1
|
Mu Y, Zhang J, Yang J, Wu J, Zhang Y, Yu H, Zhang X. Enhancing amphibian biomonitoring through eDNA metabarcoding. Mol Ecol Resour 2024; 24:e13931. [PMID: 38345249 DOI: 10.1111/1755-0998.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Surveying biodiversity has taken a quantum leap with environmental DNA (eDNA) metabarcoding, an immensely powerful approach lauded for its efficiency, sensitivity, and non-invasiveness. This approach emerges as a game-changer for the elusive realm of endangered and rare species-think nocturnal, environmentally elusive amphibians. Here, we have established a framework for constructing a reliable metabarcoding pipeline for amphibians, covering primer design, performance evaluation, laboratory validation, and field validation processes. The Am250 primer, located on the mitochondrial 16S gene, was optimal for the eDNA monitoring of amphibians, which demonstrated higher taxonomic resolution, smaller species amplification bias, and more extraordinary detection ability compared to the other primers tested. Am250 primer exhibit an 83.8% species amplification rate and 75.4% accurate species identification rate for Chinese amphibians in the in silico PCR and successfully amplified all tested species of the standard samples in the in vitro assay. Furthermore, the field-based mesocosm experiment showed that DNA can still be detected by metabarcoding even days to weeks after organisms have been removed from the mesocosm. Moreover, field mesocosm findings indicate that eDNA metabarcoding primers exhibit different read abundances, which can affect the relative biomass of species. Thus, appropriate primers should be screened and evaluated by three experimental approaches: in silico PCR simulation, target DNA amplification, and mesocosm eDNA validation. The selection of a single primer set or multiple primers' combination should be based on the monitoring groups to improve the species detection rate and the credibility of results.
Collapse
Affiliation(s)
- Yawen Mu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Jingwen Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yong Zhang
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Espinosa Prieto A, Hardion L, Debortoli N, Beisel JN. Finding the perfect pairs: A matchmaking of plant markers and primers for multi-marker eDNA metabarcoding. Mol Ecol Resour 2024; 24:e13937. [PMID: 38363053 DOI: 10.1111/1755-0998.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
As the scope of plant eDNA metabarcoding diversifies, so do the primers, markers and methods. A wealth of primers exists today, but their comparative evaluation is lacking behind. Similarly, multi-marker approaches are recommended but debates persist regarding barcode complementarity and optimal combinations. After a literature compilation of used primers, we compared in silico 102 primer pairs based on amplicon size, coverage and specificity, followed by an experimental evaluation of 15 primer pairs on a mock community sample covering 268 plant species and genera, and about 100 families. The analysis was done for the four most common plant metabarcoding markers, rbcL, trnL, ITS1 and ITS2 and their complementarity was assessed based on retrieved species. By focusing on existing primers, we identify common designs, promote alternatives and enhance prior-supported primers for immediate applications. The ITS2 was the best-performing marker for flowering vascular plants and was congruent to ITS1. However, the combined taxonomic breadth of ITS2 and rbcL surpassed any other combination, highlighting their high complementarity across Streptophyta. Overall, our study underscores the significance of comprehensive primer and barcode evaluations tailored to metabarcoding applications.
Collapse
Affiliation(s)
- Armando Espinosa Prieto
- University of Strasbourg, CNRS, Laboratoire Image Ville Environnement, UMR 7362, Strasbourg, France
| | - Laurent Hardion
- University of Strasbourg, CNRS, Laboratoire Image Ville Environnement, UMR 7362, Strasbourg, France
| | - Nicolas Debortoli
- Namur Molecular Tech, CHU UCL Namur, Yvoir, Belgium
- E-BIOM SA, Namur, Belgium
| | - Jean-Nicolas Beisel
- University of Strasbourg, CNRS, Laboratoire Image Ville Environnement, UMR 7362, Strasbourg, France
- École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES), Strasbourg, France
| |
Collapse
|
3
|
Lue CH, Abram PK, Hrcek J, Buffington ML, Staniczenko PPA. Metabarcoding and applied ecology with hyperdiverse organisms: Recommendations for biological control research. Mol Ecol 2023; 32:6461-6473. [PMID: 36040418 DOI: 10.1111/mec.16677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabarcoding is revolutionizing fundamental research in ecology by enabling large-scale detection of species and producing data that are rich with community context. However, the benefits of metabarcoding have yet to be fully realized in fields of applied ecology, especially those such as classical biological control (CBC) research that involve hyperdiverse taxa. Here, we discuss some of the opportunities that metabarcoding provides CBC and solutions to the main methodological challenges that have limited the integration of metabarcoding in existing CBC workflows. We focus on insect parasitoids, which are popular and effective biological control agents (BCAs) of invasive species and agricultural pests. Accurately identifying native, invasive and BCA species is paramount, since misidentification can undermine control efforts and lead to large negative socio-economic impacts. Unfortunately, most existing publicly accessible genetic databases cannot be used to reliably identify parasitoid species, thereby limiting the accuracy of metabarcoding in CBC research. To address this issue, we argue for the establishment of authoritative genetic databases that link metabarcoding data to taxonomically identified specimens. We further suggest using multiple genetic markers to reduce primer bias and increase taxonomic resolution. We also provide suggestions for biological control-specific metabarcoding workflows intended to track the long-term effectiveness of introduced BCAs. Finally, we use the example of an invasive pest, Drosophila suzukii, in a reflective "what if" thought experiment to explore the potential power of community metabarcoding in CBC.
Collapse
Affiliation(s)
- Chia-Hua Lue
- Department of Biology, Brooklyn College, City University of New York, New York City, New York, USA
| | - Paul K Abram
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Jan Hrcek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Matthew L Buffington
- Systematic Entomology Laboratory, ARS/USDA c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Phillip P A Staniczenko
- Department of Biology, Brooklyn College, City University of New York, New York City, New York, USA
| |
Collapse
|
4
|
Sire L, Schmidt Yáñez P, Bézier A, Courtial B, Mbedi S, Sparmann S, Larrieu L, Rougerie R, Bouget C, Monaghan MT, Herniou EA, Lopez-Vaamonde C. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 2023; 11:e16022. [PMID: 37842065 PMCID: PMC10573316 DOI: 10.7717/peerj.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Broad-scale monitoring of arthropods is often carried out with passive traps (e.g., Malaise traps) that can collect thousands of specimens per sample. The identification of individual specimens requires time and taxonomic expertise, limiting the geographical and temporal scale of research and monitoring studies. DNA metabarcoding of bulk-sample homogenates has been found to be faster, efficient and reliable, but the destruction of samples prevents a posteriori validation of species occurrences and relative abundances. Non-destructive metabarcoding of DNA extracted from collection medium has been applied in a limited number of studies, but further tests of efficiency are required with different trap types and collection media to assess the consistency of the method. Methods We quantified the detection rate of arthropod species when applying non-destructive DNA metabarcoding with a short (127-bp) fragment of mitochondrial COI on two combinations of passive traps and collection media: (1) water with monopropylene glycol (H2O-MPG) used in window-flight traps (WFT, 53 in total); (2) ethanol with monopropylene glycol (EtOH-MPG) used in Malaise traps (MT, 27 in total). We then compared our results with those obtained for the same samples using morphological identification (for WFTs) or destructive metabarcoding of bulk homogenate (for MTs). This comparison was applied as part of a larger study of arthropod species richness in silver fir (Abies alba Mill., 1759) stands across a range of climate-induced tree dieback levels and forest management strategies. Results Of the 53 H2O-MPG samples from WFTs, 16 produced no metabarcoding results, while the remaining 37 samples yielded 77 arthropod MOTUs in total, of which none matched any of the 343 beetle species morphologically identified from the same traps. Metabarcoding of 26 EtOH-MPG samples from MTs detected more arthropod MOTUs (233) than destructive metabarcoding of homogenate (146 MOTUs, 8 orders), of which 71 were shared MOTUs, though MOTU richness per trap was similar between treatments. While we acknowledge the failure of metabarcoding from WFT-derived collection medium (H2O-MPG), the treatment of EtOH-based Malaise trapping medium remains promising. We conclude however that DNA metabarcoding from collection medium still requires further methodological developments and cannot replace homogenate metabarcoding as an approach for arthropod monitoring. It can be used nonetheless as a complementary treatment when enhancing the detection of soft-bodied arthropods like spiders and Diptera.
Collapse
Affiliation(s)
- Lucas Sire
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205 Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Paul Schmidt Yáñez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
| | | | - Susan Mbedi
- Museum für Naturkunde –Leibniz Insitute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Sarah Sparmann
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, France
- CRPF Occitanie, Tarbes, France
| | - Rodolphe Rougerie
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205 Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Christophe Bouget
- INRAE ’Forest Ecosystems’ Research Unit Domaine des Barres, Nogent-sur-Vernisson, France
| | - Michael T. Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
| | - Carlos Lopez-Vaamonde
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR7261 CNRS - Université de Tours, Tours, France
- INRAE, UR0633 Zoologie forestière, Orléans, France
| |
Collapse
|
5
|
Pava-Ripoll M, Miller AK, Ziobro GC. Development of A Multiplex Polymerase Chain Reaction (PCR) Assay for the Potential Detection of Insect Contaminants in Food. J Food Prot 2023:100120. [PMID: 37348561 DOI: 10.1016/j.jfp.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Molecular methods can potentially be used to detect insect contaminants of food products. In this study, we used three sets of group-specific primers, two of them targeting the amplification of two regions of the insect's mitochondrial cytochrome c oxidase subunit I (COI-Fa and COI-Fb) and the other targeting a region of the nuclear protein-coding wingless (wg) gene. Using singleplex and multiplex polymerase chain reaction (PCR), we evaluated the three set of primers using genomic DNA (gDNA) from 48 insect species including food-storage insect pests and known vectors of foodborne pathogens. Seven plant-based food matrices were also evaluated for exclusivity testing. Additionally, we spiked fragments from five insect species in a selected food matrix (whole wheat flour). Singleplex and multiplex PCR amplified single specific bands (401-449 bp), corresponding to the wg gene, from insect species belonging to families Blattidae and Formicidae, and in Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). The COI-Fa primers amplified specific bands (171-188 bp) in all Dipteran species and the COI-Fb primers amplified a specific band (∼140 bp) in DNA from Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and P. interpunctella. However, the presence of specific bands in most Coleopterans was not consistent. No amplicon bands were observed in any of the food matrixes tested and the expected pattern of amplicon bands was seen in multiplex reactions using gDNA from spiked food samples. Our multiplex PCR assay targeted specific groups of insects that commonly contaminate foods without amplifying bands from the food matrixes tested; thus, molecular methods may be suitable for detecting insects or their fragments in foods.
