1
|
Mikulic N, Uyoga MA, Stoffel NU, Derrien M, Nyilima S, Kostopoulos I, Roeselers G, Chenoll E, Mwasi E, Pironaci G, Karanja S, Bourdet-Sicard R, Zimmermann MB. Prebiotics increase iron absorption and reduce the adverse effects of iron on the gut microbiome and inflammation: a randomized controlled trial using iron stable isotopes in Kenyan infants. Am J Clin Nutr 2024; 119:456-469. [PMID: 38042412 PMCID: PMC10884607 DOI: 10.1016/j.ajcnut.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Iron fortificants tend to be poorly absorbed and may adversely affect the gut, especially in African children. OBJECTIVE We assessed the effects of prebiotic galacto-oligosaccharides/fructo-oligosaccharides (GOS/FOS) on iron absorption and gut health when added to iron-fortified infant cereal. METHODS We randomly assigned Kenyan infants (n = 191) to receive daily for 3 wk a cereal containing iron and 7.5 g GOS/FOS (7.5 g+iron group), 3 g (3-g+iron group) GOS/FOS, or no prebiotics (iron group). A subset of infants in the 2 prebiotic+iron groups (n = 66) consumed 4 stable iron isotope-labeled test meals without and with prebiotics, both before and after the intervention. Primary outcome was fractional iron absorption (FIA) from the cereal with or without prebiotics regardless of dose, before and after 3 wk of consumption. Secondary outcomes included fecal gut microbiota, iron and inflammation status, and effects of prebiotic dose. RESULTS Median (25th-75th percentiles) FIAs from meals before intervention were as follows: 16.3% (8.0%-27.6%) without prebiotics compared with 20.5% (10.4%-33.4%) with prebiotics (Cohen d = 0.53; P < 0.001). FIA from the meal consumed without prebiotics after intervention was 22.9% (8.5%-32.4%), 41% higher than from the meal without prebiotics before intervention (Cohen d = 0.36; P = 0.002). FIA from the meal consumed with prebiotics after intervention was 26.0% (12.2%-36.1%), 60% higher than from the meal without prebiotics before intervention (Cohen d = 0.45; P = 0.007). After 3 wk, compared with the iron group, the following results were observed: 1) Lactobacillus sp. abundances were higher in both prebiotic+iron groups (P < 0.05); 2) Enterobacteriaceae sp. abundances (P = 0.022) and the sum of pathogens (P < 0.001) were lower in the 7.5-g+iron group; 3) the abundance of bacterial toxin-encoding genes was lower in the 3-g+iron group (false discovery rate < 0.05); 4) fecal pH (P < 0.001) and calprotectin (P = 0.033) were lower in the 7.5-g+iron group. CONCLUSIONS Adding prebiotics to iron-fortified infant cereal increases iron absorption and reduces the adverse effects of iron on the gut microbiome and inflammation in Kenyan infants. This trial was registered at clinicaltrials.gov as NCT03894358.
Collapse
Affiliation(s)
- Nadja Mikulic
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | | | - Suzane Nyilima
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | | | | | - Edith Mwasi
- Paediatrics Department, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Giulia Pironaci
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Simon Karanja
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Michael B Zimmermann
- Medical Research Council Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
2
|
Husmann FMD, Zimmermann MB, Herter-Aeberli I. The Effect of Prebiotics on Human Iron Absorption: A Review. Adv Nutr 2022; 13:2296-2304. [PMID: 35816457 PMCID: PMC9776726 DOI: 10.1093/advances/nmac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 01/29/2023] Open
Abstract
Iron deficiency remains the most common nutritional deficiency. Oral iron supplementation is the recommended first-line treatment and used as a preventive measure as well. Enhancers of iron absorption are highly sought after to improve supplementation outcomes. Evidence from animal and human studies exists that prebiotics can enhance iron absorption. The purpose of this present narrative review of the literature is to summarize the existing evidence on the effects of prebiotics on human iron absorption. Relevant articles were identified from PUBMED, Scopus, and Web of Science from inception to November 2021. Only human trials investigating the effect of prebiotics on iron absorption were included. Eleven articles were identified and included for review. There are promising findings supporting an enhancing effect of certain prebiotics, but inconsistencies between the studies and results exist. The most convincing evidence exists for the prebiotics galacto-oligosaccharides and fructo-oligosaccharides combined with the commonly used iron compound ferrous fumarate, from studies in adult women with low iron stores and in anemic infants. Many factors seem to play a role in the enhancing effect of prebiotics on iron absorption such as type of prebiotic, dose, acute (single-dose) or chronic (long-term) prebiotic consumption, iron compound, iron status, inflammatory status, and age of the population studied. More research investigating the optimal combination of prebiotic, iron compound, and dose as well as the effect of long-term application on iron status outcomes is needed.
