1
|
Deng YP, Fu YT, Elsheikha HM, Cao ML, Zhu XQ, Wang JL, Zhang XL, Xie SC, Yao C, Liu GH. Comprehensive analysis of the global impact and distribution of tick paralysis, a deadly neurological yet fully reversible condition. Clin Microbiol Rev 2024:e0007424. [PMID: 39440956 DOI: 10.1128/cmr.00074-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYTick paralysis is a potentially fatal condition caused by neurotoxins secreted by the salivary glands of certain ticks. Documented cases have been reported worldwide, predominantly in the United States, Canada, and Australia, with additional reports from Europe and Africa. This condition also affects animals, leading to significant economic losses and adverse impacts on animal health and welfare. To date, 75 tick species, mostly hard ticks, have been identified as capable of causing this life-threatening condition. Due to symptom overlap with other conditions, accurate diagnosis of tick paralysis is crucial to avoid misdiagnosis, which could result in adverse patient outcomes. This review provides a comprehensive analysis of the current literature on tick paralysis, including the implicated tick species, global distribution, tick toxins, molecular pathogenesis, clinical manifestations, diagnosis, treatment, control, and prevention. Enhancing awareness among medical and veterinary professionals is critical for improving the management of tick paralysis and its health impacts on both humans and animals.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Mei-Ling Cao
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Ling Zhang
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Shi-Chen Xie
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Chaoqun Yao
- Ross University School of Veterinary Medicine and One Health Center for Zoonoses and Tropical Infectious Diseases, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Guo-Hua Liu
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
3
|
Li Z, McComic S, Chen R, Kim WTH, Gaithuma AK, Mooney B, Macaluso KR, Mulenga A, Swale DR. ATP-sensitive inward rectifier potassium channels regulate secretion of pro-feeding salivary proteins in the lone star tick (Amblyomma americanum). Int J Biol Macromol 2023; 253:126545. [PMID: 37652342 DOI: 10.1016/j.ijbiomac.2023.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - William Tae Heung Kim
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Brian Mooney
- Department of Biochemistry, Charles W Gehrlke Proteomics Center, University of Missouri, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Albert Mulenga
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Ma H, Lao Y, Liu S, Ai J, Sun X, Zhang W, Kang M, Li J, Sun Y. The diurnal salivary glands transcriptome of Dermacentor nuttalli from the first four days of blood feeding. Ticks Tick Borne Dis 2023; 14:102178. [PMID: 37001418 DOI: 10.1016/j.ttbdis.2023.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The ixodid tick Dermacentor nuttalli is distributed from southern Siberia to North China and is a vector of many pathogens. This species can have severe impacts on animal husbandry and human health. To date, the control of D. nuttalli is limited to the use of acaricides such as organophosphorus, synthetic pyrethroids and amidine pesticides. There are no environmentally friendly or reliable prevention and control measures, and little is known regarding key antigens involved in blood feeding. Salivary glands are major tissues involved in the blood feeding and pathogen transmission of ticks. Therefore, this study focused on salivary glands tissue to identify the dominant antigens of D. nuttalli involved in tick feeding. For this, high-throughput RNA sequencing (RNA-seq) was used for analysis. The transcriptome of female D. nuttalli ticks was assembled and characterized, and differentially expressed genes (DEGs) were identified in the salivary glands of ticks that had not fed (0 h) and of ticks after 24, 48, 72 and 96 h of feeding. There were 22,802,784, 22,275,013, 26,629,453, 24,982,389, and 22,596,230 high-quality clean reads obtained from salivary glands tissues at the five different blood feeding time points. The total number of annotated unigenes was 100,347. The differences in gene expression between different time points were compared, and functional enrichment was performed. Quantitative reverse transcription PCR (RT‒qPCR) was used to validate the RNA-seq results, the results of which showed that the differences in expressed transcripts presented similar trends. Among the identified DEGs, the most numerous were those with catalytic and binding activities and those involved in diverse metabolic pathways and cellular processes. The expression patterns of homologous and family-member proteins throughout the blood feeding period exhibited significant differences, strongly suggesting that the transcriptome composition is highly dynamic and likely subjected to important variation throughout the life cycle. Studies of gene sequences in D. nuttalli will greatly increase the information on tick protective antigens, which could potentially function as effective vaccine candidates or drug targets for the development of environmentally friendly acaricides.
Collapse
|
5
|
Šimo L. 50 Years since Kaufman and Phillips’ Groundbreaking Trilogy Elucidating Ion and Water Homeostasis in Ixodid Ticks. Pathogens 2023; 12:pathogens12030385. [PMID: 36986307 PMCID: PMC10052448 DOI: 10.3390/pathogens12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enormous volume of blood ingested by hard ticks during their long attachment period is without a doubt the hallmark of their biology. Maintaining a homeostatic balance between ion and water intake and loss during their feeding is critical to preventing osmotic stress and death. Exactly 50 years ago, Kaufman and Phillips published a series of three consecutive papers on “Ion and water balance in the ixodid tick Dermacentor andersoni”, Journal of Experimental Biology (1973): I. Routes of ion and water excretion, 58: 523–36; II. Mechanism and control of salivary secretion 58: 537–547; and III. Influence of monovalent ions and osmotic pressure on salivary secretion 58: 549–564. This classic series significantly expanded our knowledge of the unique regulatory processes governing ion and water balance in fed ixodid ticks, highlighting its uniqueness among the blood-feeding arthropods. Their pioneer work had an enormous impact on understanding the vital role of salivary glands in these actions, and ultimately provided a consequential stepping stone for a new era of hard tick salivary gland physiological research.
Collapse
Affiliation(s)
- Ladislav Šimo
- Laboratoire de Santé Animale, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Perveen N, Muhammad K, Muzaffar SB, Zaheer T, Munawar N, Gajic B, Sparagano OA, Kishore U, Willingham AL. Host-pathogen interaction in arthropod vectors: Lessons from viral infections. Front Immunol 2023; 14:1061899. [PMID: 36817439 PMCID: PMC9929866 DOI: 10.3389/fimmu.2023.1061899] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Haematophagous arthropods can harbor various pathogens including viruses, bacteria, protozoa, and nematodes. Insects possess an innate immune system comprising of both cellular and humoral components to fight against various infections. Haemocytes, the cellular components of haemolymph, are central to the insect immune system as their primary functions include phagocytosis, encapsulation, coagulation, detoxification, and storage and distribution of nutritive materials. Plasmatocytes and granulocytes are also involved in cellular defense responses. Blood-feeding arthropods, such as mosquitoes and ticks, can harbour a variety of viral pathogens that can cause infectious diseases in both human and animal hosts. Therefore, it is imperative to study the virus-vector-host relationships since arthropod vectors are important constituents of the ecosystem. Regardless of the complex immune response of these arthropod vectors, the viruses usually manage to survive and are transmitted to the eventual host. A multidisciplinary approach utilizing novel and strategic interventions is required to control ectoparasite infestations and block vector-borne transmission of viral pathogens to humans and animals. In this review, we discuss the arthropod immune response to viral infections with a primary focus on the innate immune responses of ticks and mosquitoes. We aim to summarize critically the vector immune system and their infection transmission strategies to mammalian hosts to foster debate that could help in developing new therapeutic strategies to protect human and animal hosts against arthropod-borne viral infections.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sabir Bin Muzaffar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bojan Gajic
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
7
|
Tsujimoto H, Metz HC, Smith AA, Sakamoto JM, Pal U, Rasgon JL. Function and evolution of the aquaporin IsAQP1 in the Lyme disease vector Ixodes scapularis. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36680546 DOI: 10.1111/imb.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood-feeding, they must excrete water and ions, but when off-host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane-bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP-like genes from the deer tick Ixodes scapularis and used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP-like sequences (including those of I. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full-length cDNA of I. scapularis aquaporin 1 (IsAQP1) and expressed it heterologously in Xenopus oocytes to functionally characterize its permeability to water and solutes. Additionally, we examined IsAQP1 expression across different life stages and adult female organs. We found IsAQP1 is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs, IsAQP1 has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggest IsAQP1 plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Hillery C Metz
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Joyce M Sakamoto
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Lee JS, Chung SY. The Threat of Climate Change on Tick-Borne Infections: Rising Trend of Infections and Geographic Distribution of Climate Risk Factors Associated With Ticks. J Infect Dis 2023; 227:295-303. [PMID: 35861295 DOI: 10.1093/infdis/jiac300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023] Open
Abstract
Ticks transmit a wide range of pathogens. The spread of tick-borne infections is an emerging, yet often overlooked, threat in the context of climate change. The infections have rapidly increased over the past few years in South Korea despite no significant changes in socioeconomic circumstances. We investigated the impact of climate change on the surge of tick-borne infections and identified potential disease hot spots at a resolution of 5 km by 5 km. A composite index was constructed based on multiple climate and environmental indicators and compared with the observed tick-borne infections. The surge of tick-borne episodes corresponded to the rising trend of the index over time. High-risk areas identified by the index can be used to prioritize locations for disease prevention activities. Monitoring climate risk factors may provide an opportunity to predict the spread of the infections in advance.
