1
|
Hayman O, Combet E, Witard OC, Gray SR. Long-chain n-3 polyunsaturated fatty acid supplementation and neuromuscular function in older adults. Curr Opin Clin Nutr Metab Care 2024; 27:486-491. [PMID: 39150439 DOI: 10.1097/mco.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the latest research investigating the effects of marine-derived long-chain n -3 polyunsaturated fatty acid (LC n -3 PUFA) supplementation on neuromuscular function in older adults. RECENT FINDINGS Ageing results in a decline in skeletal muscle strength and mass. There is growing evidence that LC n -3 PUFA supplementation increases muscle strength and mass in healthy older adults, yet the mechanisms underlying these effects remain elusive. Recent studies investigating LC n -3 PUFA supplementation have demonstrated effects on neuromuscular function such as increases in the compound muscle action potential (M-wave) amplitude and surface electromyography alongside increases in muscular strength. Therefore, evidence suggests that LC n -3 PUFA may elicit a beneficial effect at the neuromuscular junction and possess neuroprotective properties in older adults. SUMMARY LC n -3 PUFA supplementation may increase or maintain neuromuscular function throughout the ageing process. Further research is warranted to investigate the long-term effects LC n -3 PUFA supplementation on neuromuscular outcomes such as single motor unit properties and cortical/supraspinal networks, utilizing state-of-the-art techniques in neuromuscular physiology.
Collapse
Affiliation(s)
- Oliver Hayman
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular, Research Centre, College of Medical, Veterinary and Life Sciences
| | - Emilie Combet
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stuart R Gray
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular, Research Centre, College of Medical, Veterinary and Life Sciences
| |
Collapse
|
2
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta (Aβ) and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13 to 16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA+EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA+EPA diet, respectively. DHA and DHA+EPA diets lowered brain arachidonic acid (ARA) levels and the n-6:n-3 docosapentaenoic acid (DPA) ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD compared to NonTg mice. DHA and DHA+EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA+EPA, p<0.05) while increasing p21 activated kinase (+58% and +83%, p<0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% versus DHA, p<0.05). No diet effect on Aβ levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski (Qc), Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec (QC), Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec (QC), Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec (QC), Canada.
| |
Collapse
|
3
|
Vigier M, Uriot M, Djelti-Delbarba F, Claudepierre T, El Hajj A, Yen FT, Oster T, Malaplate C. Increasing the Survival of a Neuronal Model of Alzheimer's Disease Using Docosahexaenoic Acid, Restoring Endolysosomal Functioning by Modifying the Interactions between the Membrane Proteins C99 and Rab5. Int J Mol Sci 2024; 25:6816. [PMID: 38999927 PMCID: PMC11240902 DOI: 10.3390/ijms25136816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.
Collapse
Affiliation(s)
- Maxime Vigier
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Magalie Uriot
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Fathia Djelti-Delbarba
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thomas Claudepierre
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Aseel El Hajj
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Frances T. Yen
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Thierry Oster
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
| | - Catherine Malaplate
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), Qualivie Project, UA 3998, USC INRAE 340, Campus INP, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (M.V.); (M.U.); (F.D.-D.); (T.C.); (C.M.)
