1
|
Cortes-Morales JA, Salinas-Sánchez DO, de Jesús Perea-Flores M, González-Cortazar M, Tapia-Maruri D, López-Arellano ME, Rivas-González JM, Zamilpa A, Olmedo-Juárez A. In vitro anthelmintic activity and colocalization analysis of hydroxycinnamic acids obtained from Chamaecrista nictitans against two Haemonchus contortus isolates. Vet Parasitol 2024; 331:110282. [PMID: 39116545 DOI: 10.1016/j.vetpar.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
This study assessed the in vitro anthelmintic activity of ethyl acetate extract (Cn-EtOAc) and its bioactive fractions (CnR3 and CnR5) obtained from Chamaecrista nictitans aerial parts against two Haemonchus contortus (Hc) isolates, one resistant (strain HcIVM-R) and another susceptible (strain HcIVM-S) to ivermectin. Ferulic acid and p-coumaric acid were identified in the bioactive fractions; therefore, their commercial standards were also assessed. A colocalization analysis between the ferulic acid commercial standard and eggs of the HcIVM-R strain was performed using confocal laser scanning microscopy and the ImageJ program. The ovicidal effects of the Cn-EtOAc extract, bioactive fractions and commercial compounds were tested through the egg hatching inhibition (EHI) assay on H. contortus isolates HcIVM-R and HcIVM-S. The Cn-EtOAc caused 88 % and 92 % EHI at 5000 µg/mL on HcIVM-R and HcIVM-S, respectively. Fractions CnR3 and CnR5 displayed the highest ovicidal activity against HcIVM-S, with effective concentrations (EC90) of 2134 and 601 µg/mL, respectively. Meanwhile, the commercial standards ferulic acid and p-coumaric acid also resulted in higher effectiveness on the same strain, with EC90 of 57.5 and 51.1 µg/mL. A colocalization analysis of ferulic acid and eggs of HcIVM-R revealed that this compound is localized to the cuticle surface of the embryo inside the egg parasite. The results demonstrated that both ferulic and p-coumaric acids interrupt the egg-hatching processes of the two Hc isolates. Both phenolic acids isolated from C. nictitans and commercial standards exhibited the best anthelmintic effect on HcIVM-S. These findings indicate that the phenolic acids were less effective in egg hatch inhibiting on the HcIVM-R strain compared to the HcIVM-S strain.
Collapse
Affiliation(s)
- Jorge A Cortes-Morales
- Laboratorio de Fitoquímica y Productos Naturales del Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Morelos, Cuernavaca C.P 62209, Mexico
| | - David Osvaldo Salinas-Sánchez
- Laboratorio de Fitoquímica y Productos Naturales del Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Morelos, Cuernavaca C.P 62209, Mexico; Escuela de Estudios Superiores del Jicarero, Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo s/n, Colonia El Jicarero, Jojutla, Morelos, Mexico
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro-Nanotecnologías (CNMN), Instituto Politécnico Nacional (IPN), Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Colonia Zacatenco, Ciudad de México 07738, Mexico
| | - Manases González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1. Col. Centro. Xochitepec, Morelos C.P. 62790, Mexico
| | - Daniel Tapia-Maruri
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, PO Box 24, Yautepec, Morelos C.P. 62730, Mexico
| | - María Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso. Jiutepec, / A.P. 206-CIVAC, Morelos C.P. 62574, Mexico
| | - Juan M Rivas-González
- Escuela de Estudios Superiores del Jicarero, Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo s/n, Colonia El Jicarero, Jojutla, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1. Col. Centro. Xochitepec, Morelos C.P. 62790, Mexico.
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534 / Col. Progreso. Jiutepec, / A.P. 206-CIVAC, Morelos C.P. 62574, Mexico.