Collapse
Affiliation(s)
- Jung-Seok Lee
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,International Vaccine Institute, Seoul, South Korea
| | - Suh-Yong Chung
- Division of International Studies, Korea University, Seoul, South Korea
| |
Collapse
|
9
|
Inspiring Anti-Tick Vaccine Research, Development and Deployment in Tropical Africa for the Control of Cattle Ticks: Review and Insights. Vaccines (Basel) 2022; 11:vaccines11010099. [PMID: 36679944 PMCID: PMC9866923 DOI: 10.3390/vaccines11010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.
Collapse
|
10
|
Trentelman JJA, de Vogel FA, Colstrup E, Sima R, Coumou J, Koetsveld J, Klouwens MJ, Nayak A, Ersoz J, Barriales D, Tomás-Cortázar J, Narasimhan S, Hajdusek O, Anguita J, Hovius JW. Identification of novel conserved Ixodes vaccine candidates; a promising role for non-secreted salivary gland proteins. Vaccine 2022; 40:7593-7603. [PMID: 36357287 DOI: 10.1016/j.vaccine.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Ixodes ricinus and Ixodes scapularis are the main vectors for the causative agents of Lyme borreliosis and a wide range of other pathogens. Repeated tick-bites are known to lead to tick rejection; a phenomenon designated as tick immunity. Tick immunity is mainly directed against tick salivary gland proteins (TSGPs) and has been shown to partially protect against experimental Lyme borreliosis. TSGPs recognized by antibodies from tick immune animals could therefore be interesting candidates for an anti-tick vaccine, which might also block pathogen transmission. To identify conserved Ixodes TSGPs that could serve as a universal anti-tick vaccine in both Europe and the US, a Yeast Surface Display containing salivary gland genes of nymphal I. ricinus expressed at 24, 48 and 72 h into tick feeding was probed with either sera from rabbits repeatedly exposed for 24 h to I. ricinus nymphal ticks and/or sera from rabbits immune to I. scapularis. Thus, we identified thirteen TSGP vaccine candidates, of which ten were secreted. For vaccination studies in rabbits, we selected six secreted TSGPs, five full length and one conserved peptide. None of these proteins hampered tick feeding. In contrast, vaccination of guinea pigs with four non-secreted TSGPs - two from the current and two from a previous human immunoscreening - did significantly reduce tick attachment and feeding. Therefore, non-secreted TSGPs appear to be involved in the development of tick immunity and are interesting candidates for an anti-tick vaccine.
Collapse
Affiliation(s)
- Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Fons A de Vogel
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emil Colstrup
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Biopticka laborator s.r.o., Plzen, Czech Republic
| | - Jeroen Coumou
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michelle J Klouwens
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Abhijeet Nayak
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasmin Ersoz
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Diego Barriales
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain
| | - Julen Tomás-Cortázar
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Juan Anguita
- CIC bioGUNE-Basque Research & Technology Alliance, Derio 48160, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48012, Spain
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Nogueira BCF, Campos AK, Muñoz-Leal S, Pinter A, Martins TF. Soft and hard ticks (Parasitiformes: Ixodida) on humans: A review of Brazilian biomes and the impact of environmental change. Acta Trop 2022; 234:106598. [PMID: 35841953 DOI: 10.1016/j.actatropica.2022.106598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Records of accidental parasitism by ticks in humans from Brazil are scarce, with most being reported by researchers who are parasitized during their research and by professionals who work with animals. In order to compile these records, an extensive literature review was carried out. Our revision includes studies published between 1909 and 2022, including nine species of the Argasidae family and 32 species of the Ixodidae family that were reported biting humans in the six biomes of the Brazilian territory. The species with the highest number of records of human parasitism was Amblyomma sculptum, followed by Amblyomma coelebs, Amblyomma cajennense sensu stricto, and Amblyomma brasiliense. The Atlantic Forest was the most frequent biome where human parasitism occurred, probably due to the greater number of inhabitants, universities, and researchers in the region; however, this does not mean that this biome is more conducive to the development of ticks and their parasitism in humans. In addition to Amblyomma ovale, a vector of Rickettsia parkeri in the country, two of the main species that act as vectors of Rickettsia rickettsii, A. sculptum, and Amblyomma aureolatum, have been reported, which is quite worrying considering that the wide distribution of the species and life stages most frequently mentioned in parasitism (i.e., nymphs and adults) are the ones that favour pathogen transmission. This research provides a significant contribution to the knowledge of tick species associated with human parasitism in Brazil; however, due to environmental change potentiated by deforestation and fires, it is expected that there will be a geographic expansion of some tick species and the pathogens that use them as a vector and an increase in human parasitism.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Adriano Pinter
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, São Paulo, São Paulo, Brasil
| | - Thiago Fernandes Martins
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, São Paulo, São Paulo, Brasil; Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| |
Collapse
|
12
|
Pérez-Sánchez R, Cano-Argüelles AL, González-Sánchez M, Oleaga A. First Data on Ornithodoros moubata Aquaporins: Structural, Phylogenetic and Immunogenic Characterisation as Vaccine Targets. Pathogens 2022; 11:pathogens11060694. [PMID: 35745548 PMCID: PMC9227307 DOI: 10.3390/pathogens11060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Ornithodoros moubata transmits African swine fever and human relapsing fever in Africa. The elimination of O. moubata populations from anthropic environments is expected to improve the prevention and control of these diseases. Tick vaccines have emerged as a sustainable method for tick control, and tick aquaporins (AQPs) are promising targets for tick vaccines due to their vital functions, immunogenicity and ease of access by neutralising host antibodies. This study aimed at the systematic identification of the AQPs expressed by O. moubata (OmAQPs) and their characterisation as vaccine targets. Therefore, AQP coding sequences were recovered from available transcriptomic datasets, followed by PCR amplification, cloning, sequence verification and the analysis of the AQP protein structure and epitope exposure. Seven OmAQPs were identified and characterised: six were aquaglyceroporins, and one was a water-specific aquaporin. All of these were expressed in the salivary glands and midgut and only three in the coxal glands. Epitope exposure analysis identified three extracellular domains in each AQP, which concentrate overlapping B and T cell epitopes, making them interesting vaccine targets. Based on these domain sequences, a set of ten antigenic peptides was designed, which showed adequate properties to be produced and tested in pilot vaccine trials.
Collapse
|
13
|
Wang XR, Cull B. Apoptosis and Autophagy: Current Understanding in Tick–Pathogen Interactions. Front Cell Infect Microbiol 2022; 12:784430. [PMID: 35155277 PMCID: PMC8829008 DOI: 10.3389/fcimb.2022.784430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne diseases are a significant threat to human and animal health throughout the world. How tick-borne pathogens successfully infect and disseminate in both their vertebrate and invertebrate hosts is only partially understood. Pathogens have evolved several mechanisms to combat host defense systems, and to avoid and modulate host immunity during infection, therefore benefitting their survival and replication. In the host, pathogens trigger responses from innate and adaptive immune systems that recognize and eliminate invaders. Two important innate defenses against pathogens are the programmed cell death pathways of apoptosis and autophagy. This Mini Review surveys the current knowledge of apoptosis and autophagy pathways in tick-pathogen interactions, as well as the strategies evolved by pathogens for their benefit. We then assess the limitations to studying both pathways and discuss their participation in the network of the tick immune system, before highlighting future perspectives in this field. The knowledge gained would significantly enhance our understanding of the defense responses in vector ticks that regulate pathogen infection and burden, and form the foundation for future research to identify novel approaches to the control of tick-borne diseases.
