1
|
Alkan C, O’Brien T, Kenyon V, Ikegami T. Computer-Selected Antiviral Compounds: Assessing In Vitro Efficacies against Rift Valley Fever Virus. Viruses 2024; 16:88. [PMID: 38257788 PMCID: PMC10818293 DOI: 10.3390/v16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rift Valley fever is a zoonotic viral disease transmitted by mosquitoes, impacting both humans and livestock. Currently, there are no approved vaccines or antiviral treatments for humans. This study aimed to evaluate the in vitro efficacy of chemical compounds targeting the Gc fusion mechanism. These compounds were identified through virtual screening of millions of commercially available small molecules using a structure-based artificial intelligence bioactivity predictor. In our experiments, a pretreatment with small molecule compounds revealed that 3 out of 94 selected compounds effectively inhibited the replication of the Rift Valley fever virus MP-12 strain in Vero cells. As anticipated, these compounds did not impede viral RNA replication when administered three hours after infection. However, significant inhibition of viral RNA replication occurred upon viral entry when cells were pretreated with these small molecules. Furthermore, these compounds exhibited significant inhibition against Arumowot virus, another phlebovirus, while showing no antiviral effects on tick-borne bandaviruses. Our study validates AI-based virtual high throughput screening as a rational approach for identifying effective antiviral candidates for Rift Valley fever virus and other bunyaviruses.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Terrence O’Brien
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA;
| | | | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Pawęska JT, Jansen van Vuren P, Msimang V, Lô MM, Thiongane Y, Mulumba-Mfumu LK, Mansoor A, Fafetine JM, Magona JW, Boussini H, Bażanow B, Wilson WC, Pepin M, Unger H, Viljoen G. Large-Scale International Validation of an Indirect ELISA Based on Recombinant Nucleocapsid Protein of Rift Valley Fever Virus for the Detection of IgG Antibody in Domestic Ruminants. Viruses 2021; 13:1651. [PMID: 34452515 PMCID: PMC8402881 DOI: 10.3390/v13081651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Diagnostic performance of an indirect enzyme-linked immunosorbent assay (I-ELISA) based on a recombinant nucleocapsid protein (rNP) of the Rift Valley fever virus (RVFV) was validated for the detection of the IgG antibody in sheep (n = 3367), goat (n = 2632), and cattle (n = 3819) sera. Validation data sets were dichotomized according to the results of a virus neutralization test in sera obtained from RVF-endemic (Burkina Faso, Democratic Republic of Congo, Mozambique, Senegal, Uganda, and Yemen) and RVF-free countries (France, Poland, and the USA). Cut-off values were defined using the two-graph receiver operating characteristic analysis. Estimates of the diagnostic specificity of the RVFV rNP I-ELISA in animals from RVF-endemic countries ranged from 98.6% (cattle) to 99.5% (sheep) while in those originating from RVF-free countries, they ranged from 97.7% (sheep) to 98.1% (goats). Estimates of the diagnostic sensitivity in ruminants from RVF-endemic countries ranged from 90.7% (cattle) to 100% (goats). The results of this large-scale international validation study demonstrate the high diagnostic accuracy of the RVFV rNP I-ELISA. Standard incubation and inactivation procedures evaluated did not have an adverse effect on the detectable levels of the anti-RVFV IgG in ruminant sera and thus, together with recombinant antigen-based I-ELISA, provide a simple, safe, and robust diagnostic platform that can be automated and carried out outside expensive bio-containment facilities. These advantages are particularly important for less-resourced countries where there is a need to accelerate and improve RVF surveillance and research on epidemiology as well as to advance disease control measures.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO Health & Biosecurity, Geelong, VIC 3220, Australia;
| | - Veerle Msimang
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa;
| | - Modu Moustapha Lô
- Laboratoire National de l’Elevage et de Recherches Vétérinaires, Route de Front de Terre, Dakar Hann 2057, BP, Senegal; (M.M.L.); (Y.T.)
| | - Yaya Thiongane
- Laboratoire National de l’Elevage et de Recherches Vétérinaires, Route de Front de Terre, Dakar Hann 2057, BP, Senegal; (M.M.L.); (Y.T.)
| | - Leopold K. Mulumba-Mfumu
- Ministry of Agriculture, Democratic Republic of Congo, Kinshasa 7948, Democratic Republic of the Congo;
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, P.O. Box 127, Kinshasa XI, Democratic Republic of the Congo
| | - Alqadasi Mansoor
- Central Veterinary Laboratory, General Directorate of Animal Health & Veterinary Quarantine, Ministry of Agriculture and Irrigation, Sana’a 31220, Yemen;
- Food and Agriculture Organization Office, Sana’a 31220, Yemen
| | - José M. Fafetine
- Veterinary Faculty, Eduardo Mondlane University, Maputo 1103, Mozambique;
| | - Joseph W. Magona
- National Livestock Resources Research Institute, Tororo P.O. Box 96, Uganda;
- Food and Agriculture Organization, Gaborone P.O. Box 54, Botswana
| | - Hiver Boussini
- Direction Generale Des Services Veterinaires, Ministère des Ressources Animales, Ouagadougou 09 BP 907, Burkina Faso;
- African Union Interafrican Bureau for Animal Resources, Nairobi P.O. Box 30786-00100, Kenya
| | - Barbara Bażanow
- Department of Pathology, Faculty of Veterinary Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Foreign Arthropod Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Manhattan, KS 66502, USA;
| | - Michel Pepin
- Agence Française de Sécurité Sanitaire des Aliments, F-69364 Lyon, France;
- VetAgro Sup, Campus Vétérinaire de Lyon, F-69364 Lyon, France
| | - Hermann Unger
- Joint FAO/IAEA Centre for Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria; (H.U.); (G.V.)
| | - Gerrit Viljoen
- Joint FAO/IAEA Centre for Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria; (H.U.); (G.V.)
