1
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
2
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
3
|
Beri D, Singh M, Rodriguez M, Goyal N, Rasquinha G, Liu Y, An X, Yazdanbakhsh K, Lobo CA. Global Metabolomic Profiling of Host Red Blood Cells Infected with Babesia divergens Reveals Novel Antiparasitic Target Pathways. Microbiol Spectr 2023; 11:e0468822. [PMID: 36786651 PMCID: PMC10100774 DOI: 10.1128/spectrum.04688-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC. Our results reveal an extensive parasite-mediated modulation of RBC metabolite levels of all classes, including lipids, amino acids, carbohydrates, and nucleotides, with numerous metabolic species varying in proportion to the level of infection. Many of these molecules are scavenged from the host RBCs. This is in accord with the needs of a rapidly proliferating parasite with limited biosynthetic capabilities. Probing these pathways in depth, we used growth inhibition assays to quantitate parasite susceptibility to drugs targeting these pathways and stimulated emission depletion (STED) microscopy to obtain high-resolution images of drug-treated parasites to correlate changes in morphology with specific metabolic blocks in order to validate the data generated by the untargeted metabolomics platform. Thus, interruption of cholesterol scavenging from the host cell led to premature parasite egress, while chemical targeting of the hydrolysis of acyl glycerides led to the buildup of malformed parasites that could not successfully egress. This is the first report detailing the global metabolomic profile of the B. divergens-infected RBC. Besides deciphering diverse aspects of the host-parasite relationship, our results can be exploited by others to uncover further drug targets in the host-parasite biochemical network. IMPORTANCE Human babesiosis is caused by apicomplexan parasites of the Babesia genus and is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations. Through its continuous cycles of invasion, proliferation, and egress, B. divergens radically changes the metabolic environment of the host red blood cell, allowing us opportunities to study potential chemical vulnerabilities that can be targeted by drugs. This is the first global metabolomic profiling of Babesia-infected human red blood cells, and our analysis revealed perturbation in all biomolecular classes at levels proportional to the level of infection. In particular, lipids and energy flux pathways in the host cell were altered by infection. We validated the changes in key metabolic pathways by performing inhibition assays accompanied by high-resolution microscopy. Overall, this global metabolomics analysis of Babesia-infected red blood cells has helped to uncover novel aspects of parasite biology and identified potential biochemical pathways that can be targeted for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Naman Goyal
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| |
Collapse
|
4
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Omorou R, Bin Sa'id I, Delves M, Severini C, Kouakou YI, Bienvenu AL, Picot S. Protocols for Plasmodium gametocyte production in vitro: an integrative review and analysis. Parasit Vectors 2022; 15:451. [PMID: 36471426 PMCID: PMC9720971 DOI: 10.1186/s13071-022-05566-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The production of Plasmodium gametocytes in vitro is a real challenge. Many protocols have been described, but few have resulted in the production of viable and infectious gametocytes in sufficient quantities to conduct research on-but not limited to-transmission-blocking drug and vaccine development. The aim of this review was to identify and discuss gametocyte production protocols that have been developed over the last two decades. METHODS We analyzed the original gametocyte production protocols published from 2000 onwards based on a literature search and a thorough review. A systematic review was performed of relevant articles identified in the PubMed, Web of Sciences and ScienceDirect databases. RESULTS A total 23 studies on the production of Plasmodium gametocytes were identified, 19 involving in vitro Plasmodium falciparum, one involving Plasmodium knowlesi and three involving ex vivo Plasmodium vivax. Of the in vitro studies, 90% used environmental stressors to trigger gametocytogenesis. Mature gametocytemia of up to 4% was reported. CONCLUSIONS Several biological parameters contribute to an optimal production in vitro of viable and infectious mature gametocytes. The knowledge gained from this systematic review on the molecular mechanisms involved in gametocytogenesis enables reproducible gametocyte protocols with transgenic parasite lines to be set up. This review highlights the need for additional gametocyte production protocols for Plasmodium species other than P. falciparum.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.
