1
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
2
|
Lucienne M, Gerlini R, Rathkolb B, Calzada-Wack J, Forny P, Wueest S, Kaech A, Traversi F, Forny M, Bürer C, Aguilar-Pimentel A, Irmler M, Beckers J, Sauer S, Kölker S, Dewulf JP, Bommer GT, Hoces D, Gailus-Durner V, Fuchs H, Rozman J, Froese DS, Baumgartner MR, de Angelis MH. Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria. Hum Mol Genet 2023; 32:2717-2734. [PMID: 37369025 PMCID: PMC10460489 DOI: 10.1093/hmg/ddad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.
Collapse
Affiliation(s)
- Marie Lucienne
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children’s Research Center, University Children's Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sven Sauer
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Joseph P Dewulf
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D Sean Froese
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
3
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
4
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
5
|
Cooper JF, Guasp RJ, Arnold ML, Grant BD, Driscoll M. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Proc Natl Acad Sci U S A 2021; 118:e2101410118. [PMID: 34475208 PMCID: PMC8433523 DOI: 10.1073/pnas.2101410118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023] Open
Abstract
In human neurodegenerative diseases, neurons can transfer toxic protein aggregates to surrounding cells, promoting pathology via poorly understood mechanisms. In Caenorhabditis elegans, proteostressed neurons can expel neurotoxic proteins in large, membrane-bound vesicles called exophers. We investigated how specific stresses impact neuronal trash expulsion to show that neuronal exopher production can be markedly elevated by oxidative and osmotic stress. Unexpectedly, we also found that fasting dramatically increases exophergenesis. Mechanistic dissection focused on identifying nonautonomous factors that sense and activate the fasting-induced exopher response revealed that DAF16/FOXO-dependent and -independent processes are engaged. Fasting-induced exopher elevation requires the intestinal peptide transporter PEPT-1, lipid synthesis transcription factors Mediator complex MDT-15 and SBP-1/SREPB1, and fatty acid synthase FASN-1, implicating remotely initiated lipid signaling in neuronal trash elimination. A conserved fibroblast growth factor (FGF)/RAS/MAPK signaling pathway that acts downstream of, or in parallel to, lipid signaling also promotes fasting-induced neuronal exopher elevation. A germline-based epidermal growth factor (EGF) signal that acts through neurons is also required for exopher production. Our data define a nonautonomous network that links food availability changes to remote, and extreme, neuronal homeostasis responses relevant to aggregate transfer biology.
Collapse
Affiliation(s)
- Jason F Cooper
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854;
| |
Collapse
|
6
|
Kiyama G, Nakashima KI, Shimada K, Murono N, Kakihana W, Imai H, Inoue M, Hirai T. Transmembrane G protein-coupled receptor 5 signaling stimulates fibroblast growth factor 21 expression concomitant with up-regulation of the transcription factor nuclear receptor Nr4a1. Biomed Pharmacother 2021; 142:112078. [PMID: 34449315 DOI: 10.1016/j.biopha.2021.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) acts as an endocrine factor, playing important roles in the regulation of energy homeostasis, glucose and lipid metabolism. It is induced by diverse metabolic and cellular stresses, such as starvation and cold challenge, which in turn facilitate adaptation to the stress environment. The pharmacological action of FGF21 has received much attention, because the administration of FGF21 or its analogs has been shown to have an anti-obesity effect in rodent models. In the present study, we found that 3-O-acetyloleanolic acid, an active constituent isolated from the fruits of Forsythia suspensa, stimulated FGF21 production concomitant with the up-regulation of a transcription factor, nuclear receptor Nr4a1, in C2C12 myotubes. Additionally, significant increases in mFgf21 promoter activity were observed in C2C12 cells overexpressing TGR5 receptor in response to 3-O-acetyloleanolic acid treatment. Treatment with the p38 MAPK inhibitor SB203580 was effective at suppressing these stimulatory effects of 3-O-acetyloleanolic acid. Pretreatment with SB203580 also significantly repressed FGF21 mRNA abundance and FGF21 secretion in C2C12 myotubes after 3-O-acetyloleanolic acid stimulation, suggesting that p38 activation is required for the induction of FGF21 by ligand-activated TGR5 in C2C12 myotubes. These findings collectively indicated that TGR5 receptor signaling drives FGF21 expression via p38 activation, at least partly, by mediating Nr4a1 expression. Thus, the novel biological function of 3-O-acetyloleanolic acid as an agent having anti-obesity effects is likely to be mediated through the activation of TGR5 receptors.
Collapse
Affiliation(s)
- Genki Kiyama
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Kazumasa Shimada
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoko Murono
- Community Health Nursing, Ishikawa Prefectual Nursing University, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan
| | - Wataru Kakihana
- Department of Human Sciences, Ishikawa Prefectual Nursing University, Ishikawa 929-1210, Japan
| | - Hideki Imai
- Laboratory of Health Sciences, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan; Laboratory of Biochemical Pharmacology, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa 929-1210, Japan.
| |
Collapse
|
7
|
Ozaki-Masuzawa Y, Kosaka H, Abiru R, Toda Y, Kawabata K, Nagata M, Hara S, Konishi M, Itoh N, Hosono T, Takenaka A, Seki T. The role of increased FGF21 in VLDL-TAG secretion and thermogenic gene expression in mice under protein malnutrition. Biosci Biotechnol Biochem 2021; 85:1104-1113. [PMID: 33751045 DOI: 10.1093/bbb/zbab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022]
Abstract
Protein malnutrition promotes hepatic lipid accumulation in growing animals. In these animals, fibroblast growth factor 21 (FGF21) rapidly increases in the liver and circulation and plays a protective role in hepatic lipid accumulation. To investigate the mechanism by which FGF21 protects against liver lipid accumulation under protein malnutrition, we determined whether upregulated FGF21 promotes the thermogenesis or secretion of very-low-density lipoprotein (VLDL)-triacylglycerol (TAG). The results showed that protein malnutrition decreased VLDL-TAG secretion, but the upregulation of FGF21 did not oppose this effect. In addition, protein malnutrition increased expression of the thermogenic gene uncoupling protein 1 in inguinal white adipose and brown adipose tissue in an FGF21-dependent manner. However, surgically removing inguinal white adipose tissue did not affect liver triglyceride levels in protein-malnourished mice. These data suggest that FGF21 stimulates thermogenesis under protein malnutrition, but this is not the causative factor underlying the protective role of FGF21 against liver lipid accumulation.