| |
Collapse
|
3
|
Kroeker AL, Babiuk S, Pickering BS, Richt JA, Wilson WC. Livestock Challenge Models of Rift Valley Fever for Agricultural Vaccine Testing. Front Vet Sci 2020; 7:238. [PMID: 32528981 PMCID: PMC7266933 DOI: 10.3389/fvets.2020.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of Rift Valley Fever virus (RVFV) in Kenya in 1930, the virus has become widespread throughout most of Africa and is characterized by sporadic outbreaks. A mosquito-borne pathogen, RVFV is poised to move beyond the African continent and the Middle East and emerge in Europe and Asia. There is a risk that RVFV could also appear in the Americas, similar to the West Nile virus. In light of this potential threat, multiple studies have been undertaken to establish international surveillance programs and diagnostic tools, develop models of transmission dynamics and risk factors for infection, and to develop a variety of vaccines as countermeasures. Furthermore, considerable efforts to establish reliable challenge models of Rift Valley fever virus have been made and platforms for testing potential vaccines and therapeutics in target species have been established. This review emphasizes the progress and insights from a North American perspective to establish challenge models in target livestock such as cattle, sheep, and goats in comparisons to other researchers' reports. A brief summary of the potential role of wildlife, such as buffalo and white-tailed deer as reservoir species will also be discussed.
Collapse
Affiliation(s)
- Andrea Louise Kroeker
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley S Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Juergen A Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS, United States
| | - William C Wilson
- USDA, Arthropod-Borne Animal Diseases Research Unit (ABADRU), Manhattan, KS, United States
| |
Collapse
|
4
|
Odendaal L, Davis AS, Fosgate GT, Clift SJ. Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Young Lambs. Vet Pathol 2019; 57:66-81. [PMID: 31842723 DOI: 10.1177/0300985819882633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A clear distinction can be made regarding the susceptibility to and the severity of lesions in young lambs when compared to adult sheep. In particular, there are important differences in the lesions and tropism of Rift Valley fever virus (RVFV) in the liver, kidneys, and lymphoid tissues of young lambs. A total of 84 lambs (<6 weeks old), necropsied during the 2010 to 2011 Rift Valley fever (RVF) outbreak in South Africa, were examined by histopathology and immunohistochemistry (IHC). Of the 84 lambs, 71 were positive for RVFV. The most striking diagnostic feature in infected lambs was diffuse necrotizing hepatitis with multifocal liquefactive hepatic necrosis (primary foci) against a background of diffuse hepatocellular death. Lymphocytolysis was present in all lymphoid organs except for the thymus. Lesions in the kidney rarely progressed beyond hydropic change and occasional pyknosis or karyolysis in renal tubular epithelial cells. Viral antigen was diffusely present in the cytoplasm of hepatocytes, but this labeling was noticeably sparse in primary foci. Immunolabeling for RVFV in young lambs was also detected in macrophages, vascular smooth muscle cells, adrenocortical epithelial cells, renal tubular epithelial cells, renal perimacular cells, and cardiomyocytes. RVFV immunolabeling was also often present in capillaries and small blood vessels either as non-cell-associated viral antigen, as antigen in endothelial cells, or intravascular cellular debris. Specimens from the liver, spleen, kidney, and lungs were adequate to confirm a diagnosis of RVF. Characteristic lesions were present in these organs with the liver and spleen being the most consistently positive for RVFV by IHC.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
5
|
Hallam HJ, Lokugamage N, Ikegami T. Rescue of infectious Arumowot virus from cloned cDNA: Posttranslational degradation of Arumowot virus NSs protein in human cells. PLoS Negl Trop Dis 2019; 13:e0007904. [PMID: 31751340 PMCID: PMC6894884 DOI: 10.1371/journal.pntd.0007904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquito-borne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I interferon (IFN)-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVΔNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVΔNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVΔNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.
Collapse
Affiliation(s)
- Hoai J. Hallam
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay Based on Recombinant Baculovirus-Expressed Rift Valley Fever Virus Nucleoprotein as the Diagnostic Antigen. J Clin Microbiol 2019; 57:JCM.01058-19. [PMID: 31366690 DOI: 10.1128/jcm.01058-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
The increasing risk of Rift Valley fever virus (RVFV) infection as a global veterinary and public health threat demands the development of safe and accurate diagnostic tests. The aim of this study was to assess the suitability of a baculovirus expression system to produce recombinant RVFV nucleoprotein (N) for use as serodiagnostic antigen in an indirect enzyme-linked immunosorbent assay (ELISA). The ability of the recombinant N antigen to detect RVFV antibody responses was evaluated in ELISA format using antisera from sheep and cattle experimentally infected with two genetically distinct wild-type RVFV strains and sera from indigenous sheep and goat populations exposed to natural RVFV field infection in The Gambia. The recombinant N exhibited specific reactivity with the N-specific monoclonal antibody and various hyperimmune serum samples from ruminants. The indirect ELISA detected N-specific antibody responses in animals with 100% sensitivity compared to the plaque reduction neutralization test (6 to 21 days postinfection) and with 97% and 100% specificity in sheep and cattle, respectively. There was a high level of correlation between the indirect N ELISA and the virus neutralization test for sheep sera (R 2 = 0.75; 95% confidence interval [CI] = 0.73 to 0.92) and cattle sera (R 2 = 0.80; 95% CI = 0.67 to 0.97); in addition, the N-specific ELISA detected RVFV seroprevalence levels of 26.1% and 54.3% in indigenous sheep and goats, respectively, in The Gambia. The high specificity and correlation with the virus neutralization test support the idea of the feasibility of using the recombinant baculovirus-expressed RVFV N-based indirect ELISA to assess RVFV seroprevalence in livestock in areas of endemicity and nonendemicity.
