1
|
Ma G, Ayalew H, Mahmood T, Mercier Y, Wang J, Lin J, Wu S, Qiu K, Qi G, Zhang H. Methionine and vitamin E supplementation improve production performance, antioxidant potential, and liver health in aged laying hens. Poult Sci 2024; 103:104415. [PMID: 39488017 PMCID: PMC11567017 DOI: 10.1016/j.psj.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Sulfur metabolites of methionine (Met) and vitamin E (VE) have antioxidant potential and can maintain liver health in chickens. This study explored the underlying mechanisms of Met sources, the ratio of total sulfur amino acids to lysine (TSAA: Lys), and VE levels on production performances, antioxidant potential, and hepatic oxidation in aged laying hens. Eight hundred and sixty-four, Hy-Line Brown laying hens (70-week age) were divided into 12 treatment groups, each having 6 repeats and 12 birds/each repeat. The dietary treatments consisted of DL-Met (DL-Met), DL-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met), 3 ratios of TSAA: Lys (0.90, 0.95, and 1.00), and 2 levels of VE (20 and 40 g/ton). Albumen height and Haugh unit significantly increased at a lower level of VE (P < 0.05). Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in serum and superoxide dismutase (SOD) and catalase activities (CAT) in the liver significantly reduced at 0.95 TSAA: Lys ratio (P < 0.05). Fatty acid synthase (FAS), lipoprotein lipase (LPL), nuclear factor erythroid 2-related factor 2 (Nrf2), and carnitine palmitoyltransferase-1 alpha (CPT-1α) also upregulated at this TSAA: Lys ratio (P < 0.05). Compared with the DL-Met group, the OH-Met group had lower Dipeptidyl Peptidase 4 (DPP4) and higher TC, LDL, and VLDL concentrations (P < 0.05).The expression of FAS,CPT-1α), glutathione (GSH), glutathione disulfide (GSSG), glutathione synthetase (GSS), and Nrf2 were significantly higher in OH-Met compared with the DL-Met group (P < 0.05). OH-Met at 0.95 and DL-Met at 0.90 TSAA: Lys ratio showed higher CAT and lower aspartate aminotransferase (AST) activities. Moreover, OH-Met at 0.90 and DL-Met at 0.95 of the TSAA: Lys ratio had a significant reduction of malondialdehyde (MDA) (P < 0.05). Overall, these results suggest that OH-Met source with a lower level of VE positively influenced production performance and improved liver health in aged laying hens through improved lipid metabolism and hepatic antioxidant function.
Collapse
Affiliation(s)
- Guangtian Ma
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Po. Box 196, Gondar, Ethiopia
| | - Tahir Mahmood
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Yves Mercier
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Lin
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
3
|
Fang B, Luo J, Cui Z, Liu R, Wang P, Zhang J. Pea Albumin Alleviates Oleic Acid-Induced Lipid Accumulation in LO2 Cells Through Modulating Lipid Metabolism and Fatty Acid Oxidation Pathways. Foods 2024; 13:3482. [PMID: 39517266 PMCID: PMC11545291 DOI: 10.3390/foods13213482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive lipid accumulation in the liver can cause NAFLD, leading to chronic liver injury. To relieve liver lipid accumulation by dietary proteins, this study used oleic acid (OA) induction to establish a stable in vitro LO2 cell lipid accumulation model. This model was used to explore the mechanism by which pea albumin (PA) regulates lipid levels in LO2 cells. PA has been shown to ameliorate OA-induced lipid accumulation in LO2 cells by reducing the aggregation of intracellular lipid droplets and lowering cell TG and TC levels. In addition, it can alleviate OA-induced LO2 cell damage and oxidative stress, reduce cellular ALT and AST secretion, lower cellular MDA levels, and increase GSH-Px viability. Regulation of lipid metabolism in LO2 cells involves inhibiting the cellular lipid synthesis pathway and activating the expression of proteins related to the triglyceride catabolic and fatty acid oxidation pathways. PA contributes to regulating lipid accumulation in LO2 cells. This study provides new insights into alleviating liver fat accumulation and a theoretical basis for exploring the mechanism of protein regulation of liver cell lipid metabolism.
Collapse
Affiliation(s)
- Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China;
| | - Zhengwu Cui
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Rong Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| |
Collapse
|
4
|
Aggarwal K, Singh B, Goel A, Agrawal DK, Bansal S, Kanagala SG, Anamika F, Gupta A, Jain R. Complex dichotomous links of nonalcoholic fatty liver disease and inflammatory bowel disease: exploring risks, mechanisms, and management modalities. Intest Res 2024; 22:414-427. [PMID: 38835139 PMCID: PMC11534450 DOI: 10.5217/ir.2024.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be linked to inflammatory bowel disease (IBD) due to established risk factors such as obesity, age, and type 2 diabetes in numerous studies. However, alternative research suggests that factors related to IBD, such as disease activity, duration, and drug-induced toxicity, can contribute to NAFLD. Recent research findings suggest IBD relapses are correlated with dysbiosis, mucosal damage, and an increase in cytokines. In contrast, remission periods are characterized by reduced metabolic risk factors. There is a dichotomy evident in the associations between NAFLD and IBD during relapses and remissions. This warrants a nuanced understanding of the diverse influences on disease manifestation and progression. It is possible to provide a holistic approach to care for patients with IBD by emphasizing the interdependence between metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Kanishk Aggarwal
- Department of Medicine, Dayanand Medical College, Ludhiana, India
| | - Bhupinder Singh
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | - Abhishek Goel
- Department of Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, USA
| | | | - Sourav Bansal
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | | | - Fnu Anamika
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | | | - Rohit Jain
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
5
|
Yang J, Li X, Dai C, Teng Y, Xie L, Tian H, Hong S. Living Conditions Alter Ketogenic Diet-induced Metabolic Consequences in Mice through Modulating Gut Microbiota. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:313-326. [PMID: 39583308 PMCID: PMC11584838 DOI: 10.1007/s43657-024-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 11/26/2024]
Abstract
Many laboratories have demonstrated that the ketogenic diet (KD) can lead to weight loss and reduced fasting glucose levels, while also increasing total serum cholesterol levels. However, it's worth noting that the specific outcomes induced by KD can vary across different research settings. Certain studies have indicated that environmental factors, such as housing conditions and the acidity of drinking water, can influence physiological parameters and gut microbes in mice. Thus, our current study aimed to investigate whether differences in housing conditions and pH levels of drinking water contribute to variations in KD-induced phenotypes and gut microbes. Our findings revealed that mice housed in conventional (CV) conditions experienced more significant weight loss, lower fasting blood glucose levels, and a greater elevation of blood cholesterol levels compared to those in the specific pathogen-free (SPF) condition. Additionally, similar differences were observed when comparing mice fed with non-acidified water versus acidified water. Furthermore, we analyzed cecum content samples using 16S rRNA sequencing to assess gut microbial composition and found that the tested environmental variables also had an impact on the gut microbial composition of KD-fed mice, which was correlated with their phenotypic alterations. In summary, both housing conditions and the pH of drinking water were identified as crucial environmental factors that influenced KD-induced changes in metabolic phenotypes and gut microbes. Our study emphasizes the importance of considering these factors in animal studies related to KD and gut microbes, as well as in other types of animal research. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00161-1.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Chen Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yongduan Teng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Linshan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