Collapse
Affiliation(s)
- Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroki Kosaka
- Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Rino Abiru
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yumiko Toda
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kota Kawabata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mari Nagata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shohei Hara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Takashi Hosono
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
8
|
Dietary Essential Amino Acid Restriction Promotes Hyperdipsia via Hepatic FGF21. Nutrients 2021; 13:nu13051469. [PMID: 33926065 PMCID: PMC8144947 DOI: 10.3390/nu13051469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.
Collapse
|
9
|
Oshio Y, Hattori Y, Kamata H, Ozaki-Masuzawa Y, Seki A, Tsuruta Y, Takenaka A. Very low-density lipoprotein receptor increases in a liver-specific manner due to protein deficiency but does not affect fatty liver in mice. Sci Rep 2021; 11:8003. [PMID: 33850206 PMCID: PMC8044231 DOI: 10.1038/s41598-021-87568-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Very low-density lipoprotein receptor (VLDLR) is a member of the LDL receptor family that is involved in the uptake of VLDL into cells. Increased hepatic VLDLR under endoplasmic reticulum (ER) stress has been shown to cause fatty liver. In this study, the effect of dietary protein restriction on hepatic VLDLR and the role of VLDLR in fatty liver were investigated using Vldlr knockout (KO) mice. Growing wild-type (WT) and KO mice were fed a control diet containing 20% protein or a low protein diet containing 3% protein for 11 days. In WT mice, the amount of hepatic Vldlr mRNA and VLDLR protein increased by approximately 8- and 7-fold, respectively, due to protein restriction. Vldlr mRNA and protein levels increased in both type 1 and type 2 VLDLR. However, neither Vldlr mRNA nor protein levels were significantly increased in heart, muscle, and adipose tissue, demonstrating that VLDLR increase due to protein restriction occurred in a liver-specific manner. Increased liver triglyceride levels during protein restriction occurred in KO mice to the same extent as in WT mice, indicating that increased VLDLR during protein restriction was not the main cause of fatty liver, which was different from the case of ER stress.
Collapse
Affiliation(s)
- Yui Oshio
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yuta Hattori
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Hatsuho Kamata
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Arisa Seki
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yasutaka Tsuruta
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
10
|
Uchida K, Inoue K, Hasegawa Y, Hakuno F, Takahashi SI, Takenaka A. Endogenous testosterone reduces hepatic lipid accumulation in protein-restricted male rats. Nutrition 2020; 85:111130. [PMID: 33545537 DOI: 10.1016/j.nut.2020.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Protein deficiency is known to cause ectopic fat accumulation in the liver. The aim of this study was to analyse the mechanism of suppression of hepatic fat accumulation by testosterone and to clarify the mechanism behind the gender difference in fatty liver formation due to protein deficiency. METHODS Hepatic fat accumulation due to protein deficiency was evaluated in male and female rats before and after sexual maturation. Then, the effects of testosterone on liver lipid, muscle protein metabolism and energy expenditure in adipose tissue were investigated in castrated or testosterone-injected male rats fed control or protein-restricted diet. RESULTS Hepatic triglyceride accumulation diminished with sex maturation in male but not in female protein-restricted rats. Protein restriction resulted in a significant increase in hepatic triglyceride content in castrated rats but not in sham-operated rats demonstrating that endogenous testosterone reduces hepatic lipid accumulation in male rats. Protein restriction reduced plasma IGF-I and muscle protein synthesis measured using the SUnSET method. Castration increased the plasma corticosterone level and muscle autophagic activity. Muscle weight was reduced and energy expenditure in adipose tissue was increased only when both factors were combined. CONCLUSIONS Muscle protein synthesis downregulation owing to protein restriction and activation of autophagy following castration reduced muscle mass thereby releasing surplus energy and promoting steatosis in protein-restricted castrated rats despite increased energy expenditure in adipose tissue. We hypothesize that endogenous testosterone reduces hepatic lipid accumulation in protein-deficient male rats and provide novel findings on the gender-specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Kaito Uchida
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kana Inoue
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yukiko Hasegawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
11
|
Gonzales GB, Lelijveld N, Bourdon C, Chimwezi E, Nyirenda MJ, Wells JC, Kerac M, Bandsma RHJ. Childhood Malnutrition and Association of Lean Mass with Metabolome and Hormone Profile in Later Life. Nutrients 2020; 12:E3593. [PMID: 33238545 PMCID: PMC7700560 DOI: 10.3390/nu12113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the associations of targeted metabolomics and hormone profiles data with lean mass index (LMI), which were estimated using bioelectrical impedance, in survivors of child severe malnutrition (SM) (n = 69) and controls (n = 77) in Malawi 7 years after being treated. Linear associations between individual metabolite or hormone and LMI were determined, including their interaction with nutrition status 7 years prior. Path analysis was performed to determine structural associations. Lastly, predictive models for LMI were developed using the metabolome and hormone profile by elastic net regularized regression (EN). Metabolites including several lipids, amino acids, and hormones were individually associated (p < 0.05 after false discovery rate correction) with LMI. However, plasma FGF21 (Control: β = -0.02, p = 0.59; Case: β = -0.14, p < 0.001) and tryptophan (Control: β = 0.15, p = 0.26; Case: β = 0.70, p < 0.001) were associated with LMI among cases but not among controls (both interaction p-values < 0.01). Moreover, path analysis revealed that tryptophan mediates the association between child SM and LMI. EN revealed that most predictors of LMI differed between groups, further indicating altered metabolic mechanisms driving lean mass accretion among SM survivors later in life.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
- Laboratory of Gastroenterology, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Celine Bourdon
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (C.B.); (R.H.J.B.)
