1
|
Thurn L, Schulz C, Borgmann D, Klaus J, Ellinger S, Walter M, Kroemer NB. Altered food liking in depression is driven by macronutrient composition. Psychol Med 2025; 55:e20. [PMID: 39905823 DOI: 10.1017/s0033291724003581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Major depressive disorder (MDD) is characterized by changes in appetite and body weight as well as blunted reward sensitivity (‘anhedonia’). However, it is not well understood which mechanisms are driving changes in reward sensitivity, specifically regarding food. Here, we used a sample of 117 participants (54 patients with MDD and 63 healthy control participants [HCPs]) who completed a food cue reactivity task with ratings of wanting and liking for 60 food and 20 non-food items. To evaluate which components of the food may contribute to altered ratings in depression, we tested for associations with macronutrients of the depicted items. In line with previous studies, we found reduced ratings of food wanting (p = .003) but not liking (p = .23) in patients with MDD compared to matched HCPs. Adding macronutrient composition to the models of wanting and liking substantially improved their fit (ps < .001). Compared to carbohydrate-rich foods, patients with MDD reported lower liking and wanting ratings for high-fat and high-protein foods. Moreover, patients with MDD showed weaker correlations in their preferences for carbohydrate- versus fat- or protein-rich foods (ps < .001), pointing to potential disturbances in metabolic signaling. To conclude, our results suggest that depression-related alterations in food reward ratings are more specific to the macronutrient composition of the food than previously anticipated, hinting at disturbances in gut–brain signaling. These findings raise the intriguing question of whether interventions targeting the gut could help normalize aberrant reward signals for foods rich in fat or protein.
Collapse
Affiliation(s)
- Lilly Thurn
- Section of Medical Psychology, Department of Psychiatry & Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Corinna Schulz
- Section of Medical Psychology, Department of Psychiatry & Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry & Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Diba Borgmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Johannes Klaus
- Department of Psychiatry & Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Sabine Ellinger
- Institute of Nutritional and Food Sciences, Human Nutrition, University of Bonn, Bonn, Germany
| | - Martin Walter
- Department of Psychiatry & Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- Department of Psychiatry & Psychotherapy, University Hospital Jena, Jena, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Jena-Magdeburg-Halle
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry & Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry & Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen
| |
Collapse
|
2
|
Zhao Q, Ye Z, Deng Y, Chen J, Chen J, Liu D, Ye X, Huan C. An advance in novel intelligent sensory technologies: From an implicit-tracking perspective of food perception. Compr Rev Food Sci Food Saf 2024; 23:e13327. [PMID: 38517017 DOI: 10.1111/1541-4337.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Food sensory evaluation mainly includes explicit and implicit measurement methods. Implicit measures of consumer perception are gaining significant attention in food sensory and consumer science as they provide effective, subconscious, objective analysis. A wide range of advanced technologies are now available for analyzing physiological and psychological responses, including facial analysis technology, neuroimaging technology, autonomic nervous system technology, and behavioral pattern measurement. However, researchers in the food field often lack systematic knowledge of these multidisciplinary technologies and struggle with interpreting their results. In order to bridge this gap, this review systematically describes the principles and highlights the applications in food sensory and consumer science of facial analysis technologies such as eye tracking, facial electromyography, and automatic facial expression analysis, as well as neuroimaging technologies like electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. Furthermore, we critically compare and discuss these advanced implicit techniques in the context of food sensory research and then accordingly propose prospects. Ultimately, we conclude that implicit measures should be complemented by traditional explicit measures to capture responses beyond preference. Facial analysis technologies offer a more objective reflection of sensory perception and attitudes toward food, whereas neuroimaging techniques provide valuable insight into the implicit physiological responses during food consumption. To enhance the interpretability and generalizability of implicit measurement results, further sensory studies are needed. Looking ahead, the combination of different methodological techniques in real-life situations holds promise for consumer sensory science in the field of food research.
Collapse
Affiliation(s)
- Qian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Zhiyue Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Jin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Cheng Huan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
3
|
Abstract
The modern obesogenic environment contains an abundance of food cues (e.g., sight, smell of food) as well cues that are associated with food through learning and memory processes. Food cue exposure can lead to food seeking and excessive consumption in otherwise food-sated individuals, and a high level of food cue responsivity is a risk factor for overweight and obesity. Similar food cue responses are observed in experimental rodent models, and these models are therefore useful for mechanistically identifying the neural circuits mediating food cue responsivity. This review draws from both experimental rodent models and human data to characterize the behavioral and biological processes through which food-associated stimuli contribute to overeating and weight gain. Two rodent models are emphasized - cue-potentiated feeding and Pavlovian-instrumental transfer - that provide insight in the neural circuits and peptide systems underlying food cue responsivity. Data from humans are highlighted that reveal physiological, psychological, and neural mechanisms that connect food cue responsivity with overeating and weight gain. The collective literature identifies connections between heightened food cue responsivity and obesity in both rodents and humans, and identifies underlying brain regions (nucleus accumbens, amygdala, orbitofrontal cortex, hippocampus) and endocrine systems (ghrelin) that regulate food cue responsivity in both species. These species similarities are encouraging for the possibility of mechanistic rodent model research and further human research leading to novel treatments for excessive food cue responsivity in humans.
Collapse
Affiliation(s)
- Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Kerri N Boutelle
- Department of Pediatrics, Herbert Wertheim School of Public Health and Human Longevity Science, and Psychiatry, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
4
|
Schneider E, Dourish CT, Higgs S. Utility of an experimental medicine model to evaluate efficacy, side-effects and mechanism of action of novel treatments for obesity and binge-eating disorder. Appetite 2022; 176:106087. [PMID: 35588993 DOI: 10.1016/j.appet.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
Abstract
Obesity and Binge Eating Disorder (BED) are prevalent conditions that are associated with increased risk of morbidity and mortality. There is evidence that the use of pharmacotherapy alongside behavioural treatments can improve quality of life and reduce disease risk for patients with these disorders. However, there are few approved drug therapies for obesity, and these are limited by poor efficacy and/or side effects and only one drug has been approved for the treatment of BED. There is considerable potential to use experimental medicine models to identify new drug treatments for obesity and BED, with greater efficacy and an improved side effect profile, at an early stage of development. Here, we present a model developed in our laboratory that incorporates both behavioural and neuroimaging measures which can be used to facilitate drug development for obesity and BED. The results from validation studies conducted to date using our model suggest that it is sensitive to the effects of agents with behavioural, neurophysiological and neuropharmacological mechanisms of action known to be associated with weight loss and reductions in binge eating. Future studies using the model will be valuable to evaluate the potential efficacy and side-effects of new candidate drugs at an early stage in the development pipeline for both obesity and BED.
Collapse
Affiliation(s)
- Elizabeth Schneider
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Colin T Dourish
- P1vital Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom; P1vital Products Ltd, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
5
|
Cheung V, Aylward L, Tabone L, Szoka N, Abunnaja S, Cox S. Hunger mediates the relationship between food insecurity and binge eating among bariatric surgery candidates. Surg Obes Relat Dis 2021; 18:530-537. [PMID: 35067460 DOI: 10.1016/j.soard.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The food insecurity-obesity paradox suggests that people lacking access to adequately nutritious foods are more susceptible to disordered eating. However, the mechanisms underlying the relationship between food insecurity and binge eating are not well understood. OBJECTIVES This study sought to assess the role of eating behaviors (i.e., cognitive restraint, disinhibition, and hunger) as mediators between food insecurity and binge eating among a sample of preoperative bariatric candidates. SETTING University hospital in the Appalachian region of the United States. METHODS A total of 369 adults seeking bariatric surgery were included in this cross-sectional study. Patients completed validated measures of food insecurity and eating behaviors as part of a routine psychological evaluation prior to bariatric surgery. RESULTS Food insecurity was significantly related to binge eating symptoms (r[369] = .14, P < .01) and hunger (r[369] = .11, P < .05). Hunger mediated the relationship between food insecurity and binge eating (b = 1.23, standard error = .62, 95% confidence interval .08-2.54). Food insecurity was not associated with restraint (r[369] = .06, P = .27) or disinhibition (r[369] = .02, P = .69). CONCLUSIONS Food insecurity presents a unique pathway to binge eating that has several implications for intervention prior to bariatric surgery. Identification of food insecurity and the subsequent effects on eating behaviors is crucial to understanding the factors relevant to disordered eating prior to bariatric surgery.
