1
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ferreira ARO, Ribeiro MVG, Peres MNC, Piovan S, Gonçalves GD, Saavedra LPJ, Martins JNDL, Junior MDF, Cavalcante KVN, Lopes GKG, Carneiro M, Almeida DL, Gomes RM, Comar JF, Armitage JA, Mathias PCDF, Palma-Rigo K. Protein Restriction in the Peri-Pubertal Period Induces Autonomic Dysfunction and Cardiac and Vascular Structural Changes in Adult Rats. Front Physiol 2022; 13:840179. [PMID: 35574445 PMCID: PMC9095958 DOI: 10.3389/fphys.2022.840179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Perturbations to nutrition during critical periods are associated with changes in embryonic, fetal or postnatal developmental patterns that may render the offspring more likely to develop cardiovascular disease in later life. The aim of this study was to evaluate whether autonomic nervous system imbalance underpins in the long-term hypertension induced by dietary protein restriction during peri-pubertal period. Male Wistar rats were assigned to groups fed with a low protein (4% protein, LP) or control diet (20.5% protein; NP) during peri-puberty, from post-natal day (PN) 30 until PN60, and then all were returned to a normal protein diet until evaluation of cardiovascular and autonomic function at PN120. LP rats showed long-term increased mean arterial pressure (p = 0.002) and sympathetic arousal; increased power of the low frequency (LF) band of the arterial pressure spectral (p = 0.080) compared with NP animals. The depressor response to the ganglion blocker hexamethonium was increased in LP compared with control animals (p = 0.006). Pulse interval variability showed an increase in the LF band and LF/HF ratio (p = 0.062 and p = 0.048) in LP animals. The cardiac response to atenolol and/or methylatropine and the baroreflex sensitivity were similar between groups. LP animals showed ventricular hypertrophy (p = 0.044) and increased interstitial fibrosis (p = 0.028) compared with controls. Reduced protein carbonyls (PC) (p = 0.030) and catalase activity (p = 0.001) were observed in hearts from LP animals compared with control. In the brainstem, the levels of PC (p = 0.002) and the activity of superoxide dismutase and catalase (p = 0.044 and p = 0.012) were reduced in LP animals, while the levels of GSH and total glutathione were higher (p = 0.039 and p = 0.038) compared with NP animals. Protein restriction during peri-pubertal period leads to hypertension later in life accompanied by sustained sympathetic arousal, which may be associated with a disorganization of brain and cardiac redox state and structural cardiac alteration.
Collapse
Affiliation(s)
- Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maria Natalia Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Silvano Piovan
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Géssica Dutra Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Juliana Nunes de Lima Martins
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Divino Ferreira Junior
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Keilah Valeria Naves Cavalcante
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Gabriel kian Guimarães Lopes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Mariane Carneiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Jurandir Fernando Comar
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
- *Correspondence: Kesia Palma-Rigo,
| |
Collapse
|
3
|
Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. Int J Mol Sci 2022; 23:ijms23042096. [PMID: 35216239 PMCID: PMC8877060 DOI: 10.3390/ijms23042096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The functional maturation of insulin-secreting β-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional β-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal β-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of β-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal β-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to β-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the β-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional β-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.
Collapse
|
4
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Miranda GDS, de Lima TAL, Costermani HDO, Ricken CLRDS, Parrela JPSDS, Membrive BLA, de Almeida RE, Facchi JC, de Oliveira LR, Miranda RA, de Moura EG, Lisboa PC, de Oliveira JC. Breastfeeding undernutrition changes iBAT-involved thermogenesis protein expression and leads to a lean phenotype in adult rat offspring. J Nutr Biochem 2021; 99:108857. [PMID: 34520852 DOI: 10.1016/j.jnutbio.2021.108857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023]
Abstract
Nutritional insults early in life have been associated with metabolic diseases in adulthood. We aimed to evaluate the effects of maternal food restriction during the suckling period on metabolism and interscapular brown adipose tissue (iBAT) thermogenically involved proteins in adult rat offspring. Wistar rats underwent food restriction by 50% during the first two-thirds of lactation (FR50 group). Control rats were fed ad libitum throughout lactation (CONT group). At birth, the litter size was adjusted to eight pups, and weaning was performed at 22 days old. Body weight and food and water intake were assessed every two days. High- (HCD, 4,589 cal) and normal-caloric diet (NCD, 3,860 cal) preferences, as well as food intake during the dark part of the cycle, were assessed. At 100 days old, the rats were euthanized, and blood and tissues were removed for further analyses. Adult FR50 rats, although hyperphagic and preferring to eat HCD (P<.001), were leaner (P<.001) than the CONT group. The FR50 rats, were normoglycemic (P=.962) and had hypertriglyceridemia (P<.01). In addition, the FR50 rats were dyslipidemic (P<.01), presenting with a high atherogenic risk by the Castelli indexes (P<.01), had a higher iBAT mass (P<.01), fewer β3 adrenergic receptors (β3-AR, P<.05) and higher iBAT expression of uncoupled protein 1 (UCP1, P<.05) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, P<.001) than the CONT rats. In conclusion, maternal food restriction during early breastfeeding programs rat offspring to have a lean phenotype, despite hyperphagia, and increased iBAT UCP1 and PGC-1α protein expression.