- The Childhood Acute Illness & Nutrition Network, Nairobi 43640-00100, Kenya
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S, Canada
| | - Emmanuel Chimwezi
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi;
| | | | - Jonathan C. Wells
- Childhood Nutrition Research Centre, Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Marko Kerac
- Department of Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Robert H. J. Bandsma
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (C.B.); (R.H.J.B.)
- The Childhood Acute Illness & Nutrition Network, Nairobi 43640-00100, Kenya
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
12
|
Fangmann D, Geisler C, Schlicht K, Hartmann K, Köpke J, Tiede A, Settgast U, Türk K, Schulte DM, Altmann K, Clawin-Rädecker I, Lorenzen PC, Schreiber S, Schwarz K, Laudes M. Differential effects of protein intake versus intake of a defined oligopeptide on FGF-21 in obese human subjects in vivo. Clin Nutr 2020; 40:600-607. [PMID: 32600859 DOI: 10.1016/j.clnu.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND FGF-21 is described as a powerful metabolic regulator with beneficial effects including glucose-lowering and improvement of insulin sensitivity without hypoglycaemia. On the other hand, FGF-21 is activated when muscle and other tissues are stressed by external effects or internal cellular pathogens that lead to shortcomings in metabolic balance. Previous results suggested that FGF-21 could be a promising target to develop future metabolic therapeutics. PURPOSE The present study was performed to gain deeper insight into the regulation of FGF-21 by protein metabolism in obese human subjects. METHODS FGF-21 serum concentrations were measured in a cohort of n = 246 obese humans ± type 2 diabetes mellitus (T2DM) (median age 53.0 [46.0; 60.0] years and BMI 40.43 [35.11; 47.24] kg/m2) and related to the nutritional protein intake. In addition, the effect of a novel oligopeptide purified from a β-casein hydrolysate on FGF-21 was examined in vitro in liver cells and in vivo in a human intervention study with the main focus on metabolic inflammation including 40 mainly obese subjects (mean age 41.08 ± 9.76 years, mean BMI 38.29 ± 9.4 kg/m2) in a randomized 20 weeks double-blind cross-over design. MAIN FINDINGS In the cohort analysis, FGF-21 serum concentrations were significant lower with higher protein intake in obese subjects without T2DM but not in obese subjects with T2DM. Furthermore, relative methionine intake was inversely related to FGF-21. While global protein intake in obesity was inversely associated with FGF-21, incubation of HepG2 cells with a β-casein oligopeptide increased FGF-21 expression in vitro. This stimulatory effect was also present in vivo, since in the clinical intervention study treatment of obese subjects with the β-casein oligopeptide for 8 weeks significantly increased FGF-21 serum levels from W0 = 23.86 pg/mL to W8 = 30.54 pg/mL (p < 0.001), while no increase was found for placebo. CONCLUSION While the total nutritional protein intake is inversely associated with FGF-21 serum levels, a purified and well characterised oligopeptide is able to induce FGF-21 serum levels in humans. These findings suggest a differential role of various components of protein metabolism on FGF-21, rather than this factor being solely a sensor of total nutritional protein intake.
Collapse
Affiliation(s)
- Daniela Fangmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Jana Köpke
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Anika Tiede
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Ute Settgast
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Dominik M Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany
| | - Karina Altmann
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Ingrid Clawin-Rädecker
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Peter Ch Lorenzen
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Kiel, 24103, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany; Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24118, Germany
| | - Karin Schwarz
- University of Kiel, Department of Food Technology, University of Kiel, Kiel, 24118, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, 24105, Germany.
| |
Collapse
|
13
|
Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nat Commun 2020; 11:2894. [PMID: 32518324 PMCID: PMC7283339 DOI: 10.1038/s41467-020-16568-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary protein dilution (DPD) promotes metabolic-remodelling and -health but the precise nutritional components driving this response remain elusive. Here, by mimicking amino acid (AA) supply from a casein-based diet, we demonstrate that restriction of dietary essential AA (EAA), but not non-EAA, drives the systemic metabolic response to total AA deprivation; independent from dietary carbohydrate supply. Furthermore, systemic deprivation of threonine and tryptophan, independent of total AA supply, are both adequate and necessary to confer the systemic metabolic response to both diet, and genetic AA-transport loss, driven AA restriction. Dietary threonine restriction (DTR) retards the development of obesity-associated metabolic dysfunction. Liver-derived fibroblast growth factor 21 is required for the metabolic remodelling with DTR. Strikingly, hepatocyte-selective establishment of threonine biosynthetic capacity reverses the systemic metabolic response to DTR. Taken together, our studies of mice demonstrate that the restriction of EAA are sufficient and necessary to confer the systemic metabolic effects of DPD. Dietary protein dilution, where protein is reduced and replaced by other nutrient sources without caloric restriction, promotes metabolic health via the hepatokine Fgf21. Here, the authors show that essential amino acids threonine and tryptophan are necessary and sufficient to induce these effects.
Collapse
|
14
|
Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, Münzberg H, Morrison CD. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020; 161:bqaa019. [PMID: 32047920 PMCID: PMC7053867 DOI: 10.1210/endocr/bqaa019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The ability to respond to variations in nutritional status depends on regulatory systems that monitor nutrient intake and adaptively alter metabolism and feeding behavior during nutrient restriction. There is ample evidence that the restriction of water, sodium, or energy intake triggers adaptive responses that conserve existing nutrient stores and promote the ingestion of the missing nutrient, and that these homeostatic responses are mediated, at least in part, by nutritionally regulated hormones acting within the brain. This review highlights recent research that suggests that the metabolic hormone fibroblast growth factor 21 (FGF21) acts on the brain to homeostatically alter macronutrient preference. Circulating FGF21 levels are robustly increased by diets that are high in carbohydrate but low in protein, and exogenous FGF21 treatment reduces the consumption of sweet foods and alcohol while alternatively increasing the consumption of protein. In addition, while control mice adaptively shift macronutrient preference and increase protein intake in response to dietary protein restriction, mice that lack either FGF21 or FGF21 signaling in the brain fail to exhibit this homeostatic response. FGF21 therefore mediates a unique physiological niche, coordinating adaptive shifts in macronutrient preference that serve to maintain protein intake in the face of dietary protein restriction.