Collapse
Affiliation(s)
- Frederike M D Husmann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Rizwan Ahmad AM, Farooq U, Anees M, Anis RA, Rashid S, Ahmed W. Co-administration of Inulin and Iron Fortificants improves Iron Deficiency Biomarkers in Female Sprague Dawley Rats. Food Sci Nutr 2022; 10:2141-2148. [PMID: 35844906 PMCID: PMC9281937 DOI: 10.1002/fsn3.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Micronutrient deficiencies affect approximately 2 billion people worldwide and iron deficiency anemia is one of them. The instant research was an attempt to determine the efficacy of co-administration of two iron fortificants (NaFeEDTA and FeSO4) and inulin (a prebiotic) on serum iron, ferritin, transferrin, and total iron-binding capacity in iron-deficient female Sprague Dawley rats. For this research, rats were divided into ten groups, (two control and eight treatment groups). Treatment groups were made iron deficient by feeding them with triapine, an iron binder for two weeks. All treatment groups were fed with inulin at two different dosage levels along with iron fortificants. The study results showed that serum ferritin and serum iron levels significantly improved from initiation to termination of study. Also, mean values of total iron-binding capacity and serum transferrin showed a steady decline over a period of three months indicating that iron stores were being improved. It was concluded that co-administration of inulin and iron fortificants helped improve iron deficiency biomarkers in female Sprague Dawley rats.
Collapse
Affiliation(s)
- Abdul Momin Rizwan Ahmad
- Department of Nutrition & DieteticsNational University of Medical Sciences (NUMS)RawalpindiPakistan
| | - Umar Farooq
- Department of Diet and Nutritional SciencesIBADAT International UniversityIslamabadPakistan
| | - Mariam Anees
- Department of BiochemistryQuaid‐i‐Azam UniversityLahorePakistan
| | - Riffat Aysha Anis
- Department of Diet and Nutritional SciencesIBADAT International UniversityIslamabadPakistan
| | - Summer Rashid
- Department of Food and NutritionMinhaj UniversityLahorePakistan
| | - Waqas Ahmed
- Department of Food Science & Human NutritionUniversity of Veterinary & Animal SciencesLahorePakistan
| |
Collapse
|
4
|
Tawfick MM, Xie H, Zhao C, Shao P, Farag MA. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 2022; 208:948-961. [PMID: 35381290 DOI: 10.1016/j.ijbiomac.2022.03.218] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Inulin consumption in both humans and animal models is recognized for its prebiotic action with the most consistent change that lies in enhancing the growth and functionality of Bifidobacterium bacteria, as well as its effect on host gene expression and metabolism. Further, inulin-type fructans are utilized in the colon by bacterial fermentation to yield short-chain fatty acids (SCFAs), which play important role in its biological effects both locally inside the gut and in systemic actions. The gut symbiosis sustained by inulin supplementation among other dietary fibers exerts preventive and/or therapeutic options for many metabolic disorders including obesity, type 2 diabetes mellitus, cardiometabolic diseases, kidney diseases and hyperuricemia. Although, gastrointestinal negative effects due to inulin consumption were reported, such as gastrointestinal symptoms in humans and exacerbated inflammatory bowel disease (IBD) in mice. This comprehensive review aims to present the whole story of how inulin functions as a prebiotic at cellular levels and the interplay between physiological, functional and immunological responses inside the animal or human gut as influenced by inulin in diets, in context to its structural composition. Such review is of importance to identify management and feed strategies to optimize gut health, for instance, consumption of the tolerated doses to healthy adults of 10 g/day of native inulin or 5 g/day of naturally inulin-rich chicory extract. In addition, inulin-drug interactions should be further clarified particularly if used as a supplement for the treatment of degenerative diseases (e.g., diabetes) over a long period. The combined effect of probiotics and inulin appears more effective, and more research on this synergy is still needed.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
5
|
Agrizzi Verediano T, Agarwal N, Juste Contin Gomes M, Martino HSD, Tako E. Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 63:9017-9032. [PMID: 35403512 DOI: 10.1080/10408398.2022.2060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of dietary fiber on intestinal health have been well established. However, there is no consensus on the dietary fiber effects on mineral absorption. The objective of this systematic review is to discuss the evidence on the dietary fiber effects on iron absorption and iron status-related biomarkers. A comprehensive search of 3 databases: PubMed, Scopus and Web of Science was carried out. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, and a total of 32 studies were included with 9 of them clinical studies and 23 in vivo. The studies included assessment of dietary fiber in the form of fructo-oligosaccharides, galacto-oligosaccharides, inulin, pectin, guar gum, oligofructose, xylo-oligosaccharides, and mannan-oligosaccharide. Hemoglobin (n = 21) and fractional iron absorption (n = 6) were the most frequently reported outcomes. The results showed no significant correlations between consumption of dietary fiber to iron absorption/status-related biomarkers. However, the current evidence may not be substantial to invalidate the recommendation of dietary fiber as an agent to improve dietary iron bioavailability, and absorption. In conclusion, there is a need to conduct further clinical trials with long dietary fiber intervention focusing on population at high risk for iron deficiency.