Collapse
Affiliation(s)
- Ginislene Dias Souza Miranda
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Thalyne Aparecida Leite de Lima
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Hercules de Oliveira Costermani
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Camila Luiza Rodrigues Dos Santos Ricken
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Jocemara Patrícia Silva de Souza Parrela
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Bárbara Letícia Antonio Membrive
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Raul Evangelista de Almeida
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Júlia Cristina Facchi
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Lucas Ryba de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Júlio Cezar de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil.
| |
Collapse
|
6
|
Cholinergic-pathway-weakness-associated pancreatic islet dysfunction: a low-protein-diet imprint effect on weaned rat offspring. J Dev Orig Health Dis 2020; 11:484-491. [DOI: 10.1017/s2040174420000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractCurrently, metabolic disorders are one of the major health problems worldwide, which have been shown to be related to perinatal nutritional insults, and the autonomic nervous system and endocrine pancreas are pivotal targets of the malprogramming of metabolic function. We aimed to assess glucose–insulin homeostasis and the involvement of cholinergic responsiveness (vagus nerve activity and insulinotropic muscarinic response) in pancreatic islet capacity to secrete insulin in weaned rat offspring whose mothers were undernourished in the first 2 weeks of the suckling phase. At delivery, dams were fed a low-protein (4% protein, LP group) or a normal-protein diet (20.5% protein, NP group) during the first 2 weeks of the suckling period. Litter size was adjusted to six pups per mother, and rats were weaned at 21 days old. Weaned LP rats presented a lean phenotype (P < 0.01); hypoglycaemia, hypoinsulinaemia and hypoleptinaemia (P < 0.05); and normal corticosteronaemia (P > 0.05). In addition, milk insulin levels in mothers of the LP rats were twofold higher than those of mothers of the NP rats (P < 0.001). Regarding glucose–insulin homeostasis, weaned LP rats were glucose-intolerant (P < 0.01) and displayed impaired pancreatic islet insulinotropic function (P < 0.05). The M3 subtype of the muscarinic acetylcholine receptor (M3mAChR) from weaned LP rats was less responsive, and the superior vagus nerve electrical activity was reduced by 30% (P < 0.01). A low-protein diet in the suckling period malprogrammes the vagus nerve to low tonus and impairs muscarinic response in the pancreatic β-cells of weaned rats, which are imprinted to secrete inadequate insulin amounts from an early age.
Collapse
|
7
|
Facchi JC, Lima TALD, Oliveira LRD, Costermani HDO, Miranda GDS, de Oliveira JC. Perinatal programming of metabolic diseases: The role of glucocorticoids. Metabolism 2020; 104:154047. [PMID: 31837301 DOI: 10.1016/j.metabol.2019.154047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The worldwide increase in metabolic diseases has urged the scientific community to improve our understanding about the mechanisms underlying its cause and effects. A well supported area of studies had related maternal stress with early programming to the later metabolic diseases. Mechanisms upon origins of metabolic disturbances are not yet fully understood, even though stressful factors rising glucocorticoids have been put out as pivotal trigger by programming metabolic diseases as long-term consequence. Considering energy balance and glucose homeostasis, by producing and/or sensing regulator signals, hypothalamus-pituitary-adrenal axis and endocrine pancreas are directly affected by glucocorticoids excess. We focus on the evidences reporting the role of increased glucocorticoids due to perinatal insults on the physiological systems involved in the metabolic homeostasis and in the target organs such as endocrine pancreas, white adipose tissue and blood vessels. Besides, we review some mechanisms underlining the malprogramming of type 2 diabetes, obesity and hypertension. Studies on this field are currently ongoing and even there is a good understanding regarding the effects of glucocorticoids addressing metabolic diseases, few is known about the relationship between maternal insults rising glucocorticoids to pups' metabolic disturbances, a thorough understanding about that may provide pivotal clinical clues regarding those disorders.