| | - Ibrahim Bin Sa'id
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut Agama Islam Negeri (IAIN) Kediri, 64127, Kota Kediri, Jawa Timur, Indonesia
| | - Michael Delves
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1A 7HT, UK
| | - Carlo Severini
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Yobouet Ines Kouakou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut de Parasitologie Et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Kosasih A, Koepfli C, Dahlan MS, Hawley WA, Baird JK, Mueller I, Lobo NF, Sutanto I. Gametocyte carriage of Plasmodium falciparum (pfs25) and Plasmodium vivax (pvs25) during mass screening and treatment in West Timor, Indonesia: a longitudinal prospective study. Malar J 2021; 20:177. [PMID: 33836772 PMCID: PMC8034167 DOI: 10.1186/s12936-021-03709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background A goal of malaria epidemiological interventions is the detection and treatment of parasite reservoirs in endemic areas—an activity that is expected to reduce local transmission. Since the gametocyte is the only transmissible stage from human host to mosquito vector, this study evaluated the pre and post presence of gametocytes during a mass screening and treatment (MST) intervention conducted during 2013 in East Nusa Tenggara, Indonesia. Methods RT-qPCR targeting pfs25 and pvs25 transcripts—gametocyte molecular markers for Plasmodium falciparum and Plasmodium vivax, respectively, was performed to detect and quantify gametocytes in blood samples of P. falciparum and P. vivax-infected subjects over the course of the MST study. The presence of both asexual and sexual parasites in microscopic and submicroscopic infections was compared from the start and end of the MST, using proportion tests as well as parametric and non-parametric tests. Results Parasite prevalence remained unchanged for P. falciparum (6% = 52/811 versus 7% = 50/740, p = 0.838), and decreased slightly for P. vivax (24% = 192/811 versus 19% = 142/740, p = 0.035) between the MST baseline and endpoint. No significant difference was observed in gametocyte prevalence for either P. falciparum (2% = 19/803 versus 3% = 23/729, p = 0.353, OR = 1.34, 95%CI = 0.69–2.63), or P. vivax (7% = 49/744 versus 5% = 39/704, p = 0.442, OR = 0.83, 95%CI = 0.52–1.31). Even though there was an insignificant difference between the two time points, the majority of parasite positive subjects at the endpoint had been negative at baseline (P. falciparum: 66% = 29/44, P. vivax: 60% = 80/134). This was similarly demonstrated for the transmissible stage—where the majority of gametocyte positive subjects at the endpoint were negative at baseline (P. falciparum: 95% = 20/21, P. vivax: 94% = 30/32). These results were independent of treatment provided during MST activities. No difference was demonstrated in parasite and gametocyte density between both time points either in P. falciparum or P. vivax. Conclusion In this study area, similar prevalence rates of P. falciparum and P. vivax parasites and gametocytes before and after MST, although in different individuals, points to a negligible impact on the parasite reservoir. Treatment administration based on parasite positivity as implemented in the MST should be reevaluated for the elimination strategy in the community. Trial registration Clinical trials registration NCT01878357. Registered 14 June 2013, https://www.clinicaltrials.gov/ct2/show/NCT01878357. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03709-y.
Collapse
Affiliation(s)
- Ayleen Kosasih
- PhD Programme in Biomedical Sciences, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia.,Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | - Cristian Koepfli
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,Infection & Immunity Division, Walter & Eliza Hall Institute, Melbourne, Australia
| | | | | | - J Kevin Baird
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ivo Mueller
- Infection & Immunity Division, Walter & Eliza Hall Institute, Melbourne, Australia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Inge Sutanto
- Indonesian Medical Education and Research Institute, Jakarta, Indonesia. .,Department of Parasitology, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
8
|
Snider D, Weathers PJ. In vitro reduction of Plasmodium falciparum gametocytes: Artemisia spp. tea infusions vs. artemisinin. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113638. [PMID: 33271239 PMCID: PMC7855472 DOI: 10.1016/j.jep.2020.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua has a long history of use in Southeast Asia where it was used to treat "fever", and A. afra has a similar history in southern Africa. Since their discovery, A. annua use, in particular, has expanded globally with millions of people using the plant in therapeutic tea infusions, mainly to treat malaria. AIM OF THE STUDY In this study, we used in vitro studies to query if and how A. annua and A. afra tea infusions being used across the globe affect asexual Plasmodium falciparum parasites, and their sexual gametocytes. MATERIALS AND METHODS P. falciparumstrain NF54 was grown in vitro, synchronized, and induced to form gametocytes using N-acetylglucosamine. Cultures during asexual, early, and late stage gametocytogenesis were treated with artemisinin, methylene blue, and A. annua and A. afra tea infusions (5 g DW/L) using cultivars that contained 0-283 μM artemisinin. Asexual parasitemia and gametocytemia were analyzed microscopically. Gametocyte morphology also was scored. Markers of early (PfGEXP5) and late stage (Pfs25) gametocyte gene expression also were measured using RT-qPCR. RESULTS Both A. annua and A. afra tea infusions reduced gametocytemia in vitro, and the effect was mainly artemisinin dependent. Expression levels of both marker genes were reduced and also occurred with the effect mainly attributed to artemisinin content of four tested Artemisia cultivars. Tea infusions of both species also inhibited asexual parasitemia and although mainly artemisinin dependent, there was a weak antiparasitic effect from artemisinin-deficient A. afra. CONCLUSIONS These results showed that A. annua and to a lesser extent, A. afra, inhibited parasitemia and gametocytemia in vitro.