Collapse
Affiliation(s)
- Xin-Ru Wang
- *Correspondence: Xin-Ru Wang, ; Benjamin Cull,
| | | |
Collapse
|
14
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
15
|
Lu X, Zhang Z, Yuan D, Zhou Y, Cao J, Zhang H, da Silva Vaz I, Zhou J. The ecdysteroid receptor regulates salivary gland degeneration through apoptosis in Rhipicephalus haemaphysaloides. Parasit Vectors 2021; 14:612. [PMID: 34930413 PMCID: PMC8686549 DOI: 10.1186/s13071-021-05052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background It is well established that ecdysteroid hormones play an important role in arthropod development and reproduction, mediated by ecdysteroid receptors. Ticks are obligate hematophagous arthropods and vectors of pathogens. The salivary gland plays an essential role in tick growth and reproduction and in the transmission of pathogens to vertebrate hosts. During tick development, the salivary gland undergoes degeneration triggered by ecdysteroid hormones and activated by apoptosis. However, it is unknown how the ecdysteroid receptor and apoptosis regulate salivary gland degeneration. Here, we report the functional ecdysteroid receptor (a heterodimer of the ecdysone receptor [EcR] and ultraspiracle [USP]) isolated from the salivary gland of the tick Rhipicephalus haemaphysaloides and explore the molecular mechanism of ecdysteroid receptor regulation of salivary gland degeneration. Methods The full length of RhEcR and RhUSP open reading frames (ORFs) was obtained from the transcriptome. The RhEcR and RhUSP proteins were expressed in a bacterial heterologous system, Escherichia coli. Polyclonal antibodies were produced against synthetic peptides and were able to recognize recombinant and native proteins. Quantitative real-time PCR and western blot were used to detect the distribution of RhEcR, RhUSP, and RhCaspases in the R. haemaphysaloides organs. A proteomics approach was used to analyze the expression profiles of the ecdysteroid receptors, RhCaspases, and other proteins. To analyze the function of the ecdysteroid receptor, RNA interference (RNAi) was used to silence the genes in adult female ticks. Finally, the interaction of RhEcR and RhUSP was identified by heterologous co-expression assays in HEK293T cells. Results We identified the functional ecdysone receptor (RhEcR/RhUSP) of 20-hydroxyecdysone from the salivary gland of the tick R. haemaphysaloides. The RhEcR and RhUSP genes have three and two isoforms, respectively, and belong to a nuclear receptor family but with variable N-terminal A/B domains. The RhEcR gene silencing inhibited blood-feeding, blocked engorgement, and restrained salivary gland degeneration, showing the biological role of the RhEcR gene in ticks. In the ecdysteroid signaling pathway, RhEcR silencing inhibited salivary gland degeneration by suppressing caspase-dependent apoptosis. The heterologous expression in mammalian HEK293T cells showed that RhEcR1 interacts with RhUSP1 and induces caspase-dependent apoptosis. Conclusions These data show that RhEcR has an essential role in tick physiology and represents a putative target for the control of ticks and tick-borne diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05052-2.
Collapse
Affiliation(s)
- Xiaojuan Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhipeng Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Dongqi Yuan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
16
|
van Oosterwijk JG, Wikel SK. Resistance to Ticks and the Path to Anti-Tick and Transmission Blocking Vaccines. Vaccines (Basel) 2021; 9:725. [PMID: 34358142 PMCID: PMC8310300 DOI: 10.3390/vaccines9070725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
The medical and veterinary public health importance of ticks and tick-borne pathogens is increasing due to the expansion of the geographic ranges of both ticks and pathogens, increasing tick populations, growing incidence of tick-borne diseases, emerging tick transmitted pathogens, and continued challenges of achieving effective and sustained tick control. The past decades show an increasing interest in the immune-mediated control of tick infestations and pathogen transmission through the use of vaccines. Bovine tick resistance induced by repeated infestations was reported over a century ago. This review addresses the phenomena and immunological underpinning of resistance to tick infestation by livestock and laboratory animals; the scope of tick countermeasures to host immune defenses; and the impact of genomics, functional genomics, and proteomics on dissecting complex tick-host-pathogen interactions. From early studies utilizing tick tissue extracts to salivary gland derived molecules and components of physiologically important pathways in tick gut and other tissues, an increased understanding of these relationships, over time, impacted the evolution of anti-tick vaccine antigen selection. Novel antigens continue to emerge, including increased interest in the tick microbiome. Anti-tick and transmission blocking vaccines targeting pathogen reservoirs have the potential to disrupt enzootic cycles and reduce human, companion, domestic animal, and wildlife exposure to infected ticks.
Collapse
Affiliation(s)
| | - Stephen K. Wikel
- US Biologic Inc., 20 Dudley Street, Memphis, TN 38103, USA;
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
17
|
Tuerdi M, Hu S, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Engorgement of Rhipicephalus haemaphysaloides ticks blocked by silencing a protein inhibitor of apoptosis. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:623-636. [PMID: 34136982 DOI: 10.1007/s10493-021-00637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif. A real-time PCR assay showed that RhIAP mRNA was expressed in all the tick developmental stages (eggs, larvae, nymphs, and adults) and in all tissues examined (midgut, ovary, salivary glands, fat body, and hemolymph). Western blot showed that the protein level of RhIAP in salivary glands increased during tick blood-feeding and decreased towards the end of tick engorgement. RhIAP gene silencing in vitro experiments with salivary glands demonstrated that RhIAP could be effectively knocked down within 48 h after dsRNA treatment, and as a consequence, salivary glands displayed apoptotic morphology. RhIAP gene silencing also inhibited tick blood-feeding and decreased the engorgement rate. These data suggest that RhIAP might be a suitable RNAi target for tick control.
Collapse
Affiliation(s)
- Mayinuer Tuerdi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
18
|
van Oosterwijk JG. Anti-tick and pathogen transmission blocking vaccines. Parasite Immunol 2021; 43:e12831. [PMID: 33704804 DOI: 10.1111/pim.12831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Ticks and tick-borne diseases are a challenge for medical and veterinary public health and often controlled through the use of repellents and acaricides. Research on vaccination strategies to protect humans, companion animals, and livestock from ticks and tick-transmitted pathogens has accelerated through the use of proteomic and transcriptomic analyses. Comparative analyses of unfed versus engorged and uninfected versus infected ticks have provided valuable insights into candidates for anti-tick and pathogen transmission blocking vaccines. An intricate interplay between tick saliva and the host's immune system has revealed potential antigens to be used in vaccination strategies. Immunization of hosts with targeted anti-tick vaccines would ideally lead to a reduction in tick numbers and prevent transmission of tick-borne pathogens. Comprehensive control of tick-borne diseases would come from successful anti-tick vaccination, vaccination preventing transmission of tick-borne diseases or a combination. Due to the close interaction with wildlife and ticks, with wildlife reservoirs enabling propagation of pathogens between ticks, the vaccination of these reservoirs is an attractive target to reduce human contact with ticks and tick-borne diseases through a one-health approach. Wildlife vaccination presents formulation and regulatory challenges which should be considered early in the development of reservoir-targeted vaccines.
Collapse
|
19
|
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, Kopáček P, Daffre S. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol 2021; 12:628054. [PMID: 33737931 PMCID: PMC7962413 DOI: 10.3389/fimmu.2021.628054] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.