Collapse
Affiliation(s)
- Vien Cheung
- University of New Mexico Addiction and Substance Abuse Program, Albuquerque, New Mexico.
| | - Laura Aylward
- West Virginia University School of Medicine, Morgantown, West Virginia; Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Lawrence Tabone
- West Virginia University School of Medicine, Morgantown, West Virginia; Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Nova Szoka
- West Virginia University School of Medicine, Morgantown, West Virginia; Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Salim Abunnaja
- West Virginia University School of Medicine, Morgantown, West Virginia; Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie Cox
- West Virginia University School of Medicine, Morgantown, West Virginia; Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
6
|
Kaur K, Jensen CD. Does hedonic hunger predict eating behavior and body mass in adolescents with overweight or obesity? CHILDRENS HEALTH CARE 2021. [DOI: 10.1080/02739615.2021.1983435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kirandeep Kaur
- Brigham Young University, 223 John Taylor Building, Provo, UT, 84602, USA
| | - Chad D. Jensen
- Brigham Young University, 223 John Taylor Building, Provo, UT, 84602, USA
| |
Collapse
|
7
|
Isaac AR, Lima-Filho RAS, Lourenco MV. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021; 197:108744. [PMID: 34363812 DOI: 10.1016/j.neuropharm.2021.108744] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial actions of physical exercise in the brain. However, the intricate mechanisms connecting peripherally released molecules to brain function are not fully understood. Accumulating findings further indicates that impaired skeletal muscle homeostasis impacts brain metabolism and physiology. Here we review recent findings that suggest that muscle-borne signals are essential for brain physiology and discuss perspectives on how these signals vary in response to exercise or muscle diseases. Understanding the complex interactions between skeletal muscle and brain may result in more effective therapeutic strategies to expand healthspan and to prevent brain disease.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Roelofs TJM, Luijendijk MCM, van der Toorn A, Camps G, Smeets PAM, Dijkhuizen RM, Adan RAH. Good taste or gut feeling? A new method in rats shows oro-sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns. Int J Eat Disord 2021; 54:1116-1126. [PMID: 32671875 PMCID: PMC8359261 DOI: 10.1002/eat.23354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.
Collapse
Affiliation(s)
- Theresia J. M. Roelofs
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Guido Camps
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenThe Netherlands,Image Sciences Institute, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgSweden
| |
Collapse
|
9
|
Liu L, Artigas SO, Ulrich A, Tardu J, Mohr PNC, Wilms B, Koletzko B, Schmid SM, Park SQ. Eating to dare - Nutrition impacts human risky decision and related brain function. Neuroimage 2021; 233:117951. [PMID: 33722669 DOI: 10.1016/j.neuroimage.2021.117951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022] Open
Abstract
Macronutrient composition modulates plasma amino acids that are precursors of neurotransmitters and can impact brain function and decisions. Neurotransmitter serotonin has been shown to regulate not only food intake, but also economic decisions. We investigated whether an acute nutrition-manipulation inducing plasma tryptophan fluctuation affects brain function, thereby affecting risky decisions. Breakfasts differing in carbohydrate/protein ratios were offered to test changes in risky decision-making while metabolic and neural dynamics were tracked. We identified that a high-carbohydrate/protein breakfast increased plasma tryptophan/LNAA (large neutral amino acids) ratio which mapped to individual risk propensity changes. The nutrition-manipulation and tryptophan/LNAA fluctuation effects on risk propensity changes were further modulated by individual differences in body fat mass. Using fMRI, we further identified activation in the parietal lobule during risk-processing, of which activities 1) were sensitive to the tryptophan/LNAA fluctuation, 2) were modulated by individual's body fat mass, and 3) predicted the risk propensity changes in decision-making. Our results provide evidence for a personalized nutrition-driven modulation on human risky decision and its metabolic and neural mechanisms.
Collapse
Affiliation(s)
- Lu Liu
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; Department of Psychology, University of Lübeck, Lübeck, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | | | - Anja Ulrich
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Jeremy Tardu
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Peter N C Mohr
- School of Business and Economics, Freie Universität Berlin, Germany; WZB Berlin Social Science Center, Berlin, Germany; Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Berthold Koletzko
- Dr. von Hauner Children's Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sebastian M Schmid
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Soyoung Q Park
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; Department of Psychology, University of Lübeck, Lübeck, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
| |
Collapse
|
10
|
Turkish version of the 'Three-Factor Eating Questionnaire-51' for obese individuals: a validity and reliability study. Public Health Nutr 2021; 24:3269-3275. [PMID: 33568253 PMCID: PMC8314920 DOI: 10.1017/s1368980021000574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: Obesity is a serious public health issue. Investigating the eating behaviour of individuals plays an important role in preventing obesity. Therefore, the purpose of the current study is to adapt the long and first version of the ‘Three-Factor Eating Questionnaire’ (TFEQ), a scale that examines the eating behaviour of individuals, to Turkish culture and to carry out its validity and reliability study. Design: The data were collected using data collection forms, and anthropometric measurements of the individuals were made by the researchers. The data collection form included several parameters: socio-demographic characteristics, the TFEQ scale, whose validity and reliability analysis is conducted here, and the Dutch Eating Behaviour Questionnaire (DEBQ) which was used as a parallel form. Setting: The Obesity Clinic at Ege University in Izmir. Participants: The study group consisted of obese adult individuals (n 257). Results: It was seen that constructing the questionnaire with twenty-seven items and four sub-dimensions provides better information about Turkish obese individuals. Factor loadings ranged from 0·421 to 0·846, and item total score correlations ranged from 0·214 to 0·558. Cronbach’s α coefficient was found to be 0·639 for the whole scale. A positive, strong and statistically significant correlation was detected between TFEQ and DEBQ, which was used as a parallel form (r = 0·519, P < 0·001). Conclusion: In Turkey, the long version of the TFEQ scale was found valid and reliable for obese adult individuals. TFEQ can be used by clinicians or researchers to study the eating behaviour of obese individuals.
Collapse
|
11
|
Zamyad M, Abbasnejad M, Esmaeili-Mahani S, Sheibani V, Raoof M. Pain influences food preference and food-related memory by activating the basolateral amygdala in rats. Exp Brain Res 2021; 239:79-93. [PMID: 33104830 DOI: 10.1007/s00221-020-05961-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
The amygdala has been demonstrated to contribute to pain-related behavior and food preference. Here, the effect of pain on food preference and food-matched visual-cue memory, in the presence or absence of a basolateral amygdala (BLA) lesion, has been evaluated using a novel innovative apparatus and protocol. Forty adult male Wistar rats were randomly divided into five groups (n = 8) as follows: control, pain, ibuprofen + pain, BLA lesion, BLA lesion + pain groups. Bilateral lesions of the BLA were produced by passing a current of 1.5 mA for 7 s. Pain was induced on the right hind paw of the rats by sub-plantar injection of 50 μl of 2.5% formalin. The animals were encountered with four different meals including wholemeal, wholemeal + sugar, white flour, and biscuit. Each test session consisted of six trials with inter-trial intervals of 15 min. The number of visits to each meal zone and port, the amount of time spent in each food zone and port, traveled distance in each food zone, food consumption per each visit and the total food consumption were recorded. The control group showed a high biscuit preference and low white flour preference. Rats suffering BLA lesion and rats in the BLA lesion + pain group exhibited a shifted preference curve. They had a bias toward eating wholemeal + sugar rather than white flour and biscuit. This group also showed an impaired spatial memory. In conclusion, our findings suggest that the BLA may be involved in pain-induced food preference and food-matched visual-cue memory.
