1
|
He F, Bian Y, Zhao Y, Xia M, Liu S, Gui J, Hou X, Fang Y. In vitro conversion of ellagic acid to urolithin A by different gut microbiota of urolithin metabotype A. Appl Microbiol Biotechnol 2024; 108:215. [PMID: 38363367 PMCID: PMC10873453 DOI: 10.1007/s00253-024-13061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The metabolite urolithin A, a metabolite of the dietary polyphenol ellagic acid (EA), has significant health benefits for humans. However, studies on the gut microbiota involved in ellagic acid metabolism are limited. In this study, we conducted in vitro fermentation of EA using human intestinal microbiome combined with antibiotics (vancomycin, polymyxin B sulfate, and amphotericin B). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis demonstrated that the production capacity of urolithin A by gut microbiota co-treated with polymyxin B sulfate and amphotericin B (22.39 µM) was similar to that of untreated gut microbiota (24.26 µM). Macrogenomics (high-throughput sequencing) was used to analyze the composition and structure of the gut microbiota. The results showed that the abundance of Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum in the gut microbiota without antibiotic treatment or co-treated with polymyxin B sulfate and amphotericin B during EA fermentation was higher than that in other antibiotic treatment gut microbiota. Therefore, B. longum, B. adolescentis, and B. bifidum may be new genera involved in the conversion of EA to urolithin A. In conclusion, the study revealed unique interactions between polyphenols and gut microbiota, deepening our understanding of the relationship between phenolic compounds like EA and the gut microbiota. These findings may contribute to the development of gut bacteria as potential probiotics for further development. KEY POINTS: • Intestinal microbiome involved in ellagic acid metabolism. • Gram-positive bacteria in the intestinal microbiome are crucial for ellagic acid metabolism. • Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum participate in ellagic acid metabolism.
Collapse
Affiliation(s)
- Fuxiang He
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Yingying Bian
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Yaling Zhao
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Mengjie Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Jiajin Gui
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China.
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China.
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment /Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean, Lianyungang, China.
- College of Ocean Food and Biological Engineering, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Bouranis JA, Beaver LM, Wong CP, Choi J, Hamer S, Davis EW, Brown KS, Jiang D, Sharpton TJ, Stevens JF, Ho E. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Mol Nutr Food Res 2024; 68:e2300286. [PMID: 38143283 PMCID: PMC10922398 DOI: 10.1002/mnfr.202300286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Indexed: 12/26/2023]
Abstract
SCOPE The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.
Collapse
Affiliation(s)
- John A Bouranis
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Laura M Beaver
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Sean Hamer
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Ed W Davis
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin S Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- College of Health, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Sailo BL, Liu L, Chauhan S, Girisa S, Hegde M, Liang L, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers (Basel) 2024; 16:244. [PMID: 38254735 PMCID: PMC10814109 DOI: 10.3390/cancers16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Recent advances in oncological research have highlighted the potential of naturally derived compounds in cancer prevention and treatment. Notably, sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables including broccoli and cabbage, has exhibited potent chemosensitizing capabilities across diverse cancer types of bone, brain, breast, lung, skin, etc. Chemosensitization refers to the enhancement of cancer cell sensitivity to chemotherapy agents, counteracting the chemoresistance often developed by tumor cells. Mechanistically, SFN orchestrates this sensitization by modulating an array of cellular signaling pathways (e.g., Akt/mTOR, NF-κB, Wnt/β-catenin), and regulating the expression and activity of pivotal genes, proteins, and enzymes (e.g., p53, p21, survivin, Bcl-2, caspases). When combined with conventional chemotherapeutic agents, SFN synergistically inhibits cancer cell proliferation, invasion, migration, and metastasis while potentiating drug-induced apoptosis. This positions SFN as a potential adjunct in cancer therapy to augment the efficacy of standard treatments. Ongoing preclinical and clinical investigations aim to further delineate the therapeutic potential of SFN in oncology. This review illuminates the multifaceted role of this phytochemical, emphasizing its potential to enhance the therapeutic efficacy of anti-cancer agents, suggesting its prospective contributions to cancer chemosensitization and management.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Le Liu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518001, China;
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China;
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; (B.L.S.); (S.C.); (S.G.); (M.H.)
| |
Collapse
|
4
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Stratigakis A, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. mSystems 2023; 8:e0053223. [PMID: 37702510 PMCID: PMC10654075 DOI: 10.1128/msystems.00532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA
| | - Dorien Baudewyns
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| |
Collapse
|
5
|
Holman JM, Colucci L, Baudewyns D, Balkan J, Hunt T, Hunt B, Kinney M, Holcomb L, Chen G, Moses PL, Mawe GM, Zhang T, Li Y, Ishaq SL. Steamed broccoli sprouts alleviate DSS-induced inflammation and retain gut microbial biogeography in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.522641. [PMID: 37292900 PMCID: PMC10245759 DOI: 10.1101/2023.01.27.522641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. Importance Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.
Collapse
Affiliation(s)
- Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA 04401
| | | | - Joe Balkan
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA 02155
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 48109
| | - Peter L. Moses
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
- Finch Therapeutics, Somerville, Massachusetts, USA 02143
| | - Gary M. Mawe
- Departments of Neurological Sciences and of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| |
Collapse
|
6
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
7
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Mariem Achour
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Cristina García-Viguera
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| |
Collapse
|
8
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
9
|
Zhang T, Holman J, McKinstry D, Trindade BC, Eaton KA, Mendoza-Castrejon J, Ho S, Wells E, Yuan H, Wen B, Sun D, Chen GY, Li Y. A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. J Nutr Biochem 2023; 112:109215. [PMID: 36370930 DOI: 10.1016/j.jnutbio.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Sulforaphane is a bioactive metabolite with anti-inflammatory activity and is derived from the glucosinolate glucoraphanin, which is highly abundant in broccoli sprouts. However, due to its inherent instability its use as a therapeutic against inflammatory diseases has been limited. There are few studies to investigate a whole food approach to increase sulforaphane levels with therapeutic effect and reduce inflammation. In the current study, using a mouse model of inflammatory bowel disease, we investigated the ability of steamed broccoli sprouts to ameliorate colitis and the role of the gut microbiota in mediating any effects. We observed that despite inactivation of the plant myrosinase enzyme responsible for the generation of sulforaphane via steaming, measurable levels of sulforaphane were detectable in the colon tissue and feces of mice after ingestion of steamed broccoli sprouts. In addition, this preparation of broccoli sprouts was also capable of reducing chemically-induced colitis. This protective effect was dependent on the presence of an intact microbiota, highlighting an important role for the gut microbiota in the metabolism of cruciferous vegetables to generate bioactive metabolites and promote their anti-inflammatory effects.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Johanna Holman
- College of Science and Humanities, Husson University, Bangor, Maine, USA
| | - Delaney McKinstry
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruno C Trindade
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonny Mendoza-Castrejon
- Postbac Research Education Program, University of Michigan, Ann Arbor, Michigan, USA; Currently at Department of Pediatrics, Washington University School of Medicine, St. Louis, Mississippi, USA
| | - Sharon Ho
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Wells
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Mississippi, USA
| | - Grace Y Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Yanyan Li
- College of Science and Humanities, Husson University, Bangor, Maine, USA.