Collapse
Affiliation(s)
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Chen J, Wang Y, Pan J, Lu LW, Yu J, Liu B, Chen F, Deng H. Prebiotic Oligosaccharides Enhance Iron Absorption Via Modulation of Protein Expression and Gut Microbiota in a Dose‐response Manner in Iron‐deficient Growing Rats. Mol Nutr Food Res 2022; 66:e2101064. [DOI: 10.1002/mnfr.202101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie‐Hua Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| | - Yiyuan Wang
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University, Guangzhou, China Zhuhai Maternity and Child Health Hospital Zhuhai 519001 China
| | - Jialiang Pan
- Department of Inspection and Quarantine School of Public Health Southern Medical University Guangzhou 510515 China
| | - Louise Weiwei Lu
- Human Nutrition Unit School of Biological Sciences University of Auckland Auckland 1010 New Zealand
- High Value Nutrition National Science Challenge Auckland 1142 New Zealand
| | - Jianfeng Yu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Bin Liu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Feng Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Hong Deng
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| |
Collapse
|
7
|
Mikulic N, Uyoga MA, Paganini D, Mwasi E, Stoffel NU, Zeder C, Karanja S, Zimmermann MB. Consumption of a Single Dose of Prebiotic Galacto-Oligosaccharides Does Not Enhance Iron Absorption from Micronutrient Powders in Kenyan Infants: A Stable Iron Isotope Study. J Nutr 2021; 151:1205-1212. [PMID: 33693741 DOI: 10.1093/jn/nxab007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long-term feeding of prebiotic galacto-oligosaccharides (GOS) increases iron absorption in African infants, but the underlying mechanism and how long GOS need to be fed to infants to achieve an increase in absorption is uncertain. OBJECTIVES In Kenyan infants, we tested whether the addition of GOS to a single test meal would affect iron absorption from a micronutrient powder (MNP) containing ferrous sulfate (FeSO4) and another MNP containing ferrous fumarate (FeFum) and sodium iron ethylenediaminetetraacetate (NaFeEDTA). METHODS In a randomized-entry, prospective crossover study, iron deficient (87%) and anemic (70%) Kenyan infants (n = 23; mean ± SD age, 9.9 ± 2.1 months) consumed 4 stable iron isotope-labeled maize porridge meals fortified with MNPs containing 5 mg iron as FeFum + NaFeEDTA, or FeSO4, either without or with 7.5 g GOS. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte incorporation of isotopic labels. Data were analyzed using a 2-way repeated-measures ANOVA. RESULTS There was no significant interaction between GOS and the iron compounds on FIA, and the addition of GOS did not have a significant effect on FIA. There was a statistically significant difference in FIA between the meals fortified with FeSO4 and with FeFum + NaFeEDTA (P < 0.001).Given with GOS, FIA from FeSO4 was 40% higher than from FeFum + NaFeEDTA (P < 0.001); given without GOS, it was 51% higher (P < 0.01). CONCLUSIONS The addition of GOS to a single iron-fortified maize porridge test meal in Kenyan infants did not significantly increase iron absorption, suggesting long-term feeding of GOS may be needed to enhance iron absorption at this age. This study was registered at clinicaltrials.gov as NCT02666417.
Collapse
Affiliation(s)
- Nadja Mikulic
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Daniela Paganini
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Edith Mwasi
- Pediatrics Department, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Simon Karanja
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
8
|
Ahmad AMR, Ahmed W, Iqbal S, Javed M, Rashid S, Iahtisham-ul-Haq. Prebiotics and iron bioavailability? Unveiling the hidden association - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Mohammed O, Dyab N, Kheadr E, Dabour N. Effectiveness of inulin-type on the iron bioavailability in anemic female rats fed bio-yogurt. RSC Adv 2021; 11:1928-1938. [PMID: 35424181 PMCID: PMC8693641 DOI: 10.1039/d0ra08873k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
It is well-documented that iron deficiency leads to anemia, which is the utmost critical problem of nutrition worldwide. Inulin, indigestible polysaccharides, or prebiotic agents may act as vehicles to enhance the iron bioavailability through the formation of the polysaccharide-iron complex. The present study was undertaken to evaluate the therapeutic effects of yogurt fortified with iron and supplemented by long- or short-chain inulin on the growth status, blood parameters, antioxidant capacity, and liver function enzymes in anemic rats. Five animal groups were assigned as the control (G1), which were fed a standard diet and there were four anemic groups, in which haemolytic anemia was induced by phenylhydrazine. The anemic rats were divided into 4 groups according to the regime of feeding as G2: control anemic group fed low-iron diet while the remaining anemic groups were fed yogurt fortified with Fe2(SO4)3 without inulin (G3) or with either long- (G4) or short-chain (G5) inulin. The results showed that the animals subjected to treatment G4 had the highest (P ≤ 0.05) weight gain and organ coefficient compared with other anemic groups (G2, G3, and G5). Among the anemic groups, the animals that belonged to G4 showed a significant restorative effect by returning the hemoglobin and hematocrit levels and the red blood cell count to the normal control liver. Also, the liver iron content, enzymatic activities, and antioxidant capacities improved in the animals subjected to G4 and G5 treatment groups. The histological structures of the liver tissues of the animals that belonged to G4 and G5 were extremely close to that of the normal control liver. Long-chain inulin-containing yogurt exhibited the best effects in terms of iron supplementation, bioavailability, and antioxidant activities. This formula might be a potential new iron supplement and a good functional food candidate.