Collapse
Affiliation(s)
| | | | | | - Paul Soto
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | | | | |
Collapse
|
15
|
Wada Y, Izumi H, Shimizu T, Takeda Y. A More Oxidized Plasma Albumin Redox State and Lower Plasma HDL Particle Number Reflect Low-Protein Diet Ingestion in Adult Rats. J Nutr 2020; 150:256-266. [PMID: 31552421 DOI: 10.1093/jn/nxz223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Plasma albumin (ALB) redox state reflects protein nutritional status, but how it differs from other protein nutrition biomarkers remains to be fully elucidated. OBJECTIVE This study aimed to delineate the characteristics of plasma ALB redox state as a protein nutrition biomarker. METHODS Adult male Wistar rats were maintained on an AIN-93 M [14% casein, control (CT)] diet or an AIN-93 M-based 5% casein [low protein (LP)] diet ad libitum for 4 wk. Plasma samples were repeatedly obtained from the same rats at weeks 0-4, ALB redox state was determined by HPLC, and the concentrations of conventional protein nutrition biomarkers, ALB and transthyretin (TTR), were compared between the groups by Student t test. Body mass, relative muscle masses, plasma proteome, and plasma lipids at week 4 were also compared. RESULTS Plasma ALB redox state shifted to a more oxidized state in the LP diet group compared with the CT diet group at weeks 1-4. The LP diet group also showed significantly lower plasma ALB concentrations at weeks 1 and 2 (13% and 11% lower, respectively) and significantly lower TTR concentration at week 1 (21% lower) compared with the CT diet group, but these concentrations did not differ significantly at weeks 3 and 4. After 4 wk, body mass and relative soleus and gastrocnemius muscle masses did not differ, but the relative plantaris muscle mass tended to be 4% lower (1.75 compared with 1.68 g/kg body mass) in the LP diet group compared with the CT group (P = 0.06). The LP diet group also had a significantly lower HDL particle number than the CT group (30% lower). CONCLUSIONS A more oxidized plasma ALB redox state and lower plasma HDL particle number reflect LP diet ingestion in adult rats, which did not exhibit changes of plasma ALB and TTR concentrations.
Collapse
Affiliation(s)
- Yasuaki Wada
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan.,Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirohisa Izumi
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan.,Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Shimizu
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Yasuhiro Takeda
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| |
Collapse
|
16
|
Xu X, Guo C, Liang X, Li R, Chen J. Potential biomarker of fibroblast growth factor 21 in valproic acid-treated livers. Biofactors 2019; 45:740-749. [PMID: 31120577 DOI: 10.1002/biof.1519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Valproic acid (VPA) is a clinical medicine primarily prescribed to control epileptic symptoms. VPA has potential side-effects, such as hepatotoxicity. Fibroblast growth factor 21 (FGF21) is a functional cytokine for metabolic regulation. In this article, we aimed to evaluate the possible clinical application of FGF21 in VPA-treated livers in early undetected liver injury (EULI). METHODS Methodologically, plasma samples of VPA-treated epileptic patients were isolated for biochemical and high-performance liquid chromatography tests. In addition, VPA-dosed mice were subjected to determinations of serological parameters, key regulatory effectors and FGF21 expressions through biochemical analyses, enzyme-linked immunosorbent assay, immunohistochemistry stain, immunofluorescence stain, and reverse transcription-polymerase chain reaction (RT-PCR) test, respectively. RESULTS The serological data suggested that VPA-treated epileptic patients showed visibly elevated FGF21 contents in plasma samples. However, other diagnostic parameters showed inconspicuous changes. As revealed in animal study, VPA-dosed mice exhibited undetected morphological alterations and hormonal changes in the liver, pancreas, and kidneys. Furthermore, serological parameters and key regulatory proteins in VPA-dosed livers and controls showed inconspicuous changes. Interestingly, endogenous FGF21 expressions in VPA-dosed mice were increased in sera. In further experiments, the findings showed that intracellular expressions of FGF21 mRNA and protein were upregulated in VPA-dosed livers as revealed in RT-PCR and immunoassay. CONCLUSIONS Taken together, these preliminary data reveal that functional FGF21 cytokine may serve as a potent predictor in VPA-related EULI.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Pathophysiology, School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Rong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Pathophysiology, School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Yamada R, Odamaki S, Araki M, Watanabe T, Matsuo K, Uchida K, Kato T, Ozaki-Masuzawa Y, Takenaka A. Dietary protein restriction increases hepatic leptin receptor mRNA and plasma soluble leptin receptor in male rodents. PLoS One 2019; 14:e0219603. [PMID: 31306448 PMCID: PMC6629078 DOI: 10.1371/journal.pone.0219603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Leptin is an adipokine that regulates adipose tissue mass through membrane-anchored leptin receptor (Ob-R). Extracellular domain of Ob-R in plasma is called soluble leptin receptor (sOb-R), and is the main leptin-binding protein. Based on a previous DNA microarray analysis that showed induction of hepatic Ob-R mRNA in low-protein diet-fed mice, this study aimed to clarify the effect of dietary protein restriction on hepatic Ob-R mRNA and plasma sOb-R levels. First, the effect of protein restriction on hepatic Ob-R mRNA level was examined together with fasting and food restriction using male rats as common experimental model for nutritional research. Hepatic Ob-R mRNA level was increased by feeding low-protein diet for 7 d, although not significantly influenced by 12-h fasting and sixty percent restriction in food consumption. Then, effect of protein restriction on liver Ob-R and plasma sOb-R was investigated using male mice because specific sOb-R ELISA was more available for mice. Hepatic Ob-R mRNA level was also increased in protein restricted-mice although it did not increase in hypothalamus. Hepatic Ob-R protein was decreased, whereas plasma sOb-R was increased by protein restriction. Because the concentration of sOb-R increased without changing plasma leptin concentration, free leptin in plasma was significantly reduced. The direct effect of amino acid deprivation on Ob-R mRNA level was not observed in rat hepatoma cells H4IIE cultured in amino acid deprived medium. In conclusion, dietary protein restriction increased hepatic Ob-R mRNA, resulting in increased plasma sOb-R concentration, which in turn, reduces plasma free leptin level and may modulate leptin activity.