6
|
Fordham TM, Morelli NS, Garcia-Reyes Y, Ware MA, Rahat H, Sundararajan D, Fuller KNZ, Severn C, Pyle L, Malloy CR, Jin ES, Parks EJ, Wolfe RR, Cree MG. Metabolic effects of an essential amino acid supplement in adolescents with PCOS and obesity. Obesity (Silver Spring) 2024; 32:678-690. [PMID: 38439205 DOI: 10.1002/oby.23988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, insulin resistance, and hepatic steatosis (HS). Because dietary essential amino acid (EAA) supplementation has been shown to decrease HS in various populations, this study's objective was to determine whether supplementation would decrease HS in PCOS. METHODS A randomized, double-blind, crossover, placebo-controlled trial was conducted in 21 adolescents with PCOS (BMI 37.3 ± 6.5 kg/m2, age 15.6 ± 1.3 years). Liver fat, very low-density lipoprotein (VLDL) lipogenesis, and triacylglycerol (TG) metabolism were measured following each 28-day phase of placebo or EAA. RESULTS Compared to placebo, EAA was associated with no difference in body weight (p = 0.673). Two markers of liver health improved: HS was lower (-0.8% absolute, -7.5% relative reduction, p = 0.013), as was plasma aspartate aminotransferase (AST) (-8%, p = 0.004). Plasma TG (-9%, p = 0.015) and VLDL-TG (-21%, p = 0.031) were reduced as well. VLDL-TG palmitate derived from lipogenesis was not different between the phases, nor was insulin sensitivity (p > 0.400 for both). Surprisingly, during the EAA phase, participants reported consuming fewer carbohydrates (p = 0.038) and total sugars (p = 0.046). CONCLUSIONS Similar to studies in older adults, short-term EAA supplementation in adolescents resulted in significantly lower liver fat, AST, and plasma lipids and thus may prove to be an effective treatment in this population. Additional research is needed to elucidate the mechanisms for these effects.
Collapse
Affiliation(s)
- Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nazeen S Morelli
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Meredith A Ware
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Haseeb Rahat
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Divya Sundararajan
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly N Z Fuller
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cameron Severn
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Pyle
- Child Health Biostatistics Core, Department of Pediatrics, Section of Endocrinology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Robert R Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie G Cree
- Department of Pediatrics, Section on Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
8
|
Rives C, Martin CMP, Evariste L, Polizzi A, Huillet M, Lasserre F, Alquier-Bacquie V, Perrier P, Gomez J, Lippi Y, Naylies C, Levade T, Sabourdy F, Remignon H, Fafournoux P, Chassaing B, Loiseau N, Guillou H, Ellero-Simatos S, Gamet-Payrastre L, Fougerat A. Dietary Amino Acid Source Elicits Sex-Specific Metabolic Response to Diet-Induced NAFLD in Mice. Mol Nutr Food Res 2024; 68:e2300491. [PMID: 37888831 DOI: 10.1002/mnfr.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Prunelle Perrier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Jelskey Gomez
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Thierry Levade
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Frédérique Sabourdy
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
- INP-ENSAT, Toulouse University, Castanet-Tolosan, 31320, France
| | - Pierre Fafournoux
- INRAE center, Proteostasis Tim, Saint Genes Champanelle, 63122, France
| | - Benoit Chassaing
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Paris Cité University, Paris, 75014, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| |
Collapse
|
9
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
10
|
Gao T, Feng M, Wang Z, Cao J, Chen Y. Microbiota-gut-adipose axis: butyrate-mediated the improvement effect on inflammatory response and fatty acid oxidation dysregulation attenuates obesity in sleep-restricted mice. Microbes Infect 2023; 25:105125. [PMID: 36906253 DOI: 10.1016/j.micinf.2023.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Insufficient sleep was considered as a substantial cause of obesity. The present study further explored the mechanism whereby sleep restriction (SR)-mediated intestinal dysbiosis induced metabolic disorder and ultimately lead to obesity in mice and the improvement effect of butyrate exerting on it. METHODS A continuous 3 months SR mouse model with or without butyrate supplementation and fecal microbiota transplantation to explore the key role of intestinal microbiota in butyrate improving inflammatory response in inguinal white adipose tissue (iWAT) and fatty acid oxidation dysfunction in brown adipose tissue (BAT), further ameliorating SR-induced obesity. RESULTS SR-mediated gut microbiota dysbiosis (down-regulation in butyrate level and up-regulation in LPS level) induced intestinal permeability increase and inflammatory response in iWAT and fatty acid oxidation dysfunction in BAT, ultimately resulting in obesity. Further, we demonstrated butyrate ameliorated gut microbiota homeostasis, suppressed inflammatory response via GPR43/LPS/TLR4/MyD88/GSK-3β/β-catenin loop in iWAT and restored fatty acid oxidation function via HDAC3/PPARα/PGC-1α/UCP1/Calpain1 pathway in BAT, ultimately reversing SR-induced obesity. CONCLUSIONS We revealed that gut dysbiosis is a key factor for SR-induced obesity and provided a better understanding of the effects of butyrate. We further expected that reversing SR-induced obesity by improving microbiota-gut-adipose axis disorder could be a possible treatment for metabolic diseases.
Collapse
Affiliation(s)
- Ting Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
| | - Minghui Feng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
11
|
Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, Hong S, Sun Y. Diets, Gut Microbiota and Metabolites. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:268-284. [PMID: 37325710 PMCID: PMC10260722 DOI: 10.1007/s43657-023-00095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The gut microbiota refers to the gross collection of microorganisms, estimated trillions of them, which reside within the gut and play crucial roles in the absorption and digestion of dietary nutrients. In the past decades, the new generation 'omics' (metagenomics, transcriptomics, proteomics, and metabolomics) technologies made it possible to precisely identify microbiota and metabolites and describe their variability between individuals, populations and even different time points within the same subjects. With massive efforts made, it is now generally accepted that the gut microbiota is a dynamically changing population, whose composition is influenced by the hosts' health conditions and lifestyles. Diet is one of the major contributors to shaping the gut microbiota. The components in the diets vary in different countries, religions, and populations. Some special diets have been adopted by people for hundreds of years aiming for better health, while the underlying mechanisms remain largely unknown. Recent studies based on volunteers or diet-treated animals demonstrated that diets can greatly and rapidly change the gut microbiota. The unique pattern of the nutrients from the diets and their metabolites produced by the gut microbiota has been linked with the occurrence of diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cardiovascular disease, neural diseases, and more. This review will summarize the recent progress and current understanding of the effects of different dietary patterns on the composition of gut microbiota, bacterial metabolites, and their effects on the host's metabolism.