Collapse
Affiliation(s)
- Osama Mohammed
- Department of Zoology, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Noha Dyab
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture, University of Alexandria 21545 Alexandria Egypt +20-35922780 +20-35921960 +20-35921862 +20-35915427
| | - Ehab Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture, University of Alexandria 21545 Alexandria Egypt +20-35922780 +20-35921960 +20-35921862 +20-35915427
| | - Nassra Dabour
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture, University of Alexandria 21545 Alexandria Egypt +20-35922780 +20-35921960 +20-35921862 +20-35915427
| |
Collapse
|
10
|
Bassiony SS, Al-Sagheer AA, El-Kholy MS, Elwakeel EA, Helal AA, Alagawany M. Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1941334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Samar S. Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed S. El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eman A. Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Amera A. Helal
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Rodríguez-Sorrento A, Castillejos L, López-Colom P, Cifuentes-Orjuela G, Rodríguez-Palmero M, Moreno-Muñoz JA, Martín-Orúe SM. Effects of Bifidobacterium longum Subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001, Combined or Not With Oligofructose-Enriched Inulin, on Weaned Pigs Orally Challenged With Salmonella Typhimurium. Front Microbiol 2020; 11:2012. [PMID: 32973728 PMCID: PMC7472873 DOI: 10.3389/fmicb.2020.02012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella is a common causative agent of enteric disease and is developing mechanisms of resistance to antimicrobials. Probiotics, such as bifidobacteria and lactobacilli, and prebiotic fibers are a potential alternative to counteract this pathogen as they have demonstrated effectiveness in preventing its adhesion, reducing intestinal damage, and enhancing the host immune system. Furthermore, the benefits are expected to be potentiated when these compounds are administered together. A trial was performed to evaluate the efficacy of two probiotic strains (Bifidobacterium longum subsp. infantis CECT 7210 (Laboratorios Ordesa S.L.) and Lactobacillus rhamnosus HN001, combined or not with a prebiotic containing oligofructose-enriched inulin, against Salmonella Typhimurium. Ninety-six piglets (28 days old) were distributed into 32 pens assigned to 5 treatments: one non-challenged (control diet, CTR+) and four challenged: control diet (CTR−) or supplemented with probiotics (>3 × 1010 cfu/kg each strain, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week of adaptation, animals were orally challenged with Salmonella Typhimurium. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized, and samples from blood, digestive content, and ileal tissues were collected to determine Salmonella counts, fermentation products, ileal histomorphology, and serum TNF-α and Pig-MAP concentrations. The effect of the oral challenge was evidenced by animal performance, fecal consistency, and intestinal architecture. Regarding the experimental treatments, animals belonging to the PRO group experienced a faster clearance of the pathogen, with more pigs being negative to its excretion at the end of the study and recovering the impaired ileal villi/crypt ratio more rapidly. Animals receiving the PRE diet showed a lower intestinal colonization by Salmonella, with no countable levels (<3 cfu/g) in any of the analyzed samples, and an augmented immune response suggested by serum Pig-MAP concentrations. Treatments including the prebiotic (PRE and SYN) showed similar changes in the fermentation pattern, with an increase in the molar percentage of valeric acid concentration in the colon. The SYN group, however, did not show any of the outcomes registered for PRO and PRE in Salmonella colonization or in immunity markers, suggesting the lack of synbiotic action in this animal model. Further research is needed to better understand the complex mechanisms behind these effects.
Collapse
Affiliation(s)
- Agustina Rodríguez-Sorrento
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola López-Colom
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Susana María Martín-Orúe
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
12
|
Rusu IG, Suharoschi R, Vodnar DC, Pop CR, Socaci SA, Vulturar R, Istrati M, Moroșan I, Fărcaș AC, Kerezsi AD, Mureșan CI, Pop OL. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency-A Literature-Based Review. Nutrients 2020; 12:E1993. [PMID: 32635533 PMCID: PMC7400826 DOI: 10.3390/nu12071993] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in the human body is a global issue with an impact on more than two billion individuals worldwide. The most important functions ensured by adequate amounts of iron in the body are related to transport and storage of oxygen, electron transfer, mediation of oxidation-reduction reactions, synthesis of hormones, the replication of DNA, cell cycle restoration and control, fixation of nitrogen, and antioxidant effects. In the case of iron deficiency, even marginal insufficiencies may impair the proper functionality of the human body. On the other hand, an excess in iron concentration has a major impact on the gut microbiota composition. There are several non-genetic causes that lead to iron deficiencies, and thus, several approaches in their treatment. The most common methods are related to food fortifications and supplements. In this review, following a summary of iron metabolism and its health implications, we analyzed the scientific literature for the influence of iron fortification and supplementation on the gut microbiome and the effect of probiotics, prebiotics, and/or synbiotics in iron absorption and availability for the organism.
Collapse
Affiliation(s)
- Ioana Gabriela Rusu
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Romana Vulturar
- Department of Molecular Sciences, University of Medicine and Pharmacy Iuliu Hatieganu, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400327 Cluj-Napoca, Romania
| | - Magdalena Istrati
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania;
| | - Ioana Moroșan
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania;
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Andreea Diana Kerezsi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| |
Collapse
|
13
|
Minor EA, Kupec JT, Nickerson AJ, Narayanan K, Rajendran VM. Increased DMT1 and FPN1 expression with enhanced iron absorption in ulcerative colitis human colon. Am J Physiol Cell Physiol 2019; 318:C263-C271. [PMID: 31721611 DOI: 10.1152/ajpcell.00128.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.