Collapse
Affiliation(s)
- Mahnaz Zamyad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O. Box: 76135-133, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O. Box: 76135-133, Kerman, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, P.O. Box: 76135-133, Kerman, Iran
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Raoof
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Merchant JS, Cosme D, Giuliani NR, Dirks B, Berkman ET. Neural Substrates of Food Valuation and Its Relationship With BMI and Healthy Eating in Higher BMI Individuals. Front Behav Neurosci 2020; 14:578676. [PMID: 33343310 PMCID: PMC7746820 DOI: 10.3389/fnbeh.2020.578676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Considerable evidence points to a link between body mass index (BMI), eating behavior, and the brain's reward system. However, much of this research focuses on food cue reactivity without examining the subjective valuation process as a potential mechanism driving individual differences in BMI and eating behavior. The current pre-registered study (https://osf.io/n4c95/) examined the relationship between BMI, healthy eating, and subjective valuation of healthy and unhealthy foods in a community sample of individuals with higher BMI who intended to eat more healthily. Particularly, we examined: (1) alterations in neurocognitive measures of subjective valuation related to BMI and healthy eating; (2) differences in the neurocognitive valuation for healthy and unhealthy foods and their relation to BMI and healthy eating; (3) and whether we could conceptually replicate prior findings demonstrating differences in neural reactivity to palatable vs. plain foods. To this end, we scanned 105 participants with BMIs ranging from 23 to 42 using fMRI during a willingness-to-pay task that quantifies trial-by-trial valuation of 30 healthy and 30 unhealthy food items. We measured out of lab eating behavior via the Automated Self-Administered 24 H Dietary Assessment Tool, which allowed us to calculate a Healthy Eating Index (HEI). We found that our sample exhibited robust, positive linear relationships between self-reported value and neural responses in regions previously implicated in studies of subjective value, suggesting an intact valuation system. However, we found no relationship between valuation and BMI nor HEI, with Bayes Factor indicating moderate evidence for a null relationship. Separating the food types revealed that healthy eating, as measured by the HEI, was inversely related to subjective valuation of unhealthy foods. Imaging data further revealed a stronger linkage between valuation of healthy (compared to unhealthy) foods and corresponding response in the ventromedial prefrontal cortex (vmPFC), and that the interaction between healthy and unhealthy food valuation in this region is related to HEI. Finally, our results did not replicate reactivity differences demonstrated in prior work, likely due to differences in the mapping between food healthiness and palatability. Together, our findings point to disruptions in the valuation of unhealthy foods in the vmPFC as a potential mechanism influencing healthy eating.
Collapse
Affiliation(s)
- Junaid S Merchant
- Neuroscience and Cognitive Science Program (NACS), Department of Psychology, University of Maryland, College Park, MD, United States
| | - Danielle Cosme
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicole R Giuliani
- Prevention Science Institute, Department of Special Education and Clinical Sciences, University of Oregon, Eugene, OR, United States
| | - Bryce Dirks
- Department of Psychology, University of Miami, Coral Gables, FL, United States
| | - Elliot T Berkman
- Center for Translational Neuroscience, Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
13
|
Kling SMR, Pearce AL, Reynolds ML, Garavan H, Geier CF, Rolls BJ, Rose EJ, Wilson SJ, Keller KL. Development and Pilot Testing of Standardized Food Images for Studying Eating Behaviors in Children. Front Psychol 2020; 11:1729. [PMID: 32793062 PMCID: PMC7385190 DOI: 10.3389/fpsyg.2020.01729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Food images are routinely used to investigate the cognitive and neurobiological mechanisms of eating behaviors, but there is a lack of standardized image sets for use in children, which limits cross-study comparisons. To address this gap, we developed a set of age-appropriate images that included 30 high-energy-dense (ED) foods (>2.00 kcal/g), 30 low-ED foods (<1.75 kcal/g), and 30 office supplies photographed in two amounts (i.e., "larger" and "smaller"). Preliminary testing was conducted with children (6-10 years) to assess recognition, emotional valence (1 = very sad, 5 = very happy), and excitability (1 = very bored, 5 = very excited). After the initial testing, 10 images with low recognition were replaced; thus, differences between Image Set 1 and Image Set 2 were analyzed. Thirty (n = 30, mean age 8.3 ± 1.2 years) children rated Set 1, and a different cohort of 29 children (mean age 8.1 ± 1.1 years) rated Set 2. Changes made between image sets improved recognition of low-ED foods (Set 1 = 88.3 ± 10.5% vs. Set 2 = 95.6 ± 10.6%; p < 0.0001) and office supplies (83.7 ± 10.5 vs. 93.0 ± 10.6%; p < 0.0001). For the revised image set, children recognized more high-ED foods (98.4 ± 10.6%) than low-ED foods (95.6 ± 10.6%; p < 0.05) and office supplies (93.0 ± 10.6%; p < 0.0001). Recognition also improved with age (p < 0.001). Excitability and emotional valence scores were greater for high-ED foods compared with both low-ED foods and office supplies (p < 0.0001 for both). However, child fullness ratings influenced the relationship between excitability/emotional valence and category of item (p < 0.002). At the lowest fullness level, high-ED foods were rated the highest in both excitability and emotional valence, followed by low-ED foods and then office supplies. At the highest fullness level, high-ED foods remained the highest in excitability and emotional valence, but ratings for low-ED foods and office supplies were not different. This suggests that low-ED foods were more exciting and emotionally salient (relative to office supplies) when children were hungry. Ratings of recognition, excitability, and emotional valence did not differ by image amount. This new, freely available, image set showed high recognition and expected differences between image category for emotional valence and excitability. When investigating children's responsiveness to food cues, specifically energy density, it is essential for investigators to account for potential influences of child age and satiety level.
Collapse
Affiliation(s)
- Samantha M. R. Kling
- Metabolic Kitchen and Children’s Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
- Evaluation Sciences Unit, Division of Primary Care and Population Health, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alaina L. Pearce
- Metabolic Kitchen and Children’s Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Marissa L. Reynolds
- Metabolic Kitchen and Children’s Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Medical School, Burlington, VT, United States
- Department of Psychological Sciences, University of Vermont Medical School, Burlington, VT, United States
| | - Charles F. Geier
- Laboratory, Department of Human Development and Family Studies, The Pennsylvania State University, State College, PA, United States
| | - Barbara J. Rolls
- Laboratory for the Study of Human Ingestive Behavior, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Emma J. Rose
- Laboratory, Prevention Research Center, The Pennsylvania State University, State College, PA, United States
| | - Stephen J. Wilson
- Addiction Smoking and Health Laboratory, Department of Psychology, The Pennsylvania State University, State College, PA, United States
| | - Kathleen L. Keller
- Metabolic Kitchen and Children’s Eating Behavior Laboratory, Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
- Metabolic Kitchen and Children’s Eating Behavior Laboratory, Department of Food Sciences, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
14
|
Allam O, Tebbani F, Benhamimid H, Agli AN, Oulamara H. Threshold and intensity of perception of dietary lipids and weight status. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Franssen S, Jansen A, Schyns G, van den Akker K, Roefs A. Neural Correlates of Food Cue Exposure Intervention for Obesity: A Case-Series Approach. Front Behav Neurosci 2020; 14:46. [PMID: 32372924 PMCID: PMC7187770 DOI: 10.3389/fnbeh.2020.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Background People with overweight have stronger reactivity (e.g., subjective craving) to food cues than lean people, and this reactivity is positively associated with food intake. Cue reactivity is a learned response that can be reduced with food cue exposure therapy. Objectives It was hypothesized that participants after food cue exposure therapy would show reduced neural activity in brain regions related to food cue reactivity and increased neural activity in brain regions related to inhibitory-control as compared to participants receiving a control lifestyle intervention. Method Neural activity of 10 women with overweight (BMI ≥ 27 kg/m2) in response to individually tailored visually presented palatable high-caloric food stimuli was examined before vs. after a cue exposure intervention (n = 5) or a control lifestyle (n = 5) intervention. Data were analyzed case-by-case. Results Neural responses to food stimuli were reduced in food-cue-reactivity-related brain regions after the lifestyle intervention in most participants, and generally not after the cue exposure therapy. Moreover, cue exposure did not lead to increased activity in inhibitory-control-related brain regions. However, decreased neural activity after cue exposure was found in most participants in the lateral occipital complex (LOC), which suggests a decreased visual salience of high-caloric food stimuli. Conclusion Receiving a cue exposure therapy did not lead to expected neural responses. As cue exposure relies on inhibitory learning mechanisms, differences in contexts (e.g., environments and food types) between the intervention setting and the scanning sessions may explain the general lack of effect of cue-exposure on neural activity.
Collapse
Affiliation(s)
- Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ghislaine Schyns
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Karolien van den Akker
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Hovens IB, Dalenberg JR, Small DM. A Brief Neuropsychological Battery for Measuring Cognitive Functions Associated with Obesity. Obesity (Silver Spring) 2019; 27:1988-1996. [PMID: 31654505 PMCID: PMC6868337 DOI: 10.1002/oby.22644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although ample evidence links obesity to cognitive dysfunction, the trajectory of cognitive change, the underlying mechanisms, and the involvement of related factors, such as metabolic disease and diet, remain unclear. To support further investigations of BMI and cognition, this study aimed to create a concise test battery to be used in future trials. METHODS Twenty neurocognitive measures were regressed on BMI in the Human Connectome Project Healthy Young Adult S1200 data release by using linear mixed models and by adjusting for major confounders. Measures were then identified by using least absolute shrinkage and selection operator regression analysis to select tests most strongly associated with BMI. To guide further test selection, the explained variance for each variable was visualized in the final model. RESULTS BMI was negatively associated with seven neurocognitive measures. Variable selection yielded a model that included years of education and, in order of model weight, delay discounting, the relational task, the Penn Progressive Matrices test, the oral reading recognition test, the Variable Short Penn Line Orientation test, and the Penn Word Memory test. CONCLUSIONS This research resulted in an approximate 40-minute test battery for the BMI-cognition relationship in young adults that can be used in trials investigating the interrelationship between obesity and cognitive performance.