Collapse
Affiliation(s)
- Andréa C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Géssica Sousa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel B. Pavanelo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa A. Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sirlei Daffre
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
González J, Bickerton M, Toledo A. Applications of artificial membrane feeding for ixodid ticks. Acta Trop 2021; 215:105818. [PMID: 33406442 DOI: 10.1016/j.actatropica.2020.105818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
Ticks are obligatory hematophagous ectoparasites that feed on a large variety of vertebrates. In the laboratory, animals (mainly mice and rabbits) are used to maintain tick colonies. However, the use of animals to rear ticks can be expensive and requires dedicated animal facilities. In addition, research institutions are committed to the principle of 3Rs (Replacement, Reduction and Refinement), which encourages the use of alternatives to animals when possible. The development of artificial membrane systems has provided an alternative to animals, at least for some tick species. Over the years, different modifications in artificial feeding systems have led to new applications, including acaricide testing, tick-pathogen interaction, and novel approaches to study tick physiology. Although artificial membrane feeding still has some limitations, the method can provide numerous advantages, including the standardization of acaricide treatments under controlled conditions, an alternative to animals for tick rearing, and reduction of cost associated with animals and animal housing facilities. In this review, we summarized the evolution of tick feeding membranes and their applications over time, explaining the modifications incorporated to study tick physiology, tick-pathogen interactions, and acaricide testing.
Collapse
Affiliation(s)
- Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA
| | - Mathew Bickerton
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA; Bergen County Department of Health, Division of Environmental Health, 220 East Ridgewood Avenue, Paramus, NJ 07652, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA.
| |
Collapse
|
21
|
Beard D, Stannard HJ, Old JM. Parasites of wombats (family Vombatidae), with a focus on ticks and tick-borne pathogens. Parasitol Res 2021; 120:395-409. [PMID: 33409643 DOI: 10.1007/s00436-020-07036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Ticks (Arachnida: Acari) are vectors for pathogens and the biggest threat to animal health. Many Australian ticks are associated with pathogens that impact humans, domestic animals and livestock. However, little is known about the presence or impact of tick-borne pathogens in native Australian wildlife. Wombats are particularly susceptible to the effects of the ectoparasite Sarcoptes scabiei which causes sarcoptic mange, the reason for which is unknown. Factors such as other ectoparasites and their associated pathogens may play a role. A critical understanding of the species of ectoparasites that parasitise wombats and their pathogens, and particularly ticks, is therefore warranted. This review describes the ectoparasites of wombats, pathogens known to be associated with those ectoparasites, and related literature gaps. Pathogens have been isolated in most tick species that typically feed on wombats; however, there are minimal molecular studies to determine the presence of pathogens in any other wombat ectoparasites. The development of next-generation sequencing (NGS) technologies allows us to explore entire microbial communities in ectoparasite samples, allowing fast and accurate identification of potential pathogens in many samples at once. These new techniques have highlighted the diversity and uniqueness of native ticks and their microbiomes, including pathogens of potential medical and veterinary importance. An increased understanding of all ectoparasites that parasitise wombats, and their associated pathogens, requires further investigation.
Collapse
Affiliation(s)
- Danielle Beard
- School of Science, Hawkesbury, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hayley J Stannard
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Julie M Old
- School of Science, Hawkesbury, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
22
|
Martins LA, Bensaoud C, Kotál J, Chmelař J, Kotsyfakis M. Tick salivary gland transcriptomics and proteomics. Parasite Immunol 2020; 43:e12807. [PMID: 33135186 DOI: 10.1111/pim.12807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.
Collapse
Affiliation(s)
- Larissa Almeida Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - Jan Kotál
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Kendall BL, Grabowski JM, Rosenke R, Pulliam M, Long DR, Scott DP, Offerdahl DK, Bloom ME. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl Trop Dis 2020; 14:e0008683. [PMID: 33017410 PMCID: PMC7561187 DOI: 10.1371/journal.pntd.0008683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens. Powassan disease has greatly increased in frequency since its discovery in Powassan, Ontario in 1958. Powassan virus (lineage I; POWV) and Powassan virus lineage II (deer tick virus; DTV) are endemic to North America and there were 133 reported cases between 2009 and 2018, the majority since 2016. Nymphal and adult Ixodes scapularis ticks are thought to be the primary vectors of POWV/DTV to humans. However, little is known regarding DTV infection of male Ixodes ticks or their potential as vectors. In this study we characterized LGTV, a model tick-borne flavivirus, and DTV infection and propagation in male I. scapularis salivary gland cultures using an ex vivo organ culture system. This work provides insight into potential flavivirus transmission by the male I. scapularis tick.
Collapse
Affiliation(s)
- Benjamin L. Kendall
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Mikayla Pulliam
- Microscopy Unit, Research and Technologies Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Daniel R. Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| |
Collapse
|
24
|
MacDonald AJ, McComb S, O'Neill C, Padgett KA, Larsen AE. Projected climate and land use change alter western blacklegged tick phenology, seasonal host-seeking suitability and human encounter risk in California. GLOBAL CHANGE BIOLOGY 2020; 26:5459-5474. [PMID: 32649017 DOI: 10.1111/gcb.15269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human-vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host-seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick-encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host-seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host-seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human-vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.
Collapse
Affiliation(s)
- Andrew J MacDonald
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - Sofie McComb
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Craig O'Neill
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Kerry A Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA, USA
| | - Ashley E Larsen
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
25
|
Mateos-Hernandéz L, Defaye B, Vancová M, Hajdusek O, Sima R, Park Y, Attoui H, Šimo L. Cholinergic axons regulate type I acini in salivary glands of Ixodes ricinus and Ixodes scapularis ticks. Sci Rep 2020; 10:16054. [PMID: 32994503 PMCID: PMC7524744 DOI: 10.1038/s41598-020-73077-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
Regulatory factors controlling tick salivary glands (SGs) are direct upstream neural signaling pathways arising from the tick's central nervous system. Here we investigated the cholinergic signaling pathway in the SG of two hard tick species. We reconstructed the organization of the cholinergic gene locus, and then used in situ hybridization to localize mRNA encoding choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in specific neural cells in the Ixodes synganglion. Immunohistochemical staining revealed that cholinergic axonal projections exclusively reached type I acini in the SG of both Ixodes species. In type I acini, the rich network of cholinergic axons terminate within the basolateral infoldings of the lamellate cells. We also characterized two types (A and B) of muscarinic acetylcholine receptors (mAChRs), which were expressed in Ixodes SG. We pharmacologically assessed mAChR-A to monitor intracellular calcium mobilization upon receptor activation. In vivo injection of vesamicol-a VAChT blocker-at the cholinergic synapse, suppressed forced water uptake by desiccated ticks, while injection of atropine, an mAChR-A antagonist, did not show any effect on water volume uptake. This study has uncovered a novel neurotransmitter signaling pathway in Ixodes SG, and suggests its role in water uptake by type I acini in desiccated ticks.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernandéz
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Baptiste Defaye
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
- Faculté de Pharmacie, Université de Limoges, Limoges, France
- UMR SPE 6134 CNRS, Université de Corte Pascal Paoli, Corse, France
| | - Marie Vancová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, USA
| | - Houssam Attoui
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ladislav Šimo
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
26
|