- Department of Biochemistry, Molecular Biology and Nutrition, Nancy University Hospital, 54000 Nancy, France
| |
Collapse
|
4
|
Wu G. Roles of Nutrients in the Brain Development, Cognitive Function, and Mood of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:177-202. [PMID: 38625529 DOI: 10.1007/978-3-031-54192-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The brain is the central commander of all physical activities and the expression of emotions in animals. Its development and cognitive health critically depend on the neural network that consists of neurons, glial cells (namely, non-neuronal cells), and neurotransmitters (communicators between neurons). The latter include proteinogenic amino acids (e.g., L-glutamate, L-aspartate, and glycine) and their metabolites [e.g., γ-aminobutyrate, D-aspartate, D-serine, nitric oxide, carbon monoxide, hydrogen sulfide, and monoamines (e.g., dopamine, norepinephrine, epinephrine, and serotonin)]. In addition, some non-neurotransmitter metabolites of amino acids, such as taurine, creatine, and carnosine, also play important roles in brain development, cognitive health, behavior, and mood of dogs and cats. Much evidence shows that cats require dietary ω3 (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) and ω6 (linoleic acid and arachidonic acid) polyunsaturated fatty acids for the development of the central nervous system. As an essential component of membranes of neurons and glial cells, cholesterol is also crucial for cognitive development and function. In addition, vitamins and minerals are required for the metabolism of AAs, lipids, and glucose in the nervous system, and also act as antioxidants. Thus, inadequate nutrition will lead to mood disorders. Some amino acids (e.g., arginine, glycine, methionine, serine, taurine, tryptophan, and tyrosine) can help to alleviate behavioral and mood disorders (e.g., depression, anxiety and aggression). As abundant providers of all these functional amino acids and lipids, animal-sourced foods (e.g., liver, intestinal mucosa, and meat) play important roles in brain development, cognitive function, and mood of dogs and cats. This may explain, in part, why dogs and cats prefer to eat visceral organs of their prey. Adequate provision of nutrients in all phases of the life cycle (pregnancy, lactation, postnatal growth, and adulthood) is essential for optimizing neurological health, while preventing cognitive dysfunction and abnormal behavior.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Stachowicz K. Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev 2023; 155:105439. [PMID: 37898448 DOI: 10.1016/j.neubiorev.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacoslogy, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
6
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
7
|
Tang TYC, Kim JS, Das A. Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:375-422. [PMID: 37236765 DOI: 10.1016/bs.apha.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Endocannabinoids are derived from dietary omega-3 and omega-6 fatty acids and play an important role in regulation of inflammation, development, neurodegenerative diseases, cancer, and cardiovascular diseases. They elicit this effect via interactions with cannabinoid receptors 1 and 2 which are also targeted by plant derived cannabinoid from cannabis. The evidence of the involvement of the endocannabinoid system in cardiopulmonary function comes from studies that show that cannabis consumption leads to cardiovascular effect such as arrythmia and is beneficial in lung cancer patients. Moreover, omega-3 and omega-6 endocannabinoids play several important roles in cardiopulmonary system such as causing airway relaxation, suppressing atherosclerosis and hypertension. These effects are mediated via the cannabinoids receptors that are abundant in the cardiopulmonary system. Overall, this chapter reviews the known role of phytocannabinoids and endocannabinoids in the cardiopulmonary context.
Collapse
Affiliation(s)
- Tiffany Y-C Tang
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States.
| |
Collapse
|
8
|
Tsiknia AA, Bergstrom J, Reas ET. Midlife omega-3 fatty acid intake predicts later life white matter microstructure in an age- and APOE-dependent manner. Cereb Cortex 2023; 33:2143-2151. [PMID: 35584792 PMCID: PMC9977375 DOI: 10.1093/cercor/bhac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 intake has been positively associated with healthy brain aging, yet it remains unclear whether high omega-3 intake beginning early in life may optimize its protective effects against brain aging. We examined whether omega-3 intake is associated with brain microstructure over 2 decades later among dementia-free older adults. The 128 participants (62% women; age at magnetic resonance imaging: 76.6 ± 7.9) from the Rancho Bernardo Study of Healthy Aging completed at least 1 dietary assessment between 1984 and 1996 and underwent restriction spectrum imaging (RSI) 22.8 ± 3.1 years later. We evaluated associations between prior omega-3 intake and RSI metrics of gray and white matter (WM) microstructure. Higher prior omega-3 intake was associated with greater restricted diffusion in the superior cortico-striatal fasciculus. A correlation between higher prior omega-3 intake and greater cingulum restricted diffusion was stronger among participants >80 years old. Higher omega-3 intake correlated with greater restricted diffusion in the inferior longitudinal and inferior fronto-occipital fasciculus more strongly for apolipoprotein E (APOE) ε4 carriers than noncarriers. Associations were not modified by adjustment for dietary pattern, health, or lifestyle. High omega-3 intake in midlife may help to maintain WM integrity into older age, particularly in the latest decades of life and among APOE ε4 carriers.