Collapse
Affiliation(s)
- Monica Pava-Ripoll
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Dairy, Egg and Meat Products, College Park, MD.
| | - Amy K Miller
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Dairy, Egg and Meat Products, College Park, MD
| | - George C Ziobro
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Dairy, Egg and Meat Products, College Park, MD
| |
Collapse
|
6
|
Yoneya K, Ushio M, Miki T. Non-destructive collection and metabarcoding of arthropod environmental DNA remained on a terrestrial plant. Sci Rep 2023; 13:7125. [PMID: 37173307 PMCID: PMC10182007 DOI: 10.1038/s41598-023-32862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Reliable survey of arthropods is a crucial for their conservation, community ecology, and pest control on terrestrial plants. However, efficient and comprehensive surveys are hindered by challenges in collecting arthropods and identifying especially small species. To address this issue, we developed a non-destructive environmental DNA (eDNA) collection method termed "plant flow collection" to apply eDNA metabarcoding to terrestrial arthropods. This involves spraying distilled or tap water, or using rainfall, which eventually flows over the surface of the plant, and is collected in a container that is set at the plant base. DNA is extracted from collected water and a DNA barcode region of cytochrome c oxidase subunit I (COI) gene is amplified and sequenced using a high-throughput Illumina Miseq platform. We identified more than 64 taxonomic groups of arthropods at the family level, of which 7 were visually observed or artificially introduced species, whereas the other 57 groups of arthropods, including 22 species, were not observed in the visual survey. These results show that the developed method is possible to detect the arthropod eDNA remained on plants although our sample size was small and the sequence size was unevenly distributed among the three water types tested.
Collapse
Affiliation(s)
- Kinuyo Yoneya
- Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 631-8505, Japan.
- Center for Biodiversity Science, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan.
| | - Masayuki Ushio
- Hakubi Center, Kyoto University, Kyoto, 606-8501, Japan
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Takeshi Miki
- Center for Biodiversity Science, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
7
|
Stenhouse EH, Bellamy P, Kirby W, Vaughan IP, Drake LE, Marchbank A, Workman T, Symondson WOC, Orozco‐terWengel P. Multi-marker DNA metabarcoding reveals spatial and sexual variation in the diet of a scarce woodland bird. Ecol Evol 2023; 13:e10089. [PMID: 37206688 PMCID: PMC10191781 DOI: 10.1002/ece3.10089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Avian diet can be affected by site-specific variables, such as habitat, as well as intrinsic factors such as sex. This can lead to dietary niche separation, which reduces competition between individuals, as well as impacting how well avian species can adapt to environmental variation. Estimating dietary niche separation is challenging, due largely to difficulties in accurately identifying food taxa consumed. Consequently, there is limited knowledge of the diets of woodland bird species, many of which are undergoing serious population declines. Here, we show the effectiveness of multi-marker fecal metabarcoding to provide in-depth dietary analysis of a declining passerine in the UK, the Hawfinch (Coccothraustes coccothraustes). We collected fecal samples from (n = 262) UK Hawfinches prior to, and during, the breeding seasons in 2016-2019. We detected 49 and 90 plant and invertebrate taxa, respectively. We found Hawfinch diet varied spatially, as well as between sexes, indicating broad dietary plasticity and the ability of Hawfinches to utilize multiple resources within their foraging environments.
Collapse
Affiliation(s)
- Ewan H. Stenhouse
- School of BiosciencesCardiff UniversityCardiffUK
- RSPB Centre for Conservation Science, The LodgeSandyUK
| | - Paul Bellamy
- RSPB Centre for Conservation Science, The LodgeSandyUK
| | - Will Kirby
- RSPB Centre for Conservation Science, The LodgeSandyUK
| | | | | | | | | | | | | |
Collapse
|
8
|
Is endozoochoric seed dispersal by large herbivores an evolutionary adaptation? Revisiting the Janzen's ‘Foliage is the fruit’ hypothesis. ACTA OECOLOGICA 2023. [DOI: 10.1016/j.actao.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Aunins AA, Mueller SJ, Fike JA, Cornman RS. Assessing arthropod diversity metrics derived from stream environmental DNA: spatiotemporal variation and paired comparisons with manual sampling. PeerJ 2023; 11:e15163. [PMID: 37020852 PMCID: PMC10069422 DOI: 10.7717/peerj.15163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background Benthic invertebrate (BI) surveys have been widely used to characterize freshwater environmental quality but can be challenging to implement at desired spatial scales and frequency. Environmental DNA (eDNA) allows an alternative BI survey approach, one that can potentially be implemented more rapidly and cheaply than traditional methods. Methods We evaluated eDNA analogs of BI metrics in the Potomac River watershed of the eastern United States. We first compared arthropod diversity detected with primers targeting mitochondrial 16S (mt16S) and cytochrome c oxidase 1 (cox1 or COI) loci to that detected by manual surveys conducted in parallel. We then evaluated spatial and temporal variation in arthropod diversity metrics with repeated sampling in three focal parks. We also investigated technical factors such as filter type used to capture eDNA and PCR inhibition treatment. Results Our results indicate that genus-level assessment of eDNA compositions is achievable at both loci with modest technical noise, although database gaps remain substantial at mt16S for regional taxa. While the specific taxa identified by eDNA did not strongly overlap with paired manual surveys, some metrics derived from eDNA compositions were rank-correlated with previously derived biological indices of environmental quality. Repeated sampling revealed statistical differences between high- and low-quality sites based on taxonomic diversity, functional diversity, and tolerance scores weighted by taxon proportions in transformed counts. We conclude that eDNA compositions are efficient and informative of stream condition. Further development and validation of scoring schemes analogous to commonly used biological indices should allow increased application of the approach to management needs.
Collapse
Affiliation(s)
- Aaron A. Aunins
- Eastern Ecological Research Center, U.S. Geological Survey, Kearneysville, West Virginia, United States
| | - Sara J. Mueller
- Wildlife and Fisheries Sciences Program, The Pennsylvania State College, State College, Pennsylvania, United States
| | - Jennifer A. Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, United States
| | - Robert S. Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, United States
| |
Collapse
|
10
|
Klimova A, Rodríguez‐Estrella R, Meng G, Gutiérrez‐Rivera JN, Jimenez‐Jimenez ML, Liu S. Metabarcoding reveals seasonal and spatial patterns of arthropod community assemblages in two contrasting habitats: Desert and oasis of the Baja California Peninsula, Mexico. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Anastasia Klimova
- Centro de Investigaciones Biológicas del Noroeste S.C. La Paz Mexico
| | | | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change Bonn Germany
| | | | | | - Shanlin Liu
- Department of Entomology, College of Plant Protection China Agricultural University Beijing China
| |
Collapse
|
11
|
Cuff JP, Kitson JJN, Hemprich‐Bennett D, Tercel MPTG, Browett SS, Evans DM. The predator problem and PCR primers in molecular dietary analysis: Swamped or silenced; depth or breadth? Mol Ecol Resour 2023; 23:41-51. [PMID: 36017818 PMCID: PMC10087656 DOI: 10.1111/1755-0998.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Dietary metabarcoding has vastly improved our ability to analyse the diets of animals, but it is hampered by a plethora of technical limitations including potentially reduced data output due to the disproportionate amplification of the DNA of the focal predator, here termed "the predator problem". We review the various methods commonly used to overcome this problem, from deeper sequencing to exclusion of predator DNA during PCR, and how they may interfere with increasingly common multipredator-taxon studies. We suggest that multiprimer approaches with an emphasis on achieving both depth and breadth of prey detections may overcome the issue to some extent, although multitaxon studies require further consideration, as highlighted by an empirical example. We also review several alternative methods for reducing the prevalence of predator DNA that are conceptually promising but require additional empirical examination. The predator problem is a key constraint on molecular dietary analyses but, through this synthesis, we hope to guide researchers in overcoming this in an effective and pragmatic way.
Collapse
Affiliation(s)
- Jordan P. Cuff
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - James J. N. Kitson
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | - Maximillian P. T. G. Tercel
- School of BiosciencesCardiff UniversityCardiffUK
- Durrell Wildlife Conservation Trust, Les Augrès Manor, La Profonde RueTrinityJersey
| | - Samuel S. Browett
- Ecosystems and Environment Research Centre, School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | - Darren M. Evans
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
12
|
Willassen E, Westgaard JI, Kongsrud JA, Hanebrekke T, Buhl-Mortensen P, Holte B. Benthic invertebrates in Svalbard fjords-when metabarcoding does not outperform traditional biodiversity assessment. PeerJ 2022; 10:e14321. [PMID: 36415859 PMCID: PMC9676020 DOI: 10.7717/peerj.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
To protect and restore ecosystems and biodiversity is one of the 10 challenges identified by the United Nations's Decade of the Ocean Science. In this study we used eDNA from sediments collected in two fjords of the Svalbard archipelago and compared the taxonomic composition with traditional methods through metabarcoding, targeting mitochondrial CO1, to survey benthos. Clustering of 21.6 mill sequence reads with a d value of 13 in swarm, returned about 25 K OTU reads. An identification search with the BOLD database returned 12,000 taxonomy annotated sequences spanning a similarity range of 50% to 100%. Using an acceptance filter of minimum 90% similarity to the CO1 reference sequence, we found that 74% of the ca 100 taxon identified sequence reads were Polychaeta and 22% Nematoda. Relatively few other benthic invertebrate species were detected. Many of the identified sequence reads were extra-organismal DNA from terrestrial, planktonic, and photic zone sources. For the species rich Polychaeta, we found that, on average, only 20.6% of the species identified from morphology were also detected with DNA. This discrepancy was not due to missing reference sequences in the search database, because 90-100% (mean 96.7%) of the visually identified species at each station were represented with barcodes in Boldsystems. The volume of DNA samples is small compared with the volume searched in visual sorting, and the replicate DNA-samples in sum covered only about 2% of the surface area of a grab. This may considerably reduce the detection rate of species that are not uniformly distributed in the sediments. Along with PCR amplification bias and primer mismatch, this may be an important reason for the limited congruence of species identified with the two approaches. However, metabarcoding also identified 69 additional species that are usually overlooked in visual sample sorting, demonstrating how metabarcoding can complement traditional methodology by detecting additional, less conspicuous groups of organisms.
