1
|
Wang P, Zhang J, Tian Y, Yu B, He J, Yu J, Zheng P. Weaning Stress Aggravates Defense Response and the Burden of Protein Metabolism in Low-Birth-Weight Piglets. Animals (Basel) 2025; 15:1369. [PMID: 40427247 PMCID: PMC12108514 DOI: 10.3390/ani15101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The effect of low birth weight (LBW) on piglet development has been widely demonstrated. However, the reasons for the significant decline in the growth performance of LBW piglets after weaning remain poorly understood. This study aimed to investigate the underlying mechanisms of this phenomenon. At 21 days of age, 24 normal-birth-weight (NBW) piglets and 24 LBW piglets were selected and divided into four groups-NBW control, NBW weaning, LBW control, and LBW weaning-with 12 replicates per group (1 piglet per replicate). Control groups were euthanized on the same day, while weaning groups were weaned and sampled 3 days later. The results showed that the body weight of NBW piglets increased, whereas that of LBW piglets decreased, after 3 days of weaning. Compared with NBW piglets, LBW piglets exhibited higher serum cortisol concentrations and lower villus height (p < 0.05). Weaning stress significantly increased serum cortisol and C-reactive protein concentrations in NBW piglets (p < 0.05), while no significant changes were observed in LBW piglets. However, weaning stress significantly increased serum blood urea nitrogen (BUN) concentrations (p < 0.05) in LBW piglets but not in NBW piglets. Additionally, weaning stress reduced the mRNA expressions of Occludin, Claudin-1, and Claudin-2 in the jejunum of NBW piglets (p < 0.05), as well as Occludin in the jejunum of LBW piglets (p < 0.05). Furthermore, weaning stress reduced the mRNA expressions of IL-6, TLR9, MyD88, TRIF and p65 NF-κB in the jejunum of NBW piglets (p < 0.05). In LBW piglets, weaning stress decreased the mRNA expressions of IL-2, TNF-α, NLRP3, TLR9, and NOD2 (p < 0.05). In conclusion, compared to NBW piglets, LBW piglets are more susceptible to weaning stress-induced protein metabolic disorders and intestinal barrier dysfunction, ultimately leading to impaired immune function and reduced growth performance. The results underscore the importance of tailored management strategies for piglets based on birth weight to mitigate weaning stress impacts.
Collapse
Affiliation(s)
- Peipei Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jinwei Zhang
- Department of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644000, China;
| | - Yihang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (Y.T.); (B.Y.); (J.H.); (J.Y.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
2
|
Dong W, Ricker N, Holman DB, Johnson TA. Meta-analysis reveals the predictable dynamic development of the gut microbiota in commercial pigs. Microbiol Spectr 2023; 11:e0172223. [PMID: 37815394 PMCID: PMC10715009 DOI: 10.1128/spectrum.01722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The swine gut microbiome undergoes an age-dependent assembly pattern with a developmental phase at early ages and a stabilization phase at later ages. Shorter time intervals and a wider range of data sources provided a clearer understanding of the gut microbiota colonization and succession and their associations with pig growth and development. The rapidly changing microbiota of suckling and weaning pigs implies potential time targets for growth and health regulation through gut microbiota manipulation. Since swine gut microbiota development is predictable, swine microbiota age can be calculated and compared between animal treatment groups rather than relying only on static time-matched comparisons.
Collapse
Affiliation(s)
- Wenxuan Dong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Ricker
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Mugnier A, Gaillard V, Chastant S. Relative Impact of Birth Weight and Early Growth on Neonatal Mortality in Puppies. Animals (Basel) 2023; 13:1928. [PMID: 37370438 DOI: 10.3390/ani13121928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Puppy survival during their first weeks of life can be improved, and early detection of puppies with increased mortality risk is one of the keys to success. In the canine species, the few studies on this subject focused on birth weight, which reflects intrauterine growth. The present work aimed to explore the interconnections between birth weight, early growth and survival until two months of life in the canine species. In total, data from 8550 puppies born in 127 French breeding kennels were analysed. Five different growth rates were calculated to reflect the growth of puppies during their first week of life. Low-birth-weight puppies had lower growth than normal-birth-weight puppies over the first two days of life but higher growth rates thereafter. Growth-rate thresholds allowing the identification of puppies at higher risk of mortality during their first two months of life were lower for low-birth-weight puppies. These thresholds will help breeders and veterinarians to identify puppies at risk with particular needs for monitoring and nursing to improve their chances of survival.