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front Cell Infect Microbiol 2020; 10:374. [PMID: 32850476 PMCID: PMC7396615 DOI: 10.3389/fcimb.2020.00374] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Tick saliva contains a complex mixture of peptides and non-peptides that counteract their hosts' hemostasis, immunity, and tissue-repair reactions. Recent transcriptomic studies have revealed over one thousand different transcripts coding for secreted polypeptides in a single tick species. Not only do these gene products belong to many expanded families, such as the lipocalins, metalloproteases, Antigen-5, cystatins, and apyrases, but also families that are found exclusively in ticks, such as the evasins, Isac, DAP36, and many others. Phylogenetic analysis of the deduced protein sequences indicate that the salivary genes exhibit an increased rate of evolution due to a lower evolutionary constraint and/or positive selection, allowing for a large diversity of tick salivary proteins. Thus, for each new tick species that has its salivary transcriptome sequenced and assembled, a formidable task of annotation of these transcripts awaits. Currently, as of November 2019, there are over 287 thousand coding sequences deposited at the National Center for Biotechnology Information (NCBI) that are derived from tick salivary gland mRNA. Here, from these 287 thousand sequences we identified 45,264 potential secretory proteins which possess a signal peptide and no transmembrane domains on the mature peptide. By using the psiblast tools, position-specific matrices were constructed and assembled into the TickSialoFam (TSF) database. The TSF is a rpsblastable database that can help with the annotation of tick sialotranscriptomes. The TSA database identified 136 tick salivary secreted protein families, as well as 80 families of endosomal-related products, mostly having a protein modification function. As the number of sequences increases, and new annotation details become available, new releases of the TSF database may become available.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, South Africa
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
27
|
Integrated analysis of sialotranscriptome and sialoproteome of the brown dog tick Rhipicephalus sanguineus (s.l.): Insights into gene expression during blood feeding. J Proteomics 2020; 229:103899. [PMID: 32673754 DOI: 10.1016/j.jprot.2020.103899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Tick salivary glands secrete a complex saliva into their hosts which modulates vertebrate hemostasis, immunity and tissue repair mechanisms. Transcriptomic studies revealed a large number of transcripts coding for structural and secreted protein products in a single tick species. These transcripts are organized in several large families according to their products. Not all transcripts are expressed at the same time, transcription profile switches at intervals, characterizing the phenomenon of "sialome switching". In this work, using transcriptomic and proteomic analysis we explored the sialome of Rhipicephalus sanguineus (s.l.) adult female ticks feeding on a rabbit. The correlations between transcriptional and translational results in the different groups were evaluated, confirming the "sialome switching" and validating the idea that the expression switch may serve as a mechanism of escape from the host immunity. Recombination breakpoints were identified in lipocalin and metalloprotease families, indicating this mechanism could be a possible source of diversity in the tick sialome. Another remarkable observation was the identification of host-derived proteins as a component of tick salivary gland content. These results and disclosed sequences contribute to our understanding of tick feeding biology, to the development of novel anti-tick methods, and to the discovery of novel pharmacologically active products. SIGNIFICANCE: Ticks are a burden by themselves to humans and animals, and vectors of viral, bacterial, protozoal and helminthic diseases. Their saliva has anti-clotting, anti-platelet, vasodilatory and immunomodulatory activities that allows successful feeding and pathogen transmission. Previous transcriptomic studies indicate ticks to have over one thousand transcripts coding for secreted salivary proteins. These transcripts code for proteins of diverse families, but not all are transcribed simultaneously, but rather transiently, in a succession. Here we explored the salivary transcriptome and proteome of the brown dog tick, Rhipicephalus sanguineus. A protein database of over 20 thousand sequences was "de novo" assembled from over 600 million nucleotide reads, from where over two thousand polypeptides were identified by mass spectrometry. The proteomic data was shown to vary in time with the transcription profiles, validating the idea that the expression switch may serve as a mechanism of escape from the host immunity. Analysis of the transcripts coding for lipocalin and metalloproteases indicate their genes to contain signals of breakpoint recombination suggesting a new mechanism responsible for the large diversity in tick salivary proteins. These results and the disclosed sequences contribute to our understanding of the success ticks enjoy as ectoparasites, to the development of novel anti-tick methods, and to the discovery of novel pharmacologically active products.
Collapse
|
28
|
Ndekezi C, Nkamwesiga J, Ochwo S, Kimuda MP, Mwiine FN, Tweyongyere R, Amanyire W, Muhanguzi D. Identification of Ixodid Tick-Specific Aquaporin-1 Potential Anti-tick Vaccine Epitopes: An in-silico Analysis. Front Bioeng Biotechnol 2019; 7:236. [PMID: 31612130 PMCID: PMC6775757 DOI: 10.3389/fbioe.2019.00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Ticks are arthropod vectors of pathogens of both Veterinary and Public health importance. Acaricide application, which is currently the mainstay of tick control, is hampered by high cost, the need for regular application and a selection of multi-acaricide resistant tick populations. In light of this, future tick control approaches are poised to rely on the integration of rational acaricide application and other methods, such as vaccination. To contribute to systematic research-guided efforts to produce anti-tick vaccines, we carried out an in-silico analysis of tick aquaporin-1 (AQP1) protein in order to identify tick-specific AQP1 peptide motifs that can be used in future peptide anti-tick vaccine development. We carried out multiple sequence alignment (MSA), motif analysis, homology modeling, and structural analysis to identify tick-specific AQP1 peptide motifs. BepiPred, Chou and Fasman-Turn, Karplus and Schulz Flexibility, and Parker-Hydrophilicity prediction models were used to predict these motifs' potential to induce B cell mediated immune responses. The tick AQP1 (GenBankID: QDO67142.1) protein was largely similar to the bovine AQP1 (PDB:1J4N) (23 % sequence similarity; Structural superimposition of the homology model and 14JN homotetramers gave an RMSD = 3.269 while superimposition of a single chain gave an RMSD = 1.475). Tick and bovine AQP1 transmembrane domains were largely similar while their extracellular and cytoplasmic domain loops showed variation. Two tick-specific AQP1 peptide motifs; M7 (residues 106-125, p = 5.4e-25), and M8 (residues 85-104, p = 3.3e-24) were identified. These two motifs are located on the extra-cellular AQP1 domain. Motifs; M7 and M8 showed the highest Parker-Hydrophilicity prediction immunogenicity scores of 1.784 and 1.536, respectively. These two motifs can be a good starting point for the development of potential tick AQP1 peptide-based anti-tick vaccines. Further analyses such as molecular dynamics, in vitro assays, and in vivo immunization assays are required to validate these findings.
Collapse
Affiliation(s)
- Christian Ndekezi
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Joseph Nkamwesiga
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Magambo Phillip Kimuda
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Research Unit in Bioinformatics, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Frank Norbert Mwiine
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Robert Tweyongyere
- School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Wilson Amanyire
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Dennis Muhanguzi
- School of Biosecurity, Biotechnical and Laboratory Science, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- Makerere University/Uganda Virus Research Institute Centre of Excellence in Infection and Immunity Research and Training, Entebbe, Uganda
| |
Collapse
|
29
|
Bensaoud C, Aounallah H, Sciani JM, Faria F, Chudzinski-Tavassi AM, Bouattour A, M'ghirbi Y. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genomics 2019; 20:675. [PMID: 31455241 PMCID: PMC6712667 DOI: 10.1186/s12864-019-6042-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully. Electronic supplementary material The online version of this article (10.1186/s12864-019-6042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice (Budweis), Czechia.
| | - Hajer Aounallah
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Juliana Mozer Sciani
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil.,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis, 218, CEP 12916-900, Bragança Paulista, São Paulo, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Youmna M'ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| |
Collapse
|
30
|
Kim D, Šimo L, Vancová M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen Comp Endocrinol 2019; 278:42-49. [PMID: 30077796 DOI: 10.1016/j.ygcen.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Ticks can survive in harsh and fluctuating vegetated environments for long durations between blood feedings with highly developed osmoregulatory mechanisms. Like the unique life history of hematophagous ticks, osmoregulatory organs and their regulatory mechanisms are significantly different from those in the closely related insect taxa. Over the last ten years, research has uncovered several neuropeptidergic innervations of the primary osmoregulatory organ, the salivary glands: myoinhibitory peptide (MIP), SIFamide, and elevenin. These neuropeptides are thought to be modulators of dopamine's autocrine or paracrine actions controlling the salivary glands, including the activation of fluid transport into the lumen of salivary acini and the pumping and gating action of salivary acini for expelling fluids out into salivary ducts. These actions are through two different dopamine receptors, D1 receptor and invertebrate D1-like dopamine receptor, respectively. Interestingly, MIP and SIFamide are also involved in the control of another important excretory/osmoregulatory organ, the hindgut, where SIFamide is myostimulatory, with MIP having antagonistic effects. FGLamide related allatostatin is also found to have axonal projections located on the surface of the rectum. Investigations of the osmoregulatory mechanisms of these critical vector species will potentially lead to the development of a measure to control tick species.