Collapse
Affiliation(s)
- Endre Willassen
- Department of Natural History, University of Bergen, Bergen, Norway
| | - Jon-Ivar Westgaard
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | | | - Tanja Hanebrekke
- Department of Population Genetics, Institute of Marine Research, Tromsø, Troms, Norway
| | - Pål Buhl-Mortensen
- Department of Bentic Communities, Institute of Marine Research, Bergen, Norway
| | - Børge Holte
- Department of Bentic Communities, Institute of Marine Research, Tromsø, Troms, Norway
| |
Collapse
|
13
|
Tercel MPTG, Cuff JP. The complex epistemological challenge of data curation in dietary metabarcoding: Comment on "The precautionary principle and dietary DNA metabarcoding: Commonly used abundance thresholds change ecological interpretation" by Littleford-Colquhoun et al. (2022). Mol Ecol 2022; 31:5653-5659. [PMID: 35778947 DOI: 10.1111/mec.16576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
In their article, Littleford-Colquhoun et al. (2022) advise against using arbitrary relative read abundance (RRA) thresholds (i.e., minimum sequence copy thresholds) for removing low-abundance sequences since they can increase false negative rates in dietary DNA metabarcoding data sets. The main criticisms presented against these widespread methods are that they (i) are arbitrary, often existing as standard values or defined based on researcher-selected delineations, (ii) are subjective, varying between studies and contexts, and, most problematically, (iii) result in the exclusion of true positives, particularly rarely consumed taxa, to the detriment of ecological insight. We commend the authors for presenting a refreshing and timely perspective on this often neglected topic, which is certainly in need of greater discussion following over a decade of significant advances in dietary metabarcoding. In this complex epistemological problem of false positives versus false negatives, we feel that several of the points raised deserve additional discussion. We address these aspects below, including measured approaches to data filtration and consistent representation of RRAs, and we welcome any further discourse to solidify or refute the concepts therein.
Collapse
Affiliation(s)
- Maximillian P T G Tercel
- School of Biosciences, Cardiff University, Cardiff, UK.,Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands
| | - Jordan P Cuff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Kirse A, Bourlat SJ, Langen K, Zapke B, Zizka VMA. Comparison of destructive and non-destructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Mol Ecol Resour 2022; 23:92-105. [PMID: 35932285 DOI: 10.1111/1755-0998.13694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
DNA metabarcoding is routinely used for biodiversity assessment, especially targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be either conducted destructively from sample tissue, or non-destructively from sample fixative or lysis buffer. Non-destructive methods are highly desirable for the preservation of sample integrity but have yet to be experimentally evaluated in detail. Here, we compare diversity estimates from 14 size sorted Malaise trap samples processed consecutively with three non-destructive approaches (one using fixative ethanol and two using lysis buffers) and one destructive approach (using homogenized tissue). Extraction from commercial lysis buffer yielded comparable species richness and high overlap in species composition to the ground tissue extracts. A significantly divergent community was detected from preservative ethanol-based DNA extraction. No consistent trend in species richness was found with increasing incubation time in lysis buffer. These results indicate that non-destructive DNA extraction from incubation in lysis buffer could provide a comparable alternative to destructive approaches with the added advantage of preserving the specimens for post-metabarcoding taxonomic work but at a higher cost per sample.
Collapse
Affiliation(s)
- Ameli Kirse
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Sarah J Bourlat
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Kathrin Langen
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Björn Zapke
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| | - Vera M A Zizka
- LIB/Zoological Research Museum Alexander Koenig (ZFMK), Centre for Biodiversity Monitoring, Bonn, Germany
| |
Collapse
|
15
|
Magoga G, Forni G, Brunetti M, Meral A, Spada A, De Biase A, Montagna M. Curation of a reference database of COI sequences for insect identification through DNA metabarcoding: COins. Database (Oxford) 2022; 2022:baac055. [PMID: 35796594 PMCID: PMC9261288 DOI: 10.1093/database/baac055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022]
Abstract
DNA metabarcoding is a widespread approach for the molecular identification of organisms. While the associated wet-lab and data processing procedures are well established and highly efficient, the reference databases for taxonomic assignment can be implemented to improve the accuracy of identifications. Insects are among the organisms for which DNA-based identification is most commonly used; yet, a DNA-metabarcoding reference database specifically curated for their species identification using software requiring local databases is lacking. Here, we present COins, a database of 5' region cytochrome c oxidase subunit I sequences (COI-5P) of insects that includes over 532 000 representative sequences of >106 000 species specifically formatted for the QIIME2 software platform. Through a combination of automated and manually curated steps, we developed this database starting from all COI sequences available in the Barcode of Life Data System for insects, focusing on sequences that comply with several standards, including a species-level identification. COins was validated on previously published DNA-metabarcoding sequences data (bulk samples from Malaise traps) and its efficiency compared with other publicly available reference databases (not specific for insects). COins can allow an increase of up to 30% of species-level identifications and thus can represent a valuable resource for the taxonomic assignment of insects' DNA-metabarcoding data, especially when species-level identification is needed https://doi.org/10.6084/m9.figshare.19130465.v1.
Collapse
Affiliation(s)
- Giulia Magoga
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milano 20133, Italy
| | - Giobbe Forni
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milano 20133, Italy
| | - Matteo Brunetti
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milano 20133, Italy
| | - Aycan Meral
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milano 20133, Italy
| | - Alberto Spada
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, Milano 20133, Italy
| | - Alessio De Biase
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Viale dell’Università 32, Rome 00185, Italy
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, Naples 80055, Italy
| |
Collapse
|
16
|
Comparing eDNA metabarcoding primers for assessing fish communities in a biodiverse estuary. PLoS One 2022; 17:e0266720. [PMID: 35714082 PMCID: PMC9205523 DOI: 10.1371/journal.pone.0266720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/26/2022] [Indexed: 12/21/2022] Open
Abstract
Metabarcoding of environmental DNA is increasingly used for biodiversity assessments in aquatic communities. The efficiency and outcome of these efforts are dependent upon either de novo primer design or selecting an appropriate primer set from the dozens that have already been published. Unfortunately, there is a lack of studies that have directly compared the efficacy of different metabarcoding primers in marine and estuarine systems. Here we evaluate five commonly used primer sets designed to amplify rRNA barcoding genes in fishes and compare their performance using water samples collected from estuarine sites in the highly biodiverse Indian River Lagoon in Florida. Three of the five primer sets amplify a portion of the mitochondrial 12S gene (MiFish_12S, 171bp; Riaz_12S, 106 bp; Valentini_12S, 63 bp), one amplifies 219 bp of the mitochondrial 16S gene (Berry_16S), and the other amplifies 271 bp of the nuclear 18S gene (MacDonald_18S). The vast majority of the metabarcoding reads (> 99%) generated using the 18S primer set assigned to non-target (non-fish) taxa and therefore this primer set was omitted from most analyses. Using a conservative 99% similarity threshold for species level assignments, we detected a comparable number of species (55 and 49, respectively) and similarly high Shannon’s diversity values for the Riaz_12S and Berry_16S primer sets. Meanwhile, just 34 and 32 species were detected using the MiFish_12S and Valentini_12S primer sets, respectively. We were able to amplify both bony and cartilaginous fishes using the four primer sets with the vast majority of reads (>99%) assigned to the former. We detected the greatest number of elasmobranchs (six species) with the Riaz_12S primer set suggesting that it may be a suitable candidate set for the detection of sharks and rays. Of the total 76 fish species that were identified across all datasets, the combined three 12S primer sets detected 85.5% (65 species) while the combination of the Riaz_12S and Berry_16S primers detected 93.4% (71 species). These results highlight the importance of employing multiple primer sets as well as using primers that target different genomic regions. Moreover, our results suggest that the widely adopted MiFish_12S primers may not be the best choice, rather we found that the Riaz_12S primer set was the most effective for eDNA-based fish surveys in our system.
Collapse
|
17
|
Invasive Apple Snail Diets in Native vs. Non-Native Habitats Defined by SIAR (Stable Isotope Analysis in R). SUSTAINABILITY 2022. [DOI: 10.3390/su14127108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Invasive apple snails adversely impact the ecological function of non-native habitats, resulting in eutrophication as well as reduced biodiversity, which diminishes ecosystem goods and services, thereby [negatively] impacting human well-being. The onus here is to define the diet of an invasive apple snail (Pomacea canaliculata) in native (Maldonado, Uruguay) versus non-native habitats (Hangzhou, China, and Oahu, HI, USA). Diets for apple snails, in five sites, within both native and non-native habitats were defined via SIAR (Stable Isotope Analysis in R) with δ13C and δ15N stable isotope data collected therein. SIAR models indicate P. canaliculata shift diet from generalist (where myriad plant species comprise relatively small proportions of overall diet) to a specialist diet (where plants species constitute much larger proportions of said diet). What may be more telling is that in (anthropogenically disturbed) portions of the native habitat, and progressively more so in non-native habitats, invasive apple snail diets are increasingly composed of aquatic plants. The inherent and pronounced dietary differences amongst pristine and anthropogenically disturbed native habitats, as well as non-native habitats, provide a mechanism that may elucidate the variable ecological impacts of invasive apple snails within native and non-native habitats.
Collapse
|
18
|
Verkuil YI, Nicolaus M, Ubels R, Dietz MW, Samplonius JM, Galema A, Kiekebos K, de Knijff P, Both C. DNA metabarcoding quantifies the relative biomass of arthropod taxa in songbird diets: Validation with camera‐recorded diets. Ecol Evol 2022; 12:e8881. [PMID: 35571761 PMCID: PMC9077022 DOI: 10.1002/ece3.8881] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ecological research is often hampered by the inability to quantify animal diets. Diet composition can be tracked through DNA metabarcoding of fecal samples, but whether (complex) diets can be quantitatively determined with metabarcoding is still debated and needs validation using free‐living animals. This study validates that DNA metabarcoding of feces can retrieve actual ingested taxa, and most importantly, that read numbers retrieved from sequencing can also be used to quantify the relative biomass of dietary taxa. Validation was done with the hole‐nesting insectivorous Pied Flycatcher whose diet was quantified using camera footage. Size‐adjusted counts of food items delivered to nestlings were used as a proxy for provided biomass of prey orders and families, and subsequently, nestling feces were assessed through DNA metabarcoding. To explore potential effects of digestion, gizzard and lower intestine samples of freshly collected birds were subjected to DNA metabarcoding. For metabarcoding with Cytochrome Oxidase subunit I (COI), we modified published invertebrate COI primers LCO1490 and HCO1777, which reduced host reads to 0.03%, and amplified Arachnida DNA without significant changing the recovery of other arthropod taxa. DNA metabarcoding retrieved all commonly camera‐recorded taxa. Overall, and in each replicate year (N = 3), the relative scaled biomass of prey taxa and COI read numbers correlated at R = .85 (95CI:0.68–0.94) at order level and at R = .75 (CI:0.67–0.82) at family level. Similarity in arthropod community composition between gizzard and intestines suggested limited digestive bias. This DNA metabarcoding validation demonstrates that quantitative analyses of arthropod diet is possible. We discuss the ecological applications for insectivorous birds.