Collapse
Affiliation(s)
- Amélie Mugnier
- NeoCare, Université de Toulouse, ENVT, 31300 Toulouse, France
| | | | - Sylvie Chastant
- NeoCare, Université de Toulouse, ENVT, 31300 Toulouse, France
| |
Collapse
|
4
|
Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets. Br J Nutr 2022; 128:2330-2340. [PMID: 35144703 PMCID: PMC9723486 DOI: 10.1017/s0007114522000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.
Collapse
|
5
|
Zhou F, Yang L, Yang L, Wang X, Guo N, Sun W, Ma H. Trpc5-regulated AMPKα/mTOR autophagy pathway is associated with glucose metabolism disorders in low birth weight mice under overnutrition. Biochem Biophys Res Commun 2022; 630:1-7. [PMID: 36122525 DOI: 10.1016/j.bbrc.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that low birth weight (LBW) individuals are at higher risk of glucose metabolism disorders compared with normal birth weight (NBW) individuals under overnutrition conditions, but the mechanism remains unclear. To explore the underlying mechanism of glucose metabolism disorders induced by LBW under overnutrition in adulthood, the prenatal malnutrition method was applied to ICR mice to establish the LBW mice model and high-fat diets were used to mimic overnutrition conditions. Then the mechanism was further explored on Hepg2 cells treated with nutritional deprivation plus palmitic acid. The results showed that LBW plus high-fat interventions will cause glucose metabolism disorders and inhibit autophagy flux in adulthood. Moreover, the expression of TRPC5-regulated AMPK/mTOR autophagy pathway was downregulated by LBW with high-fat interventions. Collectively, LBW plus high-fat intervention increased the risk of glucose metabolism disorders, which may be related to the alteration of TRPC5 expression level and its regulation of the AMPKα/mTOR autophagy pathway. This study may provide a fundamental basis for the molecular mechanism of glucose metabolism disorders induced by LBW with high-fat diets in adulthood and a new target for the treatment of metabolic diseases in LBW individuals.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Na Guo
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenwen Sun
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Trans- and Multigenerational Maternal Social Isolation Stress Programs the Blood Plasma Metabolome in the F3 Generation. Metabolites 2022; 12:metabo12070572. [PMID: 35888696 PMCID: PMC9320469 DOI: 10.3390/metabo12070572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic risk factors are among the most common causes of noncommunicable diseases, and stress critically contributes to metabolic risk. In particular, social isolation during pregnancy may represent a salient stressor that affects offspring metabolic health, with potentially adverse consequences for future generations. Here, we used proton nuclear magnetic resonance (1H NMR) spectroscopy to analyze the blood plasma metabolomes of the third filial (F3) generation of rats born to lineages that experienced either transgenerational or multigenerational maternal social isolation stress. We show that maternal social isolation induces distinct and robust metabolic profiles in the blood plasma of adult F3 offspring, which are characterized by critical switches in energy metabolism, such as upregulated formate and creatine phosphate metabolisms and downregulated glucose metabolism. Both trans- and multigenerational stress altered plasma metabolomic profiles in adult offspring when compared to controls. Social isolation stress increasingly affected pathways involved in energy metabolism and protein biosynthesis, particularly in branched-chain amino acid synthesis, the tricarboxylic acid cycle (lactate, citrate), muscle performance (alanine, creatine phosphate), and immunoregulation (serine, threonine). Levels of creatine phosphate, leucine, and isoleucine were associated with changes in anxiety-like behaviours in open field exploration. The findings reveal the metabolic underpinnings of epigenetically heritable diseases and suggest that even remote maternal social stress may become a risk factor for metabolic diseases, such as diabetes, and adverse mental health outcomes. Metabolomic signatures of transgenerational stress may aid in the risk prediction and early diagnosis of non-communicable diseases in precision medicine approaches.