| |
Collapse
|
2
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
3
|
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, Antonopoulos A, Chaudhry U, Flis I, Howell S, McIntyre J, Gilleard JS, Tait A, Mable B, Kaplan R, Sargison N, Britton C, Berriman M, Devaney E, Cotton JA. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep 2022; 41:111522. [PMID: 36261007 PMCID: PMC9597552 DOI: 10.1016/j.celrep.2022.111522] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - David Bartley
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alistair Antonopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ilona Flis
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sue Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary T2N 1N4, Canada
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
4
|
Wen Z, Zhang Z, Aimulajiang K, Aleem MT, Feng J, Liang M, Lu M, Xu L, Song X, Li X, Yan R. Histidine acid phosphatase domain-containing protein from Haemonchus contortus is a stimulatory antigen for the Th1 immune response of goat PBMCs. Parasit Vectors 2022; 15:282. [PMID: 35933400 PMCID: PMC9356432 DOI: 10.1186/s13071-022-05411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Histidine acid phosphatase (HAP), a member of the histidine phosphatase superfamily, is widely found in parasites and is also a potential vaccine antigen or drug target. However, the biological function of HAP in Haemonchus contortus is still unclear. Methods We cloned the HAP gene from H. contortus (Hc-HAP) and expressed the purified recombinant Hc-HAP (rHc-HAP) protein. The transcription of the Hc-HAP gene in the eggs, infective third-stage larvae (L3s), exsheathed third-stage larvae (xL3s) and adults (females/males) was analyzed by quantitative real-time-PCR (qPCR). An immunofluorescence assay was also used to detect the localization of Hc-HAP expression in adult worms. The effect of rHc-HAP on the function of peripheral blood mononuclear cells (PBMCs) was observed by co-culture of rHc-HAP protein with goat PBMCs. Results The qPCR results revealed that the Hc-HAP gene was transcribed at a higher level in the L3 and xL3 stages that there were gender differences in transcription at the adult stage, with females exhibiting higher transcription than males. Moreover, Hc-HAP was mainly expressed in adult intestinal microvilli. Additionally, western blot results revealed that rHc-HAP could be detected in goat sera artificially infected with H. contortus. In the experiments, rHc-HAP bound to goat PBMCs and released nitric oxide. The rHc-HAP also induced the expression of interferon gamma (IFN-γ) and the phosphorylated STAT 1 transcription factor, while inhibiting interleukin-4 expression. Conclusions The results shows that rHc-HAP stimulated the IFN-γ/STAT1 signaling pathway and enabled polarization of PBMCs toward T-helper 1 immune responses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05411-7.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaoying Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
DAVID CAROLINEM, COSTA RICARDOLDA, B. JUNIOR AYLTON, BELTRAME RENATOT, GONZÁLEZ ARACELIR, MADELLA-OLIVEIRA APARECIDAF, QUIRINO CELIAR. Phenotypical categorization of indigenous ewes as resistant, resilient or susceptible to Haemonchus contortus. AN ACAD BRAS CIENC 2022; 94:e20210601. [DOI: 10.1590/0001-3765202220210601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
|
6
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Enhancing the Stability of Haemonchus contortus Glyceraldehyde-3-Phosphate Dehydrogenase and Binding of Host Albumin to the Parasite Enzyme. Acta Parasitol 2020; 65:980-984. [PMID: 32472399 DOI: 10.2478/s11686-020-00212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Haemonchus contortus is an economically important parasite of domestic animals. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) excreted in the ES product of H. contortus can be a promising vaccine candidate for controlling the parasite infection. Unfortunately, the parasite enzyme breaks down rapidly. The current study focusses on stabilizing the recombinant GAPDH (rGAPDH) of H. contortus. METHODS The rGAPDH was purified and stored in two different buffers (sodium phosphate + EDTA and bicarbonate-sodium chloride) to check the stability. The affinity of the parasite enzyme towards host serum (Goat) components was evaluated by affinity chromatography. The interacting component was identified by mass spectrometry. RESULTS Here, we report that the enzyme can be stabilized for at least 3 months if stored in bicarbonate-sodium chloride. This should facilitate testing of the enzyme in challenge trials. Additionally, we show that the parasite enzyme has affinity for host albumin; this interaction may have significance in host-parasite relationship. CONCLUSION The present study reports a combination of sodium bicarbonate (0.1 M) with 0.5 M sodium chloride as a suitable buffer to enhance the stability of H. contortus GAPDH.