Collapse
Affiliation(s)
- Emily A Minor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Justin T Kupec
- Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew J Nickerson
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Karthikeyan Narayanan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
14
|
Sant' Ana CT, Antunes PT, Reis TCD, Váz-Tostes MDG, Meira EF, Costa NMB. Bioaccessibility and bioavailability of iron in biofortified germinated cowpea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6287-6295. [PMID: 31259417 DOI: 10.1002/jsfa.9902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata L. Walph) is predominantly consumed in the North and Northeast regions of Brazil, and its biofortification with iron seeks to reduce the high prevalence of iron deficiency anemia in these regions. It is commonly eaten cooked; however, in the germinated form, it can improve nutritional quality by reducing the antinutritional factors and consequently improving the bioavailability of elements. The present study aimed to determine the physico-chemical characteristics, bioaccessibility and bioavailability of iron in biofortified germinated cowpea. RESULTS There was no statistical difference between the germinated and cooked beans with regard to centesimal composition. Germinated beans had phytates and tannins similar to cooked beans. The phytate-iron molar ratio for all groups did not present a statistical difference (cooking 3.58 and 3.41; germinated 3.94 and 3.51), nor did the parameters evaluating in vivo iron bioavailability. Total phenolics was higher in the germinated group (cooking 0.56 and 0.64; Germinated 2.05 and 2.45 mg gallic acid kg-1 ). In vitro bioaccessibility of iron of germinated beans presented higher values (P ≤ 0.05) compared to cooked beans. There was higher expression of divalent metal transporter-1 in biofortified and germinated beans. CONCLUSION The iron bioavailability from the biofortified and germinated beans was comparable to ferrous sulfate. Germination can be considered as an alternative and efficient method for consuming cowpea, presenting good iron bioaccessibility and bioavailability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cíntia Tomaz Sant' Ana
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Paula Tavares Antunes
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Tuane Carrari Dos Reis
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Maria das Graças Váz-Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Eduardo Frizzera Meira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Neuza Maria Brunoro Costa
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| |
Collapse
|
15
|
Jeroense FMD, Michel L, Zeder C, Herter-Aeberli I, Zimmermann MB. Consumption of Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate: A Stable Iron Isotope Study in Iron-Depleted Young Women. J Nutr 2019; 149:738-746. [PMID: 31004135 DOI: 10.1093/jn/nxy327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Animal studies suggest prebiotics can increase iron absorption, but results from human studies are equivocal. OBJECTIVES In iron-depleted women, before (baseline) and after daily consumption of galacto-oligosaccharides (GOS) for 4 wk, we sought to assess fractional iron absorption (FIA) from an iron supplement given with and without single doses of GOS in test meals or water. METHODS In all women (n = 34; median serum ferritin concentration = 16.4 µg/L), FIA from doses of 14 mg iron labeled with stable isotopes was measured in the following conditions at baseline: 1) FIA from ferrous fumarate (FeFum) in water given with and without 15 g GOS; 2) FIA from FeFum in a test meal given with and without 15 g GOS; 3) FIA from ferrous sulfate (FeSO4) in a test meal given without 15 g GOS. All subjects then consumed ∼15 g GOS daily for 4 wk. Then the following conditions were tested: 4) FIA from FeFum in a test meal with and without 15 g GOS; and 5) FIA from FeSO4 in a test meal with 15 g GOS. FIA was measured as erythrocyte incorporation of stable isotopes. RESULTS At baseline, GOS significantly increased FIA from FeFum when given with water (+61%; P < 0.001) and the meal (+28%; P = 0.002). After 4 wk of GOS consumption, GOS again significantly increased FIA from FeFum in the meal (+29%; P = 0.044). However, compared with baseline, consumption of GOS for 4 wk did not significantly enhance absorption from FeFum in the meal given without GOS. FIA from FeSO4 given with GOS in a meal after 4 wk of GOS consumption was not significantly greater than FIA from FeSO4 in a meal without GOS at baseline. CONCLUSIONS In iron-depleted women, GOS given with FeFum increases FIA, but 4 wk of GOS consumption did not enhance this effect. The study was registered at clinicaltrials.gov as NCT03325270.
Collapse
Affiliation(s)
- Frederike M D Jeroense
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ladina Michel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
de Lima Correia Silva M, da Graça Leite Speridião P, Oyama LM, de Morais MB. Effect of fructo-oligosaccharide supplementation in soya beverage on the intestinal absorption of calcium and iron in newly weaned rats. Br J Nutr 2018; 120:1338-1348. [PMID: 30499425 DOI: 10.1017/s0007114518002714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies have shown the positive effects of prebiotics on the intestinal absorption of Ca and Fe. The present study evaluated the effect of fructo-oligosaccharide (FOS) supplementation in soya beverage (SB) on absorption mechanisms of Ca and Fe in recently weaned rats. Male Wistar rats were divided into four groups: lactose-free cows' milk (CM), lactose-free CM with FOS (0·8 g/100 ml) (CMF), SB and soya beverage with FOS (0·8 g/100 ml) (SBF). These rats were euthanised after 1 week of treatment. Organ weight, pH of the caecal content and absorption mechanisms of Ca and Fe were evaluated. The results showed that the weight of the caecal contents increased in the CMF and SBF groups, and the pH of the caecal contents was lower in these groups. The Hb levels of the CMF and SB groups were higher when compared with that of the CM group and lower in relation to the SBF group. The apparent Ca and Fe absorption and apparent Ca retention in the CM group were higher when compared with the SB group, whereas in the CMF group, they were higher in relation to the SBF group. Divalent metal transporter 1 (DMT1) protein expression in the duodenum was higher in the SBF group than in the SB and CMF groups. SB resulted in lower intestinal Ca absorption and higher Hb concentration, despite the lower apparent Fe absorption in relation to CM. Supplementation with FOS provided beneficial effects on Hb and DMT1 protein expression in the duodenum, in addition to improving the absorption process.