Collapse
Affiliation(s)
- Yvonne I. Verkuil
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Marion Nicolaus
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Richard Ubels
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Maurine W. Dietz
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Jelmer M. Samplonius
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Annabet Galema
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Kim Kiekebos
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Peter de Knijff
- Department of Human Genetics Leiden University Medical Centre Leiden The Netherlands
| | - Christiaan Both
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
19
|
Raupach MJ, Rulik B, Spelda J. Surprisingly high genetic divergence of the mitochondrial DNA barcode fragment (COI) within Central European woodlice species (Crustacea, Isopoda, Oniscidea). Zookeys 2022; 1082:103-125. [PMID: 35115867 PMCID: PMC8794987 DOI: 10.3897/zookeys.1082.69851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/20/2021] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has become the most popular approach for species identification in recent years. As part of the German Barcode of Life project, the first DNA barcode library for terrestrial and freshwater isopods from Germany is presented. The analyzed barcode library included 38 terrestrial (78% of the documented species of Germany) and five freshwater (63%) species. A total of 513 new barcodes was generated and 518 DNA barcodes were analyzed. This analysis revealed surprisingly high intraspecific genetic distances for numerous species, with a maximum of 29.4% for Platyarthrus hoffmannseggii Brandt, 1833. The number of BINs per species ranged from one (32 species, 68%) to a maximum of six for Trachelipus rathkii (Brandt, 1833). In spite of such high intraspecific variability, interspecific distances with values between 12.6% and 29.8% allowed a valid species assignment of all analyzed isopods. The observed high intraspecific distances presumably result from phylogeographic events, Wolbachia infections, atypical mitochondrial DNAs, heteroplasmy, or various combinations of these factors. Our study represents the first step in generating an extensive reference library of DNA barcodes for terrestrial and freshwater isopods for future molecular biodiversity assessment studies.
Collapse
|
20
|
Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Mol Ecol Resour 2021; 22:1706-1724. [PMID: 34918473 DOI: 10.1111/1755-0998.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Management of agricultural pests requires an understanding of pest species diversity, their interactions with beneficial insects and spatial-temporal patterns of pest abundance. Invasive and agriculturally important insect pests can build up very high populations, especially in cropping landscapes. Traditionally, sampling effort for species identification involves small sample sizes and is labour intensive. Here, we describe a multi-primer high throughput sequencing (HTS) metabarcoding method and associated analytical workflow for a rapid, intensive, high-volume survey of pest species compositions. We demonstrate our method using the taxonomically challenging Bemisia pest cryptic species complex as examples. The whiteflies Bemisia including the 'tabaci' species are agriculturally important capable of vectoring diverse plant viruses that cause diseases and crop losses. Our multi-primer metabarcoding HTS amplicon approach simultaneously process high volumes of whitefly individuals, with efficiency to detect rare (i.e., 1%) test-species, while our improved whitefly primers for metabarcoding also detected beneficial hymenopteran parasitoid species from whitefly nymphs. Field-testing our redesigned Bemisia metabarcoding primer sets across the Tanzania, Uganda and Malawi cassava cultivation landscapes, we identified the sub-Saharan Africa 1 Bemisia putative species as the dominant pest species, with other cryptic Bemisia species being detected at various abundances. We also provide evidence that Bemisia species compositions can be affected by host crops and sampling techniques that target either nymphs or adults. Our multi-primer HTS metabarcoding method incorporated two over-lapping amplicons of 472bp and 518bp that spanned the entire 657bp 3' barcoding region for Bemisia, and is particularly suitable to molecular diagnostic surveys of this highly cryptic insect pest species complex that also typically exhibited high population densities in heavy crop infestation episodes. Our approach can be adopted to understand species biodiversity across landscapes, with broad implications for improving trans-boundary biosecurity preparedness, thus contributing to molecular ecological knowledge and the development of control strategies for high-density, cryptic, pest-species complexes.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - L N Court
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Macfadyen
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - F Jacomb
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Vyskočilová
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia.,Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | | |
Collapse
|
21
|
Ollivier M, Lesieur V, Tavoillot J, Bénetière F, Tixier M, Martin J. An innovative approach combining metabarcoding and ecological interaction networks for selecting candidate biological control agents. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélodie Ollivier
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
| | - Vincent Lesieur
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
- CSIRO Health and Biosecurity European Laboratory Montferrier sur Lez France
| | - Johannes Tavoillot
- CBGP IRD CIRAD INRAE Montpellier SupAgro Univ Montpellier Montpellier France
| | - Fanny Bénetière
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
| | | | | |
Collapse
|
22
|
Molecular diversity of Uzbekistan's fishes assessed with DNA barcoding. Sci Rep 2021; 11:16894. [PMID: 34413445 PMCID: PMC8376971 DOI: 10.1038/s41598-021-96487-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Uzbekistan is one of two doubly landlocked countries in the world, where all rivers are endorheic basins. Although fish diversity is relatively poor in Uzbekistan, the fish fauna of the region has not yet been fully studied. The aim of this study was to establish a reliable barcoding reference database for fish in Uzbekistan. A total of 666 specimens, belonging to 59 species within 39 genera, 17 families, and 9 orders, were subjected to polymerase chain reaction amplification in the barcode region and sequenced. The length of the 666 barcodes was 682 bp. The average K2P distances within species, genera, and families were 0.22%, 6.33%, and 16.46%, respectively. The average interspecific distance was approximately 28.8 times higher than the mean intraspecific distance. The Barcode Index Number (BIN) discordance report showed that 666 specimens represented 55 BINs, of which five were singletons, 45 were taxonomically concordant, and five were taxonomically discordant. The barcode gap analysis demonstrated that 89.3% of the fish species examined could be discriminated by DNA barcoding. These results provide new insights into fish diversity in the inland waters of Uzbekistan and can provide a basis for the development of further studies on fish fauna.
Collapse
|
23
|
Schroeder A, Pallavicini A, Edomi P, Pansera M, Camatti E. Suitability of a dual COI marker for marine zooplankton DNA metabarcoding. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105444. [PMID: 34399186 DOI: 10.1016/j.marenvres.2021.105444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
As DNA metabarcoding has become an emerging tool for surveying biodiversity, including its application in legally binding assessments, reliable and efficient barcodes are requested, especially for the highly diverse group of zooplankton. This study focuses on comparing the efficiency of two mitochondrial COI barcodes based on the internal primers mlCOIintF and mlCOIintR utilizing mesozooplankton samples collected in a Mediterranean lagoon. Our results indicate that after a slight adjustment, the mlCOIintR primer performs in combination with jdgLCO1490 (herein) very comparably to the much more widely used primer system mlCOIintF/jgHCO2198+dgHCO2198, in terms of level of taxonomic resolution, species detection and their relative abundance in terms of numbers of reads. As for some groups, like Ctenophora, this barcode is not suitable; a combination of them may be the best option to rely on the Folmer region in its entirety without the risk of losing information for a limited primer match.
Collapse
Affiliation(s)
- Anna Schroeder
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - Alberto Pallavicini
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Paolo Edomi
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - Marco Pansera
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Elisa Camatti
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| |
Collapse
|
24
|
Saqib HSA, Liang P, You M, Gurr GM. Molecular gut content analysis indicates the inter- and intra-guild predation patterns of spiders in conventionally managed vegetable fields. Ecol Evol 2021; 11:9543-9552. [PMID: 34306641 PMCID: PMC8293772 DOI: 10.1002/ece3.7772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Inter- and intra-guild interactions are important in the coexistence of predators and their prey, especially in highly disturbed vegetable cropping systems with sporadic food resources. Assessing the dietary range of a predator taxon characterized by diverse foraging behavior using conventional approaches, such as visual observation and conventional molecular approaches for prey detection, has serious logistical problems. In this study, we assessed the prey compositions and compare the dietary spectrum of a functionally diverge group of predators-spiders-to characterize their trophic interactions and assess biological control potential in Brassica vegetable fields. We used high-throughput sequencing (HTS) and biotic interaction networks to precisely annotate the predation spectrum and highlight the predator-predator and predator-prey interactions. The prey taxa in the gut of all spider families were mainly enriched with insects (including dipterans, coleopterans, orthopterans, hemipterans, and lepidopterans) with lower proportions of arachnids (such as Araneae) along with a wide range of other prey factions. Despite the generalist foraging behavior of spiders, the community structure analysis and interaction networks highlighted the overrepresentation of particular prey taxa in the gut of each spider family, as well as showing the extent of interfamily predation by spiders. Identifying the diverse trophic niche proportions underpins the importance of spiders as predators of pests in highly disturbed agroecosystems. More specifically, combining HTS with advanced ecological community analysis reveals the preferences and biological control potential of particular spider taxa (such as Salticidae against lepidopterans and Pisauridae against dipterans), and so provides a valuable evidence base for targeted conservation biological control efforts in complex trophic networks.
Collapse
Affiliation(s)
- Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Liang
- College of the Environment and EcologyXiamen UniversityXiamenChina
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan CropsMinistry of AgricultureFuzhouChina
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
- Graham CentreCharles Sturt UniversityOrangeNSWAustralia
| |
Collapse
|
25
|
Kirse A, Bourlat SJ, Langen K, Fonseca VG. Unearthing the Potential of Soil eDNA Metabarcoding—Towards Best Practice Advice for Invertebrate Biodiversity Assessment. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabarcoding has proven to be a powerful tool to assess ecological patterns and diversity from different habitats. Terrestrial invertebrate diversity is frequently based on bulk samples, which require comparatively high sampling effort. With environmental DNA (eDNA) metabarcoding, field sampling effort can be reduced while increasing the number of recovered organism groups. However, a proof of concept is missing for several invertebrate groups, hampering the development of best-practice advice for these groups. This study aims to provide recommendations on key aspects for the processing of soil samples, from sampling effort to choice of DNA extraction method and marker genes. This study uses eDNA metabarcoding as a tool for assessing invertebrate biodiversity in soil samples, specifically comparing two DNA extraction methods (with and without a lysis step) and two genes, 18S and COI markers. The results show that the choice of marker and DNA extraction method (including a lysis step) significantly affect species detection rates and concomitantly observed invertebrate community composition. Combining methods, by using larger amounts of starting material and including a lysis step resulted in an increase of invertebrate species numbers. Together, these methods improved the detection of species with known lower population densities and allowed the assessment of temporary mesofauna. Furthermore, the choice of marker significantly influenced the diversity levels found. The 18S marker allowed the detection of a higher number of annelid and nematode OTUs, while the COI marker was more suitable for detecting changes in arthropod community structure, especially at the species level. This study makes significant advances to the field of invertebrate biodiversity assessment, particularly using metabarcoding tools by addressing several methodological considerations that are key for accurate ecological appraisals.