Collapse
|
7
|
Jansen van Vuren P, Kgaladi J, Patharoo V, Ohaebosim P, Msimang V, Nyokong B, Paweska JT. Human Cases of Rift Valley Fever in South Africa, 2018. Vector Borne Zoonotic Dis 2018; 18:713-715. [PMID: 30183525 PMCID: PMC6276270 DOI: 10.1089/vbz.2018.2357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major Rift Valley fever (RVF) epidemics in South Africa occur at irregular intervals, usually spanning several decades, with human cases rarely reported in the absence of widespread outbreaks in livestock. This report describes four cases of RVF in farm workers associated with an isolated outbreak on a sheep farm in the Free State Province of South Africa, in 2018. In contrast to the last major RVF epidemic in South Africa in 2010–2011, where detection of human cases served as an alert for an ongoing outbreak in livestock, the current isolated outbreak was first detected in livestock, and human cases recognized following subsequent epidemiological investigation. This highlights the importance of early recognition of livestock cases in reducing risk and impact of a subsequent RVF epidemic in humans. People working with animals should be aware of transmission routes and take precautions to minimize risk of infection.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Joe Kgaladi
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Venessa Patharoo
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Phumza Ohaebosim
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Veerle Msimang
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| | - Babsy Nyokong
- Free State Department of Health, Bloemfontein, South Africa
| | - Janusz T Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, South Africa
| |
Collapse
|
8
|
Bosco-Lauth AM, Calvert AE, Root JJ, Gidlewski T, Bird BH, Bowen RA, Muehlenbachs A, Zaki SR, Brault AC. Vertebrate Host Susceptibility to Heartland Virus. Emerg Infect Dis 2018; 22:2070-2077. [PMID: 27869591 PMCID: PMC5189141 DOI: 10.3201/eid2212.160472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Virus-infected Ag129 mice could be a useful model for identifying tick infection or virus transmission. Heartland virus (HRTV) is a recently described phlebovirus initially isolated in 2009 from 2 humans who had leukopenia and thrombocytopenia. Serologic assessment of domestic and wild animal populations near the residence of 1 of these persons showed high exposure rates to raccoons, white-tailed deer, and horses. To our knowledge, no laboratory-based assessments of viremic potential of animals infected with HRTV have been performed. We experimentally inoculated several vertebrates (raccoons, goats, chickens, rabbits, hamsters, C57BL/6 mice, and interferon-α/β/γ receptor–deficient [Ag129]) mice with this virus. All animals showed immune responses against HRTV after primary or secondary exposure. However, neutralizing antibody responses were limited. Only Ag129 mice showed detectable viremia and associated illness and death, which were dose dependent. Ag129 mice also showed development of mean peak viral antibody titers >8 log10 PFU/mL, hemorrhagic hepatic lesions, splenomegaly, and large amounts of HRTV antigen in mononuclear cells and hematopoietic cells in the spleen.
Collapse
|
9
|
Risk analysis of inter-species reassortment through a Rift Valley fever phlebovirus MP-12 vaccine strain. PLoS One 2017; 12:e0185194. [PMID: 28926632 PMCID: PMC5604998 DOI: 10.1371/journal.pone.0185194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV), belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV) and Gouleako goukovirus (GOLV), are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.
Collapse
|
10
|
Serological and genomic evidence of Rift Valley fever virus during inter-epidemic periods in Mauritania. Epidemiol Infect 2016; 145:1058-1068. [PMID: 28029091 DOI: 10.1017/s0950268816003022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen of major concern throughout Africa and the Arabian Peninsula, affecting both livestock and humans. In the past recurrent epidemics were reported in Mauritania and studies focused on the analysis of samples from affected populations during acute outbreaks. To verify characteristics and presence of RVFV during non-epidemic periods we implemented a multi-stage serological and molecular analysis. Serum samples of small ruminants, cattle and camels were obtained from Mauritania during an inter-epidemic period in 2012-2013. This paper presents a comparative analysis of potential variations and shifts of antibody presence and the capability of inter-epidemic infections in Mauritanian livestock. We observed distinct serological differences between tested species (seroprevalence: small ruminants 3·8%, cattle 15·4%, camels 32·0%). In one single bovine from Nouakchott, a recent RVF infection could be identified by the simultaneous detection of IgM antibodies and viral RNA. This study indicates the occurrence of a low-level enzootic RVFV circulation in livestock in Mauritania. Moreover, results indicate that small ruminants can preferably act as sentinels for RVF surveillance.
Collapse
|
11
|
Abstract
Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.
Collapse
|
12
|
Lorenzo G, López-Gil E, Warimwe GM, Brun A. Understanding Rift Valley fever: contributions of animal models to disease characterization and control. Mol Immunol 2015; 66:78-88. [PMID: 25725948 DOI: 10.1016/j.molimm.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/26/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology. Translation of data obtained in these animal models to target species (ruminants and humans) is highly desirable but does not always occur. Small ruminants and non-human primates have been used for pathogenesis and transmission studies, and for testing the efficacy of vaccines and therapeutic antiviral compounds. However, the molecular mechanisms of the immune response elicited by RVF virus infection or vaccination are still poorly understood. The paucity of data in this area offers opportunities for new research activities and programs. This review summarizes our current understanding with respect to immunity and pathogenesis of RVF in animal models with a particular emphasis on small ruminants and non-human primates, including recent experimental infection data in sheep.
Collapse
Affiliation(s)
- Gema Lorenzo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Elena López-Gil
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain
| | - George M Warimwe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
13
|
Tokuda S, Do Valle TZ, Batista L, Simon-Chazottes D, Guillemot L, Bouloy M, Flamand M, Montagutelli X, Panthier JJ. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice. Genes Immun 2015; 16:206-12. [PMID: 25569261 DOI: 10.1038/gene.2014.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/09/2022]
Abstract
The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.
Collapse
Affiliation(s)
- S Tokuda
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - T Z Do Valle
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France [3] Instituto Oswaldo Cruz, Laboratório de Imunomodulação e Protozoologia, Fiocruz, Rio de Janeiro, Brasil
| | - L Batista
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris, France
| | - D Simon-Chazottes
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - L Guillemot
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - M Bouloy
- Institut Pasteur, Bunyaviruses Molecular Genetics, Paris, France
| | - M Flamand
- Institut Pasteur, Structural Virology, Paris, France
| | - X Montagutelli
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| | - J-J Panthier
- 1] Institut Pasteur, Developmental & Stem Cell Biology Department, Mouse functional Genetics, Paris, France [2] Centre National de la Recherche Scientifique, URA 2578, Paris, France
| |
Collapse
|
14
|
A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus. Bull Math Biol 2014; 76:2052-72. [PMID: 25102776 DOI: 10.1007/s11538-014-9998-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.