Collapse
Affiliation(s)
- Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Wanglei Zhong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442001 Hubei China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| |
Collapse
|
12
|
Warren D, Benedito VA, Skinner RC, Alawadi A, Vendemiatti E, Laub DJ, Showman C, Matak K, Tou JC. Low-Protein Diets Composed of Protein Recovered from Food Processing Supported Growth, but Induced Mild Hepatic Steatosis Compared with a No-Protein Diet in Young Female Rats. J Nutr 2023; 153:1668-1679. [PMID: 36990182 PMCID: PMC10447611 DOI: 10.1016/j.tjnut.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.
Collapse
Affiliation(s)
- Derek Warren
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States; Department of Biology, University of the Ozarks, Clarksville, AR, United States
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, United States
| | - Ayad Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Eloisa Vendemiatti
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - David J Laub
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
13
|
Bischoff SC, Ockenga J, Eshraghian A, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. Practical guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2023; 42:987-1024. [PMID: 37146466 DOI: 10.1016/j.clnu.2023.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Patients with chronic gastrointestinal disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean gastrointestinal patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The present practical guideline is intended for clinicians and practitioners in general medicine, gastroenterology, surgery and other obesity management, including dietitians and focuses on obesity care in patients with chronic gastrointestinal diseases. METHODS The present practical guideline is the shortened version of a previously published scientific guideline developed according to the standard operating procedure for ESPEN guidelines. The content has been re-structured and transformed into flow-charts that allow a quick navigation through the text. RESULTS In 100 recommendations (3× A, 33× B, 24 × 0, 40× GPP, all with a consensus grade of 90% or more) care of gastrointestinal patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially metabolic associated liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present practical guideline offers in a condensed way evidence-based advice how to care for patients with chronic gastrointestinal diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; and Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim gGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
14
|
Khazaei Y, Dehghanseresht N, Ebrahimi Mousavi S, Nazari M, Salamat S, Asbaghi O, Mansoori A. Association Between Protein Intake From Different Animal and Plant Origins and the Risk of Non-Alcoholic Fatty Liver Disease: A Case-Control Study. Clin Nutr Res 2023; 12:29-39. [PMID: 36793780 PMCID: PMC9900076 DOI: 10.7762/cnr.2023.12.1.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Previous studies have frequently reviewed how different macronutrients affect liver health. Still, no study centered around protein intake and the non-alcoholic fatty liver disease (NAFLD) risk relationship. This study aimed to examine the association between the consumption of total and different sources of protein and NAFLD risk. We allocated 243 eligible subjects to the case and control groups, including 121 incidence cases of NAFLD, and 122 healthy controls. Two groups were matched in age, body mass index, and sex. We evaluated the usual food intake of participants using FFQ. Binary logistic regression was conducted to estimate the risk of NAFLD in relation to different sources of protein intake. The age of participants was 42.7 years on average, and 53.1% were male. We found Higher intake of protein in total (odds ratio [OR], 0.24; 95% confidence interval [CI], 0.11-0.52) was significantly associated with a lower risk of NAFLD, despite adjusting for multiple confounders. in detail, higher tendency to the vegetables (OR, 0.28; 95% CI, 0.13-0.59), grains (OR, 0.24; 95% CI, 0.11-0.52), and nuts (OR, 0.25; 95% CI, 0.12-0.52) as the main sources of protein, were remarkably correlated with lower NAFLD risk. In contrary, increased intake of meat protein (OR, 3.15; 95% CI, 1.46-6.81) was positively associated with a higher risk. Totally, more calorie intake from proteins was inversely associated with lower NAFLD risk. This was more likely when the protein sources were selected less from meats and more from plants. Accordingly, increasing the consumption of proteins, particularly from plants, may be a good recommendation to manage and prevent NAFLD.
Collapse
Affiliation(s)
- Yasaman Khazaei
- Department of Nutrition, School of Public Health, Iran University of Medical Science, Tehran 1134845764, Iran
| | - Narges Dehghanseresht
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Sara Ebrahimi Mousavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416643931, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1416643931, Iran
| | - Matin Nazari
- Department of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shekoufeh Salamat
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Anahita Mansoori
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| |
Collapse
|
15
|
R J M, A V, Chakraborthy A, B MK, Shetty A V, Badanthadka M. Protein malnutrition in BALB/C mice: A model mimicking clinical scenario of marasmic-kwashiorkor malnutrition. J Pharmacol Toxicol Methods 2023; 119:107231. [PMID: 36410663 DOI: 10.1016/j.vascn.2022.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Protein malnutrition continues to be a major global issue. A stable animal model to address protein malnutrition and its effect on various disease conditions is necessary. In the present study, we have formulated and standardized a low protein diet (LPD) to develop a protein malnutrition model using Balb/C mice. Healthy male Balb/C mice were weaned and exposed to LPD combinations while another group exposed to normal diet (18% protein). Animal survival, change in body weight, body mass index (BMI), biochemical parameters, antioxidant status, and liver histopathology were used to confirm the development of malnourished mice model (marasmic-kwashiorkor). Mice receiving 10% protein diet showed moderate weight gain, higher BMI, and no mortality compared to the 6% protein group. The former group showed remarkable differences in BMI, biochemical and antioxidant parameters. Further, histopathological changes against the normal group at weeks 20 and 30 confirmed the development of protein malnutrition in mice on 10% protein diet. The study confirms the development of a stable, economical, reproducible, and clinically relevant protein malnutrition model using the formulated 10% protein diet. Further, the model can be used for short and long-term studies to investigate the pathophysiology of malnutrition in any disease/condition.
Collapse
Affiliation(s)
- Madhura R J
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India
| | - Varsha A
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India
| | - Anirban Chakraborthy
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru 575018, India
| | - Mohana Kumar B
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Nitte University Center for Stem Cell Research and Regenerative Medicine, Deralakatte, 575018 Mangaluru, India
| | - Veena Shetty A
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Department of Microbiology, Deralakatte, Mangaluru 575018, India
| | - Murali Badanthadka
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Department of Nitte University Centre for Animal Research and Experimentation (NUCARE), Paneer campus, Deralakatte, Mangaluru 575 018, Karnataka, India.
| |
Collapse
|
16
|
Matye D, Gunewardena S, Chen J, Wang H, Wang Y, Hasan MN, Gu L, Clayton YD, Du Y, Chen C, Friedman JE, Lu SC, Ding WX, Li T. TFEB regulates sulfur amino acid and coenzyme A metabolism to support hepatic metabolic adaptation and redox homeostasis. Nat Commun 2022; 13:5696. [PMID: 36171419 PMCID: PMC9519740 DOI: 10.1038/s41467-022-33465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.