| |
Collapse
|
10
|
Memili A, Lulla A, Liu H, Shikany JM, Jacobs DR, Langsetmo L, North KE, Jones C, Launer LJ, Meyer KA. Physical activity and diet associations with the gut microbiota in the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Nutr 2023; 153:552-561. [PMID: 36775672 PMCID: PMC10127529 DOI: 10.1016/j.tjnut.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota may influence metabolic pathways related to chronic health conditions. Evidence for physical activity and diet influences on gut microbial composition exists, but data from diverse population-based cohort studies are limited. OBJECTIVES We hypothesized that gut microbial diversity and genera are associated with physical activity and diet quality. METHODS Data were from 537 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort, who attended the year 30 follow-up examination (2015-2016; aged 47-61 y; 45% Black race/55% White race; 45% men/55% women). The 16S ribosomal RNA marker gene was sequenced from stool DNA, and genus-level taxonomy was assigned. Within-person microbial diversity (α-diversity) was assessed with Shannon diversity index and richness scores; between-person diversity (β-diversity) measures were generated with principal coordinates analysis (PCoA). Current and long-term physical activity and diet quality measures were derived from data collected over 30 y of follow-up. Multivariable-adjusted regression analysis controlled for: sociodemographic variables (age, race, sex, education, and field center), other health behaviors (smoking, alcohol consumption, and medication use), and adjusted for multiple comparisons with the false discovery rate (<0.20). RESULTS Based on PCoA β-diversity, participants' microbial community compositions differed significantly (P < 0.001), with respect to both current and long-term physical activity and diet quality. α-Diversity was associated only with current physical activity (positively) in multivariable-adjusted analysis. Multiple genera (n = 45) were associated with physical activity and fewer with diet (n = 5), including positive associations with Lachnospiraceae UCG-001 and Ruminococcaceae IncertaeSedis with both behaviors. CONCLUSIONS Physical activity and diet quality were associated with gut microbial composition among 537 participants in the CARDIA study. Multiple genera were associated with physical activity. Physical activity and diet quality were associated with genera consistent with pathways related to inflammation and short-chain fatty acid production.
Collapse
Affiliation(s)
- Aylin Memili
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Hongwei Liu
- Departments of Biology, iBGS, and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA; Center for Care Delivery and Outcomes Research, VA Health Care System, Minneapolis, MN, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corbin Jones
- Departments of Biology, iBGS, and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lenore J Launer
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Katie A Meyer
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.
| |
Collapse
|
11
|
Dietary Isothiocyanates: Novel Insights into the Potential for Cancer Prevention and Therapy. Int J Mol Sci 2023; 24:ijms24031962. [PMID: 36768284 PMCID: PMC9916827 DOI: 10.3390/ijms24031962] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Diet plays an important role in health. A high intake of plant chemicals such as glucosinolates/isothiocyanates can promote optimal health and decrease the risk of cancer. Recent research has discovered more novel mechanisms of action for the effects of isothiocyanates including the modulation of tumor microenvironment, the inhibition of the self-renewal of stem cells, the rearrangement of multiple pathways of energy metabolism, the modulation of microbiota, and protection against Helicobacter pylori. However, the hormetic/biphasic effects of isothiocyanates may make the recommendations complicated. Isothiocyanates possess potent anti-cancer activities based on up-to-date evidence from in vitro and in vivo studies. The nature of hormesis suggests that the benefits or risks of isothiocyanates largely depend on the dose and endpoint of interest. Isothiocyanates are a promising class of cancer-preventative phytochemicals, but researchers should be aware of the potential adverse (and hormetic) effects. In the authors' opinion, dietary isothiocyanates are better used as adjunctive treatments in combination with known anti-cancer drugs. The application of nano-formulations and the delivery of isothiocyanates are also discussed in this review.
Collapse
|
12
|
Hu YH, Meyer K, Lulla A, Lewis CE, Carnethon MR, Schreiner PJ, Sidney S, Shikany JM, Meirelles O, Launer LJ. Gut microbiome and stages of diabetes in middle-aged adults: CARDIA microbiome study. Nutr Metab (Lond) 2023; 20:3. [PMID: 36604708 PMCID: PMC9817375 DOI: 10.1186/s12986-022-00721-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Animal and human studies suggest the gut microbiome is linked to diabetes but additional data are needed on the associations of the gut microbiome to specific diabetes characteristics. The aim of this study was to examine the associations of gut microbiome composition to insulin resistance [Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)], duration of diabetes, and 4 stages of diabetes [normoglycemia, pre-diabetes, and diabetes with (+) and without (-) medication for diabetes]. METHODS Data are from a sub-sample (n = 605) of Black and White participants from the 30-year follow-up exam of the prospectively followed community-based Coronary Artery Risk Development in Young Adults cohort (2015-2016; aged 48-60 years). Stool samples were collected and sequenced using the 16S ribosomal RNA method. Microbial measures included: α diversity (within-person), β diversity (between-person), and taxonomies. All analyses were adjusted for demographic, clinical, lifestyle factors, and use of relevant medications (full adjustment). Multivariate linear regression models were used to assess the association of diabetes characteristics with α diversity and genera abundance, while the association with β diversity was analyzed using permutational multivariate analysis of variance. Statistical significance was set to p-value < 0.05 for α and β diversity analyses and to q-value < 0.1 for genera abundance analyses. RESULTS There were 16.7% of participants with pre-diabetes, and 14.4% with diabetes (9% diabetes+) with median (interquartile range) diabetes duration of 5 (5-10) years. In the fully adjusted models, compared to those with no diabetes, longer diabetes duration and the diabetes + group had a lower α diversity. There were significant differences in β diversity across diabetes-related characteristics. A significantly reduced abundance of butyrate-producing genera was associated with higher HOMA-IR (ex., Anaerostipes and Lachnospiraceae_UCG.004), longer diabetes duration (ex., Agathobacter and Ruminococcus), and diabetes + (ex., Faecalibacterium and Romboutsia). CONCLUSIONS Our results suggest that an adverse alteration of gut microbiome composition is related to higher insulin resistance, longer diabetes duration, and is present in those persons with diabetes using medications. These diabetes-related characteristics were also associated with lower levels of certain butyrate-producing bacteria that produce health-promoting short-chain fatty acids. Understanding the role of gut microbiota in glucose regulation may provide new strategies to reduce the burden of diabetes.
Collapse
Affiliation(s)
- Yi-Han Hu
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, National Institute On Aging, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Katie Meyer
- grid.10698.360000000122483208Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC USA ,grid.10698.360000000122483208Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Anju Lulla
- grid.10698.360000000122483208Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC USA
| | - Cora E. Lewis
- grid.265892.20000000106344187Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Mercedes R. Carnethon
- grid.16753.360000 0001 2299 3507Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Pamela J. Schreiner
- grid.17635.360000000419368657Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN USA
| | - Stephen Sidney
- grid.414886.70000 0004 0445 0201Kaiser Permanente Medical Center Program, Oakland, CA USA
| | - James M. Shikany
- grid.265892.20000000106344187Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Osorio Meirelles
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, National Institute On Aging, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Lenore J. Launer
- grid.419475.a0000 0000 9372 4913Laboratory of Epidemiology and Population Sciences, National Institute On Aging, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
13
|
Bouranis JA, Beaver LM, Jiang D, Choi J, Wong CP, Davis EW, Williams DE, Sharpton TJ, Stevens JF, Ho E. Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach. Nutrients 2022; 15:nu15010042. [PMID: 36615700 PMCID: PMC9824405 DOI: 10.3390/nu15010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.