Collapse
|
15
|
Beechler BR, Bengis R, Swanepoel R, Paweska JT, Kemp A, van Vuren PJ, Joubert J, Ezenwa VO, Jolles AE. Rift valley Fever in Kruger national park: do buffalo play a role in the inter-epidemic circulation of virus? Transbound Emerg Dis 2013; 62:24-32. [PMID: 24330522 DOI: 10.1111/tbed.12197] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Indexed: 11/28/2022]
Abstract
Rift Valley fever (RVF) is a zoonotic mosquito-borne virus disease of livestock and wild ruminants that has been identified as a risk for international spread. Typically, the disease occurs in geographically limited outbreaks associated with high rainfall events and can cause massive losses of livestock. It is unclear how RVF virus persists during inter-epidemic periods but cryptic cycling of the virus in wildlife populations may play a role. We investigated the role that free-living African buffalo (Syncerus caffer caffer) might play in inter-epidemic circulation of the virus and looked for geographic, age and sex patterns of Rift Valley fever virus (RVFV) infection in African buffalo. Buffalo serum samples were collected (n = 1615) in Kruger National Park (KNP), South Africa, during a period of 1996-2007 and tested for antibodies to RVF. We found that older animals were more likely to be seropositive for anti-RVFV antibody than younger animals, but sex was not correlated with the likelihood of being anti-RVFV antibody positive. We also found geographic variation within KNP; herds in the south were more likely to have acquired anti-RVFV antibody than herds farther north - which could be driven by host or vector ecology. In all years of the study between 1996 and 2007, we found young buffalo (under 2 years of age) that were seropositive for anti-RVFV antibody, with prevalence ranging between 0 and 27% each year, indicating probable circulation. In addition, we also conducted a 4-year longitudinal study on 227 initially RVFV seronegative buffalo to look for evidence of seroconversion outside known RVF outbreaks within our study period (2008-2012). In the longitudinal study, we found five individuals that seroconverted from anti-RVFV antibody negative to anti-RVFV antibody positive, outside of any detected outbreak. Overall, our results provide evidence of long-term undetected circulation of RVFV in the buffalo population.
Collapse
Affiliation(s)
- B R Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rift valley fever in humans and animals in Mayotte, an endemic situation? PLoS One 2013; 8:e74192. [PMID: 24098637 PMCID: PMC3787064 DOI: 10.1371/journal.pone.0074192] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/28/2013] [Indexed: 11/19/2022] Open
Abstract
Retrospective studies and surveillance on humans and animals revealed that Rift Valley Fever virus (RVFV) has been circulating on Mayotte for at least several years. A study was conducted in 2011 to estimate the seroprevalence of RVF in humans and in animals and to identify associated risk factors. Using a multistage cluster sampling method, 1420 individuals were enrolled in the human study, including 337 children aged 5 to 14 years. For the animal study, 198 seronegative ruminants from 33 randomly selected sentinel ruminant herds were followed up for more than one year. In both studies, information on environment and risk factors was collected through a standardized questionnaire. The overall weighted seroprevalence of RVFV antibodies in the general population aged ≥5 years was 3.5% (95% CI 2.6–4.8). The overall seroprevalence of RVFV antibodies in the ruminant population was 25.3% (95% CI 19.8–32.2). Age (≥15), gender (men), place of birth on the Comoros, living in Mayotte since less than 5 years, low educational level, farming and living close to a water source were significantly associated with RVFV seropositivity in humans. Major risk factors for RFV infection in animals were the proximity of the farm to a water point, previous two-month rainfall and absence of abortions disposal. Although resulting in few clinical cases in humans and in animals, RVFV has been circulating actively on the island of Mayotte, in a context of regular import of the virus from nearby countries through illegal animal movements, the presence of susceptible animals and a favorable environment for mosquito vectors to maintain virus transmission locally. Humans and animals share the same ways of RVFV transmission, with mosquitoes playing an important role. The studies emphasize the need for a one health approach in which humans and animals within their ecosystems are included.
Collapse
|
17
|
Faburay B, Wilson W, McVey DS, Drolet BS, Weingartl H, Madden D, Young A, Ma W, Richt JA. Rift Valley fever virus structural and nonstructural proteins: recombinant protein expression and immunoreactivity against antisera from sheep. Vector Borne Zoonotic Dis 2013; 13:619-29. [PMID: 23962238 DOI: 10.1089/vbz.2012.1285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA).
Collapse
Affiliation(s)
- Bonto Faburay
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fischer EAJ, Boender GJ, Nodelijk G, de Koeijer AA, van Roermund HJW. The transmission potential of Rift Valley fever virus among livestock in the Netherlands: a modelling study. Vet Res 2013; 44:58. [PMID: 23876054 PMCID: PMC3733972 DOI: 10.1186/1297-9716-44-58] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 06/27/2013] [Indexed: 12/02/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic vector-borne infection and causes a potentially severe disease. Many mammals are susceptible to infection including important livestock species. Although currently confined to Africa and the near-East, this disease causes concern in countries in temperate climates where both hosts and potential vectors are present, such as the Netherlands. Currently, an assessment of the probability of an outbreak occurring in this country is missing. To evaluate the transmission potential of RVFV, a mathematical model was developed and used to determine the initial growth and the Floquet ratio, which are indicators of the probability of an outbreak and of persistence in a periodic changing environment caused by seasonality. We show that several areas of the Netherlands have a high transmission potential and risk of persistence of the infection. Counter-intuitively, these are the sparsely populated livestock areas, due to the high vector-host ratios in these areas. Culex pipiens s.l. is found to be the main driver of the spread and persistence, because it is by far the most abundant mosquito. Our investigation underscores the importance to determine the vector competence of this mosquito species for RVFV and its host preference.