Collapse
Affiliation(s)
- Riho Yamada
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shizuka Odamaki
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masaya Araki
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Tasuku Watanabe
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Keigo Matsuo
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kaito Uchida
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Taku Kato
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Yori Ozaki-Masuzawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
18
|
Yagi T, Toyoshima Y, Tokita R, Taguchi Y, Okamoto Y, Takahashi SI, Kato H, Minami S. Low-protein diet enhances adiponectin secretion in rats. Biosci Biotechnol Biochem 2019; 83:1774-1781. [PMID: 31130066 DOI: 10.1080/09168451.2019.1621153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous studies including ours have shown that a low-protein diet up-regulates insulin signaling in the liver and muscle and induces fatty liver in rats. Adiponectin is known as an insulin-sensitizing adipocytokine. We, therefore, examined the effect of a low-protein diet on the adiponectin levels in rats. The low-protein diet significantly increased serum adiponectin level. However, mRNA and protein levels of adiponectin in white adipose tissue (WAT) were not changed by the low-protein diet. Since it is known that oligomerization is important to control serum adiponectin level, we examined the population of adiponectin oligomeric forms in WAT and found that low-protein diet did not change it. Despite these events, the amount of its secretion was significantly increased in the adipocytes isolated from WAT of low-protein diet-fed rats. These results indicate that a low-protein diet enhances adiponectin secretion, which is not due to the increased intracellular amount and oligomerization of adiponectin.
Collapse
Affiliation(s)
- Takashi Yagi
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yuka Toyoshima
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Reiko Tokita
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yusuke Taguchi
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| | - Yoshihisa Okamoto
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan.,b Department of Medicine, Japan Community Health Care Organization Hodogaya Central Hospital , Yokohama , Kanagawa , Japan
| | - Shin-Ichiro Takahashi
- c Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Hisanori Kato
- d Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Shiro Minami
- a Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School , Nakahara-ku, Kawasaki , Kanagawa , Japan
| |
Collapse
|
19
|
von Holstein-Rathlou S, Gillum MP. Fibroblast growth factor 21: an endocrine inhibitor of sugar and alcohol appetite. J Physiol 2019; 597:3539-3548. [PMID: 30921473 DOI: 10.1113/jp277117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic metabolic effects. Its production is induced by various dietary imbalances in mice (including low-protein and ketogenic diets, fructose feeding and ethanol), hinting that it might influence food preference given the role of the liver in maintaining homeostatic levels of circulating nutrients. In 2016, it was shown that FGF21 selectively inhibits consumption of sugars and the primary product of their fermentation, ethanol, but not intake of fat, protein or complex carbohydrates. Since then, studies have sought to unravel this selectivity, its physiological purpose and translational relevance, as well as delineate the neural mechanisms involved. Initially found to impact ingestive behaviours in mice and non-human primates, FGF21 is also induced in humans by sugars and, far more dramatically, by acute alcohol intake. Genetic studies have revealed that patterns of weekly candy and alcohol consumption are associated with genetic variants in FGF21 and its co-receptor β-klotho (KLB), suggesting that liking for sugar, and fermented sugar, may be influenced by natural variation in FGF21 signal strength in humans. Herein, we discuss our nascent understanding of FGF21 as a selective negative regulator of sugar and alcohol appetite as well as reasons why such a peculiar system may have evolved in mammals. Uncovering the regulatory network governing sugar, and fermented sugar, intake could provide new opportunities to improve dietary choices in a population suffering from Western diet-induced diseases fuelled in part by a runaway sweet - and alcohol - tooth.