Collapse
Affiliation(s)
- Amaryllis A Tsiknia
- Department of Neurosciences, University of California, San Diego, CA 92093-0841, United States
| | - Jaclyn Bergstrom
- School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, United States
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, CA 92093-0841, United States
| |
Collapse
|
9
|
Influence of Oxidative Stress and Inflammation on Nutritional Status and Neural Plasticity: New Perspectives on Post-Stroke Neurorehabilitative Outcome. Nutrients 2022; 15:nu15010108. [PMID: 36615766 PMCID: PMC9823808 DOI: 10.3390/nu15010108] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Beyond brain deficits caused by strokes, the effectiveness of neurorehabilitation is strongly influenced by the baseline clinical features of stroke patients, including a patient's current nutritional status. Malnutrition, either as a pre-stroke existing condition or occurring because of ischemic injury, predisposes patients to poor rehabilitation outcomes. On the other hand, a proper nutritional status compliant with the specific needs required by the process of brain recovery plays a key role in post-stroke rehabilitative outcome favoring neuroplasticity mechanisms. Oxidative stress and inflammation play a role in stroke-associated malnutrition, as well as in the cascade of ischemic events in the brain area, where ischemic damage leads to neuronal death and brain infarction, and, via cell-to-cell signaling, the alteration of neuroplasticity processes underlying functional recovery induced by multidisciplinary rehabilitative treatment. Nutrition strategies based on food components with oxidative and anti-inflammatory properties may help to reverse or stop malnutrition and may be a prerequisite for supporting the ability of neuronal plasticity to result in satisfactory rehabilitative outcome in stroke patients. To expand nutritional recommendations for functional rehabilitation recovery, studies considering the evolution of nutritional status changes in post-stroke patients over time are required. The assessment of nutritional status must be included as a routine tool in rehabilitation settings for the integrated care of stroke-patients.
Collapse
|
10
|
Di Miceli M, Martinat M, Rossitto M, Aubert A, Alashmali S, Bosch-Bouju C, Fioramonti X, Joffre C, Bazinet RP, Layé S. Dietary Long-Chain n-3 Polyunsaturated Fatty Acid Supplementation Alters Electrophysiological Properties in the Nucleus Accumbens and Emotional Behavior in Naïve and Chronically Stressed Mice. Int J Mol Sci 2022; 23:ijms23126650. [PMID: 35743093 PMCID: PMC9224532 DOI: 10.3390/ijms23126650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC n-3 PUFA protects from the development of mood disorders is still a matter of debate. In the present study, we studied the effect of a two-month exposure to isocaloric diets containing n-3 PUFAs in the form of relatively short-chain (SC) (6% of rapeseed oil, enriched in α-linolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC n-3 (supplemented) PUFA diet. Our results indicate that LC n-3 supplementation significantly increased some n-3 PUFAs, while decreasing some n-6 PUFAs. Then, in another cohort, control and n-3 PUFA-supplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with long-term depression plasticity in accumbal medium spiny neurons. Overall, mice fed with n-3 PUFA supplementation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and susceptible mice in the CSDS groups, n-3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC n-3 PUFA, as compared to a diet rich in SC n-3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC n-3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC n-3 PUFA on emotional behavior and synaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
- International Research Network Food4BrainHealth;
| | - Maud Martinat
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Moïra Rossitto
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Agnès Aubert
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Clémentine Bosch-Bouju
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Corinne Joffre
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Richard P. Bazinet
- International Research Network Food4BrainHealth;
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
- Correspondence:
| |
Collapse
|
11
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
12
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
13
|