Collapse
|
7
|
Yun Y, Ji S, Yu G, Jia P, Niu Y, Zhang H, Zhang X, Wang T, Zhang L. Effects of Bacillus subtilis on jejunal integrity, redox status, and microbial composition of intrauterine growth restriction suckling piglets. J Anim Sci 2021; 99:6362641. [PMID: 34473279 DOI: 10.1093/jas/skab255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The present study used intrauterine growth restriction (IUGR) piglets as an animal model to determine the effect of Bacillus subtilis on intestinal integrity, antioxidant capacity, and microbiota in the jejunum of suckling piglets. In total, 8 normal birth weight (NBW) newborn piglets (1.62 ± 0.10 kg) and 16 newborn IUGR piglets (0.90 ± 0.08 kg) were selected and assigned to three groups. Piglets were orally gavaged with 10-mL sterile saline (NBW and IUGR groups), and IUGR piglets were orally gavaged with 10-mL/d bacterial fluid (B. subtilis diluted in sterile saline, gavage in the dose of 2 × 109 colony-forming units per kg of body weight; IBS group; n = 8). IUGR induced jejunal barrier dysfunction and redox status imbalance of piglets, and changed the abundances of bacteria in the jejunum. Treatment with B. subtilis increased (P < 0.05) the ratio of villus height to crypt depth (VH/CD) in the jejunum, decreased (P < 0.05) the plasma diamine oxidase (DAO) activity, and enhanced (P < 0.05) the gene expressions of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the jejunum of IUGR piglets. Treatment with B. subtilis decreased (P < 0.05) the concentration of protein carbonyl (PC) and increased (P < 0.05) the activities of catalase (CAT) and total superoxide dismutase (T-SOD) in the jejunum of IUGR piglets. Treatment with B. subtilis also increased (P < 0.05) gene expressions of superoxide dismutase 1 (SOD1), CAT, and nuclear factor erythroid 2-related factor (Nrf2), as well as the protein expressions of heme oxygenase-1 (HO-1), SOD1, and Nrf2 in the jejunum of IUGR piglets. Treatment with B. subtilis also improved the abundances and the community structure of bacteria in the jejunum of IUGR piglets. These results suggested that IUGR damaged the jejunal barrier function and antioxidant capacity of suckling piglets, and altered the abundances of bacteria in the jejunum. Treatment with B. subtilis improved the intestinal integrity and antioxidant capacity while also improved the abundances and structure of bacteria in the jejunum of suckling piglets.
Collapse
Affiliation(s)
- Yang Yun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
8
|
Goodarzi P, Habibi M, Roberts K, Sutton J, Shili CN, Lin D, Pezeshki A. Dietary Tryptophan Supplementation Alters Fat and Glucose Metabolism in a Low-Birthweight Piglet Model. Nutrients 2021; 13:2561. [PMID: 34444719 PMCID: PMC8399558 DOI: 10.3390/nu13082561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Low birthweight (LBW) is associated with metabolic complications, such as glucose and lipid metabolism disturbances in early life. The objective of this study was to assess: (1) the effect of dietary tryptophan (Trp) on glucose and fat metabolism in an LBW piglet model, and (2) the role peripheral 5-hydroxytryptamine type 3 (5HT3) receptors in regulating the feeding behavior in LBW piglets fed with Trp-supplemented diets. Seven-day-old piglets were assigned to 4 treatments: normal birthweight-0%Trp (NBW-T0), LBW-0%Trp (LBW-T0), LBW-0.4%Trp (LBW-T0.4), and LBW-0.8%Trp (LBW-T0.8) for 3 weeks. Compared to LBW-T0, the blood glucose was decreased in LBW-T0.8 at 60 min following the meal test, and the triglycerides were lower in LBW-T0.4 and LBW-T0.8. Relative to LBW-T0, LBW-T0.8 had a lower transcript and protein abundance of hepatic glucose transporter-2, a higher mRNA abundance of glucokinase, and a lower transcript of phosphoenolpyruvate carboxykinase. LBW-T0.4 tended to have a lower protein abundance of sodium-glucose co-transporter 1 in the jejunum. In comparison with LBW-T0, LBW-T0.4 and LBW-T0.8 had a lower transcript of hepatic acetyl-CoA carboxylase, and LBW-T0.4 had a higher transcript of 3-hydroxyacyl-CoA dehydrogenase. Blocking 5-HT3 receptors with ondansetron reduced the feed intake in all groups, with a transient effect on LBW-T0, but more persistent effect on LBW-T0.8 and NBW-T0. In conclusion, Trp supplementation reduced the hepatic lipogenesis and gluconeogenesis, but increased the glycolysis in LBW piglets. Peripheral serotonin is likely involved in the regulation of feeding behavior, particularly in LBW piglets fed diets supplemented with a higher dose of Trp.