Collapse
Affiliation(s)
- Iris B. Hovens
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Jelle R. Dalenberg
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
17
|
van Meer F, van der Laan LN, Eiben G, Lissner L, Wolters M, Rach S, Herrmann M, Erhard P, Molnar D, Orsi G, Viergever MA, Adan RA, Smeets PA. Development and body mass inversely affect children’s brain activation in dorsolateral prefrontal cortex during food choice. Neuroimage 2019; 201:116016. [DOI: 10.1016/j.neuroimage.2019.116016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023] Open
|
18
|
McCluskey LP, He L, Dong G, Harris R. Chronic exposure to liquid sucrose and dry sucrose diet have differential effects on peripheral taste responses in female rats. Appetite 2019; 145:104499. [PMID: 31669578 DOI: 10.1016/j.appet.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Sugar-sweetened beverages are the major source of added calories in the Western diet and their prevalence is associated with obesity and metabolic disruption. Despite the critical role of the taste system in determining food selection and consumption, the effects of chronic sucrose consumption on the peripheral taste system in mammals have received limited attention. We offered female Sprague Dawley rats free access to water and one of three diets for up to 40 days: (1) sucrose-free chow or "NS" diet; (2) a high-sucrose dry diet or "HS"; or (3) 30% sucrose solution and the NS diet, designated "LiqS" diet. Sucrose consumption by LiqS rats gradually increased and by day 14 was equal to that of HS rats. Food intake decreased in LiqS rats, but their energy intake remained higher than for NS or HS rats. There was no significant difference in weight gain of the groups during the study. Recordings from the chorda tympani nerve (CT), which innervates taste buds on the anterior tongue, revealed decreased responses to 1 M sucrose in both LiqS and HS rats and to acesulfame K and salt tastants in LiqS rats after 40 days on diet. Umami, bitter, and acid response magnitudes were unchanged in both groups. These results demonstrate that chronic sucrose exposure inhibits taste responses to higher concentrations of sweet stimuli. More surprisingly, CT responses to NaCl and 0.5M NaAc were significantly reduced in rats on the LiqS diet. Thus, the physical form of the diet influences taste responsiveness to salt and sweet taste function. These data suggest that taste buds are previously unappreciated targets of chronic sucrose consumption.
Collapse
Affiliation(s)
- Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States.
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, United States
| | - Guankuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, United States
| | - Ruth Harris
- Department of Physiology, Medical College of Georgia at Augusta University, United States
| |
Collapse
|
19
|
Hamdard E, Lv Z, Jiang J, Wei Q, Shi Z, Malyar RM, Yu D, Shi F. Responsiveness Expressions of Bitter Taste Receptors Against Denatonium Benzoate and Genistein in the Heart, Spleen, Lung, Kidney, and Bursa Fabricius of Chinese Fast Yellow Chicken. Animals (Basel) 2019; 9:E532. [PMID: 31390726 PMCID: PMC6719124 DOI: 10.3390/ani9080532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the responsiveness expressions of ggTas2Rs against denatonium benzoate (DB) and genistein (GEN) in several organs of the Chinese Fast Yellow Chicken. A total of 300 one-day-old chicks that weighed an average of 32 g were randomly allocated into five groups with five replicates for 56 consecutive days. The dietary treatments consisted of basal diet, denatonium benzoate (5 mg/kg, 20 mg/kg, and 100 mg/kg), and genistein 25 mg/kg. The results of qRT-PCR indicated significantly (p < 0.05) high-level expressions in the heart, spleen, and lungs in the starter and grower stages except for in bursa Fabricius. The responsiveness expressions of ggTas2Rs against DB 100 mg/kg and GEN 25 mg/kg were highly dose-dependent in the heart, spleen, lungs, and kidneys in the starter and grower stages, but dose-independent in the bursa Fabricius in the finisher stage. The ggTas2Rs were highly expressed in lungs and the spleen, but lower in the bursa Fabricius among the organs. However, the organ growth performance significantly (p < 0.05) increased in the groups administered DB 5 mg/kg and GEN 25 mg/kg; meanwhile, the DB 20 mg/kg and DB 100 mg/kg treatments significantly reduced the growth of all the organs, respectively. These findings indicate that responsiveness expressions are dose-dependent, and bitterness sensitivity consequently decreases in aged chickens. Therefore, these findings may improve the production of new feedstuffs for chickens according to their growing stages.
Collapse
Affiliation(s)
- Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rahmani Mohammad Malyar
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Factors Influencing Oral Intake Improvement and Feeding Tube Dependency in Patients with Poststroke Dysphagia. J Stroke Cerebrovasc Dis 2019; 28:1421-1430. [PMID: 30962081 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To assess ischemic stroke patients regarding the relationship between lesion locations, swallowing impairment, medical and demographic factors and (1) oral intake improvement and (2) feeding tube dependency at discharge from their acute hospital stay. METHODS We conducted an exploratory, retrospective observational longitudinal cohort study of acute, first-ever, ischemic stroke patients. Patients who had an initial nonoral feeding recommendation from a speech and language pathologist and who underwent a modified barium swallow study within their hospital stay were included. Oral intake status was measured with the Functional Oral Intake Scale (FOIS) as the change in FOIS during the hospital stay and as feeding tube dependency at hospital discharge. Associations were assessed with multiple linear regression modeling controlling for age, comorbidities, and hospital length of stay. RESULTS We included 44 stroke patients. At hospital discharge, 93% of patients had oral intake restrictions and 30% were feeding tube dependent. Following multiple linear regression modeling, age, damage to the left superior frontal gyrus, dorsal anterior cingulate gyrus, hypothalamus, and nucleus accumbens were significant predictors for FOIS change. Feeding tube dependency showed no significant associations with any prognostic variables when controlling for confounders. CONCLUSIONS The vast majority of patients with an initial nonoral feeding recommendation are discharged with oral intake restrictions indicating a continued need for swallowing assessments and treatment after discharge. Lesion locations associated with motivation, reward, and drive to consume food as well as swallowing impairment, higher age, and more comorbidities were related to less oral intake improvement.
Collapse
|
21
|
Smeets PAM, Dagher A, Hare TA, Kullmann S, van der Laan LN, Poldrack RA, Preissl H, Small D, Stice E, Veldhuizen MG. Good practice in food-related neuroimaging. Am J Clin Nutr 2019; 109:491-503. [PMID: 30834431 PMCID: PMC7945961 DOI: 10.1093/ajcn/nqy344] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The use of neuroimaging tools, especially functional magnetic resonance imaging, in nutritional research has increased substantially over the past 2 decades. Neuroimaging is a research tool with great potential impact on the field of nutrition, but to achieve that potential, appropriate use of techniques and interpretation of neuroimaging results is necessary. In this article, we present guidelines for good methodological practice in functional magnetic resonance imaging studies and flag specific limitations in the hope of helping researchers to make the most of neuroimaging tools and avoid potential pitfalls. We highlight specific considerations for food-related studies, such as how to adjust statistically for common confounders, like, for example, hunger state, menstrual phase, and BMI, as well as how to optimally match different types of food stimuli. Finally, we summarize current research needs and future directions, such as the use of prospective designs and more realistic paradigms for studying eating behavior.