Collapse
|
8
|
Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, Beasley H, Beech R, Britton C, Brooks K, Chaudhry U, Maitland K, Martinelli A, Noonan JD, Paulini M, Quail MA, Redman E, Rodgers FH, Sallé G, Shabbir MZ, Sankaranarayanan G, Wit J, Howe KL, Sargison N, Devaney E, Berriman M, Gilleard JS, Cotton JA. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Commun Biol 2020; 3:656. [PMID: 33168940 PMCID: PMC7652881 DOI: 10.1038/s42003-020-01377-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - David Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Wojtek Bazant
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Beasley
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Karen Brooks
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jennifer D Noonan
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Michael A Quail
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Faye H Rodgers
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Guillaume Sallé
- INRAE - U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Centre de recherche Val de Loire, Nouzilly, France
| | | | | | - Janneke Wit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
9
|
Bassetto CC, Almeida FA, Newlands GFJ, Smith WD, Amarante AFT. Repeated vaccination against Haemonchus contortus provides continuous protection to young grazing sheep. Vet Parasitol 2020; 287:109273. [PMID: 33091632 DOI: 10.1016/j.vetpar.2020.109273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023]
Abstract
Haemonchus contortus is the most important gastrointestinal nematode in the tropics and subtropics causing huge economic losses to the small ruminant industry. Vaccination is potentially a sustainable approach to control this parasite and the performance of Barbervax® a vaccine containing integral membrane glycoproteins from H. contortus intestinal cells, was evaluated in naturally infected grazing sheep during their development from sucking lambs to adults. The sheep were randomly assigned to two groups: Vaccine and Control. The Vaccine group were vaccinated 23 times over the course of this two-year trial at intervals of 3-6 weeks. They responded with anti-vaccine specific antibodies, had 80 % lower Haemonchus egg counts and were less anaemic compared with the controls. Packed cell volumes (PCV) were always greater than 25 % in the vaccinated sheep but averaged between 23 % and 24 % in the controls. Total plasma protein values were higher in the vaccinated group from the third vaccination until the end of the trial. Throughout the trial, 88 % of the control sheep were drenched (average of 3.1 drenches per treated animal) but only 57 % of vaccinates, needed a salvage anthelmintic treatment (average of 1.9 drenches per treated animal), however, between group no differences in body weight were observed. In summary, these results indicate that a continuous course of Barbervax® can provide lambs with substantial year-round protection against H. contortus until they reached adulthood.
Collapse
Affiliation(s)
- Cesar C Bassetto
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP, Brazil.
| | - Fabiana A Almeida
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP, Brazil
| | - George F J Newlands
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| | - W David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, UK
| | | |
Collapse
|
10
|
Correlation of salivary antibody to carbohydrate larval antigen (CarLA) with health and gastrointestinal nematode parasitism in sheep under Ontario grazing conditions. Vet Parasitol 2020; 283:109183. [PMID: 32679510 DOI: 10.1016/j.vetpar.2020.109183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/20/2022]
Abstract
Leveraging mucosal immunity is a promising method for controlling gastrointestinal nematode (GIN) parasitism in sheep. Salivary antibody to carbohydrate larval antigen (sCarLA), a heritable measure of immunity to third-stage GIN larvae (L3), has been successfully applied to genetic improvement programs in New Zealand. However, sCarLA levels wane in the absence of ongoing GIN exposure. New Zealand's temperate climate permits year-round exposure to L3, but cold winters in boreal regions such as Ontario, Canada interrupt exposure for five months or more. This study investigated associations between sCarLA levels, GIN parasitism, and indicators of overall health in sheep grazing under Ontario conditions. A commercial flock of 140 Rideau cross ewe lambs were followed from approximately 30 days of age in May 2016 until November 2017, including lambing and lactation in the spring of 2017. Every 6-8 weeks during the grazing season and at mid-gestation in March 2017, fecal egg counts were performed, blood collected to assess serum albumin, globulin, and hematocrit, and pasture samples obtained to confirm exposure to infective larvae. Measurements of sCarLA level were performed at the beginning, middle, and end of each grazing season, and at mid-gestation. Spearman's rank correlation coefficients were calculated to compare sCarLA levels over time, and general linear mixed models created to evaluate associations between sCarLA levels, GIN fecal egg count, hematocrit, serum albumin, and serum globulin. Levels of sCarLA followed a similar seasonal pattern to GIN fecal egg counts with a 6-8 week delay; much higher sCarLA levels were observed in the second grazing season. The proportion of the flock with detectable sCarLA (≥ 0.3 units/mL) was 68.3 % by the end of the first grazing season, declined over winter to 43.9 % at lambing, and approached 100 % after 3 months of grazing in the second grazing season. Correlations between sCarLA levels over time were consistently positive, of weak to moderate strength, and significant (p < 0.05). At all time points, sCarLA level was significantly (p < 0.001) and negatively associated with fecal egg counts. The flock displayed minimal variability in hematocrit, serum albumin, and serum globulin; none of which were significantly associated with sCarLA levels. These results suggest that sCarLA can be maintained over winter and is a useful measure of immunity to GINs in sheep under Ontario grazing conditions.