Collapse
Affiliation(s)
- David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cheng Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Bischoff SC, Barazzoni R, Busetto L, Campmans‐Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon‐Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint European Society for Clinical Nutrition and Metabolism / United European Gastroenterology guideline. United European Gastroenterol J 2022; 10:663-720. [PMID: 35959597 PMCID: PMC9486502 DOI: 10.1002/ueg2.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for European Society for Clinical Nutrition and Metabolism guidelines, following the Scottish Intercollegiate Guidelines Network grading system (A, B, 0, and good practice point [GPP]). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational SciencesUniversity of TriesteTriesteItaly
| | - Luca Busetto
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Marjo Campmans‐Kuijpers
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Vincenzo Cardinale
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Irit Chermesh
- Department of GastroenterologyRambam Health Care CampusAffiliated with Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahad Eshraghian
- Department of Gastroenterology and HepatologyAvicenna HospitalShirazIran
| | - Haluk Tarik Kani
- Department of GastroenterologyMarmara UniversitySchool of MedicineIstanbulTurkey
| | - Wafaa Khannoussi
- Hepato‐Gastroenterology DepartmentMohammed VI University HospitalOujdaMorocco
- Laboratoire de Recherche des Maladies Digestives (LARMAD)Mohammed the First UniversityOujdaMorocco
| | - Laurence Lacaze
- Department of NutritionRennes HospitalRennesFrance
- Department of general surgeryMantes‐la‐Jolie HospitalFrance
- Department of clinical nutritionPaul Brousse‐Hospital, VillejuifFrance
| | - Miguel Léon‐Sanz
- Department of Endocrinology and NutritionUniversity Hospital Doce de OctubreMedical SchoolUniversity ComplutenseMadridSpain
| | - Juan M. Mendive
- La Mina Primary Care Academic Health Centre. Catalan Institute of Health (ICS)University of BarcelonaBarcelonaSpain
| | - Michael W. Müller
- Department of General and Visceral SurgeryRegionale Kliniken HoldingKliniken Ludwigsburg‐Bietigheim gGmbHBietigheim‐BissingenGermany
| | - Johann Ockenga
- Medizinische Klinik IIKlinikum Bremen‐MitteBremenGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin BerlinCampus Virchow‐Klinikum and Campus Charité MitteBerlinGermany
| | - Anders Thorell
- Department of Clinical ScienceDanderyds HospitalKarolinska InstitutetStockholmSweden
- Department of SurgeryErsta HospitalStockholmSweden
| | - Darija Vranesic Bender
- Department of Internal MedicineUnit of Clinical NutritionUniversity Hospital Centre ZagrebZagrebCroatia
| | - Arved Weimann
- Department of General, Visceral and Oncological SurgerySt. George HospitalLeipzigGermany
| | - Cristina Cuerda
- Departamento de MedicinaUniversidad Complutense de MadridNutrition UnitHospital General Universitario Gregorio MarañónMadridSpain
| |
Collapse
|
18
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
19
|
Santiago CMO, de Oliveira DG, Rocha‐Gomes A, Oliveira G, Bernardes EDO, Dias PL, Reis ÍG, Severiano CM, da Silva AA, Lessa MR, Dessimoni Pinto NAV, Riul TR. Unripe banana flour (
Musa cavendishii
) promotes increased hypothalamic antioxidant activity, reduced caloric intake, and abdominal fat accumulation in rats on a high‐fat diet. J Food Biochem 2022; 46:e14341. [DOI: 10.1111/jfbc.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Camilla M. O. Santiago
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Dalila G. de Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Arthur Rocha‐Gomes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Gabriel A. Oliveira
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Eduardo de Oliveira Bernardes
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Patrick L. Dias
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Ítalo G. Reis
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Cecília M. Severiano
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Alexandre A. da Silva
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Programa de Pós‐Graduação em Ciências da Saúde Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Mayara R. Lessa
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Nisia A. V. Dessimoni Pinto
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| | - Tania R. Riul
- Programa de Pós‐Graduação em Ciências da Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
- Laboratório de Nutrição Experimental, LabNutrex, Departamento de Nutrição Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina Minas Gerais Brazil
| |
Collapse
|
20
|
Di Ciaula A, Bonfrate L, Portincasa P. The role of microbiota in nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13768. [PMID: 35294774 DOI: 10.1111/eci.13768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide. Gut microbiota can play a role in the pathogenesis of NAFLD since dysbiosis is associated with reduced bacterial diversity, altered Firmicutes/Bacteroidetes ratio, a relative abundance of alcohol-producing bacteria, or other specific genera. Changes can promote disrupted intestinal barrier and hyperpermeability, filtration of bacterial products, activation of the immune system, and pro-inflammatory changes in the intestine, in the liver, and at a systemic level. Microbiota-derived molecules can contribute to the steatogenic effects. The link between gut dysbiosis and NAFLD, however, is confused by several factors which include age, BMI, comorbidities, dietary components, and lifestyle. The role of toxic chemicals in food and water requires further studies in both gut dysbiosis and NAFLD. We can anticipate that gut microbiota manipulation will represent a potential therapeutic tool to delay or reverse the progression of NAFLD, paving the way to primary prevention measures.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
21
|
Glucocorticosteroids and the Risk of NAFLD in Inflammatory Bowel Disease. Can J Gastroenterol Hepatol 2022; 2022:4344905. [PMID: 35600209 PMCID: PMC9117063 DOI: 10.1155/2022/4344905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Each year, the incidence of nonalcoholic fatty liver (NAFLD) disease increases. NAFLD is a chronic disease. One of the most common causes of NAFLD is an inadequate lifestyle, which is characterized by a lack or low physical activity and eating highly processed foods rich in saturated fat and salt and containing low amount of fiber. Moreover, disturbances in intestinal microbiome and the use of certain drugs may predispose to NAFLD. NAFLD is an increasingly described disease in patients with inflammatory bowel disease (IBD). Recent data also indicate a frequent coexistence of metabolic syndrome in this group of patients. Certain groups of drugs also increase the risk of developing inflammation, liver fibrosis, and cirrhosis. Particularly important in the development of NAFLD are steroids, which are used in the treatment of many diseases, for example, IBD. NAFLD is one of the most frequent parenteral manifestations of the disease in IBD patients. However, there is still insufficient information on what dose and exposure time of selected types of steroids may lead to the development of NAFLD. It is necessary to conduct further research in this direction. Therefore, patients with IBD should be constantly monitored for risk factors for the development of NAFLD.