Collapse
|
26
|
Kirse A, Bourlat SJ, Langen K, Fonseca VG. Metabarcoding Malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Sci Rep 2021; 11:10498. [PMID: 34006991 PMCID: PMC8131643 DOI: 10.1038/s41598-021-89950-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Forest habitats host enormous diversity, but little is known about the seasonal turnover of arthropod species between the above- and below ground forest layers. In this study, we used metabarcoding approaches to uncover arthropod diversity in different forest types and seasons. Our study shows that metabarcoding soil eDNA and Malaise trap bulk samples can provide valuable insights into the phenology and life cycles of arthropods. We found major differences in arthropod species diversity between soil samples and Malaise traps, with only 11.8% species overlap. Higher diversity levels were found in Malaise traps in summer whereas soil samples showed a diversity peak in winter, highlighting the seasonal habitat preferences and life strategies of arthropods. We conclude that collecting time series of bulk arthropod samples and eDNA in the same locations provides a more complete picture of local arthropod diversity and turnover rates and may provide valuable information on climate induced phenological shifts for long-term monitoring.
Collapse
Affiliation(s)
- Ameli Kirse
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| | - Sarah J Bourlat
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Kathrin Langen
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Vera G Fonseca
- Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
27
|
Batovska J, Piper AM, Valenzuela I, Cunningham JP, Blacket MJ. Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches. Sci Rep 2021; 11:7946. [PMID: 33846382 PMCID: PMC8041782 DOI: 10.1038/s41598-021-85855-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Metabarcoding has the potential to revolutionise insect surveillance by providing high-throughput and cost-effective species identification of all specimens within mixed trap catches. Nevertheless, incorporation of metabarcoding into insect diagnostic laboratories will first require the development and evaluation of protocols that adhere to the specialised regulatory requirements of invasive species surveillance. In this study, we develop a multi-locus non-destructive metabarcoding protocol that allows sensitive detection of agricultural pests, and subsequent confirmation using traditional diagnostic techniques. We validate this protocol for the detection of tomato potato psyllid (Bactericera cockerelli) and Russian wheat aphid (Diuraphis noxia) within mock communities and field survey traps. We find that metabarcoding can reliably detect target insects within mixed community samples, including specimens that morphological identification did not initially detect, but sensitivity appears inversely related to community size and is impacted by primer biases, target loci, and sample indexing strategy. While our multi-locus approach allowed independent validation of target detection, lack of reference sequences for 18S and 12S restricted its usefulness for estimating diversity in field samples. The non-destructive DNA extraction proved invaluable for resolving inconsistencies between morphological and metabarcoding identification results, and post-extraction specimens were suitable for both morphological re-examination and DNA re-extraction for confirmatory barcoding.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Alexander M Piper
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Isabel Valenzuela
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - John Paul Cunningham
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mark J Blacket
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
| |
Collapse
|
28
|
Nakanishi H, Yoneyama K, Hara M, Takada A, Saito K. Estimating included animal species in mixed crude drugs derived from animals using massively parallel sequencing. Sci Rep 2021; 11:6257. [PMID: 33739020 PMCID: PMC7973747 DOI: 10.1038/s41598-021-85803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
We developed a method that can detect each animal species of origin for crude drugs derived from multiple animal species based on massively parallel sequencing analysis of mitochondrial genes. The crude drugs derived from animals investigated in this study were Cervi Parvum Cornu and Trogopterorum feces, which are derived from a mix of different animal species, two chopped cicada sloughs, and two commercial Kampo drugs. The mitochondrial 12S rRNA, 16S rRNA, and cytochrome oxidase subunit I gene regions were amplified and sequenced using MiSeq. The ratios of haplotype to total number of sequences reads were calculated after sequence extraction and trimming. Haplotypes that exceeded the threshold were defined as positive haplotypes, which were compared with all available sequences using BLAST. In the Cervi Parvum Cornu and Trogopterorum feces samples, the haplotype ratios corresponded roughly to the mixture ratios, although there was a slight difference from mixture ratios depending on the gene examined. This method could also roughly estimate the compositions of chopped cicada sloughs and Kampo drugs. This analysis, whereby the sequences of several genes are elucidated, is better for identifying the included animal species. This method should be useful for quality control of crude drugs and Kampo drugs.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Katsumi Yoneyama
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
29
|
Probert AF, Ward DF, Beggs JR, Bury SJ, Hermans SM, Lear G, Stanley MC. High Dietary Niche Overlap Between Non-native and Native Ant Species in Natural Ecosystems. ENVIRONMENTAL ENTOMOLOGY 2021; 50:86-96. [PMID: 33269804 DOI: 10.1093/ee/nvaa133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Ants represent a highly diverse and ecologically important group of insects found in almost all terrestrial ecosystems. A subset of ant species have been widely transported around the globe and invade many natural ecosystems, often out-competing native counterparts and causing varying impacts on recipient ecosystems. Decisions to control non-native ant populations require an understanding of their interactions and related impacts on native communities. We employed stable isotope analysis and metabarcoding techniques to identify potential dietary niche overlap and identify gut contents of 10 ant species found in natural ecosystems in Aotearoa New Zealand. Additionally, we looked at co-occurrence to identify potential competitive interactions among native and non-native ant species. Ants fed mainly across two trophic levels, with high dietary overlap. Relative to other ant species sampled, two non-native ant species, Linepithema humile and Technomyrmex jocosus, were found to feed at the lowest trophic level. The largest isotopic niche overlap was observed between the native Monomorium antarcticum and the invasive Ochetellus glaber, with analyses revealing a negative co-occurrence pattern. Sequence data of ant gut content identified 51 molecular operational taxonomic units, representing 22 orders and 34 families, and primarily consisting of arthropod DNA. Although we generally found high dietary overlap among species, negative occurrence between a dominant, non-native species and a ubiquitous native species indicates that species-specific interactions could be negatively impacting native ecosystems. Our research progresses and informs the currently limited knowledge around establishing protocols for metabarcoding to investigate ant diet and interactions between native and non-native ant species.
Collapse
Affiliation(s)
- Anna F Probert
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Department of Biology, University of Fribourg, Ch. Du Musée, Fribourg, Switzerland
| | - Darren F Ward
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| | - Jacqueline R Beggs
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah J Bury
- National Institute of Water & Atmospheric Science (NIWA), 301 Evans Bay Parade, Hataitai, Wellington, New Zealand
| | - Syrie M Hermans
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret C Stanley
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Wray AK, Peery MZ, Jusino MA, Kochanski JM, Banik MT, Palmer JM, Lindner DL, Gratton C. Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance. Mol Ecol 2020; 30:855-873. [PMID: 33301628 DOI: 10.1111/mec.15769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Although most predators are generalists, the majority of studies on the association between prey availability and prey consumption have focused on specialist predators. To investigate the role of highly generalist predators in a complex food web, we measured the relationships between prey consumption and prey availability in two common arthropodivorous bats. Specifically, we used high-throughput amplicon sequencing coupled with a known mock community to characterize seasonal changes in little brown and big brown bat diets. We then linked spatiotemporal variation in prey consumption with quantitative prey availability estimated from intensive prey community sampling. We found that although quantitative prey availability fluctuated substantially over space and time, the most commonly consumed prey items were consistently detected in bat diets independently of their respective abundance. Positive relationships between prey abundance and probability of consumption were found only among prey groups that were less frequently detected in bat diets. While the probability of prey consumption was largely unrelated to abundance, the community structure of prey detected in bat diets was influenced by the local or regional abundance of prey. Observed patterns suggest that while little brown and big brown bats maintain preferences for particular prey independently of quantitative prey availability, total dietary composition may reflect some degree of opportunistic foraging. Overall, our findings suggest that generalist predators can display strong prey preferences that persist despite quantitative changes in prey availability.
Collapse
Affiliation(s)
- Amy K Wray
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - M Zachariah Peery
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle A Jusino
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA.,Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jade M Kochanski
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark T Banik
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Carr A, Weatherall A, Fialas P, Zeale MRK, Clare EL, Jones G. Moths Consumed by the Barbastelle Barbastella barbastellus Require Larval Host Plants that Occur within the Bat's Foraging Habitats. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2020.22.2.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrew Carr
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Andrew Weatherall
- National School of Forestry, University of Cumbria, Ambleside, Cumbria, LA22 9BB, United Kingdom
| | - Penelope Fialas
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Matt R. K. Zeale
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Elizabeth L. Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
32
|
Raupach MJ, Hannig K, Morinière J, Hendrich L. A DNA barcode library for ground beetles of Germany: the genus Pterostichus Bonelli, 1810 and allied taxa (Insecta, Coleoptera, Carabidae). Zookeys 2020; 980:93-117. [PMID: 33192140 PMCID: PMC7642132 DOI: 10.3897/zookeys.980.55979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/12/2022] Open
Abstract
Species of the ground beetle genus Pterostichus Bonelli, 1810 are some of the most common carabids in Europe. This publication provides a first comprehensive DNA barcode library for this genus and allied taxa including Abax Bonelli, 1810, Molops Bonelli, 1810, Poecilus Bonelli, 1810, and Stomis Clairville, 1806 for Germany and Central Europe in general. DNA barcodes were analyzed from 609 individuals that represent 51 species, including sequences from previous studies as well as more than 198 newly generated sequences. The results showed a 1:1 correspondence between BIN and traditionally recognized species for 44 species (86%), whereas two (4%) species were characterized by two BINs. Three BINs were found for one species (2%), while one BIN for two species was revealed for two species pairs (8%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for four species pairs. Haplotype sharing was found for two closely related species pairs: Pterostichusadstrictus Eschscholtz, 1823/Pterostichusoblongopunctatus (Fabricius, 1787) and Pterostichusnigrita Paykull, 1790/Pterostichusrhaeticus Heer, 1837. In contrast to this, high intraspecific sequence divergences with values above 2.2% were shown for three species (Molopspiceus (Panzer, 1793), Pterostichuspanzeri (Panzer, 1805), Pterostichusstrenuus (Panzer, 1793)). Summarizing the results, the present DNA barcode library does not only allow the identification of most of the analyzed species, but also provides valuable information for alpha-taxonomy as well as for ecological and evolutionary research. This library represents another step in building a comprehensive DNA barcode library of ground beetles as part of modern biodiversity research.