Collapse
Affiliation(s)
- Paul A M Smeets
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, NL,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands,Address correspondence to PAMS (e-mail: )
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Laura N van der Laan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research, Tübingen, Germany
| | - Dana Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | | | | |
Collapse
|
22
|
Moreno-Padilla M, Verdejo-Román J, Fernández-Serrano MJ, Reyes del Paso GA, Verdejo-García A. Increased food choice-evoked brain activation in adolescents with excess weight: Relationship with subjective craving and behavior. Appetite 2018; 131:7-13. [DOI: 10.1016/j.appet.2018.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 01/27/2023]
|
23
|
|
24
|
Giuliani NR, Merchant JS, Cosme D, Berkman ET. Neural predictors of eating behavior and dietary change. Ann N Y Acad Sci 2018; 1428:208-220. [PMID: 29543993 PMCID: PMC6139096 DOI: 10.1111/nyas.13637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023]
Abstract
Recently, there has been an increase in the number of human neuroimaging studies seeking to predict behavior above and beyond traditional measurements such as self-report. This trend has been particularly notable in the area of food consumption, as the percentage of people categorized as overweight or obese continues to rise. In this review, we argue that there is considerable utility in this form of health neuroscience, modeling the neural bases of eating behavior and dietary change in healthy community populations. Further, we propose a model and accompanying evidence indicating that several basic processes underlying eating behavior, particularly reactivity, regulation, and valuation, can be predictive of behavior change. We also discuss future directions for this work.
Collapse
Affiliation(s)
- Nicole R. Giuliani
- Department of Special Education and Clinical Sciences, University of Oregon
- Center for Translational Neuroscience, University of Oregon
| | | | - Danielle Cosme
- Center for Translational Neuroscience, University of Oregon
- Department of Psychology, University of Oregon
| | - Elliot T. Berkman
- Center for Translational Neuroscience, University of Oregon
- Department of Psychology, University of Oregon
| |
Collapse
|
25
|
Spetter MS. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans. Curr Opin Clin Nutr Metab Care 2018; 21:329-335. [PMID: 29927764 DOI: 10.1097/mco.0000000000000493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW It is in the brain where the decision is made what and how much to eat. In the last decades neuroimaging research has contributed extensively to new knowledge about appetite control by revealing the underlying brain processes. Interestingly, there is the fast growing idea of using these methods to develop new treatments for obesity and eating disorders. In this review, we summarize the findings of the importance of the use of neuropharmacology and neuroimaging techniques in understanding and modifying appetite control. RECENT FINDINGS Appetite control is a complex interplay between homeostatic, hedonic, and cognitive processes. Administration of the neuropeptides insulin and oxytocin curb food intake and alter brain responses in reward and cognitive control areas. Additionally, these areas can be targeted for neuromodulation or neurofeedback to reduce food cravings and increase self-control to alter food intake. SUMMARY The recent findings reveal the potential of intranasal administration of hormones or modifying appetite control brain networks to reduce food consumption in volunteers with overweight and obesity or individuals with an eating disorder. Although long-term clinical studies are still needed.
Collapse
Affiliation(s)
- Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
26
|
Pilot Study Measuring the Novel Satiety Hormone, Pro-Uroguanylin, in Adolescents With and Without Obesity. J Pediatr Gastroenterol Nutr 2018; 66:489-495. [PMID: 29112082 PMCID: PMC5825243 DOI: 10.1097/mpg.0000000000001796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Disruption of satiety signaling may lead to increased caloric intake and obesity. Uroguanylin, the intestinal hormone, travels as a precursor to the central nervous system where it activates guanylyl cyclase C and stimulates pro-satiety neurons. Rodent studies have demonstrated that guanylyl cyclase C-knockout mice overeat and have increased weight gain versus wild-type mice and hyper-caloric obesity diminishes uroguanylin expression. We measured circulating plasma pro-uroguanylin, along with other gastrointestinal peptides and inflammatory markers, in human adolescents with and without obesity, as a pilot study. We hypothesized that adolescents with obesity would have less circulating pro-uroguanylin than adolescents without obesity have. METHODS We recruited 24 adolescents (age 14-17 years) with and without obesity (body mass index >95% or body mass index <95%) and measured plasma pro-uroguanylin at fasting and successive time points after a meal. We measured 3 other satiety hormones and 2 inflammatory markers to characterize overall satiety signaling and highlight any link between uroguanylin and inflammation. RESULTS Female adolescents with obesity had lower circulating pro-uroguanylin levels than female adolescents without obesity; we observed no difference in males. Other measured gastrointestinal peptides varied in their differences between cohorts. Inflammatory markers were higher in female participants with obesity. CONCLUSIONS In adolescents with and without obesity, we can measure circulating pro-uroguanylin levels. In female adolescents without obesity, levels are particularly higher. Pro-uroguanylin secretion patterns differ from other circulating gastrointestinal peptides. In female adolescents with obesity, inflammation correlates with decreased pro-uroguanylin levels.
Collapse
|
27
|
Satterfield BC, Raikes AC, Killgore WDS. Rested-Baseline Responsivity of the Ventral Striatum Is Associated With Caloric and Macronutrient Intake During One Night of Sleep Deprivation. Front Psychiatry 2018; 9:749. [PMID: 30705642 PMCID: PMC6344438 DOI: 10.3389/fpsyt.2018.00749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023] Open
Abstract
Background: Sleep loss contributes to obesity through a variety of mechanisms, including neuroendocrine functioning, increased hunger, and increased food intake. Additionally, sleep loss alters functional activation within brain regions associated with reward and behavioral control. However, it remains unknown whether individual differences in baseline neural functioning can predict eating behaviors during total sleep deprivation (TSD). We used functional magnetic resonance imaging (fMRI) to test the hypothesis that individuals with increased baseline responsiveness within reward regions are more vulnerable to TSD-induced overeating. Methods: N = 45 subjects completed several fMRI scans during a single pre-TSD session that included performance on the Multi-Source Interference Task (MSIT) and the n-back task. Subjects returned to the laboratory for an overnight TSD session, during which they were given ad libitum access to 10,900 kcal of food. Leftover food and packaging were collected every 6 h (00:00, 06:00, and 12:00) to measure total food consumption. Subjects reported sleepiness every hour and performed a food rating task every 3 h. Results: Functional activation within the ventral striatum during the MSIT and n-back positively correlated with total caloric and carbohydrate intake during the final 6 h (06:00-12:00) of TSD. Activation within the middle and superior temporal gyri during the MSIT also correlated with total carbohydrates consumed. Food consumption did not correlate with subjective sleepiness, hunger, or food desire. Conclusions: Individual differences in neural activity of reward processing areas (i.e., nucleus accumbens) prior to sleep deprivation are associated with an individual's propensity to overeat during subsequent sleep deprivation. This suggests that individual differences within reward processing pathways are potential key factors in sleep loss related overeating. Sleep loss and obesity are tightly linked. Both phenomena have been associated with increased neural activation in regions associated with reward, inhibitory control, and disrupted dopamine signaling. Elevated baseline reward sensitivity in the ventral striatum appears to be further compounded by sleep deprivation induced dysfunction in the reward neurocircuitry, increasing the likelihood of overeating. Our findings suggest that large individual differences in baseline responsiveness of hedonic reward pathways may modulate the association between sleep loss and obesity.
Collapse
Affiliation(s)
- Brieann C Satterfield
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Adam C Raikes
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
28
|
van Meer F, van der Laan LN, Viergever MA, Adan RA, Smeets PA. Considering healthiness promotes healthier choices but modulates medial prefrontal cortex differently in children compared with adults. Neuroimage 2017; 159:325-333. [DOI: 10.1016/j.neuroimage.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022] Open
|
29
|
Cheled-Shoval SL, Reicher N, Niv MY, Uni Z. Detecting thresholds for bitter, umami, and sweet tastants in broiler chicken using a 2-choice test method. Poult Sci 2017; 96:2206-2218. [DOI: 10.3382/ps/pex003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
|
30
|
Guénard F, Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. Genome-Wide Association Study of Dietary Pattern Scores. Nutrients 2017; 9:E649. [PMID: 28644415 PMCID: PMC5537769 DOI: 10.3390/nu9070649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/08/2023] Open
Abstract
Dietary patterns, representing global food supplies rather than specific nutrients or food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality. The contribution of genetic factors in the determination of food intakes, preferences and dietary patterns has been previously established. The current study aimed to identify novel genetic factors associated with reported dietary pattern scores. Reported dietary patterns scores were derived from reported dietary intakes for the preceding month and were obtained through a food frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of 141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations (p < 1 × 10-5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these, SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were also observed from SNP-surrounding sequences. Results from the current GWAS study suggest an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose metabolism and food-induced response in the brain in the adoption of dietary patterns.
