemination of data and knowledge generated by biological studies focused on micronutrient–genome interactions. Specifically, the MGP creates a public portal and open-source bioinformatics toolbox for all “omics” information and evaluation of micronutrient and health studies. The core of the project focuses on access to, and visualization of, genetic/genomic, transcriptomic, proteomic and metabolomic information related to micronutrients. For each micronutrient, an expert group is or will be established combining the various relevant areas (including genetics, nutrition, biochemistry, and epidemiology). Each expert group will (1) collect all available knowledge, (2) collaborate with bioinformatics teams towards constructing the pathways and biological networks, and (3) publish their findings on a regular basis. The project is coordinated in a transparent manner, regular meetings are organized and dissemination is arranged through tools, a toolbox web portal, a communications website and dedicated publications.
Collapse
Affiliation(s)
- Ben van Ommen
- TNO Quality of Life, P.O. box 360, 3700 AJ Zeist, The Netherlands
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School and Human Nutrition Research Centre, Newcastle-upon-Tyne, NE2 4HH UK
| | - Jim Kaput
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Michael Fenech
- CSIRO Food and Nutritional Sciences, PO Box 10041, Adelaide BC, SA 5000 Australia
| | - Chris T. Evelo
- Department of Bioinformatics—BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Harry J. McArdle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB UK
| | - Jildau Bouwman
- TNO Quality of Life, P.O. box 360, 3700 AJ Zeist, The Netherlands
| | - Georg Lietz
- Human Nutrition Research Centre, School of Agriculture, Food and Rural Development, Newcastle University, Kings Road, Agriculture Building, Newcastle upon Tyne, NE1 7RU UK
| | - John C. Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Sue Fairweather-Tait
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, NR4 7TJ UK
| | | | - Ruan Elliott
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA UK
| | - Suzan Wopereis
- TNO Quality of Life, P.O. box 360, 3700 AJ Zeist, The Netherlands
| | - Lynnette R. Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Catherine Méplan
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School and Human Nutrition Research Centre, Newcastle-upon-Tyne, NE2 4HH UK
| | - Giuditta Perozzi
- Department of Nutritional Sciences—INRAN, National Research Institute on Food & Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Lindsay Allen
- USDA, ARS Western Human Nutrition Research Center, University of California, 530 W. Health Sciences Drive, Davis, CA 95616 USA
| | - Damariz Rivero
- Department of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|
34
|
Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 2010; 91:1484S-1491S. [PMID: 20200264 DOI: 10.3945/ajcn.2010.28674j] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information on selenium bioavailability is required to derive dietary recommendations and to evaluate and improve the quality of food products. The need for robust data is particularly important in light of recent suggestions of potential health benefits associated with different intakes of selenium. The issue is not straightforward, however, because of large variations in the selenium content of foods (determined by a combination of geologic/environmental factors and selenium supplementation of fertilizers and animal feedstuffs) and the chemical forms of the element, which are absorbed and metabolized differently. Although most dietary selenium is absorbed efficiently, the retention of organic forms is higher than that of inorganic forms. There are also complications in the assessment and quantification of selenium species within foodstuffs. Often, extraction is only partial, and the process can alter the form or forms present in the food. Efforts to improve, standardize, and make more widely available techniques for species quantification are required. Similarly, reliable and sensitive functional biomarkers of selenium status are required, together with improvements in current biomarker methods. This requirement is particularly important for the assessment of bioavailability, because some functional biomarkers respond differently to the various selenium species. The effect of genotype adds a potential further dimension to the process of deriving bioavailability estimates and underlines the need for further research to facilitate the process of deriving dietary recommendations in the future.
Collapse
Affiliation(s)
- Susan J Fairweather-Tait
- School of Medicine, Health Policy & Practice, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | | | | |
Collapse
|
35
|
Suitability of ultra-high performance liquid chromatography for the determination of fat-soluble nutritional status (vitamins A, E, D, and individual carotenoids). Anal Bioanal Chem 2010; 397:1389-93. [DOI: 10.1007/s00216-010-3655-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/09/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
|
36
|
Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 2009; 5:435-458. [PMID: 20046865 PMCID: PMC2794347 DOI: 10.1007/s11306-009-0168-0] [Citation(s) in RCA: 377] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 05/26/2009] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results.
Collapse
Affiliation(s)
- Augustin Scalbert
- INRA, UMR 1019, Unité de Nutrition Humaine, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genes-Champanelle, France
| | - Lorraine Brennan
- UCD School of Agriculture Food Science and Veterinary Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Oliver Fiehn
- Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - Thomas Hankemeier
- Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115 USA
| | - Ben van Ommen
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Estelle Pujos-Guillot
- INRA, UMR 1019, Unité de Nutrition Humaine, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genes-Champanelle, France
| | - Elwin Verheij
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - David Wishart
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8 Canada
| | - Suzan Wopereis
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| |
Collapse
|
37
|
Waagmeester A, Pezik P, Coort S, Tourniaire F, Evelo C, Rebholz-Schuhmann D. Pathway enrichment based on text mining and its validation on carotenoid and vitamin A metabolism. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:367-79. [PMID: 19715393 DOI: 10.1089/omi.2009.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carotenoid metabolism is relevant to the prevention of various diseases. Although the main actors in this metabolic pathway are known, our understanding of the pathway is still incomplete. The information on the carotenoids is scattered in the large and growing body of scientific literature. We designed a text-mining work flow to enrich existing pathways. It has been validated on the vitamin A pathway, which is a well-studied part of the carotenoid metabolism. In this study we used the vitamin A metabolism pathway as it has been described by an expert team on carotenoid metabolism from the European network of excellence in Nutrigenomics (NuGO). This work flow uses an initial set of publications cited in a review paper (1,191 publications), enlarges this corpus with Medline abstracts (13,579 documents), and then extracts the key terminology from all relevant publications. Domain experts validated the intermediate and final results of our text-mining work flow. With our approach we were able to enrich the pathway representing vitamin A metabolism. We found 37 new and relevant terms from a total of 89,086 terms, which have been qualified for inclusion in the analyzed pathway. These 37 terms have been assessed manually and as a result 13 new terms were then added as entities to the pathway. Another 14 entities belonged to other pathways, which could form the link of these pathways with the vitamin A pathway. The remaining 10 terms were classified as biomarkers or nutrients. Automatic literature analysis improves the enrichment of pathways with entities already described in the scientific literature.
Collapse
Affiliation(s)
- Andra Waagmeester
- European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD United Kingdom.
| | | | | | | | | | | |
Collapse
|