Collapse
|
11
|
Hinney B, Schoiswohl J, Melville L, Ameen VJ, Wille-Piazzai W, Bauer K, Joachim A, Krücken J, Skuce PJ, Krametter-Frötscher R. High frequency of benzimidazole resistance alleles in trichostrongyloids from Austrian sheep flocks in an alpine transhumance management system. BMC Vet Res 2020; 16:132. [PMID: 32393382 PMCID: PMC7216349 DOI: 10.1186/s12917-020-02353-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background Infections of small ruminants with trichostrongyloid nematodes often result in reduced productivity and may be detrimental to the host. Anthelmintic resistance (AR) against most anthelmintic drug classes is now widespread amongst the trichostrongyloids. Baseline establishment, followed by regular monitoring of the level of AR, is necessary for farmers and veterinarians to make informed decisions about parasite management. The detection of single nucleotide polymorphisms (SNPs) is a sensitive method to detect AR against benzimidazoles (BZs), one of the most widely used anthelmintic classes. Alpine transhumance constitutes a special type of pasturing of sheep from many different farms, the aim of this study was to investigate the prevalence of benzimidazole resistance alleles in this particular management system. Results Sixteen sheep flocks in Styria and Salzburg in Austria were examined by pyrosequencing for SNPs at codons 167, 198 and 200 of the isotype-1 β-tubulin gene. The frequency of the resistance-associated exchange F200Y was 87–100% for H. contortus, 77–100% for T. colubriformis and < 5–66% for T. circumcincta. Additionally, the F167Y polymorphism was detected in T. colubriformis from two farms at a frequency of 19 and 23% respectively. Conclusions The high resistance allele frequency in H. contortus and T. colubriformis in the examined sheep population urgently calls for the development of new treatment strategies to sustainably control trichostrongyloid infections for this kind of pasturing, since the frequent mixing of flocks during the alpine summer grazing must be considered an important risk factor for the spread of resistant nematodes to a large number of farms.
Collapse
Affiliation(s)
- Barbara Hinney
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Julia Schoiswohl
- Department for Farm Animals and Veterinary Public Health, University Clinic for Ruminants, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Lynsey Melville
- Moredun Research Institute, Pentlands Science Parks, Bush Loan, Penicuik, Edinburgh, EH26 OPZ, UK
| | - Vahel J Ameen
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,College of Veterinary Medicine, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Walpurga Wille-Piazzai
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Karl Bauer
- Animal Health Service Styria, Friedrichgasse 11, 8010, Graz, Austria
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Jürgen Krücken
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philip J Skuce
- Moredun Research Institute, Pentlands Science Parks, Bush Loan, Penicuik, Edinburgh, EH26 OPZ, UK
| | - Reinhild Krametter-Frötscher
- Department for Farm Animals and Veterinary Public Health, University Clinic for Ruminants, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
12
|
Rajan P, Mishra PKK, Joshi P. Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol 2019; 41:e12611. [PMID: 30548600 DOI: 10.1111/pim.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022]
Abstract
Haemonchus contortus is an economically important parasite that survives the host defense system by modulating the immune response. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is secreted by the parasite and the host responds by producing anti-enzyme antibodies. The enzyme inhibits complement cascade, an arm of the innate immunity, by binding to complement C3. In this study, the C3 binding site and the antigenic region of the enzyme were identified by generating short recombinant fragments and deleting a defined region of the enzyme. Using these proteins in ligand overlay and plate binding assay, the C3 binding region of GAPDH was localized within the 38 residues represented by 77-114 amino acids whereas one of the antigenic regions was identified in between 77 and 171 amino acids. In addition, deletion of amino acids 77 to 171 from GAPDH (fragment AB) also showed weak immunogenicity but lacked C3 binding activity. Fragment D comprising 95 residues (77-171), had both the C3 binding activity as well as immunogenicity like the parent enzyme, also stimulated host peripheral blood mononuclear cells in vitro. This truncated GAPDH moiety was stable at refrigerated temperature for at least 12 weeks and appears as a promising new therapeutic tool considering its longer shelf life as compared to the parent protein.