Collapse
Affiliation(s)
- Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Kennedy Roberts
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Cedrick Ndhumba Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (P.G.); (M.H.); (K.R.); (J.S.); (C.N.S.)
| |
Collapse
|
9
|
Huang S, Wu Z, Yuan X, Li N, Li T, Wang J, Levesque CL, Feng C. Transcriptome Differences Suggest Novel Mechanisms for Intrauterine Growth Restriction Mediated Dysfunction in Small Intestine of Neonatal Piglets. Front Physiol 2020; 11:561. [PMID: 32655399 PMCID: PMC7324767 DOI: 10.3389/fphys.2020.00561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Impaired intestinal function is frequently detected in newborns with intrauterine growth restriction (IUGR), whereas the mechanism between transcriptome profiles and small intestinal dysfunction is still unclear. Therefore, this study was conducted by using IUGR neonatal piglets to uncover the mechanism underlying intestinal dysfunction. Neonatal piglets with IUGR and normal birth weight (NBW) were sacrificed at birth. Transcriptomic sequencing was performed on jejunum samples and generated 18,997 and 17,531 genes in NBW and IUGR groups, respectively. A total of 10 differentially expressed genes (DEGs) were identified; of note, only seven were mapped to the genome reference database, with two up-regulated (HSF4 and NR1H4; heat shock transcription factor 4 and nuclear receptor subfamily 1 group H member 4, respectively) and five down-regulated (SLC35C1, BTNL3, BPI, NLRP6, and SLC5A8; Solute carrier family 35 member C1, butyrophilin like 3, bactericidal permeability increasing protein, NLR family pyrin domain containing 6, and solute carrier family 5 member 8, respectively). Combining an enrichment analysis and reverse transcriptase–quantitative polymerase chain reaction validation of DEGs, our results proved the lipid metabolism disorder, intestinal dysfunction, and inflammatory response in IUGR piglets. Here, IUGR piglets presented lower concentration of glucose and triglyceride and higher concentration of total cholesterol and low-density lipoprotein cholesterol in plasma, compared with NBW piglets. Histological analysis revealed decreased mucins and increased apoptosis in both jejunum and ileum for IUGR piglets. Collectively, we found that IUGR induced intestinal dysfunction by altering lipid metabolism, intestinal barrier, and inflammatory response in neonatal piglets at birth, which provides new insights into the prevention and treatment of IUGR that protects against metabolic disorders and inflammatory-related diseases.
Collapse
Affiliation(s)
- Shimeng Huang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiongkun Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Huang SM, Wu ZH, Li TT, Liu C, Han DD, Tao SY, Pi Y, Li N, Wang JJ. Perturbation of the lipid metabolism and intestinal inflammation in growing pigs with low birth weight is associated with the alterations of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137382. [PMID: 32114228 DOI: 10.1016/j.scitotenv.2020.137382] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/24/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Low birth weight (LBW) is accompanied by metabolic dysfunction, chronic inflammation and gut microbiota perturbation in piglets during early life. Regulating gut microbiota structure can indirectly or directly affect gut health and the host's metabolism. However, whether gut microbiota dysbiosis impact lipid metabolism and inflammation progression in the LBW pigs later in life is unclear. In the present study, we investigated the role of gut microbiota on homeostasis in organisms using young pigs as a model. The plasma concentrations of High-density lipoproteins (HDLC) and pro-inflammatory cytokines such as Interleukin 6 (IL-6), Tumor necrosis factor alpha (TNF-α) and Interleukin 18 (IL-18) were increased in LBW pigs. The bacterial composition was modified dramatically in LBW group in association with an increase in propionate, butyrate and Short-chain fatty acids (SCFAs) in the ileal digesta. LBW impaired intestine results in damaged Fatty acid-binding protein 1 (FABP2) and Fatty acid-binding protein 4 (FABP4) expressions, and the inhibition of Free fatty acid receptor 1 (FFAR1), Free fatty acid receptor 2 (FFAR2) and G protein-coupled receptor 119 (GPR119) expressions, causing inefficient SCFAs absorption. Meanwhile, the physical barrier and chemical barrier related to functional gene expressions of Occludin, Claudin-1, Mucin 1 (MUC1) and Mucin 2 (MUC2) in both ileum and colon were decreased in the LBW pigs. The genera of Blautia, Bifidobacterium, Subdoligranulum and Coprococcus 3 in the ileum were correlated positively with lipid metabolic dysfunction and pro-inflammatory response in LBW pigs. Collectively, the gut microbiota is critical for perturbation of lipid metabolism and inflammatory progression in LBW pigs, which suggests the interventions for modulating bacterial communities may be therapeutically beneficial for metabolic diseases and chronic inflammation.