Collapse
|
22
|
Nunes-Cabaço H, Moita D, Rôla C, Mendes AM, Prudêncio M. Impact of Dietary Protein Restriction on the Immunogenicity and Efficacy of Whole-Sporozoite Malaria Vaccination. Front Immunol 2022; 13:869757. [PMID: 35529859 PMCID: PMC9070679 DOI: 10.3389/fimmu.2022.869757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria remains one of the world’s most prevalent infectious diseases. Several vaccination strategies currently under investigation aim at hampering the development of the Plasmodium parasite during the clinically silent liver stage of its life cycle in the mammalian host, preventing the subsequent disease-associated blood stage of infection. Immunization with radiation-attenuated sporozoites (RAS), the liver-infecting parasite forms, can induce sterile protection against malaria. However, the efficacy of vaccine candidates in malaria-naïve individuals in high-income countries is frequently higher than that found in populations where malaria is endemic. Malnutrition has been associated with immune dysfunction and with a delay or impairment of the immune response to some vaccines. Since vaccine efficacy depends on the generation of competent immune responses, and malaria-endemic regions are often associated with malnutrition, we hypothesized that an inadequate host nutritional status, specifically resulting from a reduction in dietary protein, could impact on the establishment of an efficient anti-malarial immune response. We developed a model of RAS immunization under low protein diet to investigate the impact of a reduced host protein intake on the immunogenicity and protective efficacy of this vaccine. Our analysis of the circulating and tissue-associated immune compartments revealed that a reduction in dietary protein intake during immunization resulted in a decrease in the frequency of circulating CD4+ T cells and of hepatic NK cells. Nevertheless, the profile of CD8+ T cells in the blood, liver and spleen was robust and minimally affected by the dietary protein content during RAS immunization, as assessed by supervised and in-depth unsupervised X-shift clustering analysis. Although mice immunized under low protein diet presented higher parasite liver load upon challenge than those immunized under adequate protein intake, the two groups displayed similar levels of protection from disease. Overall, our data indicate that dietary protein reduction may have minimal impact on the immunogenicity and efficacy of RAS-based malaria vaccination. Importantly, this experimental model can be extended to assess the impact of other nutrient imbalances and immunization strategies, towards the refinement of future translational interventions that improve vaccine efficacy in malnourished individuals.
Collapse
|
23
|
Nwakiban Atchan A, Shivashankara ST, Piazza S, Tchamgoue AD, Beretta G, Dell’Agli M, Magni P, Agbor GA, Kuiaté JR, Manjappara UV. Polyphenol-Rich Extracts of Xylopia and Aframomum Species Show Metabolic Benefits by Lowering Hepatic Lipid Accumulation in Diet-Induced Obese Mice. ACS OMEGA 2022; 7:11914-11928. [PMID: 35449947 PMCID: PMC9016817 DOI: 10.1021/acsomega.2c00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Metabolic syndrome is a complex condition associated with a series of pathologies featuring glucose intolerance, diabetes, high blood pressure, dyslipidemia, microalbuminuria, overweight, and obesity. It is also related to nonalcoholic fatty liver disease (NAFLD), recognized as the most familiar cause of chronic liver disease worldwide. The overall prevalence of metabolic syndrome and, consequently, the one of NAFLD is constantly increasing worldwide. The initial management of these diseases involves lifestyle modifications, including changes in diet and physical exercise. In addition to conventional drugs like orlistat, botanicals are traditionally used to counteract these disorders, and some of them are currently under evaluation. The present work evaluated the in vivo beneficial effects of hydroalcoholic extracts of two Cameroonian spices, focusing on obesity-related hepatic lipid injury in high-fat-fed C57BL/6 mice. Hydroethanolic extracts were prepared and characterized by reverse phase-high-performance liquid chromatography (HPLC)-photodiode array detection and ultra performance liquid chromatography-triple time-of-flight electrospray ionization tandem mass spectroscopy (TOF-ESI-MS/MS) analysis. Plant extracts were orally administered for 30 days at different dose levels (100 and 200 mg kg-1 body weight (BW)) to obese C57BL/6 mice. Food intake (FI) and BW were recorded daily. Plasma biochemical parameters and lipid content were estimated at the beginning and at the end of the experiment. Liver tissues were subjected to histological examinations, lipid content, as well as oxidative stress markers, and FAME (fatty acid methyl esters) were estimated. Oral administration of extracts at 200 mg kg-1 BW significantly reduced FI and prevented BW gain. A decrease in the weight of the liver and a decrease in the hepatic and plasma lipid content were observed. Plasma enzyme (serum glutamic-oxaloacetic transaminase, SGOT; serum glutamic pyruvic transaminase, SGPT; alkaline phosphatase, ALP) activities were not indicative of any organ damage. Chemical analysis suggested that phenolic acids (4-caffeoylquinic acid, p-coumaric acid 4-O-glucoside, 5-caffeoylshikimic acid, caffeic acid hexose, and 4-O-methyl gallic acid) and flavonoids (morusin derivatives, naringenin-7-O-glucoside, and homoisoflavanone) identified in the extracts could potentially justify the biological properties observed. The main findings of this study showed that Xylopia parviflora (A. Rich.) Benth and Aframomum citratum (Pereira ex Oliv. et Hanb.) K. Shum decreased hepatic lipid accumulation in high-fat-diet (HFD)-induced obese C57BL/6 mice and confirmed, at least in part, our previous in vitro and ex vivo studies. The molecular mechanisms underlying these effects are still unclear and will be explored in the future.