Collapse
Affiliation(s)
- Maisa de Lima Correia Silva
- 1Departamento de Pediatria,Disciplina de Gastroenterologia Pediátrica,Universidade Federal de São Paulo,Rua Coronel Lisboa826,04020-000 São Paulo,SP,Brazil
| | - Patrícia da Graça Leite Speridião
- 1Departamento de Pediatria,Disciplina de Gastroenterologia Pediátrica,Universidade Federal de São Paulo,Rua Coronel Lisboa826,04020-000 São Paulo,SP,Brazil
| | - Lila Missae Oyama
- 2Departamento de Fisiologia,Disciplina de Fisiologia da Nutrição,Universidade Federal de São Paulo,Rua Botucatu 862,2° andar,04023-060 São Paulo,SP, Brazil
| | | |
Collapse
|
17
|
Feruś K, Drabińska N, Krupa-Kozak U, Jarocka-Cyrta E. A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018; 10:nu10111818. [PMID: 30469412 PMCID: PMC6266607 DOI: 10.3390/nu10111818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Iron deficiency anemia (IDA) occurs in 15–46% of patients with celiac disease (CD), and in some cases, it may be its only manifestation. Studies in animal models have shown that prebiotics, including inulin, may help to increase intestinal absorption of iron. The aim of this study was to evaluate the effect of a prebiotic, oligofructose-enriched inulin (Synergy 1), on iron homeostasis in non-anemic children and adolescents with celiac disease (CD) in association with a gluten-free diet (GFD). Thirty-four CD patients (4–18 years old) were randomized into two groups receiving Synergy 1 (10 g/day) or a placebo (maltodextrin) for three months. Before and after intervention, blood samples were collected from all patients for assessment of blood morphology, biochemical parameters and serum hepcidin concentration. We found that serum hepcidin concentration after the intervention was significantly decreased by 60.9% (p = 0.046) in the Synergy 1 group, whereas no significant difference was observed in the placebo group. No differences in morphological and biochemical blood parameters (including ferritin, hemoglobin and C-reactive protein (CRP)) were observed after intervention in either group. Given that hepcidin decrease may improve intestinal iron absorption, these results warrant further investigation in a larger cohort and especially in patients with IDA.
Collapse
Affiliation(s)
- Klaudia Feruś
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum Faculty of Medicine, University of Warmia & Mazury, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Urszula Krupa-Kozak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum Faculty of Medicine, University of Warmia & Mazury, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
18
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
19
|
Intake of Polydextrose Alters Hematology and the Profile of Short Chain Fatty Acids in Partially Gastrectomized Rats. Nutrients 2018; 10:nu10060792. [PMID: 29925762 PMCID: PMC6024616 DOI: 10.3390/nu10060792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Polydextrose (PDX) ingestion may increase the intestinal absorption of iron. This study evaluated the effects of 7.5% polydextrose supplementation on markers of iron uptake, transport and storage in partially gastrectomized rats. Half of a batch of 40 male Wistar rats (250 g) underwent Billroth II partial gastrectomy with anterior truncal vagotomy (GXT), while the other half underwent sham gastrectomy (SHAM). At 7 postoperative days, the animals were subdivided into four groups (n = 10): Sham Control and GXT Control (no polydextrose); Sham PDX and GXT PDX (with 7.5% PDX). The animals were euthanized after 60 day of PDX treatment. Organ weight, cecal pH, the characterization and quantification of short-chain fatty acids (SCFA), hematological parameters, hepatic iron content and the expression of ferroportin (FPT) in the jejunum, cecum, colon and liver were evaluated. PDX caused changes in the cecum of the supplemented animals, where there was a decrease in pH, increase in cecal wall and marked production of SCFA, especially acetic and propionic acids (p < 0.05). Hepatic iron levels were lower in GXT animals. PDX increased hemoglobin (HGB) values by 29.2% and hematocrit (HCT) by 55.8% in the GXT PDX group compared to the GXT Control group. The GXT PDX group had lower hepatic FPT expression (p < 0.05). PDX led to increased SCFA concentration in the supplemented animals. Considering that SCFAs play a central role in the increasing nutrients uptake, this mechanism may be involved in altering the hematology profile observed in these animals but not enough to reverse iron deficiency anemia in post-gastrectomy rats.