Collapse
Affiliation(s)
- Shi-Meng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen-Hua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tian-Tian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan-Dan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shi-Yu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jun-Jun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol (1985) 2020; 128:286-295. [PMID: 31944890 DOI: 10.1152/japplphysiol.00332.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leucine (Leu) and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent protein synthesis in the skeletal muscle of neonatal pigs. This study aimed to determine whether HMB and Leu utilize common nutrient-sensing mechanisms to activate mTORC1. In study 1, neonatal pigs were fed one of five diets for 24 h: low protein (LP), high protein (HP), or LP supplemented with 4 (LP+HMB4), 40 (LP+HMB40), or 80 (LP+HMB80) μmol HMB·kg body wt-1·day-1. In study 2, neonatal pigs were fed for 24 h: LP, LP supplemented with Leu (LP+Leu), or HP diets delivering 9, 18, and 18 mmol Leu·kg body wt-1·day-1, respectively. The upstream signaling molecules that regulate mTORC1 activity were analyzed. mTOR phosphorylation on Ser2448 and Ser2481 was greater in LP+HMB40, LP+HMB80, and LP+Leu than in LP and greater in HP than in HMB-supplemented groups (P < 0.05), whereas HP and LP+Leu were similar. Rheb-mTOR complex formation was lower in LP than in HP (P < 0.05), with no enhancement by HMB or Leu supplementation. The Sestrin2-GATOR2 complex was more abundant in LP than in HP and was reduced by Leu (P < 0.05) but not HMB supplementation. RagA-mTOR and RagC-mTOR complexes were higher in LP+Leu and HP than in LP and HMB groups (P < 0.05). There were no treatment differences in RagB-SH3BP4, Vps34-LRS, and RagD-LRS complex abundances. Phosphorylation of Erk1/2 and TSC2, but not AMPK, was lower in LP than HP (P < 0.05) and unaffected by HMB or Leu supplementation. Our results demonstrate that HMB stimulates mTORC1 activation in neonatal muscle independent of the leucine-sensing pathway mediated by Sestrin2 and the Rag proteins.NEW & NOTEWORTHY Dietary supplementation with either leucine or its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulates protein synthesis in skeletal muscle of the neonatal pig. Our results demonstrate that both leucine and HMB stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) phosphorylation in neonatal muscle. This leucine-stimulated process involves dissociation of the Sestrin2-GATOR2 complex and increased binding of Rag A/C to mTOR. However, HMB's activation of mTORC1 is independent of this leucine-sensing pathway.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marko Rudar
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Huang S, Liu C, Li N, Wu Z, Li T, Han D, Li Z, Zhao J, Wang J. Membrane proteomic analysis reveals the intestinal development is deteriorated by intrauterine growth restriction in piglets. Funct Integr Genomics 2019; 20:277-291. [PMID: 31586277 DOI: 10.1007/s10142-019-00714-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The alterations of the intestinal proteome were observed in intrauterine growth restriction (IUGR) piglets during early life by gel-based approaches. Nevertheless, how IUGR affects the intestinal membrane proteome during neonatal development remains unclear. Here, we applied the iTRAQ-based proteomics technology and biochemical analysis to investigate the impact of IUGR on the membrane proteome of the jejunal mucosa in the piglets. Three hundred sixty-one membrane proteins were screened by functional prediction. Among them, eight, five, and one differentially expressed membrane proteins were identified between IUGR and NBW piglets at day 0, day 7, and day 21 after birth, respectively. Differentially expressed membrane proteins (DEMPs) including F1SBL3, F1RRW8, F1S539, F1S2Z2, F1RIR2, F1RUF2 I3LP60, Q2EN79, and F1SIH8 were reduced while the relative abundance of I3L6A2, F1SCJ1, F1RI18, I3LRJ7, and F1RNN0 were increased in IUGR piglets than NBW piglets. From the aspects of function, F1RRW8, F1S539, F1S2Z2, and F1RIR2 are mainly associated with D2 dopamine receptor binding, transmembrane transport of small molecules, signal transduction, and translocation of GLUT4, respectively, and F1SIH8, I3LRJ7, and F1RNN0 are related to autophagy, metabolism of vitamins, and intracellular protein transport. Additionally, IUGR decreased the level of proteins (F1RRW8, Q2EN79, and F1RI18) that are involved in response to oxidative stress.