Collapse
Affiliation(s)
- Donghun Kim
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Vancová
- Laboratory of EM, Institute of Parasitology, Biology Centre of the ASCR, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Joshua Urban
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Yoonseong Park
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA.
| |
Collapse
|
31
|
Pérez-Sánchez R, Manzano-Román R, Obolo-Mvoulouga P, Oleaga A. Function-guided selection of midgut antigens from Ornithodoros erraticus ticks and an evaluation of their protective efficacy in rabbits. Vet Parasitol 2019; 272:1-12. [PMID: 31395198 DOI: 10.1016/j.vetpar.2019.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
The identification of candidate protective antigens for the development of tick vaccines may be approached by selecting antigen candidates that play key biological functions. Tick midgut proteins that play essential functions in tick survival and disease transmission are upregulated in response to blood feeding and digestion. In this study, Ornithodoros erraticus midgut transcriptomic and proteomic data upon feeding were inspected to select functionally relevant antigens to be assessed as vaccine candidate antigens. For this, we primarily focused on proteins with relevant biological functions in key physiological processes for ticks and tick-host-pathogen interactions. Later, we used additional criteria based on overexpression after feeding, predicted antigenicity and cellular localisation, resulting in the selection of four theoretical candidates, two aquaporins (OeAQP, OeAQP1), one ABC transporter (OeABC) and one selenoprotein T (OeSEL). Rabbit vaccination with synthetic immunogenic peptides designed from the extracellular antigenic regions of the selected candidates induced humoral responses that reduced tick feeding and reproduction performance. Both AQPs and OeSEL demonstrated significant protection efficacy against the homologous species O. erraticus, but lower non-significant cross-species protection against Ornithodoros moubata. Conversely, OeABC showed no protection against the homologous species O. erraticus, but significant cross-species protection against O. moubata. These results are the first demonstration of the protective potential of argasid aquaporins, suggesting that they might be included in vaccines for the control of multiple tick species. Additionally, these results also unveiled two novel protective antigens from argasid ticks, OeABC and OeSEL, belonging to functional protein families that have never been explored as a source of vaccine candidates and are deserving of further studies. Finally, our data add value to the midgut as a protective candidate antigen source in argasids for the control of tick infestations.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
32
|
Martins LA, Malossi CD, Galletti MFBDM, Ribeiro JM, Fujita A, Esteves E, Costa FB, Labruna MB, Daffre S, Fogaça AC. The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection. Front Physiol 2019; 10:529. [PMID: 31130872 PMCID: PMC6509419 DOI: 10.3389/fphys.2019.00529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 11/17/2022] Open
Abstract
The salivary glands (SG) of ixodid ticks play a pivotal role in blood feeding, producing both the cement and the saliva. The cement is an adhesive substance that helps the attachment of the tick to the host skin, while the saliva contains a rich mixture of antihemostatic, anti-inflammatory, and immunomodulatory substances that allow ticks to properly acquire the blood meal. The tick saliva is also a vehicle used by several pathogens to be transmitted to the vertebrate host, including various bacterial species from the genus Rickettsia. Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes the severe Rocky Mountain spotted fever. In Brazil, the dog yellow tick Amblyomma aureolatum is a vector of R. rickettsii. In the current study, the effects of an experimental infection with R. rickettsii on the global gene expression profile of A. aureolatum SG was determined by next-generation RNA sequencing. A total of 260 coding sequences (CDSs) were modulated by infection, among which 161 were upregulated and 99 were downregulated. Regarding CDSs in the immunity category, we highlight one sequence encoding one microplusin-like antimicrobial peptide (AMP) (Ambaur-69859). AMPs are important effectors of the arthropod immune system, which lack the adaptive response of the immune system of vertebrates. The expression of microplusin was confirmed to be significantly upregulated in the SG as well as in the midgut (MG) of infected A. aureolatum by a quantitative polymerase chain reaction preceded by reverse transcription. The knockdown of the microplusin expression by RNA interference caused a significant increase in the prevalence of infected ticks in relation to the control. In addition, a higher rickettsial load of one order of magnitude was recorded in both the MG and SG of ticks that received microplusin-specific dsRNA. No effect of microplusin knockdown was observed on the R. rickettsii transmission to rabbits. Moreover, no significant differences in tick engorgement and oviposition were recorded in ticks that received dsMicroplusin, demonstrating that microplusin knockdown has no effect on tick fitness. Further studies must be performed to determine the mechanism of action of this AMP against R. rickettsii.
Collapse
Affiliation(s)
- Larissa A Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Camila D Malossi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maria F B de M Galletti
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - André Fujita
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco B Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Sirlei Daffre
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa C Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum. PLoS Negl Trop Dis 2019; 13:e0007153. [PMID: 30730880 PMCID: PMC6382211 DOI: 10.1371/journal.pntd.0007153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding. Methodology We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system. Principal findings In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity. Conclusions Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens. Tick feeding results in negative health and economic consequences worldwide and there has been continued interest in the development of products with novel mechanisms of action for control of tick populations. Kir channels have been shown to be a significant ion conductance pathway in arthropods and are critical for proper functioning of multiple biological processes. Previous work on insect Kir channels has focused on their physiological roles in renal system of mosquitoes and the data suggest that these channels represent a viable pathway to induce renal failure that leads to mortality. Based on the functional and cellular similarities of arthropod salivary glands and Malpighian tubules, we hypothesized that Kir channels constitute a critical conductance pathway within arthropod salivary glands and inhibition of this pathway will preclude feeding. Data presented in this study show that pharmacological modulators of Kir channels elicited a significant reduction in the fluid and ion secretory activity of tick salivary glands that resulted in reduced feeding, altered osmoregulation, and lead to mortality. These data could guide the future development of novel acaricides, RNAi, or genetically modified ticks to mitigate health and economic damages resulting from their feeding. Further, these data indicate a conserved function of Kir channels within multiple tissues of taxonomically diverse organisms, such as ticks and humans.
Collapse
|
34
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Pienaar R, Neitz AWH, Mans BJ. Tick Paralysis: Solving an Enigma. Vet Sci 2018; 5:E53. [PMID: 29757990 PMCID: PMC6024606 DOI: 10.3390/vetsci5020053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022] Open
Abstract
In comparison to other arachnids, ticks are major vectors of disease, but less than 8% of the known species are capable of inducing paralysis, as compared to the ~99⁻100% arachnids that belong to venomous classes. When considering the potential monophyly of venomous Arachnida, this review reflects on the implications regarding the classification of ticks as venomous animals and the possible origin of toxins. The origin of tick toxins is compared with scorpion and spider toxins and venoms based on their significance, functionality, and structure in the search to find homologous venomous characters. Phenotypic evaluation of paralysis, as caused by different ticks, demonstrated the need for expansion on existing molecular data of pure isolated tick toxins because of differences and discrepancies in available data. The use of in-vivo, in-vitro, and in-silico assays for the purification and characterization of paralysis toxins were critically considered, in view of what may be considered to be a paralysis toxin. Purified toxins should exhibit physiologically relevant activity to distinguish them from other tick-derived proteins. A reductionist approach to identify defined tick proteins will remain as paramount in the search for defined anti-paralysis vaccines.
Collapse
Affiliation(s)
- Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
| | - Albert W H Neitz
- Division of Biochemistry, University of Pretoria, Hatfield, Pretoria 0028, South Africa.