Collapse
Affiliation(s)
- Júlia Cristina Facchi
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Thalyne Aparecida Leite de Lima
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Lucas Ryba de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Hercules de Oliveira Costermani
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Ginislene Dias Souza Miranda
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil
| | - Júlio Cezar de Oliveira
- Research Group on Perinatal Programming of Metabolic Diseases: DOHaD concept, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center, NUPADS, Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop, MT, Brazil.
| |
Collapse
|
8
|
Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood. J Nutr Biochem 2018; 57:153-161. [DOI: 10.1016/j.jnutbio.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
|
9
|
Bjørke-Monsen AL, Vollsæter M, Ueland PM, Markestad T, Øymar K, Halvorsen T. Increased Bronchial Hyperresponsiveness and Higher Asymmetric Dimethylarginine Levels after Fetal Growth Restriction. Am J Respir Cell Mol Biol 2017; 56:83-89. [PMID: 27574738 DOI: 10.1165/rcmb.2016-0210oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bronchial hyperresponsiveness (BHR), a feature of asthma, is observed in preterm-born children and has been linked to intrauterine growth restriction. BHR is mediated via airway smooth muscle tone and is modulated by the autonomic nervous system, nitric oxide, and airway inflammation. Interactions among these factors are insufficiently understood. Methacholine-induced BHR (Met-BHR), fractional exhaled NO, and systemic soluble markers of nitric oxide metabolism and inflammation were determined in a population-based sample of 57 eleven-year-old children born extremely preterm (gestational age [GA] < 28 wk) or with extremely low birth weight (<1,000 g), and in a matched normal-birth weight term-born control group (n = 54). Bronchopulmonary dysplasia (BPD) was defined as the need for oxygen treatment at a GA of 36 weeks. In preterm-born children, birth weight below the 10th percentile for GA was associated with increased Met-BHR and higher plasma levels of asymmetric dimethylarginine (ADMA), with an increased odds ratio for being in the upper tertile of Met-BHR (11.8; 95% confidence interval, 3.3-42.4) and of ADMA (5.2; 95% confidence interval, 1.3-20.3). Met-BHR was correlated to ADMA level (r = 0.27, P = 0.007). There were no significant differences in Met-BHR, fractional exhaled NO, or z-FEV1 according to BPD status. No associations with systemic soluble markers of inflammation were observed for Met-BHR, birth, or BPD status. Intrauterine growth restriction in preterm-born children was associated with substantially increased Met-BHR and higher ADMA levels, suggesting altered nitric oxide regulation. These findings contribute to the understanding of the consequences from an adverse fetal environment; they should also be tested in term-born children.
Collapse
Affiliation(s)
| | - Maria Vollsæter
- 2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- 1 Laboratory of Clinical Biochemistry, and.,3 Bevital A/S, Bergen, Norway
| | - Trond Markestad
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | - Knut Øymar
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway; and.,5 Department of Pediatrics, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Halvorsen
- 2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.,4 Department of Clinical Science, University of Bergen, Bergen, Norway; and
| |
Collapse
|
10
|
Franco CCS, Prates KV, Previate C, Moraes AMP, Matiusso CCI, Miranda RA, de Oliveira JC, Tófolo LP, Martins IP, Barella LF, Ribeiro TA, Malta A, Pavanello A, Francisco FA, Gomes RM, Alves VS, Moreira VM, Rigo KP, Almeida DL, de Sant Anna JR, Prado MAAC, Mathias PCF. Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats. Endocrine 2017; 56:346-356. [PMID: 28233096 DOI: 10.1007/s12020-017-1263-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. METHODS Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. RESULTS Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. CONCLUSION Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.
Collapse
Affiliation(s)
- Claudinéia C S Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.
| | - Kelly V Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Ana M P Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Camila C I Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Rosiane A Miranda
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Júlio C de Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Laize P Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Isabela P Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Luiz F Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Tatiane A Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Flávio A Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia/GO, Brazil
| | - Vander S Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Veridiana M Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Késia P Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Douglas L Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Juliane R de Sant Anna
- Laboratory of Mutagenesis & Genetics, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Marialba A A C Prado
- Laboratory of Mutagenesis & Genetics, Department of Cell Biology and Genetics, State University of Maringá, Maringá, PR, Brazil
| | - Paulo C F Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
11
|
Malta A, Souza AAD, Ribeiro TA, Francisco FA, Pavanello A, Prates KV, Tófolo LP, Miranda RA, Oliveira JCD, Martins IP, Previate C, Gomes RM, Franco CCDS, Natali MRM, Palma-Rigo K, Mathias PCDF. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats. Sci Rep 2016; 6:30745. [PMID: 27561682 PMCID: PMC4999897 DOI: 10.1038/srep30745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023] Open
Abstract
We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets.