Collapse
Affiliation(s)
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Nutritional Regulation of Gene Expression: Carbohydrate-, Fat- and Amino Acid-Dependent Modulation of Transcriptional Activity. Int J Mol Sci 2019; 20:ijms20061386. [PMID: 30893897 PMCID: PMC6470599 DOI: 10.3390/ijms20061386] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to detect changes in nutrient levels and generate an adequate response to these changes is essential for the proper functioning of living organisms. Adaptation to the high degree of variability in nutrient intake requires precise control of metabolic pathways. Mammals have developed different mechanisms to detect the abundance of nutrients such as sugars, lipids and amino acids and provide an integrated response. These mechanisms include the control of gene expression (from transcription to translation). This review reports the main molecular mechanisms that connect nutrients’ levels, gene expression and metabolism in health. The manuscript is focused on sugars’ signaling through the carbohydrate-responsive element binding protein (ChREBP), the role of peroxisome proliferator-activated receptors (PPARs) in the response to fat and GCN2/activating transcription factor 4 (ATF4) and mTORC1 pathways that sense amino acid concentrations. Frequently, alterations in these pathways underlie the onset of several metabolic pathologies such as obesity, insulin resistance, type 2 diabetes, cardiovascular diseases or cancer. In this context, the complete understanding of these mechanisms may improve our knowledge of metabolic diseases and may offer new therapeutic approaches based on nutritional interventions and individual genetic makeup.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Despite targeted interventions, an estimated 150.8 million children under 5 years globally are still stunted, of which more than half live in Asia and more than one-third live in Africa. This review summarizes our current knowledge regarding how longitudinal bone growth is regulated by nutritional intake in the developing world. Dietary macronutrients and micronutrients necessary for growth are also briefly reviewed. RECENT FINDINGS Recent advances include investigations of nutritionally sensitive regulators of growth as well as prospective evaluations of the role of specific dietary components on growth in order to better assess their impact. SUMMARY Further investigation is required to understand how nutrition impacts growth, the mechanisms underlying stunting and to optimize therapeutic strategies for children who are at risk for growth attenuation or are stunted in low and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Jasreena K Nijjar
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diane Stafford
- Division of Pediatric Endocrinology, Lucille Packard Children's Hospital and Stanford Medical School, Stanford, Palo Alto, California, USA
| |
Collapse
|
22
|
Hill CM, Berthoud HR, Münzberg H, Morrison CD. Homeostatic sensing of dietary protein restriction: A case for FGF21. Front Neuroendocrinol 2018; 51:125-131. [PMID: 29890191 PMCID: PMC6175661 DOI: 10.1016/j.yfrne.2018.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Restriction of dietary protein intake increases food intake and energy expenditure, reduces growth, and alters amino acid, lipid, and glucose metabolism. While these responses suggest that animals 'sense' variations in amino acid consumption, the basic physiological mechanism mediating the adaptive response to protein restriction has been largely undescribed. In this review we make the case that the liver-derived metabolic hormone FGF21 is the key signal which communicates and coordinates the homeostatic response to dietary protein restriction. Support for this model centers on the evidence that FGF21 is induced by the restriction of dietary protein or amino acid intake and is required for adaptive changes in metabolism and behavior. FGF21 occupies a unique endocrine niche, being induced when energy intake is adequate but protein and carbohydrate are imbalanced. Collectively, the evidence thus suggests that FGF21 is the first known endocrine signal of dietary protein restriction.
Collapse
Affiliation(s)
- Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | |
Collapse
|
23
|
Yamane T, Shimura M, Konno R, Iwatsuki K, Oishi Y. Wound fluid of rats fed protein-free diets delays wound healing through the suppression of the IGF-1/ERK(1/2) signaling pathway. Mol Cell Biochem 2018; 452:177-185. [DOI: 10.1007/s11010-018-3423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
24
|
Importance of Serum Amino Acid Profile for Induction of Hepatic Steatosis under Protein Malnutrition. Sci Rep 2018; 8:5461. [PMID: 29615653 PMCID: PMC5882898 DOI: 10.1038/s41598-018-23640-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
We previously reported that a low-protein diet caused animals to develop fatty liver containing a high level of triglycerides (TG), similar to the human nutritional disorder “kwashiorkor”. To investigate the underlying mechanisms, we cultured hepatocytes in amino acid-sufficient or deficient medium. Surprisingly, the intracellular TG level was increased by amino acid deficiency without addition of any lipids or hormones, accompanied by enhanced lipid synthesis, indicating that hepatocytes themselves monitored the extracellular amino acid concentrations to induce lipid accumulation in a cell-autonomous manner. We then confirmed that a low-amino acid diet also resulted in the development of fatty liver, and supplementation of the low-amino acid diet with glutamic acid to compensate the loss of nitrogen source did not completely suppress the hepatic TG accumulation. Only a dietary arginine or threonine deficiency was sufficient to induce hepatic TG accumulation. However, supplementation of a low-amino acid diet with arginine or threonine failed to reverse it. In silico analysis succeeded in predicting liver TG level from the serum amino acid profile. Based on these results, we conclude that dietary amino acid composition dynamically affects the serum amino acid profile, which is sensed by hepatocytes and lipid synthesis was activated cell-autonomously, leading to hepatic steatosis.
Collapse
|
25
|
Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Mol Metab 2017; 6:873-881. [PMID: 28752051 PMCID: PMC5518726 DOI: 10.1016/j.molmet.2017.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. Methods We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total AAD, or the same diet with complete levels of BCAAs (AAD + BCAA). We quantified serum AAs and characterized mice in terms of metabolic efficiency, body composition, glucose homeostasis, serum FGF21, and tissue markers of the integrated stress response (ISR) and mTORC1 signaling. Results Serum BCAAs, while elevated in serum from hyperphagic NZO, were consistently reduced by dietary PD in humans and murine models. Repletion of dietary BCAAs modestly attenuated insulin sensitivity and metabolic efficiency in wildtype mice but did not restore hyperglycemia in NZO mice. While hepatic markers of the ISR such as P-eIF2α and FGF21 were unabated by dietary BCAA repletion, hepatic and peripheral mTORC1 signaling were fully or partially restored, independent of changes in circulating glucose or insulin. Conclusions Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD. Dietary PD reduces serum BCAAs in humans and mice. Repletion of dietary BCAAs reverses somatic mTORC1 but not hepatic ISR signaling. Glucose control during dietary PD is unperturbed by BCAA repletion in diabetic mice.
Collapse
Key Words
- AA, amino acid
- AAD, amino acid diluted
- BCAA
- BCAA, branched chain amino acid
- Diabetes
- Dietary protein
- FGF21
- FGF21, fibroblast growth factor 21
- HF, high fat
- ISR, integrated stress response
- NZB, New Zealand black
- NZO, New Zealand obese
- PD, protein dilution
- T2D, type 2 diabetes
- mTORC1
- mTORC1, mammalian target of rapamycin complex 1
Collapse
|
26
|
Nakayama Y, Masuda Y, Ohta H, Tanaka T, Washida M, Nabeshima YI, Miyake A, Itoh N, Konishi M. Fgf21 regulates T-cell development in the neonatal and juvenile thymus. Sci Rep 2017; 7:330. [PMID: 28336912 PMCID: PMC5428243 DOI: 10.1038/s41598-017-00349-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
We have previously shown that Fibroblast growth factor 21 (Fgf21) is expressed in the thymus as well as in the liver. In line with this expression profile, Fgf21 was recently reported to protect against ageing-related thymic senescence by improving the function of thymic epithelial cells (TECs). However, the function of Fgf21 in the juvenile thymus remained to be elucidated. We investigated the physiological roles of Fgf21 in the juvenile thymus and found that young Fgf21 knockout mice, but not β-Klotho knockout mice nor adult Fgf21 knockout mice, showed a significant reduction in the percentage of single-positive CD4+ and CD8+ thymocytes without obvious alteration in TECs. Furthermore, treatment with recombinant FGF21 protein rescued the impairment in fetal thymus organ culture (FTOC) of Fgf21 knockout mice. Annexin V staining revealed FGF21 protein enhanced apoptosis of immature thymocytes undergoing selection process in FTOC, suggesting that FGF21 may facilitate the selection of developing T cells. Endocrine Fgf21 from the liver induced by metabolic stimulation did not affect juvenile thymocyte development. Our data suggest that Fgf21 acts as one of intrathymic cytokines in the neonatal and juvenile thymus, involving thymocyte development in a β-Klotho-independent manner.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroya Ohta
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Molecular Life Science, Foundation for Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Miwa Washida
- Laboratory of Molecular Life Science, Foundation for Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Foundation for Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan.