Collapse
Affiliation(s)
| | - Shilpa Talkad Shivashankara
- Department
of Lipid Science, CSIR-Central Food Technological
Research Institute (CFTRI), Mysore 570 020, India
| | - Stefano Piazza
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Armelle Deutou Tchamgoue
- Centre
for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants
Studies, P.O. Box 13033, Yaoundé 13033, Cameroon
| | - Giangiacomo Beretta
- Department
of Environmental Science and Policy, Università
degli Studi di Milano, Milan 20133, Italy
| | - Mario Dell’Agli
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
| | - Paolo Magni
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan 20133, Italy
- IRCCS MultiMedica,
Sesto San Giovanni, Via
Milanese, 300, Sesto San Giovanni, Milan 20099, Italy
| | - Gabriel Agbor Agbor
- Centre
for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants
Studies, P.O. Box 13033, Yaoundé 13033, Cameroon
| | - Jules-Roger Kuiaté
- Department
of Biochemistry, Faculty of Science, University
of Dschang, P.O. Box 96, Dschang 67, Cameroon
| | | |
Collapse
|
24
|
Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K, Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord 2022; 22:63. [PMID: 35287643 PMCID: PMC8919523 DOI: 10.1186/s12902-022-00980-1] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/02/2022] [Indexed: 02/21/2023] Open
Abstract
Given the increasing prevalence of diabetes and obesity worldwide, the deleterious effects of non-alcoholic fatty liver disease (NAFLD) are becoming a growing challenge for public health. NAFLD is the most common chronic liver disease in the Western world. NAFLD is closely associated with metabolic disorders, including central obesity, dyslipidaemia, hypertension, hyperglycaemia and persistent abnormalities of liver function tests.In general NAFLD is a common denominer for a broad spectrum of damage to the liver, which can be due to hepatocyte injury, inflammatory processes and fibrosis. This is normally seen on liver biopsy and can range from milder forms (steatosis) to the more severe forms (non-alcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis and liver failure). In these patients, advanced fibrosis is the major predictor of morbidity and liver-related mortality, and an accurate diagnosis of NASH and NAFLD is mandatory. Histologic evaluation with liver biopsy remains the gold standard to diagnose NAFLD. Diagnosis of NAFLD is defined as presence of hepatic steatosis, ballooning and lobular inflammation with or without fibrosis. Weight loss, dietary modification, and the treatment of underlying metabolic syndrome remain the mainstays of therapy once the diagnosis is established. Dietary recommendations and lifestyle interventions, weight loss, and the treatment of underlying metabolic syndrome remain the mainstays of therapy once the diagnosis is established with promising results but are difficult to maintain. Pioglitazone and vitamin E are recommended by guidelines in selected patients. This review gives an overview of NAFLD and its treatment options.
Collapse
Affiliation(s)
- Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, P.O. Box 90151, 5000 LC, Tilburg, The Netherlands.
| | - Nasser Sakran
- Department of Surgery, Holy Family Hospital, Nazareth, Israel, and the Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yitka Graham
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Facultad de Psycologia, Universidad Anahuac Mexico, Mexico City, Mexico
| | - Angela Leal
- Department of Bariatric Surgery, Christus Muguerza Conchita Hospital, Monterrey, Mexico
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Center Ljubljana, Zaloška cesta, Ljubljana, Slovenia
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Radwan Kassir
- CHU Félix Guyon, Allée des Topazes, Saint-Denis, France
| | - Rishi Singhal
- Bariatric and Upper GI Unit, Birmingham Heartlands Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Kamal Mahawar
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Bariatric Unit, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Dharmanand Ramnarain
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Hilvarenbeekseweg 60, P.O. Box 90151, 5000 LC, Tilburg, The Netherlands
- Department of Intensive Care Medicine, Saxenburg Medical Centre, Hardenberg, The Netherlands
| |
Collapse
|
25
|
Fournier C, Karagounis LG, Sacco SM, Horcajada MN, Decaens T, Offord EA, Bouzakri K, Ammann P. Impact of moderate dietary protein restriction on glucose homeostasis in a model of oestrogen deficiency. J Nutr Biochem 2022; 102:108952. [PMID: 35122999 DOI: 10.1016/j.jnutbio.2022.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The need to consume adequate dietary protein to preserve physical function during ageing is well recognized. However, the effect of protein intakes on glucose metabolism is still intensively debated. During age-related oestrogen withdrawal at the time of the menopause, it is known that glucose homeostasis may be impaired but the influence of dietary protein levels in this context is unknown. The aim of the present study is to elucidate the individual and interactive effects of oestrogen deficiency and suboptimal protein intake on glucose homeostasis in a preclinical model involving ovariectomy (OVX) and a 13-week period of a moderately reduced protein intake in 7-month-old ageing rats. To investigate mechanisms of action acting via the pancreas-liver-muscle axis, fasting circulating levels of insulin, glucagon, IGF-1, FGF21 and glycemia were measured. The hepatic lipid infiltration and the protein expression of GLUT4 in the gastrocnemius were analyzed. The gene expression of some hepatokines, myokines and lipid storage/oxidation related transcription factors were quantified in the liver and the gastrocnemius. We show that, regardless of the oestrogen status, moderate dietary protein restriction increases fasting glycaemia without modifying insulinemia, body weight gain and composition. This fasting hyperglycaemia is associated with oestrogen status-specific metabolic alterations in the muscle and liver. In oestrogen-replete (SHAM) rats, GLUT4 was down-regulated in skeletal muscle while in oestrogen-deficient (OVX) rats, hepatic stress-associated hyperglucagonaemia and high serum FGF21 were observed. These findings highlight the importance of meeting dietary protein needs to avoid disturbances in glucose homeostasis in ageing female rats with or without oestrogen withdrawal.
Collapse
Affiliation(s)
- Carole Fournier
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Epalinges, Switzerland; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Sandra M Sacco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elizabeth A Offord
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland; UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Patrick Ammann
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
26
|
Moreira-Silva H, Ferreira S, Almeida M, Gonçalves I, Cipriano MA, Vizcaíno JR, Santos-Silva E, Gomes-Martins E. Case report: NAFLD and maple syrup urine disease: Is there an interplay between branched-chain amino acids and fructose consumption? Front Pediatr 2022; 10:933081. [PMID: 36299693 PMCID: PMC9589422 DOI: 10.3389/fped.2022.933081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The worldwide increase in pediatric overweight and obesity, in parallel with the global increase in the consumption of sucrose and fructose, is associated with non-alcoholic fatty liver disease (NAFLD). Elevated branched-chain amino acids (BCAAs) are a metabolic feature related to obesity and an early risk factor for insulin resistance and NAFLD. However, few studies have assessed metabolic risk factors and nutritional status in maple syrup urine disease (MSUD) patients under restricted BCAA and high carbohydrate diets. METHODS AND RESULTS Herein, we present a pilot report of a 17-year-old boy with classic MSUD with poor diet compliance and high fructose consumption, mainly during early adolescence. At that time, he was overweight and developed features of metabolic syndrome, including persistently elevated liver enzymes and hepatic steatosis. He underwent liver transplantation at the age of 13 years to prevent the risk of progressive cognitive impairment. Two months later, NAFLD relapsed in the graft, despite a better BCAA balance and weight loss. Nevertheless, 6 months after dietary restriction of fructose consumption, NAFLD had sustainably improved. CONCLUSION Childhood overweight and fructose overconsumption are wellestablished driving forces in the development of pediatric NAFLD. However, their role in the early onset and progression of NAFLD in the allograft remains to be established. Furthermore, it is not known whether the dysmetabolic state associated with elevated BCAAs may be contributory. Further studies are required with a cohort of MSUD subjects to validate our findings and to ascertain the possible interaction between a BCAA imbalance and dietary intake in the development of NAFLD.