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
- Department of Life and Consumer Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
36
|
Perner J, Kropáčková S, Kopáček P, Ribeiro JMC. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLoS Negl Trop Dis 2018; 12:e0006410. [PMID: 29652888 PMCID: PMC5919021 DOI: 10.1371/journal.pntd.0006410] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
Ticks salivate while feeding on their hosts. Saliva helps blood feeding through host anti-hemostatic and immunomodulatory components. Previous transcriptomic and proteomic studies revealed the complexity of tick saliva, comprising hundreds of polypeptides grouped in several multi-genic families such as lipocalins, Kunitz-domain containing peptides, metalloproteases, basic tail secreted proteins, and several other families uniquely found in ticks. These studies also revealed that the composition of saliva changes with time; expression of transcripts from the same family wax and wane as a function of feeding time. Here, we examined whether host immune factors could influence sialome switching by comparing sialomes of ticks fed naturally on a rabbit, to ticks artificially fed on defibrinated blood depleted of immune components. Previous studies were based on transcriptomes derived from pools of several individuals. To get an insight into the uniqueness of tick sialomes, we performed transcriptomic analyses of single salivary glands dissected from individual adult female I. ricinus ticks. Multivariate analysis identified 1,279 contigs differentially expressed as a function of time and/or feeding mode. Cluster analysis of these contigs revealed nine clusters of differentially expressed genes, four of which appeared consistently across several replicates, but five clusters were idiosyncratic, pointing to the uniqueness of sialomes in individual ticks. The disclosure of tick quantum sialomes reveals the unique salivary composition produced by individual ticks as they switch their sialomes throughout the blood meal, a possible mechanism of immune evasion. In this work, we confirm previous reports that the repertoire of tick salivary gland transcripts changes as a function of time, but in addition, we now identify transcripts that change their levels according to the mode of feeding of ticks. Implementation of membrane feeding allowed us to feed ticks on an immune-deficient diet and identify transcripts that are subject to immunity-stimulated expression. Such identification may help to prioritise selection of salivary gland transcripts for further investigation. One novelty of this work was creating cDNA libraries from a single pair of salivary glands, which helped to gain insight into sialomic diversity at the single tick level. We observed that ticks express a battery of genes in defined clusters as feeding progresses (over tested replicates), but also individual ticks were found to express idiosyncratic clusters of genes. Such a biological phenomenon may imply novel tick mechanisms for evading host-mediated recognition of tick antigens.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sára Kropáčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- * E-mail: (JMCR); (PK)
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, United States of America
- * E-mail: (JMCR); (PK)
| |
Collapse
|
37
|
Molecular detection and characterisation of Babesia and Theileria in Australian hard ticks. Ticks Tick Borne Dis 2017; 9:471-478. [PMID: 29331578 DOI: 10.1016/j.ttbdis.2017.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022]
Abstract
Babesia and Theileria are intraerythrocytic protozoans of the phylum Apicomplexa. These species are capable of infecting wild and domestic animals and have historically caused great economic loss in the agricultural industry. In recent years human babesiosis has been deemed an emerging zoonosis in North America, Europe and Asia. The first locally acquired case of babesiosis in Australia, caused by Babesia microti, was reported in March 2012. A number of native Babesia and Theileria species have been identified in Australian marsupials, however their associated tick vectors and threat to human health is unknown. In the present study DNA was extracted from 1154 ticks collected from across Australia. PCR was used to amplify a Babesia and Theileria-specific partial region of the 18S ribosomal RNA gene. Positive samples were sequenced and phylogenetic analysis was performed. Twenty-nine sequences were obtained from ticks belonging to the genera Ixodes, Haemaphysalis and Bothriocroton. The sequences were closely related to Babesia macropus, and Theileria recently identified in marsupials and monotremes. Bayesian inference and maximum likelihood methods showed that Australian Babesia and Theileria species form monophyletic groups.
Collapse
|
38
|
Esteves E, Maruyama SR, Kawahara R, Fujita A, Martins LA, Righi AA, Costa FB, Palmisano G, Labruna MB, Sá-Nunes A, Ribeiro JMC, Fogaça AC. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva. Front Cell Infect Microbiol 2017; 7:476. [PMID: 29209593 PMCID: PMC5702332 DOI: 10.3389/fcimb.2017.00476] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current study, we compared the sialotranscriptome of unfed A. sculptum ticks and those fed for 72 h on rabbits using next generation RNA sequencing (RNA-seq). The total of reads obtained were assembled in 9,560 coding sequences (CDSs) distributed in different functional classes. CDSs encoding secreted proteins, including lipocalins, mucins, protease inhibitors, glycine-rich proteins, metalloproteases, 8.9 kDa superfamily members, and immunity-related proteins were mostly upregulated by blood feeding. Selected CDSs were analyzed by real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR), corroborating the transcriptional profile obtained by RNA-seq. Finally, high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed 124 proteins in saliva of ticks fed for 96–120 h. The corresponding CDSs of 59 of these proteins were upregulated in SG of fed ticks. To the best of our knowledge, this is the first report on the proteome of A. sculptum saliva. The functional characterization of the identified proteins might reveal potential targets to develop vaccines for tick control and/or blocking of R. rickettsii transmission as well as pharmacological bioproducts with antihemostatic, anti-inflammatory and antibacterial activities.
Collapse
Affiliation(s)
- Eliane Esteves
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Rebeca Kawahara
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - André Fujita
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa A Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Adne A Righi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco B Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Andréa C Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Bensaoud C, Abdelkafi-Koubaa Z, Ben Mabrouk H, Morjen M, Hmila I, Rhim A, Ayeb ME, Marrakchi N, Bouattour A, M'ghirbi Y. Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1476-1482. [PMID: 29029126 DOI: 10.1093/jme/tjx153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Hard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Hazem Ben Mabrouk
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Issam Hmila
- laboratoire d'Epidémiologie et microbiologie vétérinaire (LR11IPT03), Université de Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Adel Rhim
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Mohamed El Ayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Ali Bouattour
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Youmna M'ghirbi
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| |
Collapse
|
40
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
41
|
Yu X, Zhou Y, Cao J, Zhang H, Gong H, Zhou J. Caspase-1 participates in apoptosis of salivary glands in Rhipicephalus haemaphysaloides. Parasit Vectors 2017; 10:225. [PMID: 28482931 PMCID: PMC5422879 DOI: 10.1186/s13071-017-2161-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/25/2017] [Indexed: 11/30/2022] Open
Abstract
Background Ticks are among the most harmful vectors worldwide. Their salivary glands play essential roles in blood-feeding and pathogen transmission and undergo apoptosis after feeding. Although it was previously reported that salivary degeneration in ixodid ticks is in response to hormonal stimulation, questions still exist with the underlying mechanisms of salivary gland apoptosis. Methods Salivary glands of Rhipicephalus haemaphysaloides were collected from 1 to 7 days after attachment to the host. TUNEL and Annexin V assays were used to check apoptosis during this time. To confirm the role of caspase-1, RNA interference was used to silence its expression, and the dynamic changes of associated cysteine proteases were also shown by quantitative real time PCR and western blot, while TUNEL and Annexin V assays were used to confirm apoptosis. Results In the present study, apoptosis of salivary glands in R. haemaphysaloides occurred 3 or 4 days after attachment to the host as determined by TUNEL and Annexin V assays. The expression of caspase-1 increased at 5–7 days. When the latter was silenced by RNA interference, apoptosis in the salivary glands was delayed. While there seemed to be another form of cell death in salivary glands of ticks, such occurrence may be caused by compensatory autophagy which involved autophagy-related gene 4D. Conclusions This study describes the apoptosis of salivary glands in R. haemaphysaloides and the dynamic changes in cysteine proteases in this activity. Cysteine proteases were involved in this process, especially caspase-1. Caspase-1 participated in the apoptosis of salivary glands. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2161-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinmao Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Affiliation(s)
- Francesca L. Ware
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Martin R. Luck
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| |
Collapse
|
43
|
Contreras M, de la Fuente J. Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. Vaccine 2017; 35:1323-1328. [PMID: 28161419 DOI: 10.1016/j.vaccine.2017.01.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tick-borne diseases greatly impact human and animal health worldwide, and vaccines are an environmentally friendly alternative to acaricides for their control. Recent results have suggested that aquaporin (AQP) water channels have a key function during tick feeding and development, and constitute good candidate antigens for the control of tick infestations. METHODS Here we describe the effect of vaccination with the Ixodes ricinus AQP1 (IrAQP) and a tick AQP conserved region (CoAQP) on I. ricinus tick larval mortality, feeding and molting. RESULTS We demonstrated that vaccination with IrAQP and CoAQP had an efficacy of 32% and 80%, respectively on the control of I. ricinus larvae by considering the cumulative effect on reducing tick survival and molting. CONCLUSIONS The effect of the AQP vaccines on larval survival and molting is essential to reduce tick infestations, and extended previous results on the effect of R. microplus AQP1 on the control of cattle tick infestations. These results supports that AQP, and particularly CoAQP, might be a candidate protective antigen for the control of different tick species.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
44
|
Olds CL, Mwaura S, Odongo DO, Scoles GA, Bishop R, Daubenberger C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit Vectors 2016; 9:484. [PMID: 27589998 PMCID: PMC5010713 DOI: 10.1186/s13071-016-1774-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Methods Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. Results To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. Conclusion The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1774-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cassandra L Olds
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya. .,Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland.
| | - Stephen Mwaura
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - David O Odongo
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya.,School of Biological Sciences, University of Nairobi, P.O Box 30197, G.P.O, Nairobi, Kenya
| | - Glen A Scoles
- USDA Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164-6630, USA
| | - Richard Bishop
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| |
Collapse
|
45
|
de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol 2016; 38:754-769. [PMID: 27203187 DOI: 10.1111/pim.12339] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission.