Collapse
Affiliation(s)
- Egil AJ Fischer
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | - Gert-Jan Boender
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | - Gonnie Nodelijk
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | - Aline A de Koeijer
- Central Veterinary Institute, Part of Wageningen UR, Lelystad, The Netherlands
| | | |
Collapse
|
19
|
Development and evaluation of one-step rRT-PCR and immunohistochemical methods for detection of Rift Valley fever virus in biosafety level 2 diagnostic laboratories. J Virol Methods 2012; 179:373-82. [DOI: 10.1016/j.jviromet.2011.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 11/17/2022]
|
20
|
Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J Clin Microbiol 2011; 50:372-7. [PMID: 22135253 DOI: 10.1128/jcm.01319-11] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent emergence of the human infection confirmed to be caused by severe fever with thrombocytopenia syndrome virus (SFTSV) in China is of global concern. Safe diagnostic immunoreagents for determination of human and animal seroprevalence in epidemiological investigations are urgently needed. This paper describes the cloning and expression of the nucleocapsid (N) protein of SFTSV. An N-protein-based double-antigen sandwich enzyme-linked immunosorbent assay (ELISA) system was set up to detect the total antibodies in human and animal sera. We reasoned that as the double-antigen sandwich ELISA detected total antibodies with a higher sensitivity than traditional indirect ELISA, it could be used to detect SFTSV-specific antibodies from different animal species. The serum neutralization test was used to validate the performance of this ELISA system. All human and animal sera that tested positive in the neutralization test were also positive in the sandwich ELISA, and there was a high correlation between serum neutralizing titers and ELISA readings. Cross-reactivity was evaluated, and the system was found to be highly specific to SFTSV; all hantavirus- and dengue virus-confirmed patient samples were negative. SFTSV-confirmed human and animal sera from both Anhui and Hubei Provinces in China reacted with N protein in this ELISA, suggesting no major antigenic variation between geographically disparate virus isolates and the suitability of this assay in nationwide application. ELISA results showed that 3.6% of the human serum samples and 47.7% of the animal field serum samples were positive for SFTSV antibodies, indicating that SFTSV has circulated widely in China. This assay, which is simple to operate, poses no biohazard risk, does not require sophisticated equipment, and can be used in disease surveillance programs, particularly in the screening of large numbers of samples from various animal species.
Collapse
|
21
|
Validation of an IgM antibody capture ELISA based on a recombinant nucleoprotein for identification of domestic ruminants infected with Rift Valley fever virus. J Virol Methods 2011; 177:140-6. [DOI: 10.1016/j.jviromet.2011.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
|
22
|
Kim HJ, Nah JJ, Moon JS, Ko YJ, Yoo HS, Kweon CH. Competitive ELISA for the detection of antibodies to Rift Valley fever virus in goats and cattle. J Vet Med Sci 2011; 74:321-7. [PMID: 22020149 DOI: 10.1292/jvms.11-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) is one of the important emerging viral diseases of serious impact in public health and animal hygiene both in human and animal industries. In this study, we developed a monoclonal antibody-based competitive ELISA for the detection of antibodies to RVFV in goats and cattle. The recombinant N protein of RVFV was expressed in E. coli with a six-histidine tag, and the purified N protein was used for detecting antigen with a competitive monoclonal antibody against RVFV antibodies. The competitive ELISA (C-ELISA) could detect antibodies at 9-11 days after inoculation in goats and cattle with a sensitivity of 94.7% (virus neutralization titer >32) and specificity of 99.7%, respectively. In addition, the C-ELISA did not show any cross-reactivity with positive sera against arboviruses such as Akabane, Aino, Chuzan, Ibaraki and bovine ephemeral fever virus, which are prevalent viral agents in ruminant animals throughout Southeast Asia. The results of the present study indicate that the C-ELISA is a simple, rapid and convenient serodiagnostic method for RVFV in goats and cattle.
Collapse
Affiliation(s)
- Hyun-Joo Kim
- National Veterinary Research and Quarantine Service, Anyang, Gyeonggi 430–824, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Jansen van Vuren P, Tiemessen CT, Paweska JT. Anti-nucleocapsid protein immune responses counteract pathogenic effects of Rift Valley fever virus infection in mice. PLoS One 2011; 6:e25027. [PMID: 21949840 PMCID: PMC3174991 DOI: 10.1371/journal.pone.0025027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/25/2011] [Indexed: 12/31/2022] Open
Abstract
The known virulence factor of Rift Valley fever virus (RVFV), the NSs protein, counteracts the antiviral effects of the type I interferon response. In this study we evaluated the expression of several genes in the liver and spleen involved in innate and adaptive immunity of mice immunized with a RVFV recombinant nucleocapsid protein (recNP) combined with Alhydrogel adjuvant and control animals after challenge with wild type RVFV. Mice immunized with recNP elicited an earlier IFNβ response after challenge compared to non-immunized controls. In the acute phase of liver infection in non-immunized mice there was a massive upregulation of type I and II interferon, accompanied by high viral titers, and the up- and downregulation of several genes involved in the activation of B- and T-cells, indicating that both humoral and cellular immunity is modulated during RVFV infection. Various genes involved in pro-inflammatory responses and with pro-apoptotic effects were strongly upregulated and anti-apoptotic genes were downregulated in liver of non-immunized mice. Expression of many genes involved in B- and T-cell immunity were downregulated in spleen of non-immunized mice but normal in immunized mice. A strong bias towards apoptosis and inflammation in non-immunized mice at an acute stage of liver infection associated with suppression of several genes involved in activation of humoral and cellular immunity in spleen, suggests that RVFV evades the host immune response in more ways than only by inhibition of type I interferon, and that immunopathology of the liver plays a crucial role in RVF disease progression.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Division Virology and Communicable Diseases Surveillance, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- Division Virology and Communicable Diseases Surveillance, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Cell Biology/AIDS Virus Research Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Janusz T. Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Division Virology and Communicable Diseases Surveillance, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
24
|
Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus(Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 2010; 41:61. [PMID: 21188836 PMCID: PMC2896810 DOI: 10.1051/vetres/2010033] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever(RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the beginning of the 1930's in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus.