Collapse
Affiliation(s)
- Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Aline Amenencia de Souza
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | | | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | | | | | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá, PR, Brazil
| |
Collapse
|
12
|
de Oliveira JC, Gomes RM, Miranda RA, Barella LF, Malta A, Martins IP, Franco CCDS, Pavanello A, Torrezan R, Natali MRM, Lisboa PC, Mathias PCDF, de Moura EG. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring. Endocrinology 2016; 157:1799-812. [PMID: 27007071 PMCID: PMC5393358 DOI: 10.1210/en.2015-1883] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol.
Collapse
|
13
|
Martin JM, Miranda RA, Barella LF, Palma-Rigo K, Alves VS, Fabricio GS, Pavanello A, Franco CCDS, Ribeiro TA, Visentainer JV, Banafé EG, Martin CA, Mathias PCDF, de Oliveira JC. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice. Int J Endocrinol 2016; 2016:9242319. [PMID: 28050167 PMCID: PMC5165167 DOI: 10.1155/2016/9242319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022] Open
Abstract
Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g-1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model.
Collapse
Affiliation(s)
- Josiane Morais Martin
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Rosiane Aparecida Miranda
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Luiz Felipe Barella
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Kesia Palma-Rigo
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Vander Silva Alves
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Gabriel Sergio Fabricio
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Audrei Pavanello
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | | | - Tatiane Aparecida Ribeiro
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | | | | | | | - Paulo Cezar de Freitas Mathias
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | - Júlio Cezar de Oliveira
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 78557-267 Sinop, MT, Brazil
- *Júlio Cezar de Oliveira:
| |
Collapse
|
14
|
Jahan-Mihan A, Rodriguez J, Christie C, Sadeghi M, Zerbe T. The Role of Maternal Dietary Proteins in Development of Metabolic Syndrome in Offspring. Nutrients 2015; 7:9185-217. [PMID: 26561832 PMCID: PMC4663588 DOI: 10.3390/nu7115460] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of metabolic syndrome and obesity has been increasing. Pre-natal environment has been suggested as a factor influencing the risk of metabolic syndrome in adulthood. Both observational and experimental studies showed that maternal diet is a major modifier of the development of regulatory systems in the offspring in utero and post-natally. Both protein content and source in maternal diet influence pre- and early post-natal development. High and low protein dams’ diets have detrimental effect on body weight, blood pressure191 and metabolic and intake regulatory systems in the offspring. Moreover, the role of the source of protein in a nutritionally adequate maternal diet in programming of food intake regulatory system, body weight, glucose metabolism and blood pressure in offspring is studied. However, underlying mechanisms are still elusive. The purpose of this review is to examine the current literature related to the role of proteins in maternal diets in development of characteristics of the metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Judith Rodriguez
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Catherine Christie
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Marjan Sadeghi
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| | - Tara Zerbe
- Department of Nutrition and Dietetics, Brook College of Health, University of North Florida, UNF Dr. Bldg 39, Room 3057A, Jacksonville, FL 32224, USA.
| |
Collapse
|
15
|
Ong TP, Ozanne SE. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr Opin Clin Nutr Metab Care 2015; 18:354-60. [PMID: 26049632 DOI: 10.1097/mco.0000000000000177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The environment experienced during critical windows of development can 'programme' long-term health and risk of metabolic diseases such as type 2 diabetes in the offspring. The purpose of this review is to discuss potential epigenetic mechanisms involved in the developmental programming of type 2 diabetes by early nutrition. RECENT FINDINGS Maternal and more recently paternal nutrition have been shown to play key roles in metabolic programming of the offspring. Although the exact mechanisms are still not clear, epigenetic processes have emerged as playing a plausible role. Epigenetic dysregulation is associated with several components that contribute to type 2 diabetes risk, including altered feeding behaviour, insulin secretion and insulin action. It may also contribute to transgenerational risk transmission. SUMMARY Epigenetic processes may represent a central underlying mechanism of developmental programming of type 2 diabetes. During embryonic and foetal development, extensive epigenetic remodelling takes place not only in somatic but also in primordial germ cells. Therefore, concerns have been raised that epigenetic dysregulation induced by a suboptimal early environment could programme altered phenotypes not only in the first generation but also in the subsequent ones. Characterizing these altered epigenetic marks has great implications for identifying individuals at an increased disease risk as well as potentially leading to novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Thomas P Ong
- aUniversity of Cambridge Institute of Metabolic Science and MRC Metabolic Diseases Unit, Cambridge, UK bDepartment of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil
| | | |
Collapse
|