Collapse
Affiliation(s)
- Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Annie Bouchard-Mercier
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec, Laval University, Québec, QC G1V 4G2, Canada.
| | - Simone Lemieux
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| | - Patrick Couture
- Institute of Nutrition and Functional Foods (INAF), Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec, Laval University, Québec, QC G1V 4G2, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Laval University, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
31
|
Chao AM, Loughead J, Bakizada ZM, Hopkins CM, Geliebter A, Gur RC, Wadden TA. Sex/gender differences in neural correlates of food stimuli: a systematic review of functional neuroimaging studies. Obes Rev 2017; 18:687-699. [PMID: 28371180 PMCID: PMC5549442 DOI: 10.1111/obr.12527] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Sex and gender differences in food perceptions and eating behaviors have been reported in psychological and behavioral studies. The aim of this systematic review was to synthesize studies that examined sex/gender differences in neural correlates of food stimuli, as assessed by functional neuroimaging. Published studies to 2016 were retrieved and included if they used food or eating stimuli, assessed patients with functional magnetic resonance imaging (fMRI) or positron emission tomography (PET), and compared activation between males and females. Fifteen studies were identified. In response to visual food cues, females, compared to males, showed increased activation in the frontal, limbic, and striatal areas of the brain as well as the fusiform gyrus. Differences in neural response to gustatory stimuli were inconsistent. This body of literature suggests that females may be more reactive to visual food stimuli. However, findings are based on a small number of studies and additional research is needed to establish a more definitive explanation and conclusion.
Collapse
Affiliation(s)
- Ariana M. Chao
- University of Pennsylvania School of Nursing
- Department of Psychiatry, Center for Weight and Eating Disorders at the University of Pennsylvania Perelman School of Medicine
| | - James Loughead
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Zayna M. Bakizada
- Department of Psychiatry, Center for Weight and Eating Disorders at the University of Pennsylvania Perelman School of Medicine
| | - Christina M. Hopkins
- Department of Psychiatry, Center for Weight and Eating Disorders at the University of Pennsylvania Perelman School of Medicine
| | - Allan Geliebter
- Department of Psychiatry, Mount Sinai School of Medicine
- Department of Psychology, Touro College and University System
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
| | - Thomas A. Wadden
- Department of Psychiatry, Center for Weight and Eating Disorders at the University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
32
|
Manippa V, Padulo C, Brancucci A. Emotional faces influence evaluation of natural and transformed food. PSYCHOLOGICAL RESEARCH 2017; 82:675-683. [DOI: 10.1007/s00426-017-0857-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/07/2017] [Indexed: 11/25/2022]
|
33
|
Waite MA, Rippe JM. Effective Strategies to Help Adults Manage How Much They Eat. NUTRITION IN LIFESTYLE MEDICINE 2017:85-101. [DOI: 10.1007/978-3-319-43027-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Abstract
Health nudge interventions to steer people into healthier lifestyles are increasingly applied by governments worldwide, and it is natural to look to such approaches to improve health by altering what people choose to eat. However, to produce policy recommendations that are likely to be effective, we need to be able to make valid predictions about the consequences of proposed interventions, and for this, we need a better understanding of the determinants of food choice. These determinants include dietary components (e.g. highly palatable foods and alcohol), but also diverse cultural and social pressures, cognitive-affective factors (perceived stress, health attitude, anxiety and depression), and familial, genetic and epigenetic influences on personality characteristics. In addition, our choices are influenced by an array of physiological mechanisms, including signals to the brain from the gastrointestinal tract and adipose tissue, which affect not only our hunger and satiety but also our motivation to eat particular nutrients, and the reward we experience from eating. Thus, to develop the evidence base necessary for effective policies, we need to build bridges across different levels of knowledge and understanding. This requires experimental models that can fill in the gaps in our understanding that are needed to inform policy, translational models that connect mechanistic understanding from laboratory studies to the real life human condition, and formal models that encapsulate scientific knowledge from diverse disciplines, and which embed understanding in a way that enables policy-relevant predictions to be made. Here we review recent developments in these areas.
Collapse
|
35
|
van Meer F, van der Laan LN, Charbonnier L, Viergever MA, Adan RA, Smeets PA. Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults. Am J Clin Nutr 2016; 104:1515-1522. [PMID: 27806979 DOI: 10.3945/ajcn.116.137240] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/26/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Food cues are omnipresent and may trigger overconsumption. In the past 2 decades, the prevalence of childhood obesity has increased dramatically. Because children's brains are still developing, especially in areas important for inhibition, children may be more susceptible than adults to tempting food cues. OBJECTIVE We examined potential developmental differences in children's and adults' responses to food cues to determine how these responses relate to weight status. DESIGN We included 27 children aged 10-12 y and 32 adults aged 32-52 y. Functional magnetic resonance imaging data were acquired during a food-viewing task in which unhealthy and healthy food pictures were presented. RESULTS Children had a stronger activation in the left precentral gyrus than did adults in response to unhealthy compared with healthy foods. In children, unhealthy foods elicited stronger activation in the right inferior temporal and middle occipital gyri, left precentral gyrus, bilateral opercular part of the inferior frontal gyrus, left hippocampus, and left middle frontal gyrus. Adults had stronger activation in the bilateral middle occipital gyrus and the right calcarine sulcus for unhealthy compared with healthy foods. Children with a higher body mass index (BMI) had lower activation in the bilateral dorsolateral prefrontal cortex while viewing unhealthy compared with healthy foods. In adults there was no correlation between BMI and neural response to unhealthy compared with healthy foods. CONCLUSIONS Unhealthy foods might elicit more attention both in children and in adults. Children had stronger activation while viewing unhealthy compared with healthy foods in areas involved in reward, motivation, and memory. Furthermore, children activated a motivation and reward area located in the motor cortex more strongly than did adults in response to unhealthy foods. Finally, children with a higher BMI had less activation in inhibitory areas in response to unhealthy foods, which may mean they are more susceptible to tempting food cues. This trial was registered at www.trialregister.nl as NTR4255.
Collapse
Affiliation(s)
- Floor van Meer
- Image Sciences Institute and .,University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Laura N van der Laan
- Image Sciences Institute and.,University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Lisette Charbonnier
- Image Sciences Institute and.,University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Max A Viergever
- Image Sciences Institute and.,University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Roger Ah Adan
- University Medical Center Utrecht, Utrecht, Netherlands; and
| | - Paul Am Smeets
- Image Sciences Institute and.,University Medical Center Utrecht, Utrecht, Netherlands; and.,Division of Human Nutrition, Wageningen University and Research Centre, Wageningen, Netherlands
| | | |
Collapse
|
36
|
Asano M, Hong G, Matsuyama Y, Wang W, Izumi S, Izumi M, Toda T, Kudo TA. Association of Oral Fat Sensitivity with Body Mass Index, Taste Preference, and Eating Habits in Healthy Japanese Young Adults. TOHOKU J EXP MED 2016; 238:93-103. [PMID: 26797054 DOI: 10.1620/tjem.238.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oral fat sensitivity (OFS, the ability to detect fat) may be related to overeating-induced obesity. However, it is largely unknown whether OFS affects taste preference and eating habits. Therefore, we aimed to evaluate (1) the association between body mass index (BMI) and OFS and (2) the relationship of OFS with four types of taste preference (sweet, sour, salty, and bitter) and eating habits using serial concentrations of oleic acid (OA) homogenized in non-fat milk and a self-reported questionnaire. Participants were 25 healthy Japanese individuals (mean age: 27.0 ± 5.6 years), among whom the OA detection threshold was significantly associated with BMI. Participants were divided into two subgroups based on oral sensitivity to 2.8 mM OA: hypersensitive (able to detect 2.8 mM OA, n = 16) and hyposensitive (unable to detect 2.8 mM OA, n = 9). The degree of sweet taste preference of the hypersensitive group was significantly higher than that of the hyposensitive group. Furthermore, there was significantly higher degree of preference for high-fat sweet foods than low-fat sweet foods in the hypersensitive group. There was also a significant inverse correlation between the OA detection threshold and the degree of both spare eating and postprandial satiety. Thus, OFS is associated not only with BMI, but also with the preference for high-fat sweet foods and eating habits. The present study provides novel insights that measuring OFS may be useful for assessing the risk of obesity associated with overeating in countries, including Japan, where BMI is increasing in the population.