Susceptibility of Female Mice to the Dietary Omega-3/Omega-6 Fatty-Acid Ratio: Effects on Adult Hippocampal Neurogenesis and Glia. Int J Mol Sci 2022; 23:ijms23063399. [PMID: 35328825 PMCID: PMC8950413 DOI: 10.3390/ijms23063399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Maternal intake of omega-3 (n-3 PUFAs) and omega-6 (n-6 PUFAs) polyunsaturated fatty acids impacts hippocampal neurogenesis during development, an effect that may extend to adulthood by altering adult hippocampal neurogenesis (AHN). The n-3 PUFAs and n-6 PUFAs are precursors of inflammatory regulators that potentially affect AHN and glia. Additionally, n-3 PUFA dietary supplementation may present a sexually dimorphic action in the brain. Therefore, we postulated that dietary n-6/n-3 PUFA balance shapes the adult DG in a sex-dependent manner influencing AHN and glia. We test our hypothesis by feeding adult female and male mice with n-3 PUFA balanced or deficient diets. To analyze the immunomodulatory potential of the diets, we injected mice with the bacterial endotoxin lipopolysaccharide (LPS). LPS reduced neuroblast number, and its effect was exacerbated by the n-3 PUFA-deficient diet. The n-3 PUFA-deficient diet reduced the DG volume, AHN, microglia number, and surveilled volume. The diet effect on most mature neuroblasts was exclusively significant in female mice. Colocalization and multivariate analysis revealed an association between microglia and AHN, as well as the sexual dimorphic effect of diet. Our study reveals that female mice are more susceptible than males to the effect of dietary n-6/n-3 PUFA ratio on AHN and microglia.
Collapse
|
14
|
Saunders EFH, Mukherjee D, Myers T, Wasserman E, Hameed A, Krishnamurthy VB, MacIntosh B, Domenichiello A, Ramsden CE, Wang M. Adjunctive dietary intervention for bipolar disorder: a randomized, controlled, parallel-group, modified double-blinded trial of a high n-3 plus low n-6 diet. Bipolar Disord 2022; 24:171-184. [PMID: 34218509 PMCID: PMC9157563 DOI: 10.1111/bdi.13112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the preliminary efficacy of a high n-3 plus low n-6 (H3-L6) dietary intervention in improving mood stability in Bipolar Disorder (BD) when compared to dietary intervention with usual U.S. levels of n-6 and n-3 polyunsaturated fatty acid (PUFA) intakes (control diet, CD). METHODS This 2-arm, parallel-group, randomized, modified double-blind, controlled 48-week study of 12-week intensive diet intervention in subjects with BD was conducted at a single suburban-rural site in the mid-Atlantic region. Participants with DSM-IV TR BD I or II with hypomanic or depressive symptoms were randomized, stratified on gender (N = 82). The intervention included the provision of group-specific study foods and dietary counseling. Variability of mood symptoms was measured by a twice-daily, 12-week ecological momentary analysis (EMA) paradigm, and group differences were analyzed using multilevel models. Circulating n-3 and n-6 fatty acids were measured at baseline and after 4, 8, and 12 weeks of diet exposure. RESULTS All 82 randomized participants were included in biochemical analyses. Seventy participants completed at least 2 EMA surveys and were included in primary EMA analyses. Variability in mood, energy, irritability, and pain as measured using EMA was reduced in the H3-L6 group compared to the CD group. No significant differences in mean ratings of mood symptoms, or any other symptom measures, were detected. The dietary intervention effect on target PUFAs significantly differed by the group over time. CONCLUSIONS A dietary intervention adjunctive to usual care showed preliminary efficacy in improving variability in mood symptoms in participants with BD. TRIAL REGISTRATION ClinicalTrials.Gov NCT02272010.
Collapse
Affiliation(s)
- Erika F. H. Saunders
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Dahlia Mukherjee
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Tiffany Myers
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily Wasserman
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Ahmad Hameed
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Beth MacIntosh
- Metabolic and Nutrition Research Core, University of North Carolina, Chapel Hill, NC, USA
| | | | - Christopher E. Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
15
|
Costa A, Rani B, Bastiaanssen TFS, Bonfiglio F, Gunnigle E, Provensi G, Rossitto M, Boehme M, Strain C, Martínez CS, Blandina P, Cryan JF, Layé S, Corradetti R, Passani MB. Diet Prevents Social Stress-Induced Maladaptive Neurobehavioural and Gut Microbiota Changes in a Histamine-Dependent Manner. Int J Mol Sci 2022; 23:862. [PMID: 35055048 PMCID: PMC8775792 DOI: 10.3390/ijms23020862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.