Collapse
Affiliation(s)
- Michael J Raupach
- Sektion Hemiptera, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| | | | - Jérome Morinière
- AIM - Advanced Identification Methods GmbH, Spinnereistraße 11, 04179 Leipzig
| | - Lars Hendrich
- Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB - ZSM), Münchhausenstraße 21, 81247 München, Germany
| |
Collapse
|
33
|
Harper LR, Lawson Handley L, Sayer CD, Read DS, Benucci M, Blackman RC, Hill MJ, Hänfling B. Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools. Mol Ecol 2020; 30:3252-3269. [PMID: 33002225 DOI: 10.1111/mec.15670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Fishes stocked for recreation and angling can damage freshwater habitats and negatively impact biodiversity. The pond-associated crucian carp (Carassius carassius) is rare across Europe and is stocked for conservation management in England, but its impacts on pond biota are understudied. Freshwater invertebrates contribute substantially to aquatic biodiversity, encompassing many rare and endemic species, but their small size and high abundance complicate their assessment. Practitioners have employed sweep-netting and kick-sampling with microscopy (morphotaxonomy), but specimen size/quality and experience can bias identification. DNA and environmental DNA (eDNA) metabarcoding offer alternative means of invertebrate assessment. We compared invertebrate diversity in ponds (N = 18) with and without crucian carp using morphotaxonomic identification, DNA metabarcoding and eDNA metabarcoding. Five 2 L water samples and 3 min sweep-net samples were collected at each pond. Inventories produced by morphotaxonomic identification of netted samples, DNA metabarcoding of bulk tissue samples and eDNA metabarcoding of water samples were compared. Alpha diversity was greatest with DNA or eDNA metabarcoding, depending on whether standard or unbiased methods were considered. DNA metabarcoding reflected morphotaxonomic identification, whereas eDNA metabarcoding produced markedly different communities. These complementary tools should be combined for comprehensive invertebrate assessment. Crucian carp presence minimally reduced alpha diversity in ponds, but positively influenced beta diversity through taxon turnover (i.e., ponds with crucian carp contained different invertebrates to fishless ponds). Crucian carp presence contributes to landscape-scale invertebrate diversity, supporting continued conservation management in England. Our results show that molecular tools can enhance freshwater invertebrate assessment and facilitate development of more accurate and ecologically effective pond management strategies.
Collapse
Affiliation(s)
- Lynsey R Harper
- Department of Biological and Marine Sciences, University of Hull, Hull, UK.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Carl D Sayer
- Pond Restoration Research Group, Environmental Change Research Centre, Department of Geography, University College London, London, UK
| | - Daniel S Read
- Centre for Ecology & Hydrology (CEH), Wallingford, Oxfordshire, UK
| | - Marco Benucci
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Rosetta C Blackman
- Department of Biological and Marine Sciences, University of Hull, Hull, UK.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthew J Hill
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Bernd Hänfling
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| |
Collapse
|
34
|
Nugent CM, Adamowicz SJ. Alignment-free classification of COI DNA barcode data with the Python package Alfie. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.55815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Characterization of biodiversity from environmental DNA samples and bulk metabarcoding data is hampered by off-target sequences that can confound conclusions about a taxonomic group of interest. Existing methods for isolation of target sequences rely on alignment to existing reference barcodes, but this can bias results against novel genetic variants. Effectively parsing targeted DNA barcode data from off-target noise improves the quality of biodiversity estimates and biological conclusions by limiting subsequent analyses to a relevant subset of available data. Here, we present Alfie, a Python package for the alignment-free classification of cytochrome c oxidase subunit I (COI) DNA barcode sequences to taxonomic kingdoms. The package determines k-mer frequencies of DNA sequences, and the frequencies serve as input for a neural network classifier that was trained and tested using ~58,000 publicly available COI sequences. The classifier was designed and optimized through a series of tests that allowed for the optimal set of DNA k-mer features and optimal machine learning algorithm to be selected. The neural network classifier rapidly assigns COI sequences of varying lengths to kingdoms with greater than 99% accuracy and is shown to generalize effectively and make accurate predictions about data from previously unseen taxonomic classes. The package contains an application programming interface that allows the Alfie package’s functionality to be extended to different DNA sequence classification tasks to suit a user’s need, including classification of different genes and barcodes, and classification to different taxonomic levels. Alfie is free and publicly available through GitHub (https://github.com/CNuge/alfie) and the Python package index (https://pypi.org/project/alfie/).
Collapse
|
35
|
Tournayre O, Leuchtmann M, Filippi‐Codaccioni O, Trillat M, Piry S, Pontier D, Charbonnel N, Galan M. In silico and empirical evaluation of twelve metabarcoding primer sets for insectivorous diet analyses. Ecol Evol 2020; 10:6310-6332. [PMID: 32724515 PMCID: PMC7381572 DOI: 10.1002/ece3.6362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo-mock community (33 arthropod taxa from 16 orders), and guano-based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano-based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one-third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.
Collapse
Affiliation(s)
- Orianne Tournayre
- CBGPINRAECIRADIRDMontpellier SupAgroUniversité de MontpellierMontpellierFrance
| | | | - Ondine Filippi‐Codaccioni
- LabEx ECOFECT “Ecoevolutionary Dynamics of Infectious DiseasesUniversité de LyonLyonFrance
- CNRSLaboratoire de Biométrie et Biologie ÉvolutiveUMR5558Université de LyonUniversité Lyon 1VilleurbanneFrance
| | - Marine Trillat
- CBGPINRAECIRADIRDMontpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Sylvain Piry
- CBGPINRAECIRADIRDMontpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Dominique Pontier
- LabEx ECOFECT “Ecoevolutionary Dynamics of Infectious DiseasesUniversité de LyonLyonFrance
- CNRSLaboratoire de Biométrie et Biologie ÉvolutiveUMR5558Université de LyonUniversité Lyon 1VilleurbanneFrance
| | - Nathalie Charbonnel
- CBGPINRAECIRADIRDMontpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Maxime Galan
- CBGPINRAECIRADIRDMontpellier SupAgroUniversité de MontpellierMontpellierFrance
| |
Collapse
|
36
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
37
|
Bowser ML, Brassfield R, Dziergowski A, Eskelin T, Hester J, Magness DR, McInnis M, Melvin T, Morton JM, Stone J. Towards conserving natural diversity: A biotic inventory by observations, specimens, DNA barcoding and high-throughput sequencing methods. Biodivers Data J 2020; 8:e50124. [PMID: 32165853 PMCID: PMC7058680 DOI: 10.3897/bdj.8.e50124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/15/2020] [Indexed: 11/12/2022] Open
Abstract
The Kenai National Wildlife Refuge has been given a broad conservation mandate to conserve natural diversity. A prerequisite for fulfilling this purpose is to be able to identify the species and communities that make up that biodiversity. We tested a set of varied methods for inventory and monitoring of plants, birds and terrestrial invertebrates on a grid of 40 sites in a 938 ha study area in the Slikok Creek watershed, Kenai Peninsula, Alaska. We sampled plants and lichens through observation and specimen-based methods. We surveyed birds using bird call surveys on variable circular plots. We sampled terrestrial arthropods by sweep net sampling, processing samples with High Throughput Sequencing methods. We surveyed for earthworms, using the hot mustard extraction method and identified worm specimens by morphology and DNA barcoding. We examined community membership using clustering methods and Nonmetric Multidimensional Scaling. We documented a total of 4,764 occurrences of 984 species and molecular operational taxonomic units: 87 vascular plants, 51 mosses, 12 liverworts, 111 lichens, 43 vertebrates, 663 arthropods, 9 molluscs and 8 annelid worms. Amongst these records, 102 of the arthropod species appeared to be new records for Alaska. We found three non-native species: Deroceras agreste (Linnaeus, 1758) (Stylommatophora: Agriolimacidae), Dendrobaena octaedra (Savigny, 1826) (Crassiclitellata: Lumbricidae) and Heterarthrus nemoratus (Fallén, 1808) (Hymenoptera: Tenthredinidae). Both D. octaedra and H. nemoratus were found at sites distant from obvious human disturbance. The 40 sites were grouped into five community groups: upland mixed forest, black spruce forest, open deciduous forest, shrub-sedge bog and willow. We demonstrated that, at least for a subset of species that could be detected using these methods, we were able to document current species distributions and assemblages in a way that could be efficiently repeated for the purposes of biomonitoring. While our methods could be improved and additional methods and groups could be added, our combination of techniques yielded a substantial portion of the data necessary for fulfilling Kenai National Wildlife Refuge's broad conservation purposes.