Collapse
|
25
|
Busquets N, Xavier F, Martín-Folgar R, Lorenzo G, Galindo-Cardiel I, del Val BP, Rivas R, Iglesias J, Rodríguez F, Solanes D, Domingo M, Brun A. Experimental Infection of Young Adult European Breed Sheep with Rift Valley Fever Virus Field Isolates. Vector Borne Zoonotic Dis 2010; 10:689-96. [DOI: 10.1089/vbz.2009.0205] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nuria Busquets
- CReSA, Centre de Recerca en Sanitat Animal, UAB-IRTA, Bellaterra, Spain
| | - F. Xavier
- CReSA, Centre de Recerca en Sanitat Animal, UAB-IRTA, Bellaterra, Spain
| | | | - Gema Lorenzo
- CISA, Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Spain
| | | | | | - Raquel Rivas
- CReSA, Centre de Recerca en Sanitat Animal, UAB-IRTA, Bellaterra, Spain
| | - Javier Iglesias
- CISA, Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Spain
| | | | - David Solanes
- CReSA, Centre de Recerca en Sanitat Animal, UAB-IRTA, Bellaterra, Spain
| | - Mariano Domingo
- CReSA, Centre de Recerca en Sanitat Animal, UAB-IRTA, Bellaterra, Spain
| | - Alejandro Brun
- CISA, Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Spain
| |
Collapse
|
26
|
Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid detection of Rift Valley fever virus in clinical specimens. J Clin Microbiol 2008; 47:645-51. [PMID: 19109471 DOI: 10.1128/jcm.01412-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper reports on the development and validation of a real-time reverse transcription-loop-mediated isothermal amplification assay (RT-LAMP) targeting the genomic large RNA segment of Rift Valley fever virus (RVFV). The set of six designed RT-LAMP primers identified strains of RVFV isolated in geographically distinct areas over a period of 50 years; there was no cross-reactivity with other genetically related and unrelated arboviruses. When testing serial sera and plasma from sheep experimentally infected with wild-type RVFV, there was 100% agreement between results of the RT-LAMP, a TaqMan-based real-time PCR, and virus isolation. Similarly, the assay had very high levels of diagnostic sensitivity and specificity when testing various clinical specimens from humans and animals naturally infected with the virus during recent outbreaks of the disease in Africa. The detection of specific viral genome targets in positive clinical specimens was achieved in less than 30 min. As a highly accurate, rapid, and very simple nucleic acid detection format, the RT-LAMP has the potential to be used in less-well-equipped laboratories in Africa and as a portable device during RVF outbreaks in remote areas, and it can be a valuable tool for the differential diagnosis of viral hemorrhagic fevers.
Collapse
|
27
|
Kasari TR, Carr DA, Lynn TV, Weaver JT. Evaluation of pathways for release of Rift Valley fever virus into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United States. J Am Vet Med Assoc 2008; 232:514-29. [DOI: 10.2460/javma.232.4.514] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Paweska JT, van Vuren PJ, Kemp A, Buss P, Bengis RG, Gakuya F, Breiman RF, Njenga MK, Swanepoel R. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo. Vet Microbiol 2008; 127:21-8. [PMID: 17884306 DOI: 10.1016/j.vetmic.2007.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Wild ruminants are thought to serve as natural hosts for Rift Valley fever virus (RVFV) but the role of these animals as reservoirs for RVFV during inter-epidemic periods and as amplifiers during epidemics is not well understood. An indirect enzyme-linked immunoassay (I-ELISA) based on the recombinant nucleocapsid protein (rNp) of RVFV was validated for the detection of specific IgG antibodies in African buffalo. Data sets derived from testing buffalo sera from Kenya (n=405) and South Africa (n=618) were dichotomised according to the results of a virus neutralisation test. The assay characteristic performance was analysed using threshold values optimised by the two-graph receiver operating characteristics (TG-ROC) analysis, and by mean plus two, as well as by mean plus three standard deviations derived from I-ELISA PP values in uninfected animals. Among 1023 buffalo sera tested, 77 (7.5%) had detectable virus neutralising antibodies. The assay had high intra- and inter-plate repeatability in routine runs. At a cut-off optimised by the TG-ROC at 95% accuracy level, the diagnostic sensitivity of the I-ELISA was 98.7% and diagnostic specificity 99.36% while estimates for the Youden's index (J) and efficiency (Ef) were 0.98 and 99.31%. When cut-off values determined by traditional statistical approaches were used, the diagnostic sensitivity was 100% but estimates of J, Ef and other combined measures of diagnostic accuracy were lower compared to those based on cut-off value derived from the TG-ROC. Results of the study indicate that the I-ELISA based on the rNp would be useful for seroepidemiological studies of RVFV infections in African buffalo.
Collapse
Affiliation(s)
- Janusz T Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases, Sandringham 2131, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sobarzo A, Paweska JT, Herrmann S, Amir T, Marks RS, Lobel L. Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J Virol Methods 2007; 146:327-34. [PMID: 17869352 DOI: 10.1016/j.jviromet.2007.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
This paper describes the development and evaluation of an optical fiber immunosensor (OFIS) for the detection of IgG antibody to Rift Valley fever virus (RVFV) in humans. The OFIS was based on a sandwich enzyme-linked immunosorbent assay (S-ELISA) format, whereby gamma-irradiated RVFV and control antigens were immobilized on the optical fiber surface coated with a mouse anti-RVFV antibody. Data sets derived from field-collected sera in Africa (n=242) were dichotomized according to the results of a virus neutralization test. Compared to standard colorimetric S-ELISA, the OFIS technique was more sensitive in detecting smaller quantity of specific IgG to RVFV in human sera. At cut-off value selected at a 95% accuracy level by the two-graph receiver operating characteristic analysis, the OFIS diagnostic sensitivity was 97.22% and diagnostic specificity 98.86%. Our results demonstrate that the OFIS technology reported here is highly accurate, simple to perform and has the potential to be used in a portable format.
Collapse
Affiliation(s)
- A Sobarzo
- Department of Virology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Paweska JT, Jansen van Vuren P, Swanepoel R. Validation of an indirect ELISA based on a recombinant nucleocapsid protein of Rift Valley fever virus for the detection of IgG antibody in humans. J Virol Methods 2007; 146:119-24. [PMID: 17645952 DOI: 10.1016/j.jviromet.2007.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 11/28/2022]
Abstract
An indirect enzyme-linked immunoassay (I-ELISA) based on the recombinant nucleocapsid protein (rNp) of Rift Valley fever virus was validated for the detection of specific IgG antibody in human sera. Validation data sets derived from testing sera collected in Africa (n=2967) were categorized according to the results of a virus neutralisation test. The assay had high intra- and inter-plate repeatability in routine runs. No detectable cross-reactions between IgG antibodies generated from mice experimentally infected with viruses representing genus Phlebovirus, Nairovirus, Orthobunyavirus and Bhanja virus of the family Bunyaviridae were observed. At a cut-off optimised by the two-graph receiver operating characteristics analysis at 95% accuracy level, the diagnostic sensitivity of the I-ELISA was 99.72% and diagnostic specificity 99.62% while estimates for the Youden's index (J) and efficiency (Ef) were 0.993 and 99.62%. When cut-off values determined by mean plus two and by mean plus three standard deviations derived from I-ELISA readings in an uninfected reference population were used, the diagnostic sensitivity was 100% but estimates of Y, Ef and other combined measures of diagnostic accuracy were lower. The I-ELISA based on rNp is highly sensitive, specific and robust and can be applied for diagnosis of infection of Rift Valley fever and disease-surveillance studies in humans.