Collapse
Affiliation(s)
- Parvathy Rajan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanta K K Mishra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Paritosh Joshi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
13
|
Albuquerque ACA, Bassetto CC, Almeida FA, Hildersley KA, McNeilly TN, Britton C, Amarante AFT. Differences in immune responses to Haemonchus contortus infection in the susceptible Ile de France and the resistant Santa Ines sheep under different anthelmintic treatments regimens. Vet Res 2019; 50:104. [PMID: 31783921 PMCID: PMC6884896 DOI: 10.1186/s13567-019-0722-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Understanding the immunological basis of resistance to gastrointestinal nematode infections in livestock is important in order to develop novel methods of parasite control such as vaccination or genetic selection for parasite resistance. The present study aimed to investigate differences in immune response between parasite resistant Santa Ines and susceptible Ile de France sheep breeds to natural Haemonchus contortus infection. Parasitological parameters, humoral immunity, local and circulating cellular immune responses were evaluated in 19 Santa Ines and 19 Ile de France lambs undergoing different anthelmintic treatments regimens: suppressive treatments (SUP) or targeted selective treatments (TST) over a 5-month grazing period. Santa Ines lambs had significantly lower Haemonchus faecal egg count and worm burden compared to Ile de France regardless of treatment regime. In addition, circulating blood eosinophils count and parasite-specific IgG levels were significantly higher and more rapidly induced in Santa Ines lambs. Abomasal immune responses were generally greater in the resistant breed, which had significantly higher levels of parasite-specific IgA in mucus, and elevated number of globule leukocytes and CD3+ T cells within the abomasal mucosal. Furthermore, numbers of POU2F3+ epithelial cells, a tuft-cell specific transcription factor, were also elevated in the Santa Ines breed, suggesting that this breed is better able to initiate T-helper type 2 immune responses within the abomasum. In conclusion, the differential immunological responses detailed here are relevant to understanding resistance to gastrointestinal nematodes in other host breeds, as well as to resistance breeding as a sustainable control approach for parasitic infections.
Collapse
Affiliation(s)
- Ana Cláudia A. Albuquerque
- School of Veterinary Medicine and Animal Science, UNESP–São Paulo State University, Rua Professor Doutor Walter Mauricio Correa s/n, Botucatu, SP 18618-681 Brazil
| | - Cesar Cristiano Bassetto
- Institute of Biosciences, UNESP–São Paulo State University, Rua Professor Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP 18618-689 Brazil
| | - Fabiana A. Almeida
- Institute of Biosciences, UNESP–São Paulo State University, Rua Professor Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP 18618-689 Brazil
| | - Katie A. Hildersley
- Institute of Biodiversity, Animal Health and Comparative Medicine, UoG–University of Glasgow, Glasgow, G61 1QH UK
- Disease Control Division, MRI –Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ UK
| | - Tom N. McNeilly
- Disease Control Division, MRI –Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ UK
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, UoG–University of Glasgow, Glasgow, G61 1QH UK
| | - Alessandro F. T. Amarante
- Institute of Biosciences, UNESP–São Paulo State University, Rua Professor Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP 18618-689 Brazil
| |
Collapse
|
14
|
Strategic vaccination of hair sheep against Haemonchus contortus. Parasitol Res 2019; 118:2383-2388. [PMID: 31203449 DOI: 10.1007/s00436-019-06367-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
In this study, we evaluated in two trials a protocol designed to protect hair sheep using Barbervax®, a vaccine containing Haemonchus contortus gut membrane glycoprotein antigens. Results indicated that naturally infected vaccinated sheep had significant egg count reductions (90.2 ± 4.03%) compared with controls, although blood parameters remained relatively unchanged probably because the level of challenge was low. Vaccination prevented the periparturient rise in egg shedding of ewes, as well as egg shedding in lambs (37.1%). In the second trial, sheep which were experimentally exposed to higher artificial challenge also showed an efficient response to the vaccine as confirmed by high antibody levels and reduced egg counts and worm burdens (87 ± 5.4% and 79%) respectively. Thus, we believe that the vaccine should be integrated with other management practices for meat hair sheep as it has the advantages of adequate efficacy, reducing anthelmintic utilization and avoiding milk and environmental contamination with chemical residues.