Collapse
Affiliation(s)
- Helena Moreira-Silva
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sandra Ferreira
- Hepatology and Pediatric Liver Transplantation Unit, Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Manuela Almeida
- Pediatric Metabolic Diseases Unit, Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Isabel Gonçalves
- Hepatology and Pediatric Liver Transplantation Unit, Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - J R Vizcaíno
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ermelinda Santos-Silva
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Esmeralda Gomes-Martins
- Pediatric Metabolic Diseases Unit, Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
27
|
Dietary Composition and Its Association with Newly Diagnosed Nonalcoholic Fatty Liver Disease and Insulin Resistance. Nutrients 2021; 13:nu13124438. [PMID: 34959990 PMCID: PMC8708546 DOI: 10.3390/nu13124438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Dietary modification is essential for treating nonalcoholic fatty liver disease (NAFLD); however, the dietary components are less well defined. We enrolled 252 adults with no history of liver disease and excessive alcohol use to evaluate the relationship between macronutrients and NAFLD and insulin resistance. Participants took photographs of their meals and documented their food intake in a food diary for seven consecutive days. A dietitian estimated the type and portion size of food items and analyzed nutrients with INMUCAL-Nutrients software. Later, participants underwent transient elastography to diagnose NAFLD and blood tests to measure insulin resistance using the homeostasis model. Total energy intake and the proportion of carbohydrate, fat, and protein consumption did not differ between participants with NAFLD (n = 41) and those without NAFLD (n = 211). Using multiple logistic regression analysis, daily intake of protein < 1.0 g/kg (OR: 3.66, 95% CI: 1.41–9.52) and full-fat dairy product ≥ 50 g (OR: 0.42, 95% CI: 0.18–0.99) were associated with NAFLD. Insulin resistance was associated with a daily intake of protein < 1.0 g/kg (OR: 3.09, 95% CI: 1.59–6.05), full-fat dairy product ≥ 50 g (OR: 0.46, 95% CI: 0.25–0.82), and dietary fiber ≥ 8 g (OR: 0.41, 95% CI: 0.22–0.74). Our data show that a low protein intake increases the odds for NAFLD and insulin resistance. Contrarily, a high intake of full-fat dairy products and dietary fiber has been associated with a potential protective effect against NAFLD and insulin resistance.
Collapse
|
28
|
Ampong I, John Ikwuobe O, Brown JEP, Bailey CJ, Gao D, Gutierrez-Merino J, Griffiths HR. Odd chain fatty acid metabolism in mice after a high fat diet. Int J Biochem Cell Biol 2021; 143:106135. [PMID: 34896612 PMCID: PMC8811477 DOI: 10.1016/j.biocel.2021.106135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Epidemiological studies show that higher circulating levels of odd chain saturated fatty acids (FA: C15:0 and C17:0) are associated with lower risk of metabolic disease. These odd chain saturated fatty acids (OCSFA) are produced by α-oxidation in peroxisomes, de novo lipogenesis, from the diet and by gut microbiota. Although present at low concentrations, they are of interest as potential targets to reduce metabolic disease risk. To determine whether OCSFA are affected by obesogenic diets, we have investigated whether high dietary fat intake affects the frequency of OCSFA-producing gut microbiota, liver lipid metabolism genes and circulating OCSFA. FA concentrations were determined in liver and serum from pathogen-free SPF C57BL/6 J mice fed either standard chow or a high fat diet (HFD; 60% calories as fat) for four and twelve weeks. Post-mortem mouse livers were analysed histologically for fat deposition by gas chromatography-mass spectrometry for FA composition and by qPCR for the lipid metabolic genes fatty acid desaturase 2 (FADS2), stearoyl CoA desaturase 1 (SCD1), elongation of long-chain fatty acids family member 6 (ELOVL6) and 2-hydroxyacyl-CoA lyase 1 (HACL). Gut microbiota in faecal pellets from the ileum were analysed by 16S RNA sequencing. A significant depletion of serum and liver C15:0 (>50%; P < 0.05) and liver C17:0 (>35%; P < 0.05) was observed in HFD-fed SPF mice in parallel with hepatic fat accumulation after four weeks. In addition, liver gene expression (HACL1, ELOVL6, SCD1 and FADS2) was lower (>50%; P < 0.05) and the relative abundance of beneficial C3:0-producing gut bacteria such as Akkermansia, Lactobacillus, Bifidobacterium was lower after HFD in SPF mice. In summary, high dietary fat intake reduces serum and liver OCSFA, OCSFA-producing gut microbiota and is associated with impaired liver lipid metabolism. Further studies are required to identify whether there is any beneficial effect of OCSFA and C3:0-producing gut bacteria to counter metabolic disease.
Collapse
Affiliation(s)
- Isaac Ampong
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - O John Ikwuobe
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - James E P Brown
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Clifford J Bailey
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Dan Gao
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jorge Gutierrez-Merino
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH, UK; School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
29
|
Zhu Y, Xu J, Zhang X, Ke Y, Fu G, Guo Q. A low follicle-stimulating hormone level is a protective factor for non-alcoholic fatty liver disease in older men aged over 80. BMC Geriatr 2021; 21:544. [PMID: 34641807 PMCID: PMC8507128 DOI: 10.1186/s12877-021-02490-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Recent studies have suggested the significant relationship between follicle-stimulating hormone (FSH) and non-alcoholic fatty liver disease (NAFLD) in postmenopausal women. However, it is unknown whether FSH impacts the risk of NAFLD in men. This study aimed to investigate the association between serum FSH levels and NAFLD in elderly Chinese men aged 80-98, a particular group with worse outcomes of NAFLD. PATIENTS AND METHODS A cross-sectional analysis was performed in 444 subjects in a geriatric health center. The highest quartile of serum FSH was used as reference. Hepatic steatosis was defined according to the results of liver ultrasound. Fibrosis-4 (FIB-4) Index > 2.67 was defined as advanced fibrosis. RESULTS Based on liver ultrasound, 108 (24.3%) subjects had NAFLD. FSH level were negatively correlated with total testosterone, estradiol, nutritional risk, and the prevalence of high education level (all P < 0.01), and positively correlated with age, luteinizing hormone, alanine aminotransferase and aspartate aminotransferase (all P < 0.05). The correlation between FSH and body mass index or antihypertensive drug usage was marginally significant (P = 0.057; P = 0.066, respectively). The percentage of subjects with NAFLD had a trend to increase following the quartiles of serum FSH (20.0% in quartile 1, 18.2% in quartile 2, 27.3% in quartile 3, and 31.6% in quartile 4). After adjustment for common pathogenic risk factors, nutritional risk, and other sex hormones, serum FSH were progressively associated with odds ratios for NAFLD. The adjusted odds ratios and 95% CIs for quartile 1, quartile 2, and quartile 3, compared with quartile 4 were 0.132 (0.034-0.516), 0.190 (0.052-0.702), and 0.404 (0.139-1.173), respectively. Obesity was not involved in the potential negative role of circulating FSH on the risk of NAFLD in our population. Furthermore, our results revealed no significant association between FSH and advance fibrosis, the OR (95% CI) for advanced fibrosis was 1.018 (0.983-1.054) (P = 0.316) after adjusting for the potential covariates, although a positive correlation of FSH and FIB-4 score was observed (r = 0.325, P = 0.001). CONCLUSION Low FSH level may decrease the risk of NAFLD in elderly Chinese men. These findings warrant replication in more extensive studies.