Collapse
Affiliation(s)
- Alessia Costa
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| | - Barbara Rani
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Francesco Bonfiglio
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Gustavo Provensi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Moira Rossitto
- Laboratoire NutriNeuro, UMR INRAE, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.R.); (S.L.)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Clara S. Martínez
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
| | - Patrizio Blandina
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (T.F.S.B.); (E.G.); (M.B.); (C.S.); (C.S.M.); (J.F.C.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.R.); (S.L.)
| | - Renato Corradetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (F.B.); (G.P.); (P.B.)
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; (A.C.); (B.R.)
| |
Collapse
|
16
|
Kelaiditis CF, Gibson EL, Dyall SC. The effects of a high eicosapentaenoic acid multinutrient supplement on measures of stress, anxiety and depression in young adults: Study protocol for NutriMOOD, a randomised double-blind placebo-controlled trial. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102335. [PMID: 34461561 DOI: 10.1016/j.plefa.2021.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anxiety disorders affect nearly 20% of young adults aged 18-29 years. First-line treatment for anxiety disorders comprises pharmacotherapy and Cognitive Behavioural Therapy, options often criticised for their low efficacy and safety. In contrast, fish-oil-based supplements comprising omega-3 polyunsaturated fatty acids and supporting nutrients are gaining recognition as safe and effective alternatives. Here we present the protocol for a randomised, double-blind, placebo-controlled trial investigating the effects of a high eicosapentaenoic acid multinutrient supplement on validated measures of anxiety and depression in healthy university students experiencing non-clinical levels of anxiety and depression. The primary outcome is improvement in anxiety compared to the placebo group assessed via the Generalised Anxiety Disorder Assessment-7 scale. The participants will be randomised to active treatment comprising a daily dose of 1125 mg eicosapentaenoic acid, 441 mg docosahexaenoic acid, 330 mg magnesium and 7.5 mg vitamin E, or placebo, for 24 weeks, and will complete validated questionnaires and tablet-based tasks sensitive to mood at baseline and end of intervention. Circulating fatty acids and key biomarkers will also be assessed. The students will be genotyped for polymorphisms thought to influence the relationship between long-chain omega-3 polyunsaturated fatty acids and affect. Trial registration; ClinicalTrials.gov, NCT04844034.
Collapse
Affiliation(s)
| | - E Leigh Gibson
- School of Psychology, University of Roehampton, London, UK
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
17
|
Moroz LL, Romanova DY. Selective Advantages of Synapses in Evolution. Front Cell Dev Biol 2021; 9:726563. [PMID: 34490275 PMCID: PMC8417881 DOI: 10.3389/fcell.2021.726563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Lab of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
[Research advances in the effect of long-chain polyunsaturated fatty acids on neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021. [PMID: 34266537 PMCID: PMC8292656 DOI: 10.7499/j.issn.1008-8830.2104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adequate supply of long-chain polyunsaturated fatty acids (LCPUFAs) is of great importance for neonates, especially preterm infants. In particular, n-3 LCPUFAs and n-6 LCPUFAs play a key role in brain development, immune regulation, and disease prevention. Lack of LCPUFAs may lead to neurodevelopmental impairment, affect the development of neonatal immune system, and result in neonatal diseases. This article reviews related research advances in the physiological function of LCPUFAs and its effect on neonates, so as to provide reference for clinical application.
Collapse
|
19
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
20
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
21
|
Mollica MP, Trinchese G, Cimmino F, Penna E, Cavaliere G, Tudisco R, Musco N, Manca C, Catapano A, Monda M, Bergamo P, Banni S, Infascelli F, Lombardi P, Crispino M. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021; 13:1111. [PMID: 33800688 PMCID: PMC8066999 DOI: 10.3390/nu13041111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding-the main way to modify milk fat composition-may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.
Collapse
Affiliation(s)
- Maria P. Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| |
Collapse
|
22
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|