Collapse
|
15
|
Trials with the Haemonchus vaccine, Barbervax ®, in ewes and lambs in a tropical environment: Nutrient supplementation improves protection in periparturient ewes. Vet Parasitol 2018; 264:52-57. [PMID: 30503092 DOI: 10.1016/j.vetpar.2018.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022]
Abstract
Haemonchus contortus is an economic problem in sheep farms worldwide, mainly in the tropics and subtropics. A vaccine against haemonchosis, called Barbervax®, was evaluated in ewes under two nutritional status, naturally infected with gastrointestinal nematodes. Ewes were divided into four groups: Supplemented Diet - Vaccine; Supplemented Diet - No vaccine; Basal Diet - Vaccine and Basal Diet - No vaccine. Their lambs were divided in Vaccinated and No vaccine. Ewes were immunised six times starting about 1 month of pregnancy with the first three doses at 3 week intervals and the last three shots at 4 week intervals. Supplemented ewes had higher body weight, body score and packed cell volume compared with those fed a basal diet. Both groups of vaccinated ewes showed a similar response in circulating anti-vaccine antibodies but the vaccine had no discernible effect on either body weight, body score and packed cell volume. There was a marked group difference in the number of ewes that received precautionary treatments with anthelmintic. All 14 Basal Diet - No vaccine ewes required treatment. In contrast only 7 ewes, in the Supplemented Diet - Vaccine group required anthelmintic treatment. In the Basal Diet - Vaccine and in the Supplemented Diet - No Vaccine groups, 12 and 13 ewes needed anthelmintic treatment, respectively. Vaccinated lambs showed much higher antibody titres resulting in 80% less Haemonchus spp. egg counts comparing with no vaccine lambs. Taken together these results clearly suggest that in pregnant and lactating ewes a combined protective effect between vaccination and improved nutrition resulted in fewer precautionary anthelmintic treatments. Thus, it was possible to achieve a more sustainable level of control of the haemonchosis, less dependent on anthelmintic drugs.
Collapse
|
16
|
Zhang N, Li W, Fu B. Vaccines against Trichinella spiralis: Progress, challenges and future prospects. Transbound Emerg Dis 2018; 65:1447-1458. [PMID: 29873198 DOI: 10.1111/tbed.12917] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023]
Abstract
Trichinella spiralis, the causative agent of trichinellosis, is able to infect a wide range of carnivores and omnivores including human beings. In the past 30 years, a mass of vaccination efforts has been performed to control T. spiralis infection with the purpose of reduction in worm fecundity or decrease in muscle larval and adult burdens. Here, we summarize the development of veterinary vaccines against T. spiralis infection. During recent years, increasing numbers of new vaccine candidates have been developed on the protective immunity against T. spiralis infection in murine model. The vaccine candidates were not only selected from excretory-secretory (ES) antigens, but also from the recombinant functional proteins, such as proteases and some other antigens participated in T. spiralis intracellular processes. However, immunization with a single antigen generally revealed lower protective effects against T. spiralis infection in mice compared to that with the inactivated whole worms or crude extraction and ES productions. Future study of T. spiralis vaccines should focus on evaluation of the protective efficacy of antigens and/or ligands delivered by nanoparticles that could elicit Th2-type immune response on experimental pigs.
Collapse
Affiliation(s)
- Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
17
|
Sallé G, Laing R, Cotton JA, Maitland K, Martinelli A, Holroyd N, Tracey A, Berriman M, Smith WD, Newlands GFJ, Hanks E, Devaney E, Britton C. Transcriptomic profiling of nematode parasites surviving vaccine exposure. Int J Parasitol 2018. [PMID: 29534987 PMCID: PMC5909036 DOI: 10.1016/j.ijpara.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surviving Haemonchus contortus from vaccinated sheep were compared with control worms. There is no evidence for changes in expression of genes encoding Barbervax® antigens. There was increased expression of other proteases and regulators of lysosome trafficking. Surviving worms displayed up-regulated lipid storage and defecation abilities.
Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax® for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins, there is potential for selection of nematodes with altered sequences or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax® with worms from control animals. Barbervax® antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of those are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax® antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the effect of the vaccine. Implications for other potential vaccines for human and veterinary nematodes are discussed.