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Tao S, Bai Y, Li T, Li N, Wang J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J 2019; 33:9897-9912. [PMID: 31170357 DOI: 10.1096/fj.201900204rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The deteriorative effect of low birth weight (LBW) on the mucosal permeability of the small intestine in piglets has been widely confirmed. However, whether the hindgut epithelial barrier function in LBW pigs is deteriorated during the growing stage is still unclear. Our study investigated differences in the hindgut epithelial barrier function between LBW and normal birth weight pigs during the growing stage (d 90). Our data demonstrated that the hindgut epithelium of LBW pigs has a high histopathological score, accompanied by decreased antioxidant capacity and increased apoptosis rate, as well as elevated expression and activity of caspase-3. In addition, the number of intestinal goblet cells and gene expression of mucin 2 were significantly down-regulated in LBW pigs. The expression of tight junction proteins (ZO-1 and occludin) was markedly inhibited by the LBW. The mRNA abundance of inflammatory cytokines such as TNF-α, IL-1β, and IL-8 was significantly increased in the hindgut mucosa of LBW pigs. Furthermore, our data revealed that LBW altered the intestinal microbial community in the hindgut mucosa of pigs. Collectively, these finding add to our understanding of the mechanisms responsible for hindgut epithelial barrier dysfunction in LBW pigs during the growing stage and facilitate the development of nutritional intervention strategies.-Tao, S., Bai, Y., Li, T., Li, N., Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Huang S, Li N, Liu C, Li T, Wang W, Jiang L, Li Z, Han D, Tao S, Wang J. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J Microbiol 2019; 57:748-758. [PMID: 31187413 DOI: 10.1007/s12275-019-8690-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Intrauterine growth restriction (IUGR) predisposes newborns to inflammatory and metabolic disturbance. Disequilibrium of gut microbiota in early life has been implicated in the incidence of inflammation and metabolic diseases in adulthood. This study aimed to investigate the difference in gut microbiota colonization, cytokines and plasma metabolome between IUGR and normal birth weight (NBW) piglets in early life. At birth, reduced (P < 0.05) body, jejunum, and ileum weights, as well as decreased (P < 0.05) small intestinal villi and increased (P < 0.05) ileal crypt depth were observed in IUGR piglets compared with their NBW counterparts. Imbalanced inflammatory and plasma metabolome profile was observed in IUGR piglets. Furthermore, altered metabolites were mainly involved in fatty acid metabolism and inflammatory response. At 12 h after birth and after suckling colostrum, reduced (P < 0.05) postnatal growth and the small intestinal maturation retardation (P < 0.05) continued in IUGR piglets in comparison with those in NBW littermates. Besides, the gut microbiota structure was significantly altered by IUGR. Importantly, the disruption of the inflammatory profile and metabolic status mainly involved the pro-inflammatory cytokines (IL-1β and IFN-γ) and amino acid metabolism. Moreover, spearman correlation analysis showed that the increased abundance of Escherichia-Shigella and decreased abundance of Clostridium_sensu_stricto_1 in IUGR piglets was closely associated with the alterations of slaughter weight, intestinal morphology, inflammatory cytokines, and plasma metabolites. Collectively, IUGR significantly impairs small intestine structure, modifies gut microbiota colonization, and disturbs inflammatory and metabolic profiles during the first 12 h after birth. The unbalanced gut microbiota mediated by IUGR contributes to the development of inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
15
|
Milk Fat Globule Membrane Supplementation Promotes Neonatal Growth and Alleviates Inflammation in Low-Birth-Weight Mice Treated with Lipopolysaccharide. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4876078. [PMID: 31187046 PMCID: PMC6521396 DOI: 10.1155/2019/4876078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Impaired intestinal mucosal integrity and immunity are frequently observed in low-birth-weight (LBW) animals, which lead to inadequate growth and high neonatal mortality. However, the mechanisms of intestinal dysfunction in LBW animals are still unclear. Milk fat globule membrane (MFGM), a protein-lipid complex surrounding the fat globules in milk, has many healthful benefits for animals. Therefore, this study was conducted to explore the effect of MFGM supplementation on intestinal injury and inflammation in LBW mouse pups while being challenged with