| |
Collapse
|
27
|
Pérez-Martí A, Garcia-Guasch M, Tresserra-Rimbau A, Carrilho-Do-Rosário A, Estruch R, Salas-Salvadó J, Martínez-González MÁ, Lamuela-Raventós R, Marrero PF, Haro D, Relat J. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21). Mol Nutr Food Res 2017; 61. [PMID: 28078804 DOI: 10.1002/mnfr.201600725] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Albert Pérez-Martí
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| | - Maite Garcia-Guasch
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB); Barcelona Spain
- CIBEROBN; Instituto de Salud Carlos III; Madrid Spain
| | - Alexandra Carrilho-Do-Rosário
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| | - Ramon Estruch
- CIBEROBN; Instituto de Salud Carlos III; Madrid Spain
- Department of Internal Medicine; Hospital Clinic, IDIBAPS; University of Barcelona; Spain
| | - Jordi Salas-Salvadó
- CIBEROBN; Instituto de Salud Carlos III; Madrid Spain
- Human Nutrition Department; Hospital Universitari Sant Joan; Institut d'Investigació Sanitària Pere Virgili; University Rovira i Virgili; Reus (Tarragona) Spain
| | - Miguel Ángel Martínez-González
- CIBEROBN; Instituto de Salud Carlos III; Madrid Spain
- Department of Preventive Medicine and Public Health; Universidad de Navarra-Institute of Health Research of Navarra (IDISNA); Pamplona Spain
| | - Rosa Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB); Barcelona Spain
- CIBEROBN; Instituto de Salud Carlos III; Madrid Spain
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy; School of Pharmacy and Food Science; University of Barcelona; Torribera Food Campus; Santa Coloma de Gramenet Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB); Barcelona Spain
| |
Collapse
|
28
|
Kharitonenkov A, DiMarchi R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field. J Intern Med 2017; 281:233-246. [PMID: 27878865 DOI: 10.1111/joim.12580] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning βKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - R DiMarchi
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
29
|
Pérez-Martí A, Sandoval V, Marrero PF, Haro D, Relat J. Nutritional regulation of fibroblast growth factor 21: from macronutrients to bioactive dietary compounds. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0034/hmbci-2016-0034.xml. [PMID: 27583468 DOI: 10.1515/hmbci-2016-0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem mainly due to its associated comorbidities. Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in metabolic homeostasis in healthy individuals and considered a promising therapeutic candidate for the treatment of obesity. FGF21 is predominantly produced by the liver but also by other tissues, such as white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle, and pancreas in response to different stimuli such as cold and different nutritional challenges that include fasting, high-fat diets (HFDs), ketogenic diets, some amino acid-deficient diets, low protein diets, high carbohydrate diets or specific dietary bioactive compounds. Its target tissues are essentially WAT, BAT, skeletal muscle, heart and brain. The effects of FGF21 in extra hepatic tissues occur through the fibroblast growth factor receptor (FGFR)-1c together with the co-receptor β-klotho (KLB). Mechanistically, FGF21 interacts directly with the extracellular domain of the membrane bound cofactor KLB in the FGF21- KLB-FGFR complex to activate FGFR substrate 2α and ERK1/2 phosphorylation. Mice lacking KLB are resistant to both acute and chronic effects of FGF21. Moreover, the acute insulin sensitizing effects of FGF21 are also absent in mice with specific deletion of adipose KLB or FGFR1. Most of the data show that pharmacological administration of FGF21 has metabolic beneficial effects. The objective of this review is to compile existing information about the mechanisms that could allow the control of endogenous FGF21 levels in order to obtain the beneficial metabolic effects of FGF21 by inducing its production instead of doing it by pharmacological administration.
Collapse
|
30
|
Hashidume T, Kato A, Tanaka T, Miyoshi S, Itoh N, Nakata R, Inoue H, Oikawa A, Nakai Y, Shimizu M, Inoue J, Sato R. Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects. Sci Rep 2016; 6:28183. [PMID: 27312476 PMCID: PMC4911586 DOI: 10.1038/srep28183] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023] Open
Abstract
Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.