Collapse
Affiliation(s)
- Guillaume Sallé
- INRA - U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Centre de Recherche Val de Loire, Nouzilly, France; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom.
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Axel Martinelli
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - W David Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - George F J Newlands
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, United Kingdom
| |
Collapse
|
18
|
Doyle SR, Laing R, Bartley DJ, Britton C, Chaudhry U, Gilleard JS, Holroyd N, Mable BK, Maitland K, Morrison AA, Tait A, Tracey A, Berriman M, Devaney E, Cotton JA, Sargison ND. A Genome Resequencing-Based Genetic Map Reveals the Recombination Landscape of an Outbred Parasitic Nematode in the Presence of Polyploidy and Polyandry. Genome Biol Evol 2018; 10:396-409. [PMID: 29267942 PMCID: PMC5793844 DOI: 10.1093/gbe/evx269] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
The parasitic nematode Haemonchus contortus is an economically and clinically important pathogen of small ruminants, and a model system for understanding the mechanisms and evolution of traits such as anthelmintic resistance. Anthelmintic resistance is widespread and is a major threat to the sustainability of livestock agriculture globally; however, little is known about the genome architecture and parameters such as recombination that will ultimately influence the rate at which resistance may evolve and spread. Here, we performed a genetic cross between two divergent strains of H. contortus, and subsequently used whole-genome resequencing of a female worm and her brood to identify the distribution of genome-wide variation that characterizes these strains. Using a novel bioinformatic approach to identify variants that segregate as expected in a pseudotestcross, we characterized linkage groups and estimated genetic distances between markers to generate a chromosome-scale F1 genetic map. We exploited this map to reveal the recombination landscape, the first for any helminth species, demonstrating extensive variation in recombination rate within and between chromosomes. Analyses of these data also revealed the extent of polyandry, whereby at least eight males were found to have contributed to the genetic variation of the progeny analyzed. Triploid offspring were also identified, which we hypothesize are the result of nondisjunction during female meiosis or polyspermy. These results expand our knowledge of the genetics of parasitic helminths and the unusual life-history of H. contortus, and enhance ongoing efforts to understand the genetic basis of resistance to the drugs used to control these worms and for related species that infect livestock and humans throughout the world. This study also demonstrates the feasibility of using whole-genome resequencing data to directly construct a genetic map in a single generation cross from a noninbred nonmodel organism with a complex lifecycle.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - David J Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Barbara K Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Alison A Morrison
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Alan Tracey
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Neil D Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| |
Collapse
|
19
|
Huang Y, Zheng X, Zhang H, Ding H, Guo X, Yang Y, Chen X, Zhou Q, Du A. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus. Front Microbiol 2017; 8:2176. [PMID: 29167662 PMCID: PMC5682392 DOI: 10.3389/fmicb.2017.02176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
Haemonchus contortus (H. contortus) is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans (C. elegans) has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22. In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi) experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant (ok693) from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22. Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.
Collapse
Affiliation(s)
- Yan Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xiuping Zheng
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Hongli Zhang
- Zhejiang Center of Animal Disease Control, Hangzhou, China
| | - Haojie Ding
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolu Guo
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qianjin Zhou
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Wang C, Li F, Zhang Z, Yang X, Ahmad AA, Li X, Du A, Hu M. Recent Research Progress in China on Haemonchus contortus. Front Microbiol 2017; 8:1509. [PMID: 28883809 PMCID: PMC5574212 DOI: 10.3389/fmicb.2017.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 11/23/2022] Open
Abstract
Haemonchus contortus is one of the most important parasites of ruminants with worldwide distribution that can bring huge economic losses to the breeding industry of cattle, sheep, and goats. In recent 20 years, studies on H. contortus in China mainly focused on the epidemiology, population genetics, anthelmintic resistance, structural and functional studies of important genes regulating the development of this parasite, interaction between parasite molecules and host cells and vaccine development against haemonchosis, and achieved good progress. However, there is no systematic review about the studies by Chinese researchers on H. contortus in China. The purpose of this review is to bring together the findings from the studies on H. contortus in China in order to obtain the knowledge gained from the recent studies in China and provide foundation for identifying future research directions to establish novel diagnostic methods, discover new drug targets and vaccine candidates for use in preventing and controlling H. contortus in China.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zongze Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Awais A. Ahmad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|