Collapse
Affiliation(s)
- Matthew Lewis Bowser
- U.S. Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States of AmericaU.S. Fish & Wildlife Service, Kenai National Wildlife RefugeSoldotna, AlaskaUnited States of America
| | - Rebekah Brassfield
- Salish Kootenai College, Pablo, Montana, United States of AmericaSalish Kootenai CollegePablo, MontanaUnited States of America
| | - Annie Dziergowski
- U.S. Fish & Wildlife Service, North Florida Ecological Services Office, Jacksonville, Florida, United States of AmericaU.S. Fish & Wildlife Service, North Florida Ecological Services OfficeJacksonville, FloridaUnited States of America
| | - Todd Eskelin
- U.S. Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States of AmericaU.S. Fish & Wildlife Service, Kenai National Wildlife RefugeSoldotna, AlaskaUnited States of America
| | - Jennifer Hester
- City of Soldotna, Planning and Zoning Commision, Soldotna, Alaska, United States of AmericaCity of Soldotna, Planning and Zoning CommisionSoldotna, AlaskaUnited States of America
| | - Dawn Robin Magness
- U.S. Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States of AmericaU.S. Fish & Wildlife Service, Kenai National Wildlife RefugeSoldotna, AlaskaUnited States of America
| | - Mariah McInnis
- Auburn University, School of Forestry & Wildlife Sciences, Auburn, Alabama, United States of AmericaAuburn University, School of Forestry & Wildlife SciencesAuburn, AlabamaUnited States of America
| | - Tracy Melvin
- Michigan State University, College of Agriculture & Natural Resources, Department of Fisheries and Wildlife, East Lansing, Michigan, United States of AmericaMichigan State University, College of Agriculture & Natural Resources, Department of Fisheries and WildlifeEast Lansing, MichiganUnited States of America
| | - John M. Morton
- U.S. Fish & Wildlife Service (retired), Soldotna, Alaska, United States of AmericaU.S. Fish & Wildlife Service (retired)Soldotna, AlaskaUnited States of America
| | - Joel Stone
- University of Alaska Fairbanks, Fairbanks, Alaska, United States of AmericaUniversity of Alaska FairbanksFairbanks, AlaskaUnited States of America
| |
Collapse
|
38
|
Pekár S, Petráková Dušátková L, Haddad CR. No ontogenetic shift in the realised trophic niche but in Batesian mimicry in an ant-eating spider. Sci Rep 2020; 10:1250. [PMID: 31988373 PMCID: PMC6985134 DOI: 10.1038/s41598-020-58281-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
In predators an ontogenetic trophic shift includes change from small to large prey of several different taxa. In myrmecophagous predators that are also mimics of ants, the ontogenetic trophic shift should be accompanied by a parallel mimetic change. Our aim was to test whether ant-eating jumping spider, Mexcala elegans, is myrmecomorphic throughout their ontogenetic development, and whether there is an ontogenetic shift in realised trophic niche and their mimetic models. We performed field observations on the association of Mexcala with ant species and investigated the natural prey of the ontogenetic classes by means of molecular methods. Then we measured the mimetic similarity of ontogenetic morphs to putative mimetic models. We found Mexcala is an inaccurate mimic of ants both in the juvenile and adult stages. During ontogenesis it shifts mimetic models. The mimetic similarity was rather superficial, so an average bird predator should distinguish spiders from ants based on colouration. The realised trophic niche was narrow, composed mainly of ants of different species. There was no significant difference in the prey composition between ontogenetic stages. Females were more stenophagous than juveniles. We conclude that Mexcala is an ant-eating specialist that reduces its prey spectrum and shifts ant models during ontogenesis.
Collapse
Affiliation(s)
- S Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - L Petráková Dušátková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - C R Haddad
- Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
39
|
Diet profiling of house-farm swiftlets (Aves, Apodidae, Aerodramus sp.) in three landscapes in Perak, Malaysia, using high-throughput sequencing. Trop Ecol 2019. [DOI: 10.1007/s42965-019-00040-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Krehenwinkel H, Pomerantz A, Prost S. Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current Uses and Future Directions. Genes (Basel) 2019; 10:E858. [PMID: 31671909 PMCID: PMC6895800 DOI: 10.3390/genes10110858] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
We live in an era of unprecedented biodiversity loss, affecting the taxonomic composition of ecosystems worldwide. The immense task of quantifying human imprints on global ecosystems has been greatly simplified by developments in high-throughput DNA sequencing technology (HTS). Approaches like DNA metabarcoding enable the study of biological communities at unparalleled detail. However, current protocols for HTS-based biodiversity exploration have several drawbacks. They are usually based on short sequences, with limited taxonomic and phylogenetic information content. Access to expensive HTS technology is often restricted in developing countries. Ecosystems of particular conservation priority are often remote and hard to access, requiring extensive time from field collection to laboratory processing of specimens. The advent of inexpensive mobile laboratory and DNA sequencing technologies show great promise to facilitate monitoring projects in biodiversity hot-spots around the world. Recent attention has been given to portable DNA sequencing studies related to infectious organisms, such as bacteria and viruses, yet relatively few studies have focused on applying these tools to Eukaryotes, such as plants and animals. Here, we outline the current state of genetic biodiversity monitoring of higher Eukaryotes using Oxford Nanopore Technology's MinION portable sequencing platform, as well as summarize areas of recent development.
Collapse
Affiliation(s)
| | - Aaron Pomerantz
- Department of Integrative Biology, University of California, Berkeley, CA-94720, USA.
- Marine Biology Laboratory, Woods Hole, MA-02543, USA.
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany.
- South African National Biodiversity Institute, National Zoological Garden, Pretoria 0002, South Africa.
| |
Collapse
|
41
|
Blattner L, Gerecke R, von Fumetti S. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasit Vectors 2019; 12:492. [PMID: 31639027 PMCID: PMC6805402 DOI: 10.1186/s13071-019-3750-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Water mites are among the most diverse organisms inhabiting freshwater habitats and are considered as substantial part of the species communities in springs. As parasites, Hydrachnidia influence other invertebrates and play an important role in aquatic ecosystems. In Europe, 137 species are known to appear solely in or near springheads. New species are described frequently, especially with the help of molecular species identification and delimitation methods. The aim of this study was to verify the mainly morphology-based taxonomic knowledge of spring-inhabiting water mites of central Europe and to build a genetic species identification library. METHODS We sampled 65 crenobiontic species across the central Alps and tested the suitability of mitochondrial (cox1) and nuclear (28S) markers for species delimitation and identification purposes. To investigate both markers, distance- and phylogeny-based approaches were applied. The presence of a barcoding gap was tested by using the automated barcoding gap discovery tool and intra- and interspecific genetic distances were investigated. Furthermore, we analyzed phylogenetic relationships between different taxonomic levels. RESULTS A high degree of hidden diversity was observed. Seven taxa, morphologically identified as Bandakia concreta Thor, 1913, Hygrobates norvegicus (Thor, 1897), Ljania bipapillata Thor, 1898, Partnunia steinmanni Walter, 1906, Wandesia racovitzai Gledhill, 1970, Wandesia thori Schechtel, 1912 and Zschokkea oblonga Koenike, 1892, showed high intraspecific cox1 distances and each consisted of more than one phylogenetic clade. A clear intraspecific threshold between 5.6-6.0% K2P distance is suitable for species identification purposes. The monophyly of Hydrachnidia and the main superfamilies is evident with different species clearly separated into distinct clades. cox1 separates water mite species but is unsuitable for resolving higher taxonomic levels. CONCLUSIONS Water mite species richness in springs is higher than has been suggested based on morphological species identification alone and further research is needed to evaluate the true diversity. The standard molecular species identification marker cox1 can be used to identify species but should be complemented by a nuclear marker, e.g. 28S, to resolve taxonomic relationships. Our results contribute to the taxonomical knowledge on spring inhabiting Hydrachnida, which is indispensable for the development and implementation of modern environment assessment methods, e.g. metabarcoding, in spring ecology.
Collapse
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| | - Reinhard Gerecke
- Department of Biology, University of Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Stefanie von Fumetti
- Department of Environmental Sciences, Geoecology Research Group, University of Basel, St. Johanns-Vorstadt 10, 4056 Basel, Switzerland
| |
Collapse
|
42
|
Elbrecht V, Braukmann TW, Ivanova NV, Prosser SW, Hajibabaei M, Wright M, Zakharov EV, Hebert PD, Steinke D. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 2019; 7:e7745. [PMID: 31608170 PMCID: PMC6786254 DOI: 10.7717/peerj.7745] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/25/2019] [Indexed: 01/08/2023] Open
Abstract
Metabarcoding can rapidly determine the species composition of bulk samples and thus aids biodiversity and ecosystem assessment. However, it is essential to use primer sets that minimize amplification bias among taxa to maximize species recovery. Despite this fact, the performance of primer sets employed for metabarcoding terrestrial arthropods has not been sufficiently evaluated. This study tests the performance of 36 primer sets on a mock community containing 374 insect species. Amplification success was assessed with gradient PCRs and the 21 most promising primer sets selected for metabarcoding. These 21 primer sets were also tested by metabarcoding a Malaise trap sample. We identified eight primer sets, mainly those including inosine and/or high degeneracy, that recovered more than 95% of the species in the mock community. Results from the Malaise trap sample were congruent with the mock community, but primer sets generating short amplicons produced potential false positives. Taxon recovery from both mock community and Malaise trap sample metabarcoding were used to select four primer sets for additional evaluation at different annealing temperatures (40-60 °C) using the mock community. The effect of temperature varied by primer pair but overall it only had a minor effect on taxon recovery. This study reveals the weak performance of some primer sets employed in past studies. It also demonstrates that certain primer sets can recover most taxa in a diverse species assemblage. Thus, based our experimental set up, there is no need to employ several primer sets targeting the same gene region. We identify several suitable primer sets for arthropod metabarcoding, and specifically recommend BF3 + BR2, as it is not affected by primer slippage and provides maximal taxonomic resolution. The fwhF2 + fwhR2n primer set amplifies a shorter fragment and is therefore ideal when targeting degraded DNA (e.g., from gut contents).
Collapse
Affiliation(s)
- Vasco Elbrecht
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | | | - Natalia V. Ivanova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Sean W.J. Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Michael Wright
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Evgeny V. Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Paul D.N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Dirk Steinke
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
43
|
Piper AM, Batovska J, Cogan NOI, Weiss J, Cunningham JP, Rodoni BC, Blacket MJ. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 2019; 8:giz092. [PMID: 31363753 PMCID: PMC6667344 DOI: 10.1093/gigascience/giz092] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish populations. DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a surveillance context and highlight the unique technical and regulatory challenges that must be considered when implementing high-throughput sequencing technologies into sensitive diagnostic applications.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Jana Batovska
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - John Weiss
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia
| | - Mark J Blacket
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia
| |
Collapse
|
44
|
Aldasoro M, Garin I, Vallejo N, Baroja U, Arrizabalaga-Escudero A, Goiti U, Aihartza J. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS One 2019; 14:e0220081. [PMID: 31339936 PMCID: PMC6656351 DOI: 10.1371/journal.pone.0220081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023] Open
Abstract
Knowledge on the trophic interactions among predators and their prey is important in order to understand ecology and behaviour of animals. Traditionally studies on the diet composition of insectivorous bats have been based on the morphological identification of prey remains, but the accuracy of the results has been hampered due to methodological limitations. Lately, the DNA metabarcoding and High Throughput Sequencing (HTS) techniques have changed the scene since they allows prey identification to the species level, ultimately giving more precision to the results. Nevertheless, the use of one single primer set to amplify faecal DNA produces biases in the assessed dietary composition. Three horseshoe bats overlap extensively in their distribution range in Europe: Rhinolophus euryale, R. hipposideros and R. ferrumequinum. In order to achieve the deepest insight on their prey list we combined two different primers. Results showed that the used primers were complementary at the order and species levels, only 22 out of 135 prey species being amplified by both. The most frequent prey of R. hipposideros belonged to Diptera and Lepidoptera, to Lepidoptera in R. euryale, and Lepidoptera, Diptera and Coleoptera in R. ferrumequinum. The three bats show significant resource partitioning, since their trophic niche overlap is not higher than 34%. Our results confirm the importance of combining complementary primers to describe the diet of generalist insectivorous bats with amplicon metabarcoding techniques. Overall, each primer set showed a subset of the prey composition, with a small portion of the total prey being identified by both of them. Therefore, each primer presented a different picture of the niche overlap among the three horseshoe bats due to their taxonomic affinity.