Collapse
Affiliation(s)
- Danielle Snider
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Pamela J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
9
|
Wang QB, Du YT, Liu F, Sun XD, Sun X, Chen G, Pang W, Cao YM. Adaptive immune responses mediated age-related Plasmodium yoelii 17XL and 17XNL infections in 4 and 8-week-old BALB/c mice. BMC Immunol 2021; 22:6. [PMID: 33430765 PMCID: PMC7798208 DOI: 10.1186/s12865-020-00391-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUD It is important to expound the opposite clinical outcomes between children and adulthood for eradicate malaria. There remains unknown about the correlation between adaptive immune response and age-related in malaria. METHODS 4 and 8-week-old mice were used to mimic children and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and Plasmodium yoelii MSP-1-specific IgG were measured by ELISA. RESULTS The adult group showed greater resistance to P. yoelii 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4+T-bet+IFN-γ+ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after P. yoelii 17XNL infection. The percentage of CD4+GATA3+IL-4+ Th2 cells and CD4+CXCR5+ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after P. yoelii 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and P. yoelii MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4+ or activated CD4+ T cells in the 8-week-old mice as compared to the 4-week-old group. CONCLUSIONS Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4+ T cells exhaustion in P. yoelii 17XNL infected 8-week-old mice.
Collapse
Affiliation(s)
- Qiu-Bo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.,Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000, China
| | - Yun-Ting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xiao-Dan Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Medical School, No 1139 Shifu Road, Jiaojiang District, Taizhou, 317700, China.
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Ya-Ming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
10
|
Pereira-Silva JW, Martins-Campos KM, Sabrina Dos Reis Martins E, de Souza Menezes A, Guimarães Lacerda MV, Costa Pessoa FA, Ríos-Velásquez CM. Long-lasting infectivity of Plasmodium vivax present in malarial patient blood to Anopheles aquasalis. Exp Parasitol 2021; 222:108064. [PMID: 33421382 DOI: 10.1016/j.exppara.2021.108064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
Experimental studies for understanding the relationship between Plasmodium vivax and its vector hosts are difficult, because of to the lack of a long-term, in vitro continuous culture system unavailability of infected blood samples, seasonality of the disease, and the concentration of most cases in remote areas. This study evaluates the duration of the infectivity of P. vivax to Anopheles aquasalis after collecting blood from malaria-infected patients. Blood was collected from patients and stored at 4 °C and 37 °C. Every day, for 4 days, the blood was fed to An. aquasalis adult females, and a Giemsa-stained thick blood smear was mounted to account for sexual (gametocytes) and asexual (trophozoites and schizonts) stages and calculate parasitemia. Oocysts in the midgut of the mosquitoes were counted on the seventh day after feeding. Kruskal-Wallis test was used to compare the mean number of oocysts (MO) and the parasite density (PD) in each storage condition and post-infection time-points. The Mann-Whitney test was used to compare the number of oocysts for each day between temperatures. The results show that P. vivax stored at 4 °C and at 37 °C has its infectivity to An. aquasalis preserved for 2 days and 3 days, respectively. Infection rate (IR), PD and MO were higher on the day of blood collection and decreased gradually over time. The parasite density (number of parasites/μL) diminished faster at 4 °C than at 37 °C. In this study, a preservation protocol is shown for long-lasting infectivity of P. vivax in a blood sample taken from malaria-infected patients. These results show that infectivity of P. vivax stored at 4 °C and at 37 °C to An. aquasalis persist until 3 days after blood collection, but parasite density, infection rate, and mean of oocysts decreased 24h after blood collection. Since the malaria cases are increasingly far from the urban areas these results indicate that is possible, losing some infectivity, to realize experimental infections several dozen hours after the blood collection. However, it is necessary to improve the procedures for preserving P. vivax gametocytes for mosquito infection in the laboratory.