Collapse
Affiliation(s)
- Masanobu Asano
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoshikawa T, Tanaka M, Ishii A, Yamano Y, Watanabe Y. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive. Behav Brain Funct 2016; 12:26. [PMID: 27670910 PMCID: PMC5037892 DOI: 10.1186/s12993-016-0110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Background Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Methods Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. Results The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann’s area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. Conclusions These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, 545-8585, Japan.
| | - Masaaki Tanaka
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, 545-8585, Japan
| | - Akira Ishii
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, 545-8585, Japan
| | - Yoko Yamano
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, 545-8585, Japan
| | - Yasuyoshi Watanabe
- Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka, 545-8585, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Hyogo, 650-0047, Japan
| |
Collapse
|
38
|
Abstract
Food decisions determine energy intake. Since overconsumption is the main driver of obesity, the effects of weight status on food decision-making are of increasing interest. An additional factor of interest is age, given the rise in childhood obesity, weight gain with aging, and the increased chance of type 2 diabetes in the elderly. The effects of weight status and age on food preference, food cue sensitivity, and self-control are discussed, as these are important components of food decision-making. Furthermore, the neural correlates of food anticipation and choice and how these are affected by weight status and age are discussed. Behavioral studies show that in particular, poor self-control may have an adverse effect on food choice in children and adults with overweight and obesity. Neuroimaging studies show that overweight and obese individuals have altered neural responses to food in brain areas related to reward, self-control, and interoception. Longitudinal studies across the lifespan will be invaluable to unravel the causal factors driving (changes in) food choice, overconsumption, and weight gain.
Collapse
Affiliation(s)
- Floor van Meer
- Image Sciences Institute, Brain Center Rudolf Magnus, University Medical Center Utrecht, room Q02.445, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lisette Charbonnier
- Image Sciences Institute, Brain Center Rudolf Magnus, University Medical Center Utrecht, room Q02.445, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Paul A. M. Smeets
- Image Sciences Institute, Brain Center Rudolf Magnus, University Medical Center Utrecht, room Q02.445, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Division of Human Nutrition, Wageningen University & Research Centre (Bode 62), 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
39
|
Steinglass JE, Walsh BT. Neurobiological model of the persistence of anorexia nervosa. J Eat Disord 2016; 4:19. [PMID: 27195123 PMCID: PMC4870737 DOI: 10.1186/s40337-016-0106-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/02/2016] [Indexed: 01/01/2023] Open
Abstract
Anorexia Nervosa (AN) is characterized by the maintenance of an undernourished, or starved, state. Persistent restrictive eating, or the recurrent intake of a diet that is inadequate to sustain a healthy weight, is the central behavior maintaining AN. To understand this disturbance, we need to understand the neural mechanisms that allow or promote the persistent choice of inadequate caloric intake. While a range of neural disturbances have been reported in AN, abnormalities in systems relevant to reward processing and the development of habit systems have been consistently described in both structural and functional neuroimaging studies. Most recently, brain and behavior have been directly examined by investigating the neural underpinnings of restrictive food choice. These recent data suggest that, among individuals with AN, dorsal frontostriatal circuits play a greater role in guiding decisions regarding what to eat than among healthy individuals. This line of research attempts to leverage advances in the field of cognitive neuroscience to further our understanding of persistent maladaptive choices of individuals with AN, in the hope that such advances will help in the development of novel treatments for this potentially fatal disorder.
Collapse
|
40
|
Melasch J, Rullmann M, Hilbert A, Luthardt J, Becker GA, Patt M, Villringer A, Arelin K, Meyer PM, Lobsien D, Ding YS, Müller K, Sabri O, Hesse S, Pleger B. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight. Int J Obes (Lond) 2015; 40:779-87. [PMID: 26620766 DOI: 10.1038/ijo.2015.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The neurobiological mechanisms linking obesity to emotional distress remain largely undiscovered. METHODS In this pilot study, we combined positron emission tomography, using the norepinephrine transporter (NET) tracer [(11)C]-O-methylreboxetine, with functional connectivity magnetic resonance imaging, the Beck depression inventory (BDI), and the impact of weight on quality of life-Lite questionnaire (IWQOL-Lite), to investigate the role of norepinephrine in the severity of depression (BDI), as well as in the loss of emotional well-being with body weight (IWQOL-Lite). RESULTS In a small group of lean-to-morbidly obese individuals (n=20), we show that an increased body mass index (BMI) is related to a lowered NET availability within the hypothalamus, known as the brain's homeostatic control site. The hypothalamus displayed a strengthened connectivity in relation to the individual hypothalamic NET availability to the anterior insula/frontal operculum, as well as the medial orbitofrontal cortex, assumed to host the primary and secondary gustatory cortex, respectively (n=19). The resting-state activity in these two regions was correlated positively to the BMI and IWQOL-Lite scores, but not to the BDI, suggesting that the higher the resting-state activity in these regions, and hence the higher the BMI, the stronger the negative impact of the body weight on the individual's emotional well-being was. CONCLUSIONS This pilot study suggests that the loss in emotional well-being with weight is embedded within the central norepinephrine network.
Collapse
Affiliation(s)
- J Melasch
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - M Rullmann
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - A Hilbert
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany
| | - J Luthardt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - G A Becker
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - M Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - A Villringer
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - K Arelin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - P M Meyer
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - D Lobsien
- Department of Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Y-S Ding
- Department of Radiology, Psychiatry, and Chemistry, New York University School of Medicine, New York, USA
| | - K Müller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - O Sabri
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - S Hesse
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Pleger
- IFB Adiposity Diseases, University Medical Centre, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Charbonnier L, van der Laan LN, Viergever MA, Smeets PAM. Functional MRI of Challenging Food Choices: Forced Choice between Equally Liked High- and Low-Calorie Foods in the Absence of Hunger. PLoS One 2015; 10:e0131727. [PMID: 26167916 PMCID: PMC4500585 DOI: 10.1371/journal.pone.0131727] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
We are continuously exposed to food and during the day we make many food choices. These choices play an important role in the regulation of food intake and thereby in weight management. Therefore, it is important to obtain more insight into the mechanisms that underlie these choices. While several food choice functional MRI (fMRI) studies have been conducted, the effect of energy content on neural responses during food choice has, to our knowledge, not been investigated before. Our objective was to examine brain responses during food choices between equally liked high- and low-calorie foods in the absence of hunger. During a 10-min fMRI scan 19 normal weight volunteers performed a forced-choice task. Food pairs were matched on individual liking but differed in perceived and actual caloric content (high-low). Food choice compared with non-food choice elicited stronger unilateral activation in the left insula, superior temporal sulcus, posterior cingulate gyrus and (pre)cuneus. This suggests that the food stimuli were more salient despite subject’s low motivation to eat. The right superior temporal sulcus (STS) was the only region that exhibited greater activation for high versus low calorie food choices between foods matched on liking. Together with previous studies, this suggests that STS activation during food evaluation and choice may reflect the food’s biological relevance independent of food preference. This novel finding warrants further research into the effects of hunger state and weight status on STS, which may provide a marker of biological relevance.
Collapse
Affiliation(s)
- Lisette Charbonnier
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Laura N. van der Laan
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A. Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul A. M. Smeets
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
42
|
van Meer F, van der Laan LN, Adan RA, Viergever MA, Smeets PA. What you see is what you eat: An ALE meta-analysis of the neural correlates of food viewing in children and adolescents. Neuroimage 2015; 104:35-43. [DOI: 10.1016/j.neuroimage.2014.09.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 11/28/2022] Open
|
43
|
Frankort A, Roefs A, Siep N, Roebroeck A, Havermans R, Jansen A. Neural predictors of chocolate intake following chocolate exposure. Appetite 2014; 87:98-107. [PMID: 25528694 DOI: 10.1016/j.appet.2014.12.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/23/2014] [Accepted: 12/13/2014] [Indexed: 01/22/2023]
Abstract
Previous studies have shown that one's brain response to high-calorie food cues can predict long-term weight gain or weight loss. The neural correlates that predict food intake in the short term have, however, hardly been investigated. This study examined which brain regions' activation predicts chocolate intake after participants had been either exposed to real chocolate or to control stimuli during approximately one hour, with interruptions for fMRI measurements. Further we investigated whether the variance in chocolate intake could be better explained by activated brain regions than by self-reported craving. In total, five brain regions correlated with subsequent chocolate intake. The activation of two reward regions (the right caudate and the left frontopolar cortex) correlated positively with intake in the exposure group. The activation of two regions associated with cognitive control (the left dorsolateral and left mid-dorsolateral PFC) correlated negatively with intake in the control group. When the regression analysis was conducted with the exposure and the control group together, an additional region's activation (the right anterior PFC) correlated positively with chocolate intake. In all analyses, the intake variance explained by neural correlates was above and beyond the variance explained by self-reported craving. These results are in line with neuroimaging research showing that brain responses are a better predictor of subsequent intake than self-reported craving. Therefore, our findings might provide for a missing link by associating brain activation, previously shown to predict weight change, with short-term intake.