Collapse
Affiliation(s)
- John A. Bouranis
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W. Davis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - David E. Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Thomas J. Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
14
|
McConnel CS, Slanzon GS, Parrish LM, Trombetta SC, Shaw LF, Moore DA, Sischo WM. Transcriptional changes detected in fecal RNA from neonatal dairy calves of different breeds following gastrointestinal disease of varying severity. PLoS One 2022; 17:e0278664. [PMID: 36454999 PMCID: PMC9714867 DOI: 10.1371/journal.pone.0278664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Gastrointestinal (GI) disease is a major health concern in preweaned dairy calves. The objective of this fixed cohort study was to use RNA isolated from preweaned Holstein and Jersey heifer calf feces to study the molecular adaptations to variable clinical GI disease. The study was conducted on a commercial calf ranch in the western U.S. Enrolled calves were assessed twice daily for variations in demeanor, milk intake, and hydration. Fecal consistency scores were recorded at enrollment (day 1), and on the day (day 10) that a fecal sample was collected for differential gene expression (DGE). Calves with diarrhea on either day were classified as having either uncomplicated, localized GI disease (scours), or systemic GI disease (systemic enteritis). Eighty-four calves' fecal RNA was evaluated for DGE, of which 33 calves (n = 20 Holstein; n = 13 Jersey) were consistently healthy. The remaining 51 calves (n = 23 Holstein; n = 28 Jersey) experienced varying severity of GI disease during the sampling window. Genes of interest were related to the inflammatory response (i.e., IFNG, NFKB1, NOD2, TLR2, and TLR4) and cell membrane or cytoplasmic transport (i.e., AQP3, FABP2, KRT8 and SLC5A1). Breed-specific findings indicated that AQP3, IFNG, and TLR4 were upregulated in Holsteins with systemic enteritis, whereas KRT8 was downregulated in systemically affected Jerseys. Holsteins did not appear affected by scours aside from a tendency for DGE of toll-like receptors (TLRs) on the day of diarrhea. However, Jersey calves consistently demonstrated a tendency to upregulate IFNG, NFKB1, and TLR4 when affected with either scours or systemic enteritis. These findings were more pronounced in systemically affected Jersey calves and were observed as a delayed response to both scours and systemic enteritis. These findings support previous observations suggesting that Holstein calves may be better equipped than Jersey calves to rapidly fight pathogen invasion.
Collapse
Affiliation(s)
- C. S. McConnel
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - G. S. Slanzon
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - L. M. Parrish
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - S. C. Trombetta
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - L. F. Shaw
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - D. A. Moore
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| | - W. M. Sischo
- Department of Veterinary Clinical Sciences, Field Disease Investigation Unit, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
15
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
16
|
Haque S, Raina R, Afroze N, Hussain A, Alsulimani A, Singh V, Mishra BN, Kaul S, Kharwar RN. Microbial dysbiosis and epigenetics modulation in cancer development - A chemopreventive approach. Semin Cancer Biol 2022; 86:666-681. [PMID: 34216789 DOI: 10.1016/j.semcancer.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023]
Abstract
An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates.
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226021, Uttar Pradesh, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, 180006, J&K, India
| | - Ravindra Nath Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
17
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Gao L, Li H, Li B, Shao H, Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115387. [PMID: 35580770 DOI: 10.1016/j.jep.2022.115387] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine. AIM OF THE STUDY This review provides a critical and comprehensive summary of traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS based on research data that have been reported, aiming at providing a basis for further study on RS. MATERIALS AND METHODS The search terms "Raphani Semen", "the seeds of Raphanus sativus L." and "radish seed" were used to obtain the information from electronic databases such as Web of Science, China National Knowledge Infrastructure, PubMed and other web search instruments. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS were summarized. RESULTS RS has been traditionally used to treat food dyspeptic retention, distending pain in the epigastrium and abdomen, constipation, diarrhea and dysentery, panting, and cough with phlegm congestion in the clinical practice. The chemical constituents of RS include glucosinolates and sulfur-containing derivatives, phenylpropanoid sucrosides, small organic acids and derivatives, flavone glycosides, alkaloids, terpenoids, steroids, oligosaccharides and others. Among them, glucosinolates can be transformated to isothiocyanates by plant myrosinase or the intestinal flora, which display a variety of activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, treatment of metabolic diseases, central nervous system protection, anti-osteoporosis. RS has a variety of pharmacological activities, including treatment of metabolic diseases, anti-inflammatory, anti-tumor, antioxidant, antibacterial, antihypertensive, central nervous system protection, anti-osteoporosis, etc. This review will provide useful insight for exploration, further study and precise medication of RS in the future. CONCLUSIONS According to its traditional uses, phytochemistry, transformation of ingredients and pharmacology, RS is regarded as a promising medical plant with various chemical compounds and numerous pharmacological activities. However, the material bases and mechanisms of traditional effect of RS need further study.
Collapse
Affiliation(s)
- Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyue Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhuang Miao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lizhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
19
|
Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J Nutr Biochem 2022; 109:109098. [PMID: 35788394 DOI: 10.1016/j.jnutbio.2022.109098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests the impact of maternal diet on the health of offspring. We reported that maternal diet of sulforaphane glucosinolate (SGS) could prevent behavioral abnormalities in offspring after maternal immune activation. The present study was designed to investigate whether the dietary intake of SGS during pregnancy and lactation influences the composition of gut microbiota in the offspring. The dietary intake of SGS during pregnancy and lactation caused significant changes in the α-diversity and β-diversity of gut microbiota in 3-week-old offspring (SGS-3W group) and 10-week-old offspring (SGS-10W group). The LEfSe algorithm identified several microbes as important phylotypes in the SGS-3W or SGS-10W groups. Predictive functional metagenomes showed that the maternal intake of SGS caused several KEGG pathways alterations with respect to the genetic information processing and metabolism. Furthermore, the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SGS-10W group after the injection of lipopolysaccharide (LPS: 0.5 mg/kg) were significantly lower than those of the CON-10W group. It is noteworthy that there were positive correlations between the relative abundance of the genus Blautia and IL-6 (or TNF-α) in adult offspring. Moreover, there were sex differences of gut microbiota composition in offspring. In conclusion, these data suggest that the dietary intake of SGS during pregnancy and lactation might produce long-lasting beneficial effects in adult offspring through the persistent modulation of gut microbiota. It is likely that the modulation of gut microbiota by maternal nutrition may confer resilience versus vulnerability to stress-related psychiatric disorders in the offspring.
Collapse
|
20
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
21
|
Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022; 14:nu14071434. [PMID: 35406047 PMCID: PMC9002472 DOI: 10.3390/nu14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
The list of known health benefits from inclusion of brassica vegetables in the diet is long and growing. Once limited to cancer prevention, a role for brassica in prevention of oxidative stress and anti-inflammation has aided in our understanding that brassica provide far broader benefits. These include prevention and treatment of chronic diseases of aging such as diabetes, neurological deterioration, and heart disease. Although animal and cell culture studies are consistent, clinical studies often show too great a variation to confirm these benefits in humans. In this review, we discuss causes of variation in clinical studies, focusing on the impact of the wide variation across humans in commensal bacterial composition, which potentially result in variations in microbial metabolism of glucosinolates. In addition, as research into host-microbiome interactions develops, a role for bitter-tasting receptors, termed T2Rs, in the gastrointestinal tract and their role in entero-endocrine hormone regulation is developing. Here, we summarize the growing literature on mechanisms of health benefits by brassica-derived isothiocyanates and the potential for extra-oral T2Rs as a novel mechanism that may in part describe the variability in response to brassica among free-living humans, not seen in research animal and cell culture studies.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
22
|
Meyer K, Lulla A, Debroy K, Shikany JM, Yaffe K, Meirelles O, Launer LJ. Association of the Gut Microbiota With Cognitive Function in Midlife. JAMA Netw Open 2022; 5:e2143941. [PMID: 35133436 PMCID: PMC8826173 DOI: 10.1001/jamanetworkopen.2021.43941] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Animal experiments and small clinical studies support a role for the gut microbiota in cognitive functioning. Few studies have investigated gut microbiota and cognition in large community samples. OBJECTIVE To examine associations of gut microbial composition with measures of cognition in an established population-based study of middle-aged adults. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study analyzed data from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) cohort in 4 US metropolitan centers between 2015 and 2016. Data were analyzed in 2019 and 2020. EXPOSURES Stool DNA were sequenced, and the following gut microbial measures were gathered: (1) β-diversity (between-person) derived with multivariate principal coordinates analysis; (2) α-diversity (within-person), defined as richness (genera count) and the Shannon index (integrative measure of genera richness and evenness); and (3) taxonomy (107 genera, after filtering). MAIN OUTCOMES AND MEASURES Cognitive status was assessed using 6 clinic-administered cognitive tests: Montreal Cognitive Assessment (MoCA), Digit Symbol Substitution Test (DSST), Rey-Auditory Verbal Learning Test (RAVLT), Stroop, category fluency, and letter fluency. A global score measure derived using principal components analysis was also assessed; the first principal component explained 56% of variability. RESULTS Microbiome data were available on 597 CARDIA participants; mean (SD) age was 55.2 (3.5) years, 268 participants (44.7%) were men, and 270 (45.2%) were Black. In multivariable-adjusted principal coordinates analysis, permutational multivariate analysis of variance tests for β-diversity were statistically significant for all cognition measures (principal component analysis, P = .001; MoCA, P = .001; DSST, P = .001; RAVLT, P = .001; Stroop, P = .007; category fluency, P = .001) with the exception of letter fluency (P = .07). After adjusting for sociodemographic variables (age, race, sex, education), health behaviors (physical activity, diet, smoking, medication use), and clinical covariates (body mass index, diabetes, hypertension), Barnesiella was positively associated with the first principal component (β, 0.16; 95% CI, 0.08-0.24), DSST (β, 1.18; 95% CI, 0.35-2.00), and category fluency (β, 0.59; 95% CI, 0.31-0.87); Lachnospiraceae FCS020 group was positively associated with DSST (β, 2.67; 95% CI, 1.10-4.23), and Sutterella was negatively associated with MoCA (β, -0.27; 95% CI, -0.44 to -0.11). CONCLUSIONS AND RELEVANCE In this cross-sectional study, microbial community composition, based on β-diversity, was associated with all cognitive measures in multivariable-adjusted analysis. These data contribute to a growing body of literature suggesting that the gut microbiota may be associated with cognitive aging, but must be replicated in larger samples and further researched to identify relevant pathways.