Collapse
Affiliation(s)
- Yunxia Zhu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoyan Zhang
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yingying Ke
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guoxiang Fu
- Department of Geriatrics, the Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
30
|
Lin CW, Huang TW, Peng YJ, Lin YY, Mersmann HJ, Ding ST. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult Sci 2021; 100:100869. [PMID: 33516481 PMCID: PMC7936157 DOI: 10.1016/j.psj.2020.11.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver diseases, common metabolic diseases in chickens, can lead to a decrease in egg production and sudden death of chickens. To solve problems caused by the diseases, reliable chicken models of fatty liver disease are required. To generate chicken models of fatty liver, 7-week-old ISA female chickens were fed with a control diet (17% protein, 5.3% fat, and 1,300 mg/kg choline), a low protein and high fat diet (LPHF, 13% protein, 9.1% fat, and 1,300 mg/kg choline), a high cholesterol with low choline diet (CLC, 17% protein, 7.6% fat with additional 2% cholesterol, and 800 mg/kg choline), a low protein, high fat, high cholesterol, and low choline diet (LPHFCLC, 13% protein, 12.6% fat with additional 2% cholesterol, and 800 mg/kg choline) for 4 wk. Our data showed that the CLC and LPHFCLC diets induced hyperlipidemia. Histological examination and the content of hepatic lipids indicated that the CLC and LPHFCLC diets induced hepatic steatosis. Plasma dipeptidyl peptidase 4, a biomarker of fatty liver diseases in laying hens, increased in chickens fed with the CLC or LPHFCLC diets. Hepatic ballooning and immune infiltration were observed in these livers accompanied by elevated interleukin 1 beta and lipopolysaccharide induced tumor necrosis factor mRNAs suggesting that the CLC and LPHFCLC diets also caused steatohepatitis in these livers. These diets also induced hepatic steatosis in Plymouth Rock chickens. Thus, the CLC and LPHFCLC diets can be used to generate models for fatty liver diseases in different strains of chickens. In ISA chickens fed with the CLC diet, peroxisome proliferator-activated receptor γ, sterol regulatory element binding transcription factor 1, and fatty acid synthase mRNAs increased in the livers, suggesting that lipogenesis was enhanced by the CLC treatment. Our data show that treatment with CLC or LPHFCLC for 4 wk induces fatty liver disease in chickens. These diets can be utilized to rapidly generate chicken models for fatty liver research.
Collapse
Affiliation(s)
- Chiao-Wei Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Ting-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 10617; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan 10617.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW In this review, the latest evidence on the influence of dietary protein and plasma amino acids in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) is discussed. RECENT FINDINGS Increasing protein consumption during weight loss and maintenance may help reduce liver fat content. Conversely, high protein intake characteristic of the unhealthy Western diet is associated with increased NAFLD prevalence and severity. Plasma concentration of several amino acids, including branched-chain (BCAA) and aromatic amino acids (AAA), is altered in NAFLD. Excess amino acid availability contributes to intrahepatic fat accumulation and may reflect poor dietary habits and dysregulation of amino acid metabolic processing in both liver and peripheral tissues. Specific amino acid patterns, characterized by increased BCAA, AAA, alanine, glutamate, lysine levels, and decreased glycine and serine levels, may be used for early detection of NAFLD and noninvasive assessment of its histological severity. SUMMARY Mechanistic studies in NAFLD have been mostly focused on carbohydrate and fat metabolism, while little is known about the influence of protein and amino acids. Moreover, intervention and observational studies on the relation between protein intake and NAFLD yielded conflicting results. Filling the current knowledge gaps would help define the optimal diet composition for NAFLD prevention and management. Furthermore, metabolomics studies may provide insight into the pathogenesis of NAFLD, identify useful diagnostic and prognostic biomarkers, and unravel novel pharmacological targets and treatment options.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa
- Institute of Life Sciences, Sant'Anna School of Advanced Studies
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa
| |
Collapse
|
32
|
Abd El-Wahab A, Chuppava B, Radko D, Visscher C. Hepatic lipidosis in fattening turkeys: A review. TURKEY DISEASES, PRODUCTION AND MANAGEMENT 2021; 1:48-66. [DOI: 10.51585/gjvr.2021.3.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The conditions on turkey fattening farms, including management, housing, and feeding, have been constantly improved recently in favour of animal health. Many studies deal scientifically with poultry health. However, specifically concerning liver health, there are still open questions regarding the influence of dietary factors on the metabolism and function of the liver. Consideration of the factors that could influence and alter liver metabolism is therefore of critical relevance. The liver, as a major metabolic organ, is the main site of fat synthesis in turkeys. Under certain conditions, fat can excessively accumulate in the liver and adversely affect the birds’ health. The so-called hepatic lipidosis (HL) in fattening turkeys has been known for years. This disease has unacceptable economic and animal welfare impacts, with high animal losses up to 15% within only a few days. To date, little is known about the causes and the metabolic changes in fattening turkeys leading to HL despite the increasing focus on health management and animal welfare. To understand what is different in turkeys compared to other species, it is necessary to discuss the metabolism of the liver in more detail, including HL-associated gross and microscopic lesions. In the current review, aspects of liver structure and lipid metabolism with special regard to lipogenesis are explained to discuss all dietary factors attributing to the development and prevention of HL. As part of the prevention of the HL, dietetics measures can be helpful in the future.
Collapse
|
33
|
Jeon Y, Limketkai BN. Implications of Dietary Impact on Hepatic Steatosis and IBD. Inflamm Bowel Dis 2021; 27:10-11. [PMID: 32440694 DOI: 10.1093/ibd/izaa098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/09/2022]
Abstract
The Mediterranean diet was recently shown to benefit hepatic steatosis and disease activity in inflammatory bowel diseases. These findings advance our knowledge on dietary approaches for IBD and motivate inquiry on the role of obesity in IBD pathogenesis.
Collapse
Affiliation(s)
- Yejoo Jeon
- Vatche & Tamar Manoukian Division of Gastroenterology & Hepatology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Berkeley N Limketkai
- Vatche & Tamar Manoukian Division of Gastroenterology & Hepatology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|