Collapse
Affiliation(s)
- J de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - P Kopáček
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - A Lew-Tabor
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Qld, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - C Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Galletti MFBM, Fujita A, Rosa RD, Martins LA, Soares HS, Labruna MB, Daffre S, Fogaça AC. Virulence genes of Rickettsia rickettsii are differentially modulated by either temperature upshift or blood-feeding in tick midgut and salivary glands. Parasit Vectors 2016; 9:331. [PMID: 27287539 PMCID: PMC4902979 DOI: 10.1186/s13071-016-1581-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rickettsia rickettsii, the etiological agent of Rocky Mountain spotted fever, is transmitted to humans by ticks. During tick feeding, R. rickettsii is exposed to both temperature elevation and components of the blood meal, which have previously been associated with the reactivation of its virulence. These environmental stimuli were also reported to modulate virulence genes of R. rickettsii infecting a set of organs of adult females of its natural vector, Amblyomma aureolatum. METHODS In this study, we determined the effects of a temperature upshift, blood-feeding, and both stimuli simultaneously on the expression of 85 selected genes of R. rickettsii infecting either the midgut (MG) or salivary glands (SG) of male and female A. aureolatum by microfluidic high-throughput RT-qPCR. These two organs are key for acquisition of this bacterium by the tick and transmission to the vertebrate host, respectively. RESULTS Data showed that these environmental stimuli exert distinct effects on rickettsial transcription depending on the colonized organ and gender of the vector. Temperature upshift induced the majority of differentially expressed genes of R. rickettsii in tick SG, including tRNA synthetases encoding genes. On the contrary, blood-feeding downregulated most of differentially expressed genes in both organs, but induced type IV secretion system components and OmpB in tick MG. The combined effects of both stimuli resulted in a merged gene expression profile representing features of each stimulus analyzed independently, but was more similar to the profile induced by blood-feeding. CONCLUSION The upregulation of the majority of differentially expressed genes in tick SG by temperature upshift suggests that this stimulus is important to prepare R. rickettsii for transmission to the vertebrate host. Blood-feeding, on the other hand, induced important virulence genes in the tick MG, which might be associated with colonization of the tick and transmission to the vertebrate host. The role of the proteins identified in this study must be addressed and might help to define future targets to block tick infection, thereby preventing RMSF. To our knowledge, this is the first transcriptional tissue-specific study of a virulent strain of R. rickettsii infecting a natural tick vector.
Collapse
Affiliation(s)
- Maria Fernanda B M Galletti
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - André Fujita
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael D Rosa
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Larissa A Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Herbert S Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Sirlei Daffre
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa C Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
47
|
Ogden NH, Lindsay LR. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol 2016; 32:646-656. [PMID: 27260548 DOI: 10.1016/j.pt.2016.04.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023]
Abstract
There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit.
Collapse
Affiliation(s)
- Nick H Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 7C6, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; National Microbiology Laboratory, Public Health Agency of Canada, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.
| | - L Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| |
Collapse
|
48
|
Guerrero FD, Kellogg A, Ogrey AN, Heekin AM, Barrero R, Bellgard MI, Dowd SE, Leung MY. Prediction of G protein-coupled receptor encoding sequences from the synganglion transcriptome of the cattle tick, Rhipicephalus microplus. Ticks Tick Borne Dis 2016; 7:670-677. [PMID: 26922323 DOI: 10.1016/j.ttbdis.2016.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/25/2022]
Abstract
The cattle tick, Rhipicephalus (Boophilus) microplus, is a pest which causes multiple health complications in cattle. The G protein-coupled receptor (GPCR) super-family presents a candidate target for developing novel tick control methods. However, GPCRs share limited sequence similarity among orthologous family members, and there is no reference genome available for R. microplus. This limits the effectiveness of alignment-dependent methods such as BLAST and Pfam for identifying GPCRs from R. microplus. However, GPCRs share a common structure consisting of seven transmembrane helices. We present an analysis of the R. microplus synganglion transcriptome using a combination of structurally-based and alignment-free methods which supplement the identification of GPCRs by sequence similarity. TMHMM predicts the number of transmembrane helices in a protein sequence. GPCRpred is a support vector machine-based method developed to predict and classify GPCRs using the dipeptide composition of a query amino acid sequence. These two bioinformatic tools were applied to our transcriptome assembly of the cattle tick synganglion. Together, BLAST and Pfam identified 85 unique contigs as encoding partial or full length candidate cattle tick GPCRs. Collectively, TMHMM and GPCRpred identified 27 additional GPCR candidates that BLAST and Pfam missed. This demonstrates that the addition of structurally-based and alignment-free bioinformatic approaches to transcriptome annotation and analysis produces a greater collection of prospective GPCRs than an analysis based solely upon methodologies dependent upon sequence alignment and similarity.
Collapse
Affiliation(s)
- Felix D Guerrero
- USDA-ARS, Knipling-Bushland US Livestock Insect Research Laboratory, 2700 Fredericksburg Rd., Kerrville, TX 78028, USA.
| | - Anastasia Kellogg
- The University of Texas at El Paso, 500W. University Avenue, El Paso, TX 79968, USA
| | - Alexandria N Ogrey
- The University of Texas at El Paso, 500W. University Avenue, El Paso, TX 79968, USA
| | - Andrew M Heekin
- USDA-ARS, Knipling-Bushland US Livestock Insect Research Laboratory, 2700 Fredericksburg Rd., Kerrville, TX 78028, USA
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, WA, Australia
| | - Matthew I Bellgard
- Centre for Comparative Genomics, Murdoch University, Perth 6150, WA, Australia
| | - Scot E Dowd
- Molecular Research DNA, 503 Clovis Rd., Shallowater, TX 79363, USA
| | - Ming-Ying Leung
- The University of Texas at El Paso, 500W. University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
49
|
Araujo RN, Franco PF, Rodrigues H, Santos LCB, McKay CS, Sanhueza CA, Brito CRN, Azevedo MA, Venuto AP, Cowan PJ, Almeida IC, Finn MG, Marques AF. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol 2016; 46:213-220. [PMID: 26812026 DOI: 10.1016/j.ijpara.2015.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
Abstract
The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil.
Collapse
Affiliation(s)
- Ricardo Nascimento Araujo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Ferreira Franco
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Rodrigues
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza C B Santos
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Craig S McKay
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos A Sanhueza
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Carlos Ramon Nascimento Brito
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Maíra Araújo Azevedo
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Venuto
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Igor C Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79912, USA
| | - M G Finn
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Alexandre F Marques
- Universidade Federal de Minas Gerais, Instituto de Ciencias Biologicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
50
|
Eichner C, Øvergård AC, Nilsen F, Dalvin S. Molecular characterization and knock-down of salmon louse (Lepeophtheirus salmonis) prostaglandin E synthase. Exp Parasitol 2015; 159:79-93. [DOI: 10.1016/j.exppara.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
|