Collapse
Affiliation(s)
- Katie Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis
| | - Kunal Debroy
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - James M. Shikany
- School of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, University of California, San Francisco
| | - Osorio Meirelles
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Lenore J. Launer
- Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| |
Collapse
|
23
|
Shekarri Q, Dekker M. A Physiological-Based Model for Simulating the Bioavailability and Kinetics of Sulforaphane from Broccoli Products. Foods 2021; 10:foods10112761. [PMID: 34829040 PMCID: PMC8620288 DOI: 10.3390/foods10112761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
There are no known physiological-based digestion models that depict glucoraphanin (GR) to sulforaphane (SR) conversion and subsequent absorption. The aim of this research was to make a physiological-based digestion model that includes SR formation, both by endogenous myrosinase and gut bacterial enzymes, and to simulate the SR bioavailability. An 18-compartment model (mouth, two stomach, seven small intestine, seven large intestine, and blood compartments) describing transit, reactions and absorption was made. The model, consisting of differential equations, was fit to data from a human intervention study using Mathwork’s Simulink and Matlab software. SR urine metabolite data from participants who consumed different broccoli products were used to estimate several model parameters and validate the model. The products had high, medium, low, and zero myrosinase content. The model’s predicted values fit the experimental values very well. Parity plots showed that the predicted values closely matched experimental values for the high (r2 = 0.95), and low (r2 = 0.93) products, but less so for the medium (r2 = 0.85) and zero (r2 = 0.78) myrosinase products. This is the first physiological-based model to depict the unique bioconversion processes of bioactive SR from broccoli. This model represents a preliminary step in creating a predictive model for the biological effect of SR, which can be used in the growing field of personalized nutrition.
Collapse
|
24
|
Bouranis JA, Beaver LM, Ho E. Metabolic Fate of Dietary Glucosinolates and Their Metabolites: A Role for the Microbiome. Front Nutr 2021; 8:748433. [PMID: 34631775 PMCID: PMC8492924 DOI: 10.3389/fnut.2021.748433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli, are associated with numerous health benefits. The anti-cancer properties of these foods are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated from biological precursor compounds called glucosinolates. ITCs, and particularly sulforaphane (SFN), are of intense interest as they block the initiation, and suppress the progression of cancer, through genetic and epigenetic mechanisms. The efficacy of these compounds is well-demonstrated in cell culture and animal models, however, high levels of inter-individual variation in absorption and excretion of ITCs is a significant barrier to the use of dietary glucosinolates to prevent and treat disease. The source of inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may play a key role. This review highlights evidence that the gut microbiome influences the metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual variations in gut microbiome composition coincides with variations in ITC absorption and excretion, and some bacteria produce ITCs from glucosinolates. Additionally, consumption of cruciferous vegetables can alter the composition of the gut microbiome and shift the physiochemical environment of the gut lumen, influencing the production of phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to the decrease of cancer fighting phytochemicals such as SFN and increase the production of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the use of novel “omics” technologies to elucidate the interplay of the gut microbiome and ITC formation.
Collapse
Affiliation(s)
- John A Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
25
|
Shock T, Badang L, Ferguson B, Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem 2021; 95:108631. [PMID: 33789148 PMCID: PMC8355029 DOI: 10.1016/j.jnutbio.2021.108631] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/31/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.
Collapse
Affiliation(s)
- Tori Shock
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, USA
| | - Luis Badang
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, USA
| | - Bradley Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV, USA; Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
26
|
Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients 2021; 13:nu13093013. [PMID: 34578891 PMCID: PMC8468500 DOI: 10.3390/nu13093013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.
Collapse
|
27
|
Sikorska-Zimny K, Beneduce L. The Metabolism of Glucosinolates by Gut Microbiota. Nutrients 2021; 13:2750. [PMID: 34444909 PMCID: PMC8401010 DOI: 10.3390/nu13082750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Glucosinolates (GLS) and their derivatives are secondary plant metabolites abundant in Brassicaceae. Due to the enzymatic reaction between GLS and myrosinase enzyme, characteristic compounds with a pungent taste are formed, used by plants to defend themselves against insect herbivores. These GLS derivatives have an important impact on human health, including anti-inflammation and anti-cancer effects. However, GLS derivatives' formation needs previous enzymatic reactions catalyzed by myrosinase enzyme. Many of the brassica-based foods are processed at a high temperature that inactivates enzymes, hindering its bioavailability. In the last decade, several studies showed that the human gut microbiome can provide myrosinase activity that potentially can raise the beneficial effects of consumption of vegetables rich in GLS. The variability of the human gut microbiome (HGM) in human populations and the diverse intake of GLS through the diet may lead to greater variability of the real dose of pro-healthy compounds absorbed by the human body. The exploitation of the genetic and biochemical potential of HGM and correct ecological studies of both isolated strains and mixed population are of great interest. This review focuses on the most recent advances in this field.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, The National Institute of Horticultural Research, Pomologiczna 13a Street, 96-100 Skierniewice, Poland
- Medical, Natural and Technical College, Institute of Health Sciences, Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food, Natural Resources, and Engineering (DAFNE) the University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| |
Collapse
|
28
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
29
|
Dingeo G, Brito A, Samouda H, Iddir M, La Frano MR, Bohn T. Phytochemicals as modifiers of gut microbial communities. Food Funct 2021; 11:8444-8471. [PMID: 32996966 DOI: 10.1039/d0fo01483d] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A healthy gut microbiota (GM) is paramount for a healthy lifestyle. Alterations of the GM have been involved in the aetiology of several chronic diseases, including obesity and type 2 diabetes, as well as cardiovascular and neurodegenerative diseases. In pathological conditions, the diversity of the GM is commonly reduced or altered, often toward an increased Firmicutes/Bacteroidetes ratio. The colonic fermentation of dietary fiber has shown to stimulate the fraction of bacteria purported to have beneficial health effects, acting as prebiotics, and to increase the production of short chain fatty acids, e.g. propionate and butyrate, while also improving gut epithelium integrity such as tight junction functionality. However, a variety of phytochemicals, often associated with dietary fiber, have also been proposed to modulate the GM. Many phytochemicals possess antioxidant and anti-inflammatory properties that may positively affect the GM, including polyphenols, carotenoids, phytosterols/phytostanols, lignans, alkaloids, glucosinolates and terpenes. Some polyphenols may act as prebiotics, while carotenoids have been shown to alter immunoglobulin A expression, an important factor for bacteria colonization. Other phytochemicals may interact with the mucosa, another important factor for colonization, and prevent its degradation. Certain polyphenols have shown to influence bacterial communication, interacting with quorum sensing. Finally, phytochemicals can be metabolized in the gut into bioactive constituents, e.g. equol from daidzein and enterolactone from secoisolariciresinol, while bacteria can use glycosides for energy. In this review, we strive to highlight the potential interactions between prominent phytochemicals and health benefits related to the GM, emphasizing their potential as adjuvant strategies for GM-related diseases.