Collapse
Affiliation(s)
- Miren Aldasoro
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Inazio Garin
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Nerea Vallejo
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Unai Baroja
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Aitor Arrizabalaga-Escudero
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Urtzi Goiti
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| | - Joxerra Aihartza
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, The Basque Country
| |
Collapse
|
45
|
Braukmann TWA, Ivanova NV, Prosser SWJ, Elbrecht V, Steinke D, Ratnasingham S, de Waard JR, Sones JE, Zakharov EV, Hebert PDN. Metabarcoding a diverse arthropod mock community. Mol Ecol Resour 2019; 19:711-727. [PMID: 30779309 PMCID: PMC6850013 DOI: 10.1111/1755-0998.13008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Although DNA metabarcoding is an attractive approach for monitoring biodiversity, it is often difficult to detect all the species present in a bulk sample. In particular, sequence recovery for a given species depends on its biomass and mitome copy number as well as the primer set employed for PCR. To examine these variables, we constructed a mock community of terrestrial arthropods comprised of 374 species. We used this community to examine how species recovery was impacted when amplicon pools were constructed in four ways. The first two protocols involved the construction of bulk DNA extracts from different body segments (Bulk Abdomen, Bulk Leg). The other protocols involved the production of DNA extracts from single legs which were then merged prior to PCR (Composite Leg) or PCR‐amplified separately (Single Leg) and then pooled. The amplicons generated by these four treatments were then sequenced on three platforms (Illumina MiSeq, Ion Torrent PGM and Ion Torrent S5). The choice of sequencing platform did not substantially influence species recovery, although the Miseq delivered the highest sequence quality. As expected, species recovery was most efficient from the Single Leg treatment because amplicon abundance varied little among taxa. Among the three treatments where PCR occurred after pooling, the Bulk Abdomen treatment produced a more uniform read abundance than the Bulk Leg or Composite Leg treatment. Primer choice also influenced species recovery and evenness. Our results reveal how variation in protocols can have substantial impacts on perceived diversity unless sequencing coverage is sufficient to reach an asymptote.
Collapse
Affiliation(s)
| | - Natalia V Ivanova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Sean W J Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Vasco Elbrecht
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Dirk Steinke
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Jeremy R de Waard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.,School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jayme E Sones
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
46
|
Sing KW, Luo J, Wang W, Jaturas N, Soga M, Yang X, Dong H, Wilson JJ. Ring roads and urban biodiversity: distribution of butterflies in urban parks in Beijing city and correlations with other indicator species. Sci Rep 2019; 9:7653. [PMID: 31113976 PMCID: PMC6529450 DOI: 10.1038/s41598-019-43997-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/26/2019] [Indexed: 11/09/2022] Open
Abstract
The capital of China, Beijing, has a history of more than 800 years of urbanization, representing a unique site for studies of urban ecology. Urbanization can severely impact butterfly communities, yet there have been no reports of the species richness and distribution of butterflies in urban parks in Beijing. Here, we conducted the first butterfly survey in ten urban parks in Beijing and estimated butterfly species richness. Subsequently, we examined the distribution pattern of butterfly species and analyzed correlations between butterfly species richness with park variables (age, area and distance to city center), and richness of other bioindicator groups (birds and plants). We collected 587 individual butterflies belonging to 31 species from five families; 74% of the species were considered cosmopolitan. The highest butterfly species richness and abundance was recorded at parks located at the edge of city and species richness was significantly positively correlated with distance from city center (p < 0.05). No significant correlations were detected between the species richness and park age, park area and other bioindicator groups (p > 0.05). Our study provides the first data of butterfly species in urban Beijing, and serves as a baseline for further surveys and conservation efforts.
Collapse
Affiliation(s)
- Kong-Wah Sing
- South China DNA Barcoding Center, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, P.R. China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, P.R. China.
| | - Jiashan Luo
- Institute of Ecology and Geobotany, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, P.R. China
| | - Wenzhi Wang
- South China DNA Barcoding Center, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, P.R. China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, P.R. China
- Wildlife Forensic Science Service, Kunming, Yunnan, P.R. China
- Guizhou Academy of Testing and Analysis, Guiyang, Guizhou, P.R. China
| | - Narong Jaturas
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, 65000, Phitsanulok, Thailand
| | - Masashi Soga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, Japan
| | - Xianzhe Yang
- International College Beijing, China Agricultural University, Beijing, P. R. China
| | - Hui Dong
- Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, 518004, Shenzhen, Guangdong, P.R. China
| | - John-James Wilson
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, 65000, Phitsanulok, Thailand.
- International College Beijing, China Agricultural University, Beijing, P. R. China.
- Vertebrate Zoology at World Museum, National Museums Liverpool, William Brown Street, L3 8EN, Liverpool, United Kingdom.
| |
Collapse
|
47
|
Masonick P, Hernandez M, Weirauch C. No guts, no glory: Gut content metabarcoding unveils the diet of a flower‐associated coastal sage scrub predator. Ecosphere 2019. [DOI: 10.1002/ecs2.2712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul Masonick
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| | - Madison Hernandez
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| | - Christiane Weirauch
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| |
Collapse
|
48
|
Gueuning M, Ganser D, Blaser S, Albrecht M, Knop E, Praz C, Frey JE. Evaluating next-generation sequencing (NGS) methods for routine monitoring of wild bees: Metabarcoding, mitogenomics or NGS barcoding. Mol Ecol Resour 2019; 19:847-862. [PMID: 30912868 PMCID: PMC6850489 DOI: 10.1111/1755-0998.13013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022]
Abstract
Implementing cost‐effective monitoring programs for wild bees remains challenging due to the high costs of sampling and specimen identification. To reduce costs, next‐generation sequencing (NGS)‐based methods have lately been suggested as alternatives to morphology‐based identifications. To provide a comprehensive presentation of the advantages and weaknesses of different NGS‐based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data set (723 specimens identified using morphology), we found that NGS barcoding performed best for both species presence/absence and abundance data, producing only few false positives (3.4%) and no false negatives. In contrast, the proportion of false positives and false negatives was higher using metabarcoding and mitogenomics. Although strong correlations were found between biomass and read numbers, abundance estimates significantly skewed the communities' composition in these two techniques. NGS barcoding recovered the same ecological patterns as morphology. Ecological conclusions based on metabarcoding and mitogenomics were similar to those based on morphology when using presence/absence data, but different when using abundance data. In terms of workload and cost, we show that metabarcoding and NGS barcoding can compete with morphology, but not mitogenomics which was consistently more expensive. Based on these results, we advocate that NGS barcoding is currently the seemliest NGS method for monitoring of wild bees. Furthermore, this method has the advantage of potentially linking DNA sequences with preserved voucher specimens, which enable morphological re‐examination and will thus produce verifiable records which can be fed into faunistic databases.
Collapse
Affiliation(s)
- Morgan Gueuning
- Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, Wädenswil, Switzerland.,Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Dominik Ganser
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Simon Blaser
- Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, Wädenswil, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | | | - Eva Knop
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Christophe Praz
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Juerg E Frey
- Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, Wädenswil, Switzerland
| |
Collapse
|
49
|
Corse E, Tougard C, Archambaud‐Suard G, Agnèse J, Messu Mandeng FD, Bilong Bilong CF, Duneau D, Zinger L, Chappaz R, Xu CC, Meglécz E, Dubut V. One-locus-several-primers: A strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol Evol 2019; 9:4603-4620. [PMID: 31031930 PMCID: PMC6476781 DOI: 10.1002/ece3.5063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets' complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the "one-locus-several-primer-sets" (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey-predator interactions.
Collapse
Affiliation(s)
- Emmanuel Corse
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
- Agence de Recherche pour la Biodiversité à la Réunion (ARBRE)Saint‐Leu, La RéunionFrance
| | | | | | | | - Françoise D. Messu Mandeng
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - Charles F. Bilong Bilong
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - David Duneau
- Université Toulouse 3 Paul SabatierCNRS, ENSFEA, EDB (Laboratoire Évolution & Diversité Biologique)ToulouseFrance
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMPSL Research UniversityParisFrance
| | - Rémi Chappaz
- Irstea, Aix Marseille Univ, RECOVERAix‐en‐ProvenceFrance
| | - Charles C.Y. Xu
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQuebecCanada
| | - Emese Meglécz
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| | - Vincent Dubut
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| |
Collapse
|
50
|
Jusino MA, Banik MT, Palmer JM, Wray AK, Xiao L, Pelton E, Barber JR, Kawahara AY, Gratton C, Peery MZ, Lindner DL. An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol Ecol Resour 2019; 19:176-190. [PMID: 30281913 DOI: 10.1111/1755-0998.12951] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/01/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
Abstract
DNA analysis of predator faeces using high-throughput amplicon sequencing (HTS) enhances our understanding of predator-prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair "ZBJ" to results using the novel primer pair "ANML." To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single-copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre- and post-PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24-40 of 59 taxa (41%-68%). Furthermore, in an HTS comparison of field-collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.
Collapse
Affiliation(s)
- Michelle A Jusino
- United States Department of Agriculture, Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin.,Department of Plant Pathology, University of Florida, Gainesville, Florida
| | - Mark T Banik
- United States Department of Agriculture, Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin
| | - Jonathan M Palmer
- United States Department of Agriculture, Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin
| | - Amy K Wray
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lei Xiao
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida
| | - Emma Pelton
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin.,The Xerces Society for Invertebrate Conservation, Portland, Oregon
| | - Jesse R Barber
- Department of Biological Sciences, Graduate Program in Ecology, Evolution and Behavior, Boise State University, Boise, Idaho
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin
| | - M Zachariah Peery
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel L Lindner
- United States Department of Agriculture, Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, Wisconsin
| |
Collapse
|