Collapse
Affiliation(s)
- Janusz T Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa.
| | | | | |
Collapse
|
31
|
Fafetine JM, Tijhaar E, Paweska JT, Neves LCBG, Hendriks J, Swanepoel R, Coetzer JAW, Egberink HF, Rutten VPMG. Cloning and expression of Rift Valley fever virus nucleocapsid (N) protein and evaluation of a N-protein based indirect ELISA for the detection of specific IgG and IgM antibodies in domestic ruminants. Vet Microbiol 2007; 121:29-38. [PMID: 17187944 DOI: 10.1016/j.vetmic.2006.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Serodiagnosis of Rift Valley fever (RVF) currently relies on the use of live or inactivated whole virus as antigens. The recombinant nucleocapsid (N) protein of RVF virus was tested for diagnostic applicability in an indirect enzyme-linked immunosorbent assay (I-ELISA), using sera from experimentally infected sheep (n=128), vaccinated sheep (n=240), and field-collected sera from sheep (n=251), goats (n=362) and cattle (n=100). The N-protein based I-ELISA performed at least as good as VN and HI tests. In goat the diagnostic sensitivity (D-Sn) and specificity (D-Sp) of the I-ELISA was 100% when using the anti-species IgG conjugate. Using protein G as a detection system, the D-Sn and D-Sp in goats were 99.4% and 99.5%, in sheep field sera both 100%, in cattle 100% and 98.3%, respectively. The I-ELISA based on recombinant N-protein has the potential to complement the traditional assays for serodiagnosis of RVF. Advantages of the N-protein are its safety, stability and cost-effectiveness in use and production.
Collapse
Affiliation(s)
- José Manuel Fafetine
- Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique, C. Postal 257, Mozambique.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jansen van Vuren P, Potgieter AC, Paweska JT, van Dijk AA. Preparation and evaluation of a recombinant Rift Valley fever virus N protein for the detection of IgG and IgM antibodies in humans and animals by indirect ELISA. J Virol Methods 2006; 140:106-14. [PMID: 17174410 DOI: 10.1016/j.jviromet.2006.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/02/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
This paper describes the cloning, sequencing and bacterial expression of the N protein of the Rift Valley fever virus (RVFV) ZIM688/78 isolate and its evaluation in indirect ELISAs (I-ELISA) for the detection of IgM and IgG antibodies in human and sheep sera. Sera used for the evaluation were from 106 laboratory workers immunised with an inactivated RVF vaccine, 16 RVF patients, 168 serial bleeds from 8 sheep experimentally infected with wild type RVFV and 210 serial bleeds from 10 sheep vaccinated with the live attenuated Smithburn RVFV strain. All human and animal sera that tested positive in the virus neutralisation test were also positive in the IgG I-ELISA. There was a high correlation (R2=0.8571) between virus neutralising titres and IgG I-ELISA readings in human vaccinees. In experimentally infected sheep IgG antibodies were detected from day 4 to 5 post-infection onwards and IgM antibodies from day 3 to 4. The IgG I-ELISA was more sensitive than virus neutralisation and haemagglutination-inhibition tests in detecting the early immune response in experimentally infected sheep. The I-ELISAs demonstrated that the IgG and IgM response to the Smithburn vaccine strain was slower and the levels of antibodies induced markedly lower than to wild type RVFV infection.
Collapse
|
33
|
LeBreton M, Umlauf S, Djoko CF, Daszak P, Burke DS, Kwenkam PY, Wolfe ND. Rift Valley fever in goats, Cameroon. Emerg Infect Dis 2006; 12:702-3. [PMID: 16715582 PMCID: PMC3294709 DOI: 10.3201/eid1204.051428] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Sally Umlauf
- Tufts University School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Cyrille F. Djoko
- Walter Reed Johns Hopkins Cameroon Program, Yaoundé, Cameroon
- University of Yaoundé, Yaoundé, Cameroon
| | - Peter Daszak
- Consortium for Conservation Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
34
|
Kallio-Kokko H, Uzcategui N, Vapalahti O, Vaheri A. Viral zoonoses in Europe. FEMS Microbiol Rev 2005; 29:1051-77. [PMID: 16024128 PMCID: PMC7110368 DOI: 10.1016/j.femsre.2005.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 12/19/2022] Open
Abstract
A number of new virus infections have emerged or re-emerged during the past 15 years. Some viruses are spreading to new areas along with climate and environmental changes. The majority of these infections are transmitted from animals to humans, and thus called zoonoses. Zoonotic viruses are, as compared to human-only viruses, much more difficult to eradicate. Infections by several of these viruses may lead to high mortality and also attract attention because they are potential bio-weapons. This review will focus on zoonotic virus infections occurring in Europe.
Collapse
Affiliation(s)
- Hannimari Kallio-Kokko
- Haartman Institute, Department of Virology, University of Helsinki, POB 21, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
35
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to “The Risk of a Rift Valley Fever Incursion and its Persistence within the Community”. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Paweska JT, Mortimer E, Leman PA, Swanepoel R. An inhibition enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in humans, domestic and wild ruminants. J Virol Methods 2005; 127:10-8. [PMID: 15893560 DOI: 10.1016/j.jviromet.2005.02.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/17/2005] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
This paper describes the development and validation of an inhibition ELISA based on gamma-irradiated tissue culture-derived antigen for the detection of antibody to Rift Valley fever virus (RVFV) in humans, domestic and wild ruminants. Validation data sets derived from field-collected sera in Africa (humans=1367, cattle=649, goats=806, sheep=493, buffalo=258, camels=156) were categorized according to the results of a virus neutralisation test. In addition, individual sera from 93 laboratory workers immunized with inactivated RVF vaccine, 136 serial bleeds from eight sheep experimentally infected with wild-type of RVFV, and 200 serial bleeds from 10 sheep vaccinated with the live-attenuated strain of the virus, were used to study the kinetics of RVFV antibody production under controlled conditions. At cut-off values selected at 95% accuracy level by the two-graph receiver operating characteristic analysis the ELISA sensitivity ranged from 99.47% (humans) to 100% (sheep, buffalo, camels). The specificity ranged from 99.29% (sheep) to 100% (camels). Compared to virus neutralisation and haemagglutination-inhibition tests, the ELISA was more sensitive in detection of the earliest immunological responses in experimentally infected and vaccinated sheep. Our results demonstrate that the ELISA format reported here can be used as a safe, robust and highly accurate diagnostic tool in disease-surveillance and control programmes, import/export veterinary certification, and for monitoring of the immune response in vaccinees.