Collapse
|
20
|
Christides T, Ganis JC, Sharp PA. In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics. Eur J Nutr 2018; 57:669-678. [PMID: 27942845 PMCID: PMC5845627 DOI: 10.1007/s00394-016-1353-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Iron is essential for development and growth in young children; unfortunately, iron deficiency (ID) is a significant public health problem in this population. Young Child Formulae (YCF), milk-derived products fortified with iron and ascorbic acid (AA, an enhancer of iron absorption) may be good sources of iron to help prevent ID. Furthermore, some YCF are supplemented with prebiotics, non-digestible carbohydrates suggested to enhance iron bioavailability. The aim of our study was to evaluate iron bioavailability of YCF relative to prebiotic and AA concentrations. We hypothesised that YCF with the highest levels of prebiotics and AA would have the most bioavailable iron. METHODS We used the in vitro digestion/Caco-2 cell model to measure iron bioavailability from 4 commercially available YCF with approximately equal amounts of iron, but varying amounts of: AA and the prebiotics fructo- and galacto-oligosaccharides. Caco-2 cell ferritin formation was used as a surrogate marker for iron bioavailability. RESULTS The YCF with the highest concentration of prebiotics and AA had the highest iron bioavailability; conversely, the YCF with the lowest concentration of prebiotics and AA had the lowest. After the addition of exogenous prebiotics, so that all tested YCF had equivalent amounts, there was no longer a significant difference between YCF iron bioavailability. CONCLUSION Our results suggest that ascorbic acid and prebiotics in YCF improve iron bioavailability. Ensuring that iron is delivered in a bioavailable form would improve the nutritional benefits of YCF in relation to ID/IDA amongst young children; therefore, further exploration of our findings in vivo is warranted.
Collapse
Affiliation(s)
- Tatiana Christides
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Julia Clark Ganis
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Anthony Sharp
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Costabile A, Bergillos-Meca T, Rasinkangas P, Korpela K, de Vos WM, Gibson GR. Effects of Soluble Corn Fiber Alone or in Synbiotic Combination with Lactobacillus rhamnosus GG and the Pilus-Deficient Derivative GG-PB12 on Fecal Microbiota, Metabolism, and Markers of Immune Function: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Elderly (Saimes Study). Front Immunol 2017; 8:1443. [PMID: 29312280 PMCID: PMC5733116 DOI: 10.3389/fimmu.2017.01443] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022] Open
Abstract
Background The aging process leads to a potential decline in immune function and adversely affects the gut microbiota. To date, many in vitro and in vivo studies focused on the application of synbiotics (prebiotics combined with probiotics) as a promising dietary approach to affect gut microbiota composition and improved functioning of the immune system. However, studies using synbiotic preparations often have the limitation that it remains unclear whether any effect observed is a result of the prebiotic or probiotic or a synergistic effect of the combined supplement. Objectives We investigated the effects of a probiotic Lactobacillus rhamnosus GG and pilus-deficient L. rhamnosus GG-PB12 combined with Promitor™ Soluble Corn Fiber (SCF, a candidate prebiotic) on fecal microbiota, metabolism, immunity, and blood lipids in healthy elderly persons. A prospective, double-blind, placebo controlled, randomized, single-centered, crossover study in 40 healthy elderly subjects (aged 60–80 years) was carried out. Volunteers were randomized to consume either probiotic and prebiotic as synbiotic, prebiotic or placebo (maltodextrin) during 3 weeks. Three-week washout periods separated all the treatments. We assessed effects upon blood lipids, glucose, cytokines, natural killer (NK) cell activity, phenotype, and intestinal microbiota composition. SCF decreased IL-6, which was not observed with the synbiotics. Results Consumption of L. rhamnosus GG combined with SCF increased NK cell activity compared to baseline in females and the older group. In the fecal microbiota analyses, the strongest community shifts were due to L. rhamnosus GG combined with SCF and SCF treatments. L. rhamnosus GG combined with SCF and L. rhamnosus GG-PB12 combined with SCF significantly increased the genus Parabacteroides. L. rhamnosus GG combined with SCF and SCF increased concentrations of Ruminococcaceae Incertae Sedis. Oscillospira and Desulfovibrio slightly decreased in the L. rhamnosus GG combined with SCF group, whereas Desulfovibrio decreased also in the L. rhamnosus GG-PB12 combined with SCF group. L. rhamnosus GG combined with SCF reduced total cholesterol and LDL-cholesterol in volunteers with initially elevated concentrations. C-reactive protein significantly decreased during L. rhamnosus GG-PB12 combined with SCF intervention compared to baseline. Conclusion In conclusion, the synbiotic combination of L. rhamnosus GG with SCF showed a tendency to promote innate immunity by increasing NK cell activity in elderly women and in 70 to 80-year-old volunteers and decreased TC and LDL-c in hypercholesterolemic patients. In addition, L. rhamnosus GG-PB12 combined with SCF demonstrated an increase in NK cell activity compared to SCF alone in older volunteers. We also found significant positive effects on the immune response, evidenced by a decrease of the pro-inflammatory cytokine IL-6. Therefore, dietary intervention with L. rhamnosus GG combined with SCF could be of importance in elderly as an attractive option for enhancement of both the microbial and immune systems.