Collapse
Affiliation(s)
| | - Alex Brito
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg. and Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia.
| | - Hanen Samouda
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Mohammed Iddir
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA. and Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| |
Collapse
|
30
|
Fahey JW, Kensler TW. The Challenges of Designing and Implementing Clinical Trials With Broccoli Sprouts… and Turning Evidence Into Public Health Action. Front Nutr 2021; 8:648788. [PMID: 33996874 PMCID: PMC8116591 DOI: 10.3389/fnut.2021.648788] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin, which can generate the chemopreventive agent sulforaphane through the catalytic actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane, in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling, and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also protective in models of diabetes, neurodegenerative disease, and other inflammatory processes, likely reflecting additional actions of Nrf2 and interactions with other signaling pathways. Translating this efficacy into the design and implementation of clinical chemoprevention trials, especially food-based trials, faces numerous challenges including the selection of the source, placebo, and dose as well as standardization of the formulation of the intervention material. Unlike in animals, purified sulforaphane has had very limited use in clinical studies. We have conducted a series of clinical studies and randomized clinical trials to evaluate the effects of composition (glucoraphanin-rich [± myrosinase] vs. sulforaphane-rich or mixture beverages), formulation (beverage vs. tablet) and dose, on the efficacy of these broccoli sprout-based preparations to evaluate safety, pharmacokinetics, pharmacodynamic action, and clinical benefit. While the challenges for the evaluation of broccoli sprouts in clinical trials are themselves formidable, further hurdles must be overcome to bring this science to public health action.
Collapse
Affiliation(s)
- Jed W. Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Fairfax, VA, United States
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
31
|
Gao J, Sun Y, Bao Y, Zhou K, Kong D, Zhao G. Effects of different levels of rapeseed cake containing high glucosinolates in steer ration on rumen fermentation, nutrient digestibility and the rumen microbial community. Br J Nutr 2021; 125:266-274. [PMID: 32693843 DOI: 10.1017/s0007114520002767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This trial was conducted to study the effects of dietary rapeseed cake (RSC) containing high glucosinolates (GLS) on rumen fermentation, nutrient digestion and the rumen microbial community in steers. Eight growing steers and four rations containing RSC (GLS 226·1 μmol/g DM) at 0·00, 2·65, 5·35 and 8·00 % DM were assigned in a replicate 4 × 4 Latin square design. The results indicated that increasing RSC levels increased the ruminal concentration of thiocyanate (SCN) (P < 0·01), decreased the ruminal concentration of ammonia nitrogen (NH3-N) and the molar proportion of isovalerate (P < 0·05), did not affect the ruminal concentration of total volatile fatty acids (P > 0·05), decreased the crude protein (CP) digestibility (P < 0·05) and increased the ether extract (EE) digestibility (P < 0·01). Increasing RSC levels tended to decrease the abundances of ruminal Ruminobacter amylophilus (P = 0·055) and Ruminococcus albus (P = 0·086) but did not affect methanogens, protozoa, fungi and other bacteria (P > 0·05). Increasing RSC levels in the ration did not affect the ruminal bacterial diversity (P > 0·05), but it increased the operational taxonomic units and the bacterial richness (P < 0·05) and affected the relative abundances of some bacteria at the phylum level and genus level (P < 0·05). In conclusion, RSC decreased the ruminal concentration of NH3-N and the CP digestibility, increased the EE digestibility and partly affected the ruminal bacterial community. SCN, as the metabolite of GLS, could be a major factor affecting these indices.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Yu Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Ke Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Dehuang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193Beijing, People's Republic of China
| |
Collapse
|
32
|
Gut Bacteria Mediate Nutrient Availability in Drosophila Diets. Appl Environ Microbiol 2020; 87:AEM.01401-20. [PMID: 33067193 PMCID: PMC7755257 DOI: 10.1128/aem.01401-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster gut microbes play important roles in host nutritional physiology. However, these associations are often indirect, and studies typically are in the context of specialized nutritional conditions, making it difficult to discern how microbiome-mediated impacts translate to physiologically relevant conditions, in the laboratory or nature. In this study, we quantified changes in dietary nutrients due to D. melanogaster gut bacteria on three artificial diets and a natural diet of grapes. We show that under all four diet conditions, bacteria altered the protein, carbohydrates, and moisture of the food substrate. An in-depth analysis of one diet revealed that bacteria also increased the levels of tryptophan, an essential amino acid encountered scarcely in nature. These nutrient changes result in an increased protein-to-carbohydrate (P:C) ratio in all diets, which we hypothesized to be a significant determinant of microbiome-mediated host nutritional physiology. To test this, we compared life history traits of axenic flies reared on the three artificial diets with increased P:C ratios or continuous bacterial inoculation. We found that while on some diets, an environment of nutritional plenitude had impacts on life history, it did not fully explain all microbiome-associated phenotypes. This suggests that other factors, such as micronutrients and feeding behavior, likely also contribute to life history traits in a diet-dependent manner. Thus, while some bacterial impacts on nutrition occur across diets, others are dictated by unique dietary environments, highlighting the importance of diet-microbiome interactions in D. melanogaster nutritional physiology.IMPORTANCE Both in the laboratory and in nature, D. melanogaster-associated microbes serve as nutritional effectors, either through the production of metabolites or as direct sources of protein biomass. The relationship between the microbiome and the resulting host nutritional physiology is significantly impacted by diet composition, yet studies involving D. melanogaster are performed using a wide range of artificial diets, making it difficult to discern which aspects of host-microbe interactions may be universal or diet dependent. In this study, we utilized three standard D. melanogaster diets and a natural grape diet to form a comprehensive understanding of the quantifiable nutritional changes mediated by the host microbial community. We then altered these artificial diets based on the observed microbe-mediated changes to demonstrate their potential to influence host physiology, allowing us to identify nutritional factors whose effects were either universal for the three artificial diets or dependent on host diet composition.