Collapse
Affiliation(s)
- Janusz T Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa.
| | | | | | | |
Collapse
|
37
|
Paweska JT, Burt FJ, Swanepoel R. Validation of IgG-sandwich and IgM-capture ELISA for the detection of antibody to Rift Valley fever virus in humans. J Virol Methods 2005; 124:173-81. [PMID: 15664066 DOI: 10.1016/j.jviromet.2004.11.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 11/22/2004] [Indexed: 11/26/2022]
Abstract
Rift Valley fever (RVF) virus is an important zoonotic and a potential biothreat agent. This paper describes validation of sandwich and capture enzyme-linked immunoassays (ELISA) based on gamma-irradiated antigens for the detection of RVFV-specific IgG and IgM antibody in humans. Validation data sets derived from testing field-collected sera from Africa (n=2400) were dichotomised according to the results of a virus neutralisation test. In addition, sera from laboratory workers immunized with inactivated RVF vaccine (n=93) and serial sera (n=3) from a single RVF case were used. ELISA data were expressed as percentage of high-positive control serum (PP). Cut-off values at 95% accuracy level were optimised using the misclassification cost term option of the two-graph receiver operating characteristics analysis. During the routine use of assays there was no evidence for excessive intra- and inter-plate variations within and between runs of assays. At a cut-off of 13.2 PP the sensitivity of the IgG-sandwich ELISA was 100% and specificity 99.95%, while for the IgM-capture ELISA the values were 96.47 and 99.44%, respectively, at a cut-off of 7.1 PP. Compared to the virus neutralisation test, the IgG-sandwich ELISA was more sensitive in detection of immunological responses in vaccines. Following natural infection class-specific antibodies were detected in serum taken 6 days after onset of symptoms. The results demonstrate that both assays will be useful for early diagnosis of infection, epidemiological surveillance and for monitoring of immune response after vaccination. As highly accurate, robust and safe tests, they have the potential to replace traditional diagnostic methods which are unable to distinguish between different classes of immunoglobulins, and pose health risks necessitating their use being restricted to high containment facilities outside RVF endemic areas.
Collapse
Affiliation(s)
- Janusz T Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases, Sandringham 2131, South Africa.
| | | | | |
Collapse
|
38
|
Paweska JT, Burt FJ, Anthony F, Smith SJ, Grobbelaar AA, Croft JE, Ksiazek TG, Swanepoel R. IgG-sandwich and IgM-capture enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in domestic ruminants. J Virol Methods 2004; 113:103-12. [PMID: 14553896 DOI: 10.1016/s0166-0934(03)00228-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recent occurrence of the first confirmed outbreaks of Rift Valley fever in humans and livestock outside the African region, namely in the Kingdom of Saudi Arabia and Yemen, is of global medical and veterinary concern. Disadvantages of classical techniques for serological diagnosis of Rift Valley fever include health risk to laboratory personnel, restrictions for their use outside endemic areas and inability to distinguish between different classes of immunoglobulins. We report on the development and validation of sandwich and capture ELISAs (both based on inactivated antigen) for detection of IgG and IgM antibody to Rift Valley fever virus in bovine, caprine and ovine sera. Compared to virus neutralisation and haemagglutination-inhibition tests, the IgG sandwich ELISA was more sensitive in detection of the earliest immunological responses to infection or vaccination with Rift Valley fever virus. Its sensitivity and specificity derived from field data sets ranged in different ruminant species from 99.05 to 100% and from 99.1 to 99.9%, respectively. The specificity of IgM-capture ELISA varied between different species from 97.4 to 99.4%; its sensitivity was 100% in sheep tested 5-42 days post-infection. Our results in field-collected, experimental and post-vaccination sera demonstrate that these assays will be useful for epidemiological surveillance and control programmes, import/export veterinary certification, early diagnosis of infection, and for monitoring of immune response in vaccinated animals. As highly accurate and safe tests, they have the potential to replace traditional diagnostic methods, which pose biohazard risks limiting their use outside of endemic areas to high containment facilities.
Collapse
Affiliation(s)
- Janusz T Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jupp PG, Grobbelaar AA, Leman PA, Kemp A, Dunton RF, Burkot TR, Ksiazek TG, Swanepoel R. Experimental detection of Rift Valley fever virus by reverse transcription-polymerase chain reaction assay in large samples of mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2000; 37:467-471. [PMID: 15535594 DOI: 10.1093/jmedent/37.3.467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A reverse transcription-polymerase chain reaction (RT-PCR) was assessed in laboratory tests to detect the presence of single Aedes aegypti (L.) or Eretmapodites quinquevittatus Theobald mosquitoes infected with Rift Valley fever virus in pools of mosquitoes, 50-600 in size, from laboratory colonies or mixed field collections. The viral RNA was detected in all pools containing infected mosquitoes and was shown to be as sensitive as infant mice but more sensitive than Vero cell cultures for virus detection. Pools diluted down to the equivalent of 1:16 000 mosquitoes were also positive by RT-PCR. RNAs from 4 other phleboviruses were negative, there were no false positives and the procedure followed, with the 2 particular primers chosen, gave consistently clear bands of the PCR products on agarose gels without nested PCR being necessary.
Collapse
Affiliation(s)
- P G Jupp
- National Institute for Virology, Department of Virology, University of the Witwatersrand, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- L Kingsford
- Department of Microbiology, California State University, Long Beach 90840
| |
Collapse
|