Collapse
Affiliation(s)
- Astrid Frankort
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands.
| | - Nicolette Siep
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Remco Havermans
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
44
|
Miccoli L, Delgado R, Rodríguez-Ruiz S, Guerra P, García-Mármol E, Fernández-Santaella MC. Meet OLAF, a good friend of the IAPS! The Open Library of Affective Foods: a tool to investigate the emotional impact of food in adolescents. PLoS One 2014; 9:e114515. [PMID: 25490404 PMCID: PMC4260831 DOI: 10.1371/journal.pone.0114515] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
In the last decades, food pictures have been repeatedly employed to investigate the emotional impact of food on healthy participants as well as individuals who suffer from eating disorders and obesity. However, despite their widespread use, food pictures are typically selected according to each researcher's personal criteria, which make it difficult to reliably select food images and to compare results across different studies and laboratories. Therefore, to study affective reactions to food, it becomes pivotal to identify the emotional impact of specific food images based on wider samples of individuals. In the present paper we introduce the Open Library of Affective Foods (OLAF), which is a set of original food pictures created to reliably select food pictures based on the emotions they prompt, as indicated by affective ratings of valence, arousal, and dominance and by an additional food craving scale. OLAF images were designed to allow simultaneous use with affective images from the International Affective Picture System (IAPS), which is a well-known instrument to investigate emotional reactions in the laboratory. The ultimate goal of the OLAF is to contribute to understanding how food is emotionally processed in healthy individuals and in patients who suffer from eating and weight-related disorders. The present normative data, which was based on a large sample of an adolescent population, indicate that when viewing affective non-food IAPS images, valence, arousal, and dominance ratings were in line with expected patterns based on previous emotion research. Moreover, when viewing food pictures, affective and food craving ratings were consistent with research on food cue processing. As a whole, the data supported the methodological and theoretical reliability of the OLAF ratings, therefore providing researchers with a standardized tool to reliably investigate the emotional and motivational significance of food. The OLAF database is publicly available at zenodo.org.
Collapse
Affiliation(s)
- Laura Miccoli
- Department of Personality, University of Granada, Granada, Spain
| | - Rafael Delgado
- Department of Personality, University of Granada, Granada, Spain
| | | | - Pedro Guerra
- Department of Personality, University of Granada, Granada, Spain
| | | | | |
Collapse
|
45
|
Spetter MS, Mars M, Viergever MA, de Graaf C, Smeets PA. Taste matters – effects of bypassing oral stimulation on hormone and appetite responses. Physiol Behav 2014; 137:9-17. [DOI: 10.1016/j.physbeh.2014.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 10/09/2013] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
|
46
|
Chen J. Food oral processing: Some important underpinning principles of eating and sensory perception. FOOD STRUCTURE-NETHERLANDS 2014. [DOI: 10.1016/j.foostr.2014.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Brewer-Smyth K. Obesity, traumatic brain injury, childhood abuse, and suicide attempts in females at risk. Rehabil Nurs 2014; 39:183-91. [PMID: 24668743 DOI: 10.1002/rnj.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE This study tested the hypothesis that obesity is related to history of traumatic brain injury (TBI), severity and frequency of childhood physical (CPA) and sexual abuse (CSA), and suicide attempts, adjusting for related variables in a high risk female population. DESIGN This cross-sectional study of 81 females compared obese to non-obese. METHODS All variables were verified by private interviews, physical examination, and documented evidence, then statistically analyzed with logistic regression. FINDINGS Obesity at the time of interview was related to history of a decreased number of TBIs per person, greater CSA, suicide attempts, and decreased CPA, adjusting for current smoking, depression, currently using selective serotonin reuptake inhibitors, and age. CONCLUSIONS Number of TBIs per person and CPA were inversely related to obesity, adjusting for related variables. Greater CSA frequency and severity, and having attempted suicide were significantly related to greater risk of obesity, adjusting for related variables. Though causes of obesity cannot be determined by this design, and findings should be viewed with caution, this study provides new insight into the obesity epidemic that requires further investigation. CLINICAL RELEVANCE Rehabilitation nurses are in ideal settings when patient's conditions are less acute, providing opportunities to address complex serious underlying etiologies of obesity. Obesity has not been alleviated by teaching about diet and exercise because obesity may be the result of dietary self-medication of pain from previous experiences. CSA is a very serious problem that could precipitate suicide attempts, obesity, and multifaceted poor health outcomes throughout the life span; subsequently placing individuals at greater risk of requiring rehabilitation services.
Collapse
|
48
|
Does bariatric surgery change olfactory perception? Results of the early postoperative course. Int J Colorectal Dis 2014; 29:253-60. [PMID: 24276075 DOI: 10.1007/s00384-013-1795-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Changes of food preference toward foods with low caloric density have been demonstrated after bariatric surgery and may contribute to sustained body weight loss. It has been hypothesized that olfactory perception as an integral part of food selection might be altered after bariatric surgery. METHODS Sniffin' Sticks® were used to investigate the olfactory perception of morbidly obese patients undergoing either Roux-en-Y gastric bypass (RYGB, n = 15) or sleeve gastrectomy (SG, n = 15) before 1, 6, 12, and 24 weeks after surgery. Obese patients without surgical intervention served as controls (CG, n = 12). Results are presented using the testing odor threshold, discrimination, and identification score (TDI; higher scores indicate better olfactory perception). Body weight loss was recorded. RESULTS Initial BMI of the SG group (56.04 ± 7.096 kg m(-2)) was higher compared to the BMI of the RYGB (48.71 ± 6.49 kg m(-2)) and CG (50.35 ± 6.78 kg m(-2)); p = 0.011. Body weight loss among the surgical groups was not different (p = 0.011) while controls did not lose weight. Mean baseline TDI scores were significantly lower in the SG group 27.1 ± 3.9 vs. 32.6 ± 3.6 (RYGB) and 32.1 ± 5.3 (CG), respectively, whereas there were after 24 weeks no changes in RYGB and CG patients; the TDI score in the SG group increased significantly to 31.1 ± 3.5 (p < 0.01). CONCLUSIONS Our data suggest that a substantial body weight loss per se does not affect olfactory perception. However, our results point towards improved olfactory perception after sleeve gastrectomy but not Roux-en-Y gastric bypass.
Collapse
|
49
|
Enhancement of cell viability after treatment with polyunsaturated fatty acids. Neurosci Lett 2014; 559:56-60. [DOI: 10.1016/j.neulet.2013.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/23/2022]
|
50
|
Marco A, Kisliouk T, Weller A, Meiri N. High fat diet induces hypermethylation of the hypothalamic Pomc promoter and obesity in post-weaning rats. Psychoneuroendocrinology 2013; 38:2844-53. [PMID: 23958347 DOI: 10.1016/j.psyneuen.2013.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Impaired response of the brain to the leptin signal leads to a persisting dysregulation of food intake and energy balance. High plasma leptin or insulin should activate proopiomelanocortin (POMC), the precursor of the anorexigenic neuropeptide α-melanocyte-stimulating hormone (α-MSH) in the hypothalamic arcuate nucleus (ARC). Nevertheless, in obesity, this signal transduction pathway might be impaired. In this study we investigated whether chronic high fat (HF) diet consumption from post-weaning to adulthood increases CpG methylation of the Pomc promoter. The hypothesis that this would disrupt the essential binding of the transcription factor Sp1 to the Pomc promoter was tested. Male rats were raised from postnatal day 21 till 90 on either HF or standard diet. As a result HF fed rats were significantly heavier, with high leptin and insulin levels in their plasma but almost no changes in ARC mRNA expression levels of Pomc. The Pomc promoter area in the HF-treated rats was found to be hypermethylated. Furthermore, there was a direct correlation in individual rats between CpG methylation at specific sites that affect Sp1 binding and plasma leptin levels and/or body weight. Although, as expected the HF diet resulted in up-regulation of Sp1, the binding of Sp1 to the hypermethylated Pomc promoter was significantly reduced. Therefore, we suggest that hypermethylation on the promoter region of the Pomc gene can emerge at post-lactation periods and interfere with transcription factor binding, thus blocking the effects of high leptin levels, leading to obesity.
Collapse
Affiliation(s)
- Asaf Marco
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel; Gonda Brain Res Center, Bar Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|