Collapse
|
33
|
Kellingray L, Le Gall G, Doleman JF, Narbad A, Mithen RF. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. Eur J Nutr 2020; 60:2141-2154. [PMID: 33067661 PMCID: PMC8137612 DOI: 10.1007/s00394-020-02405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Purpose Brassica are an important food source worldwide and are characterised by the presence of compounds called glucosinolates. Studies indicate that the glucosinolate derived bioactive metabolite sulphoraphane can elicit chemoprotective benefits on human cells. Glucosinolates can be metabolised in vivo by members of the human gut microbiome, although the prevalence of this activity is unclear. Brassica and Allium plants also contain S-methylcysteine sulphoxide (SMCSO), that may provide additional health benefits but its metabolism by gut bacteria is not fully understood. Methods We examined the effects of a broccoli leachate (BL) on the composition and function of human faecal microbiomes of five different participants under in vitro conditions. Bacterial isolates from these communities were then tested for their ability to metabolise glucosinolates and SMCSO. Results Microbial communities cultured in vitro in BL media were observed to have enhanced growth of lactic acid bacteria, such as lactobacilli, with a corresponding increase in the levels of lactate and short-chain fatty acids. Members of Escherichia isolated from these faecal communities were found to bioconvert glucosinolates and SMCSO to their reduced analogues. Conclusion This study uses a broccoli leachate to investigate the bacterial-mediated bioconversion of glucosinolates and SMCSO, which may lead to further products with additional health benefits to the host. We believe that this is the first study that shows the reduction of the dietary compound S-methylcysteine sulphoxide by bacteria isolated from human faeces. Electronic supplementary material The online version of this article (10.1007/s00394-020-02405-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee Kellingray
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Gwénaëlle Le Gall
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Joanne F. Doleman
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Richard F. Mithen
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
34
|
Charron CS, Vinyard BT, Jeffery EH, Ross SA, Seifried HE, Novotny JA. BMI Is Associated With Increased Plasma and Urine Appearance of Glucosinolate Metabolites After Consumption of Cooked Broccoli. Front Nutr 2020; 7:575092. [PMID: 33072799 PMCID: PMC7542245 DOI: 10.3389/fnut.2020.575092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: Preclinical studies suggest that brassica vegetable diets decrease cancer risk, but epidemiological studies show varied effects, resulting in uncertainty about any health impact of brassicas. Factors controlling absorption of glucosinolate metabolites may relate to inconsistent results. We reported previously that subjects with BMI > 26 kg/m2 (HiBMI), given cooked broccoli plus raw daikon radish (as a source of plant myrosinase) daily for 17 days, had lower glucosinolate metabolite absorption than subjects given a single broccoli meal. This difference was not seen in subjects with BMI < 26 kg/m2 (LoBMI). Our objective in this current study was to determine whether a similar response occurred when cooked broccoli was consumed without a source of plant myrosinase. Methods: In a randomized crossover study (n = 18), subjects consumed no broccoli for 16 days or the same diet with 200 g of cooked broccoli daily for 15 days and 100 g of broccoli on day 16. On day 17, all subjects consumed 200 g of cooked broccoli. Plasma and urine were collected for 24 h and analyzed for glucosinolate metabolites by LC-MS. Results: There was no effect of diet alone or interaction of diet with BMI. However, absorption doubled in HiBMI subjects (AUC 219%, plasma mass of metabolites 202% compared to values for LoBMI subjects) and time to peak plasma metabolite values and 24-h urinary metabolites also increased, to 127 and 177% of LoBMI values, respectively. Conclusion: BMI impacts absorption and metabolism of glucosinolates from cooked broccoli, and this association must be further elucidated for more efficacious dietary recommendations. Clinical Trial Registration: This trial was registered at clinicaltrials.gov (NCT03013465).
Collapse
Affiliation(s)
- Craig S Charron
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| | - Bryan T Vinyard
- Statistics Group, US Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Elizabeth H Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Sharon A Ross
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, Rockville, MD, United States
| | - Harold E Seifried
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, Rockville, MD, United States
| | - Janet A Novotny
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| |
Collapse
|
35
|
Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, Higginbottom SK, Erez A, Donia MS, Sonnenburg JL, Sattely ES. A Metabolic Pathway for Activation of Dietary Glucosinolates by a Human Gut Symbiont. Cell 2020; 180:717-728.e19. [PMID: 32084341 DOI: 10.1016/j.cell.2020.01.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.
Collapse
Affiliation(s)
- Catherine S Liou
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Camil A C Diaz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew P Klein
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Erez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
37
|
Wu WK, Ivanova EA, Orekhov AN. Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Semin Cancer Biol 2020; 70:85-97. [PMID: 32610150 DOI: 10.1016/j.semcancer.2020.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Human gut microbiota is a dynamic and variable system that can change over time and in response to different diets and treatments. There is currently no doubt that gut microbiota can provide interesting therapeutic opportunities, since it can metabolize biologically active molecules, drugs, and their precursors, and control their bioavailability. Moreover, it can produce both beneficial and dangerous metabolites that influence host's health. In this review, we summarize the current knowledge on the involvement of gut microbiota in two chronic human pathologies that represent the greatest challenges of modern medicine: atherosclerosis and cancer. Interesting parallels are observed between the mechanisms and possible treatment approaches of these pathologies. Some of the common effects of therapeutic agents targeting both pathologies, such as anti-inflammatory activity, are partially mediated by the gut microbiota. We will discuss the effects of common drugs (metformin, statins and aspirin) and various nutraceuticals on gut microbiota and outline the pathways of microbial involvement in mediating the pleiotropic beneficial effects of these agents in atherosclerosis and cancer.
Collapse
Affiliation(s)
- Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | | | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia; Institute of Human Morphology, 117418, Moscow, Russia.
| |
Collapse
|
38
|
Weir TL, Trikha SRJ, Thompson HJ. Diet and cancer risk reduction: The role of diet-microbiota interactions and microbial metabolites. Semin Cancer Biol 2020; 70:53-60. [PMID: 32574813 DOI: 10.1016/j.semcancer.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
According to recent estimates, over one third of the human population will be diagnosed with cancer at some point in their lifetime. While genetic factors play a large part in cancer risk, as much as 50 % of cancers may be preventable through various lifestyle modifications. Nutrition is a major modifiable risk factor, both through its impacts on obesity as well as through dietary chemical exposures that can either increase or decrease cancer risk. However, specific associations and mechanistic links between diet and cancer risk are either inconsistent or elusive. New insights regarding the reciprocal interactions between diet and the gut microbiota, the trillions of organisms that reside in our intestines, may help clarify how diet impacts cancer. The gut microbiota is largely shaped by an individual's diet and has far-reaching effects on metabolism, the immune system, and inflammation- important factors in the development and progression of various cancers. Likewise, the microbiota modifies dietary components, and consequently, exposure to metabolites that can influence cancer. This review explores some of these diet-microbiota interactions in the context of their potential impacts on cancer prevention.
Collapse
Affiliation(s)
- Tiffany L Weir
- Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, United States.
| | - S Raj J Trikha
- Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, United States
| | - Henry J Thompson
- Cancer Prevention Laboratory, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
39
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
40
|
Mandrich L, Caputo E. Brassicaceae-Derived Anticancer Agents: Towards a Green Approach to Beat Cancer. Nutrients 2020; 12:nu12030868. [PMID: 32213900 PMCID: PMC7146209 DOI: 10.3390/nu12030868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the main cause of mortality and morbidity worldwide. Although a large variety of therapeutic approaches have been developed and translated into clinical protocols, the toxic side effects of cancer treatments negatively impact patients, allowing cancer to grow. Brassica metabolites are emerging as new weapons for anti-cancer therapeutics. The beneficial role of the consumption of brassica vegetables, the most-used vegetables in the Mediterranean diet, particularly broccoli, in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, has been well-documented. In this review, we discuss the anti-tumor effects of the bioactive compounds from Brassica vegetables with regard to the compounds and types of cancer against which they show activity, providing current knowledge on the anti-cancer effects of Brassica metabolites against major types of tumors. In addition, we discuss the impacts of industrial and domestic processing on the compounds’ functional properties before their consumption as well as the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification. Finally, the impacts of microbiota on the compounds’ bioactivity are considered. This information will be helpful for the further development of efficacious anti-cancer drugs.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics (I.G.B.) “A. Buzzati-Traverso”, CNR, Via Pietro Castellino, 111, I-80131 Naples, Italy
- Correspondence:
| |
Collapse
|
41
|
Cresci GAM, Lampe JW, Gibson G. Targeted Approaches for In Situ Gut Microbiome Manipulation. JPEN J Parenter Enteral Nutr 2020; 44:581-588. [PMID: 32027044 PMCID: PMC9291485 DOI: 10.1002/jpen.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The 2019 Dudrick Research Symposium, entitled "Targeted Approaches for In Situ Gut Microbiome Manipulation," was held on March 25, 2019, at the American Society for Parenteral and Enteral Nutrition (ASPEN) 2019 Nutrition Science & Practice Conference in Phoenix, AZ. The Dudrick Symposium honors the many pivotal and innovative contributions to the development and advancement of parenteral nutrition (PN) made by Dr Stanley J. Dudrick, physician scientist, academic leader, and a founding member of ASPEN. As the 2018 recipient of the Dudrick award, Dr Gail Cresci organized and chaired the symposium. The symposium addressed the evolving field of nutrition manipulation of the gut microbiome as a means to mitigate disease and support health. Presentations focused on (1) the role of prebiotics as a means to beneficially support gut microbiome composition and function and health; (2) designer synbiotics targeted to support metabolic by-products altered by ethanol exposure and microbial effectors that manipulate host metabolic outcomes; and, lastly, (3) types of intervention designs used to study diet-gut microbiome interactions in humans and a review of findings from recent interventions, which tested the effects of diet on the microbiome and the microbiome's effect on dietary exposures. New molecular techniques and multiomic approaches have improved knowledge of the structure and functional activity of the gut microbiome; however, challenges remain in establishing causal relationships between changes in the gut microbial-community structure and function and health outcomes in humans.