Collapse
Affiliation(s)
- Adele Costabile
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, United Kingdom.,Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Triana Bergillos-Meca
- Health Sciences Research Centre, Life Sciences Department, Whitelands College, University of Roehampton, London, United Kingdom
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
22
|
Wang F. Tackling iron deficiency in infants: galacto-oligosaccharides may be up to the task. Am J Clin Nutr 2017; 106:967-968. [PMID: 28877890 DOI: 10.3945/ajcn.117.165878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; and School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Paganini D, Uyoga MA, Cercamondi CI, Moretti D, Mwasi E, Schwab C, Bechtler S, Mutuku FM, Galetti V, Lacroix C, Karanja S, Zimmermann MB. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants. Am J Clin Nutr 2017; 106:1020-1031. [PMID: 28814396 DOI: 10.3945/ajcn.116.145060] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 07/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Whether consumption of prebiotics increases iron absorption in infants is unclear.Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants.Design: Infants (n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57FeFum+Na58FeEDTA or ferrous sulfate (54FeSO4). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models.Results: There was a significant group-by-compound interaction on iron absorption (P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, (P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively (P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA (P = 0.047) in the Fe+GOS group but not from the FeSO4 (P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. (P = 0.008) and Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.018); Lactobacillus/Pediococcus/Leuconostoc spp. decreased in the Fe group (P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group (P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH (P < 0.001) and positively correlated with Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.001).Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417.
Collapse
Affiliation(s)
| | - Mary A Uyoga
- College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | | | - Edith Mwasi
- Department of Pediatrics, Msambweni County Referral Hospital, Msambweni, Kenya; and
| | - Clarissa Schwab
- Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Christophe Lacroix
- Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Simon Karanja
- College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
24
|
Genetically engineered Escherichia coli Nissle 1917 synbiotic counters fructose-induced metabolic syndrome and iron deficiency. Appl Microbiol Biotechnol 2017; 101:4713-4723. [DOI: 10.1007/s00253-017-8207-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
|
25
|
Carvalho L, Brait D, Vaz M, Lollo P, Morato P, Oesterreich S, Raposo J, Freitas K. Partially Hydrolyzed Guar Gum Increases Ferroportin Expression in the Colon of Anemic Growing Rats. Nutrients 2017; 9:nu9030228. [PMID: 28273797 PMCID: PMC5372891 DOI: 10.3390/nu9030228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Studies have reported a positive effect of prebiotics on the bioavailability of iron. This study evaluated the effect of partially hydrolyzed guar gum (PHGG) on iron absorption mechanisms in anemic rats. Male Wistar rats were fed 75g American Institute of Nutrition Rodent Diets for growth, pregnancy and lactation (AIN93-G) without iron for three weeks in order to induce iron deficiency anemia. Then they were fed a control diet (n = 12; without fiber) or a diet with 7.5% of PHGG (n = 12), both without iron. Food intake, body growth and the feed efficiency coefficient (FEC) were measured. The animals were euthanized after two weeks of treatment. The weight of the organs, the pH of the cecal content, and the hepatic iron and ferroportin expression in the cecum, duodenum, and liver were assessed. The intake of PHGG reduced food intake without affecting body growth, and there was a difference between the groups regarding the FEC (p = 0.026), with the highest value found in the PHGG group. The weight of the cecal content increased (p ≤ 0.001) and the pH of the cecal content was significantly lower in the PHGG group. The intake of PHGG significantly increased ferroportin expression in the cecum;however, the difference was not significant in the duodenum and the liver. PHGG seems to have a positive influence on iron absorption through transporter expression, and structural and physiological changes in the colon of anemic growing animals.
Collapse
Affiliation(s)
- Luciana Carvalho
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Débora Brait
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Márcia Vaz
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Pablo Lollo
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Priscila Morato
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Silvia Oesterreich
- School of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Jorge Raposo
- School of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul 79825-070, Brazil.
| | - Karine Freitas
- Center of Biological Sciences and Health, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79825-070, Brazil.
| |
Collapse
|
26
|
Production of impure prebiotic galacto-oligosaccharides and their effect on calcium, magnesium, iron and zinc absorption in Sprague-Dawley rats. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Valcheva R, Dieleman LA. Prebiotics: Definition and protective mechanisms. Best Pract Res Clin Gastroenterol 2016; 30:27-37. [PMID: 27048894 DOI: 10.1016/j.bpg.2016.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models.
Collapse
Affiliation(s)
- Rosica Valcheva
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada.
| | - Levinus A Dieleman
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada
| |
Collapse
|
28
|
Deschemin JC, Noordine ML, Remot A, Willemetz A, Afif C, Canonne-Hergaux F, Langella P, Karim Z, Vaulont S, Thomas M, Nicolas G. The microbiota shifts the iron sensing of intestinal cells. FASEB J 2015; 30:252-61. [PMID: 26370847 DOI: 10.1096/fj.15-276840] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
Abstract
The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Marie-Louise Noordine
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Aude Remot
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Alexandra Willemetz
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Clément Afif
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - François Canonne-Hergaux
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Philippe Langella
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Zoubida Karim
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Sophie Vaulont
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Muriel Thomas
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Gaël Nicolas
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| |
Collapse
|