Collapse
Affiliation(s)
- Tsutomu Hashidume
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.,Institute of Gerontology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Asuka Kato
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomohiro Tanaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shoko Miyoshi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nobuyuki Itoh
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya-Nishi-Machi, Nara, 630-8506, Japan
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya-Nishi-Machi, Nara, 630-8506, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan; Faculty of Agriculture, Yamagata University, Tsuruoka-shi, Yamagata 997-8555, Japan
| | - Yuji Nakai
- Institute for Food Science, Hirosaki University, Aomori 038-0012, Japan
| | - Makoto Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jun Inoue
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0016/hmbci-2016-0016.xml. [PMID: 27285327 DOI: 10.1515/hmbci-2016-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/08/2016] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor 21 (FGF21) gene expression is altered by a wide array of physiological, metabolic, and environmental factors. Among dietary factors, high dextrose, low protein, methionine restriction, short-chain fatty acids (butyric acid and lipoic acid), and all-trans-retinoic acid were repeatedly shown to induce FGF21 expression and circulating levels. These effects are usually more pronounced in liver or isolated hepatocytes than in adipose tissue or isolated fat cells. Although peroxisome proliferator-activated receptor α (PPARα) is a key mediator of hepatic FGF21 expression and function, including the regulation of gluconeogenesis, ketogenesis, torpor, and growth inhibition, there is increasing evidence of PPARα-independent transactivation of the FGF21 gene by dietary molecules. FGF21 expression is believed to follow the circadian rhythm and be placed under the control of first order clock-controlled transcription factors, retinoic acid receptor-related orphan receptors (RORs) and nuclear receptors subfamily 1 group D (REV-ERBs), with FGF21 rhythm being anti-phase to REV-ERBs. Key metabolic hormones such as glucagon, insulin, and thyroid hormone have presumed or clearly demonstrated roles in regulating FGF21 transcription and secretion. The control of the FGF21 gene by glucagon and insulin appears more complex than first anticipated. Some discrepancies are noted and will need continued studies. The complexity in assessing the significance of FGF21 gene expression resides in the difficulty to ascertain (i) when transcription results in local or systemic increase of FGF21 protein; (ii) if FGF21 is among the first or second order genes upregulated by physiological, metabolic, and environmental stimuli, or merely an epiphenomenon; and (iii) whether FGF21 may have some adverse effects alongside beneficial outcomes.
Collapse
|
32
|
Reinehr T, Roth CL, Woelfle J. Fibroblast growth factor 21 (FGF-21) in obese children: no relationship to growth, IGF-1, and IGFBP-3. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2015-0074/hmbci-2015-0074.xml. [PMID: 26887040 DOI: 10.1515/hmbci-2015-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF-21) is a hepatic protein that plays a critical role in liver, adipose tissue, and bone metabolism. Animal models reported an increase of FGF-21 and associated growth disturbances in undernutrition. Therefore, we studied the impact of weight loss in obese children on growth, FGF-21, and insulin-like factor 1 (IGF-1) concentrations. METHODS We analyzed height, serum concentrations of FGF-21, IGF-1, IGFBP-3, leptin, and insulin at baseline and 1 year later in 30 obese children with substantial weight loss (reduction >0.5 BMI-SDS) and in 30 obese children of similar age, gender, and pubertal stage with stable BMI-SDS. All children participated in a 1-year lifestyle intervention. Height and IGF-1 was transformed to standard deviation score (SDS). Multiple linear regression analyses adjusted for age, gender, and pubertal stage were performed. RESULTS At baseline, height-SDS was significantly related to IGF-1-SDS (β-coefficient 0.68 95% confidence interval (95% CI)±0.49; p=0.008) and leptin (β-coefficient 0.042 95% CI±0.030; p=0.008), but not to FGF-21 or insulin. FGF-21 was not significantly associated with IGF-1 or IGFBP-3. In longitudinal analysis, changes of FGF-21 were not significantly related to changes of height, IGF-1-SDS or IGFBP-3. However, in the subgroup of 30 children with substantial BMI-SDS reduction, FGF-21, leptin, insulin, and HOMA decreased significantly. CONCLUSION As there was no significant association between FGF-21 and growth or IGF-1 both in cross-sectional and longitudinal analyses, these findings do not support the hypothesis that FGF-21 is involved in growth of obese children. Further studies are necessary to understand the multiple alterations in the growth hormone (GH) axis in obese children.
Collapse
|
33
|
McCarty MF. Practical prospects for boosting hepatic production of the "pro-longevity" hormone FGF21. Horm Mol Biol Clin Investig 2015; 30:/j/hmbci.ahead-of-print/hmbci-2015-0057/hmbci-2015-0057.xml. [PMID: 26741352 DOI: 10.1515/hmbci-2015-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor-21 (FGF21), produced mainly in hepatocytes and adipocytes, promotes leanness, insulin sensitivity, and vascular health while down-regulating hepatic IGF-I production. Transgenic mice overexpressing FGF21 enjoy a marked increase in median and maximal longevity comparable to that evoked by calorie restriction - but without a reduction in food intake. Transcriptional factors which promote hepatic FGF21 expression include PPARα, ATF4, STAT5, and FXR; hence, fibrate drugs, elevated lipolysis, moderate-protein vegan diets, growth hormone, and bile acids may have potential to increase FGF21 synthesis. Sirt1 activity is required for optimal responsiveness of FGF21 to PPARα, and Sirt1 activators can boost FGF21 transcription. Conversely, histone deacetylase 3 (HDAC3) inhibits PPARα's transcriptional impact on FGF21, and type 1 deacetylase inhibitors such as butyrate therefore increase FGF21 expression. Glucagon-like peptide-1 (GLP-1) increases hepatic expression of both PPARα and Sirt1; acarbose, which increases intestinal GLP-1 secretion, also increases FGF21 and lifespan in mice. Glucagon stimulates hepatic production of FGF21 by increasing the expression of the Nur77 transcription factor; increased glucagon secretion can be evoked by supplemental glycine administered during post-absorptive metabolism. The aryl hydrocarbon receptor (AhR) has also been reported recently to promote FGF21 transcription. Bilirubin is known to be an agonist for this receptor, and this may rationalize a recent report that heme oxygenase-1 induction in the liver boosts FGF21 expression. There is reason to suspect that phycocyanorubin, a bilirubin homolog that is a metabolite of the major phycobilin in spirulina, may share bilirubin's agonist activity for AhR, and perhaps likewise promote FGF21 induction. In the future, regimens featuring a plant-based diet, nutraceuticals, and safe drugs may make it feasible to achieve physiologically significant increases in FGF21 that promote metabolic health, leanness, and longevity.
Collapse
|
34
|
Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism – ERRATUM. Br J Nutr 2015; 114:1535-6. [DOI: 10.1017/s0007114515003955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|