Collapse
Affiliation(s)
- Gail A. M. Cresci
- Department of Pediatric GastroenterologyCleveland Clinic Children's HospitalClevelandOhioUSA
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Human NutritionDigestive Disease InstituteCleveland ClinicClevelandOhioUSA
| | | | - Glenn Gibson
- Department of Food and Nutritional SciencesThe University of ReadingReadingUK
| |
Collapse
|
42
|
Hughes RL, Kable ME, Marco M, Keim NL. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Adv Nutr 2019; 10:979-998. [PMID: 31225587 PMCID: PMC6855959 DOI: 10.1093/advances/nmz049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host's diet is a major component influencing the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota influence the host's metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build, utilizing and expanding upon the methods and results they present to inform future studies.
Collapse
Affiliation(s)
- Riley L Hughes
- Departments of Nutrition, Food Science & Technology, University of California, Davis, CA
| | - Mary E Kable
- Departments of Nutrition, Food Science & Technology, University of California, Davis, CA,Departments of Immunity and Disease Prevention, Obesity and Metabolism, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA
| | - Maria Marco
- Food Science & Technology, University of California, Davis, CA
| | - Nancy L Keim
- Departments of Nutrition, Food Science & Technology, University of California, Davis, CA,Obesity and Metabolism, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA,Address correspondence to NLK (e-mail: )
| |
Collapse
|
43
|
Hughes RL, Marco ML, Hughes JP, Keim NL, Kable ME. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models-Part I: Overview of Current Methods. Adv Nutr 2019; 10:953-978. [PMID: 31225589 PMCID: PMC6855943 DOI: 10.1093/advances/nmz022] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Health care is increasingly focused on health at the individual level. In the rapidly evolving field of precision nutrition, researchers aim to identify how genetics, epigenetics, and the microbiome interact to shape an individual's response to diet. With this understanding, personalized responses can be predicted and dietary advice can be tailored to the individual. With the integration of these complex sources of data, an important aspect of precision nutrition research is the methodology used for studying interindividual variability in response to diet. This article stands as the first in a 2-part review of current research investigating the contribution of the gut microbiota to interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as the statistical and bioinformatic methods used to analyze results. Part II reviews the findings of these studies, discusses gaps in our current knowledge, and summarizes directions for future research. Taken together, these reviews summarize the current state of knowledge and provide a foundation for future research on the role of the gut microbiome in precision nutrition.
Collapse
Affiliation(s)
- Riley L Hughes
- Departments of Nutrition, Food Science and Technology, University of California, Davis, Davis, CA
| | - Maria L Marco
- Food Science and Technology, University of California, Davis, Davis, CA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Nancy L Keim
- Departments of Nutrition, Food Science and Technology, University of California, Davis, Davis, CA,Obesity and Metabolism, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA
| | - Mary E Kable
- Departments of Nutrition, Food Science and Technology, University of California, Davis, Davis, CA,Immunity and Disease Prevention, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA,Address correspondence to MEK (e-mail: )
| |
Collapse
|
44
|
Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019; 24:E3593. [PMID: 31590459 PMCID: PMC6804255 DOI: 10.3390/molecules24193593] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
There is robust epidemiological evidence for the beneficial effects of broccoli consumption on health, many of them clearly mediated by the isothiocyanate sulforaphane. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome. Since first isolated from broccoli and demonstrated to have cancer chemoprotective properties in rats in the early 1990s, over 3000 publications have described its efficacy in rodent disease models, underlying mechanisms of action or, to date, over 50 clinical trials examining pharmacokinetics, pharmacodynamics and disease mitigation. This review evaluates the current state of knowledge regarding the relationships between formulation (e.g., plants, sprouts, beverages, supplements), bioavailability and efficacy, and the doses of glucoraphanin and/or sulforaphane that have been used in pre-clinical and clinical studies. We pay special attention to the challenges for better integration of animal model and clinical studies, particularly with regard to selection of dose and route of administration. More effort is required to elucidate underlying mechanisms of action and to develop and validate biomarkers of pharmacodynamic action in humans. A sobering lesson is that changes in approach will be required to implement a public health paradigm for dispensing benefit across all spectrums of the global population.
Collapse
Affiliation(s)
- Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jed W Fahey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland DD1 9SY, UK.
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Cullman Chemoprotection Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: effects of BMI and daily consumption in a randomised clinical trial. Br J Nutr 2019; 120:1370-1379. [PMID: 30499426 DOI: 10.1017/s0007114518002921] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sulphoraphane originates from glucoraphanin in broccoli and is associated with anti-cancer effects. A preclinical study suggested that daily consumption of broccoli may increase the production of sulphoraphane and sulphoraphane metabolites available for absorption. The objective of this study was to determine whether daily broccoli consumption alters the absorption and metabolism of isothiocyanates derived from broccoli glucosinolates. We conducted a randomised cross-over human study (n 18) balanced for BMI and glutathione S-transferase μ 1 (GSTM1) genotype in which subjects consumed a control diet with no broccoli (NB) for 16 d or the same diet with 200 g of cooked broccoli and 20 g of raw daikon radish daily for 15 d (daily broccoli, DB) and 100 g of broccoli and 10 g of daikon radish on day 16. On day 17, all subjects consumed a meal of 200 g of broccoli and 20 g of daikon radish. Plasma and urine were collected for 24 h and analysed for sulphoraphane and metabolites of sulphoraphane and erucin by triple quadrupole tandem MS. For subjects with BMI >26 kg/m2 (median), plasma AUC and urinary excretion rates of total metabolites were higher on the NB diet than on the DB diet, whereas for subjects with BMI <26 kg/m2, plasma AUC and urinary excretion rates were higher on the DB diet than on the NB diet. Daily consumption of broccoli interacted with BMI but not GSTM1 genotype to affect plasma concentrations and urinary excretion of glucosinolate-derived compounds believed to confer protection against cancer. This trial was registered as NCT02346812.
Collapse
|
46
|
Chawalitpong S, Ichikawa S, Uchibori Y, Nakamura S, Katayama S. Long-Term Intake of Glucoraphanin-Enriched Kale Suppresses Skin Aging via Activating Nrf2 and the TβRII/Smad Pathway in SAMP1 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9782-9788. [PMID: 31390859 DOI: 10.1021/acs.jafc.9b02725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulforaphane, a potent antioxidant compound, is unstable at ambient temperature, whereas its precursor glucoraphanin is stable and metabolized to sulforaphane. Thus, we hypothesized that glucoraphanin-rich diet could effectively induce antioxidant enzyme activities and investigated the protective effects of long-term intake of a glucoraphanin-enriched kale (GEK) diet on skin aging in senescence-accelerated mouse prone 1 (SAMP1) mice. The senescence grading score was significantly lower after treatment with GEK for 39 weeks than that of the control mice. GEK also suppressed the thinning of the dorsal skin layer. Moreover, the GEK treatment enhanced the collagen production and increased the nuclear translocation of Nrf2 and HO-1 expression level in the skin tissue. TβRII and Smad3 expressions were clearly higher in the GEK-treated group than in the control group. Thus, GEK suppressed senescence in SAMP1 mice by enhancing the antioxidant activity and collagen production via the TβRII/Smad3 pathway, suggesting its practical applications for protection against skin aging.