lipopolysaccharide (LPS). C57BL/6J LBW female neonatal mice were fed on breast milk and divided into four groups, including two normal diet groups (ND; CON group and LPS group) and the diet supplemented with two dosages of MFGM, namely, MFGM100 (ND plus MFGM at 100 mg/kg BW) and MFGM200 (ND plus MFGM at 200 mg/kg BW) from postnatal day (PND) 4 to PND 21. At PND21, pups from the LPS group, MFGM100 group, and MFGM200 group were injected intraperitoneally with LPS while the pups from the CON group were injected with equivalent volume of sterile saline. After 4 h of LPS administration, all pups were slaughtered and then the plasma, mid-ileum, and mid-colon tissue samples were collected. Our results showed that MFGM supplementation promoted the body weight from PND16 to PND21 and attenuated intestinal inflammation manifested by reduced histological damage, decreased secretion of TNF-α, IL-6, IFN-γ, and IL-1β, and improved oxidative stress characterized by increased SOD activity and decreased secretion of MDA. Expression of tight junction proteins (ZO-1, occludin, and claudin-1), MUC1, and MUC2 was increased in MFGM presupplemented groups compared to the LPS-challenged mice with normal diet. Meanwhile, the expression of proinflammatory cytokines and TLRs was decreased by MFGM presupplementation. Collectively, MFGM is a critical nutrient with an ability to improve the growth performance of LBW mouse pups, especially during the LPS challenge, by promoting the intestinal epithelial integrity and inhibiting inflammation through activating of TLR2 and TLR4 signals.
Collapse
|
16
|
Li N, Huang S, Jiang L, Dai Z, Li T, Han D, Wang J. Characterization of the Early Life Microbiota Development and Predominant Lactobacillus Species at Distinct Gut Segments of Low- and Normal-Birth-Weight Piglets. Front Microbiol 2019; 10:797. [PMID: 31040838 PMCID: PMC6476964 DOI: 10.3389/fmicb.2019.00797] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Microbial exposure during early life plays a pivotal role in modulating the health and intestinal development of the host. Our recent study showed that the low-birth-weight (LBW) piglets harbored a different fecal microbiota compared to normal-birth-weight (NBW) piglets during early life with a lower abundance of the genus Lactobacillus. Considering the spatial variations in gut microbiota at distinct gut locations, this study was designed to further investigate the differences in the microbiota composition and predominant Lactobacillus species in the ileum and colon between LBW and NBW piglets during early life, including day 7 (D7), day 21 (D21, before weaning), and day 35 (D35, 2 weeks after weaning). Compared with the normal group, LBW piglets harbored a significantly lower proportion of short-chain fatty acids producing microbes, such as Ruminococcaceae and Prevotellaceae in the ileum on D7, Alistipes and Lachnospiraceae in the colon on D7, Blautia in the colon on D21, and Ruminiclostridium 9 in the colon on D35. The relative abundance of the phylum Bacteroidetes was also declined in both ileum and colon of LBW piglets on D7. Meanwhile, the levels of total SCFAs on D7, D21, and D35, acetate and valerate on D7 and D21, propionate on D21, and lactate on D21 and D35, were also declined in the colon of LBW piglets. Moreover, functional alterations in the gut microbiota of LBW piglets were characterized by differentially abundant microbial genes involved in multiple pathways such as amino acid metabolism, energy metabolism, replication and repair, and metabolism of cofactors and vitamins in the colon. Additionally, lower numbers of L. salivarius on D7 and L. amylovorus on D21 resided in the colon of LBW piglets compared to those in the normal ones. Collectively, LBW piglets have altered bacterial communities, microbial metabolism and gene functions in the ileum and colon during early life, especially the colonic community. This work will help to develop novel ideas in identifying the reliable biomarkers affecting the gut microbiota development in LBW piglets during early life and facilitate the development of new nutritional interventions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Li N, Huang S, Jiang L, Wang W, Li T, Zuo B, Li Z, Wang J. Differences in the Gut Microbiota Establishment and Metabolome Characteristics Between Low- and Normal-Birth-Weight Piglets During Early-Life. Front Microbiol 2018; 9:1798. [PMID: 30245669 PMCID: PMC6137259 DOI: 10.3389/fmicb.2018.01798] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022] Open
Abstract