Collapse
Affiliation(s)
- Supatta Chawalitpong
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Saki Ichikawa
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Yuki Uchibori
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| | - Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research , Shinshu University , 8304 Minamiminowa , Kamiina, Nagano 399-4598 , Japan
| |
Collapse
|
47
|
Fahey JW, Wade KL, Stephenson KK, Panjwani AA, Liu H, Cornblatt G, Cornblatt BS, Ownby SL, Fuchs E, Holtzclaw WD, Cheskin LJ. Bioavailability of Sulforaphane Following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration. Nutrients 2019; 11:nu11071489. [PMID: 31261930 PMCID: PMC6682992 DOI: 10.3390/nu11071489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
We examined whether gastric acidity would affect the activity of myrosinase, co-delivered with glucoraphanin (GR), to convert GR to sulforaphane (SF). A broccoli seed and sprout extract (BSE) rich in GR and active myrosinase was delivered before and after participants began taking the anti-acid omeprazole, a potent proton pump inhibitor. Gastric acidity appears to attenuate GR bioavailability, as evidenced by more SF and its metabolites being excreted after participants started taking omeprazole. Enteric coating enhanced conversion of GR to SF, perhaps by sparing myrosinase from the acidity of the stomach. There were negligible effects of age, sex, ethnicity, BMI, vegetable consumption, and bowel movement frequency and quality. Greater body mass correlated with reduced conversion efficiency. Changes in the expression of 20 genes in peripheral blood mononuclear cells were evaluated as possible pharmacodynamic indicators. When grouped by their primary functions based on a priori knowledge, expression of genes associated with inflammation decreased non-significantly, and those genes associated with cytoprotection, detoxification and antioxidant functions increased significantly with bioavailability. Using principal components analysis, component loadings of the changes in gene expression confirmed these groupings in a sensitivity analysis.
Collapse
Affiliation(s)
- Jed W Fahey
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA.
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Kristina L Wade
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine K Stephenson
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anita A Panjwani
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Hua Liu
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Grace Cornblatt
- Nutramax Laboratories Consumer Care, Inc., Edgewood, MD 21040, USA
| | | | - Stacy L Ownby
- Nutramax Laboratories Consumer Care, Inc., Edgewood, MD 21040, USA
| | - Edward Fuchs
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter David Holtzclaw
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lawrence J Cheskin
- Department of Health Behavior and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| |
Collapse
|
48
|
Riscuta G, Xi D, Pierre-Victor D, Starke-Reed P, Khalsa J, Duffy L. Diet, Microbiome, and Epigenetics in the Era of Precision Medicine. Methods Mol Biol 2019; 1856:141-156. [PMID: 30178250 DOI: 10.1007/978-1-4939-8751-1_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precision medicine is a revolutionary approach to disease prevention and treatment that takes into account individual differences in lifestyle, environment, and biology. The US National Institutes of Health has recently launched The All of Us Research Program (2016) to extend precision medicine to all diseases by building a national research cohort of one million or more US participants. This review is limited to how the human microbiome factors into precision medicine from the applied aspect of preventing and managing cancer. The Precision Medicine Initiative was established in an effort to address particular characteristics of each person with the aim to increase the effectiveness of medical interventions in terms of prevention and treatment of multiple diseases including cancer. Many factors contribute to the response to an intervention. The microbiome and microbially produced metabolites are capable of epigenetic modulation of gene activity, and can influence the response through these mechanisms. The fact that diet has an impact on microbiome implies that it will also affect the epigenetic mechanisms involving microbiota. In this chapter, we review some major epigenetic mechanisms, notably DNA methylation, chromatin remodeling and histone modification, and noncoding RNA, implicated in cancer prevention and treatment. Several examples of how microbially produced metabolites from food influence cancer risk and treatment response through epigenetic mechanisms will be discussed. Some challenges include the limited understanding of how diet shapes the microbiome and how to best evaluate those changes since both, diet and the microbiota, exhibit daily and seasonal variations. Ongoing research seeks to understand the relationship between the human microbiome and multiple diseases including cancer.
Collapse
Affiliation(s)
- Gabriela Riscuta
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA.
| | - Dan Xi
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | | | - Pamela Starke-Reed
- Nutrition, Food Safety and Quality, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Jag Khalsa
- Medical Consequences of Drug Abuse and Co-occurring Infections Branch, National Institute of Drug Abuse, Rockville, MD, USA
| | - Linda Duffy
- National Center for Complementary and Integrative Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR, Shikany JM, Lloyd-Jones DM, Launer LJ, Fodor AA, Meyer KA. Gut Microbiota Composition and Blood Pressure. Hypertension 2019; 73:998-1006. [PMID: 30905192 PMCID: PMC6458072 DOI: 10.1161/hypertensionaha.118.12109] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Animal models support a role for the gut microbiota in the development of hypertension. There has been a lack of epidemiological cohort studies to confirm these findings in human populations. We examined cross-sectional associations between measures of gut microbial diversity and taxonomic composition and blood pressure (BP) in 529 participants of the biracial (black and white) CARDIA study (Coronary Artery Risk Development in Young Adults). We sequenced V3-V4 regions of the 16S ribosomal RNA marker gene using DNA extracted from stool samples collected at CARDIA's Year 30 follow-up examination (2015-2016; aged 48-60 years). We quantified associations between BP (hypertension [defined as systolic BP ≥140 mm Hg or diastolic BP ≥90 mm Hg or antihypertension medication use] and systolic BP) and within and between-person diversity measures. We conducted genera-specific multivariable-adjusted regression analysis, accounting for multiple comparisons using the false discovery rate. Hypertension and systolic BP were inversely associated with measures of α-diversity, including richness and the Shannon Diversity Index, and were distinguished with respect to principal coordinates based on a similarity matrix of genera abundance. Several specific genera were significantly associated with hypertension and systolic BP, though results were attenuated with adjustment for body mass index. Our findings support associations between within-person and between-person gut microbial community diversity and taxonomic composition and BP in a diverse population-based cohort of middle-aged adults. Future study is needed to define functional pathways that underlie observed associations and identify specific microbial targets for intervention.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioinformatics; University of North Carolina at Charlotte; Charlotte, NC
| | - Anju Lulla
- Nutrition Research Institute; University of North Carolina at Chapel Hill; Kannapolis, NC
| | - Michael Sioda
- Department of Bioinformatics; University of North Carolina at Charlotte; Charlotte, NC
| | - Kathryn Winglee
- Department of Bioinformatics; University of North Carolina at Charlotte; Charlotte, NC
| | - Michael C. Wu
- Public Health Sciences Division; Fred Hutchinson Cancer Research Center; Seattle, WA
| | - David R. Jacobs
- Division of Epidemiology and Community Health; University of Minnesota; Minneapolis, MN
| | - James M. Shikany
- Division of Preventive Medicine; University of Alabama at Birmingham; Birmingham, AL
| | - Donald M. Lloyd-Jones
- Department of Preventive Medicine; Northwestern University Feinberg School of Medicine; Chicago, IL
| | - Lenore J. Launer
- Neuroepidemiology Section; National Institute on Aging; Bethesda, MD
| | - Anthony A. Fodor
- Department of Bioinformatics; University of North Carolina at Charlotte; Charlotte, NC
| | - Katie A. Meyer
- Nutrition Research Institute; University of North Carolina at Chapel Hill; Kannapolis, NC.,Department of Nutrition; University of North Carolina at Chapel Hill; Chapel Hill, NC
| |
Collapse
|
50
|
Wu Y, Shen Y, Zhu Y, Mupunga J, Zou L, Liu C, Liu S, Mao J. Broccoli ingestion increases the glucosinolate hydrolysis activity of microbiota in the mouse gut. Int J Food Sci Nutr 2019; 70:585-594. [DOI: 10.1080/09637486.2018.1554624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Yuke Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Ye Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Jothame Mupunga
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Chao Liu
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| |
Collapse
|