Low-birth-weight (LBW) piglets are at a high-risk for postnatal growth failure, mortality, and metabolic disorders later in life. Early-life microbial exposure is a potentially effective intervention strategy for modulating the health and metabolism of the host. Yet, it has not been well elucidated whether the gut microbiota development in LBW piglets is different from their normal littermates and its possible association with metabolite profiles. In the current study, 16S rRNA gene sequencing and metabolomics was used to investigate differences in the fecal microbiota and metabolites between LBW and normal piglets during early-life, including day 3 (D3), 7 (D7), 14 (D14), 21 (D21, before weaning), and 35 (D35, after birth). Compared to their normal littermates, LBW piglets harbored low proportions of Faecalibacterium on D3, Flavonifractor on D7, Lactobacillus, Streptococcus, and Prevotella on D21, as well as Howardella on D21 and D35. However, the abundance of Campylobacter on D7 and D21, Prevotella on D14 and D35, Oscillibacter and Moryella on D14 and D21, and Bacteroides on D21 was significantly higher in LBW piglets when compared with normal piglets. The results of the metabolomics analysis suggested that LBW significantly affected fecal metabolites involved in fatty acid metabolism (e.g., linoleic acid, α-linolenic acid, and arachidonic acid), amino acid metabolism (e.g., valine, phenylalanine, and glutamic acid), as well as bile acid biosynthesis (e.g., glycocholic acid, 25-hydroxycholesterol, and chenodeoxycholic acid). Spearman correlation analysis revealed a significant negative association between Campylobacter and N1-acetylspermine on D7, Moryella and linoleic acid on D14, Prevotella and chenodeoxycholic acid on D21, and Howardella and phenylalanine on D35, respectively. Collectively, LBW piglets have a different gut bacterial community structure when compared with normal-birth-weight (NBW) piglets during early-life, especially from 7 to 21 days of age. Also, a distinctive metabolic status in LBW piglets might be partly associated with the altered intestinal microbiota. These findings may further elucidate the factors potentially associated with the impaired growth and development of LBW piglets and facilitate the development of nutritional interventions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Dietary Supplementation of Leucine in Premating Diet Improves the Within-Litter Birth Weight Uniformity, Antioxidative Capability, and Immune Function of Primiparous SD Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1523147. [PMID: 29850484 PMCID: PMC5932505 DOI: 10.1155/2018/1523147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The high within-litter birth weight variation has become a big issue in multiparous animals. The present study was conducted to investigate the effects of leucine supplementation in premating diet on the reproductive performance, maternal antioxidative capability, and immune function in primiparous rats. Six-week-old female SD rats were assigned to basal diet or 0.6% leucine supplemented diet for two weeks. After mating during the eighth week of age, the rats were fed with regular gestation diet. Maternal blood samples were collected on the day before mating (day −1) and day 7 and day 20 of pregnancy, while ovaries and uteruses were obtained on day −1 and on day 7, respectively. The results indicate that, compared with control group, within-litter birth weight variation was significantly decreased, while birth weights were significantly increased in the leucine group (P < 0.01). Also, leucine improved the embryo distribution uniformity and the number of implantation sites in uterine. The ovarian gene expressions of LHR, CYP19A1, and VEGFA were upregulated, while Mucin-1 was decreased significantly (P < 0.05). Leucine also increased the maternal antioxidant capacity and immune function. Conclusively, leucine supplementation in premating diet could improve the reproductive performance, which could be attributed to the improved oxidative and immune status.
Collapse
|
19
|
Yin L, Yang H, Li J, Li Y, Ding X, Wu G, Yin Y. Pig models on intestinal development and therapeutics. Amino Acids 2017; 49:2099-2106. [PMID: 28986749 DOI: 10.1007/s00726-017-2497-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.
Collapse
Affiliation(s)
- Lanmei Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.
| | - Jianzhong Li
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Yali Li
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Xueqing Ding
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Guoyao Wu
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.,Texas A&M University, College Station, TX, 77843, USA
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.
| |
Collapse
|