Collapse
Affiliation(s)
- Jordam William Pereira-Silva
- Lab. Ecologia de Doenças Transmissíveis Na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Brazil; Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; PPG Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade Do Estado Do Amazonas, Manaus, Brazil
| | | | | | - Alexandre de Souza Menezes
- Lab. Ecologia de Doenças Transmissíveis Na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Brazil; PPG Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Lab. Diagnóstico e Controle de Doenças Infecciosas Na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Brazil; Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; PPG Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade Do Estado Do Amazonas, Manaus, Brazil; PPG Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Felipe Arley Costa Pessoa
- Lab. Ecologia de Doenças Transmissíveis Na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Brazil; PPG Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Claudia Maria Ríos-Velásquez
- Lab. Ecologia de Doenças Transmissíveis Na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Brazil; PPG Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade Do Estado Do Amazonas, Manaus, Brazil; PPG Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil.
| |
Collapse
|
11
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
12
|
Van Eijk AM, Sutton PL, Ramanathapuram L, Sullivan SA, Kanagaraj D, Priya GSL, Ravishankaran S, Asokan A, Sangeetha V, Rao PN, Wassmer SC, Tandel N, Patel A, Desai N, Choubey S, Ali SZ, Barla P, Oraon RR, Mohanty S, Mishra S, Kale S, Bandyopadhyay N, Mallick PK, Huck J, Valecha N, Singh OP, Pradhan K, Singh R, Sharma SK, Srivastava HC, Carlton JM, Eapen A. The burden of submicroscopic and asymptomatic malaria in India revealed from epidemiology studies at three varied transmission sites in India. Sci Rep 2019; 9:17095. [PMID: 31745160 PMCID: PMC6863831 DOI: 10.1038/s41598-019-53386-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Malaria in India, while decreasing, remains a serious public health problem, and the contribution of submicroscopic and asymptomatic infections to its persistence is poorly understood. We conducted community surveys and clinic studies at three sites in India differing in their eco-epidemiologies: Chennai (Tamil Nadu), Nadiad (Gujarat), and Rourkela (Odisha), during 2012-2015. A total of 6,645 subject blood samples were collected for Plasmodium diagnosis by microscopy and PCR, and an extensive clinical questionnaire completed. Malaria prevalence ranged from 3-8% by PCR in community surveys (24 infections in Chennai, 56 in Nadiad, 101 in Rourkela), with Plasmodium vivax dominating in Chennai (70.8%) and Nadiad (67.9%), and Plasmodium falciparum in Rourkela (77.3%). A proportional high burden of asymptomatic and submicroscopic infections was detected in community surveys in Chennai (71% and 71%, respectively, 17 infections for both) and Rourkela (64% and 31%, 65 and 31 infections, respectively). In clinic studies, a proportional high burden of infections was identified as submicroscopic in Rourkela (45%, 42 infections) and Chennai (19%, 42 infections). In the community surveys, anemia and fever were significantly more common among microscopic than submicroscopic infections. Exploratory spatial analysis identified a number of potential malaria hotspots at all three sites. There is a considerable burden of submicroscopic and asymptomatic malaria in malarious regions in India, which may act as a reservoir with implications for malaria elimination strategies.
Collapse
Affiliation(s)
- Anna Maria Van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Patrick L Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,GlaxoSmithKline, 5 Moore Drive, PO Box 13398, RTP, Raleigh, NC, 27709-3398, United States
| | - Lalitha Ramanathapuram
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Deena Kanagaraj
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - G Sri Lakshmi Priya
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India.,Department of Zoology, Madras Christian College, University of Madras, Tambaram, Chennai, 600 059, India
| | - Sangamithra Ravishankaran
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Aswin Asokan
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - V Sangeetha
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Pavitra N Rao
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Samuel C Wassmer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom
| | - Nikunj Tandel
- Indian Council of Medical Research - National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India.,Institute of Science, Nirma University, Gujarat, 382481, India
| | - Ankita Patel
- Indian Council of Medical Research - National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Nisha Desai
- Indian Council of Medical Research - National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Sandhya Choubey
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Syed Zeeshan Ali
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Punam Barla
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Rajashri Rani Oraon
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Stuti Mohanty
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Shobhna Mishra
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Sonal Kale
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Nabamita Bandyopadhyay
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Prashant K Mallick
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Jonathan Huck
- Department of Geography Arthur Lewis Building, The University of Manchester, Manchester, England
| | - Neena Valecha
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Om P Singh
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - K Pradhan
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Ranvir Singh
- Indian Council of Medical Research - National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - S K Sharma
- Indian Council of Medical Research, National Institute of Malaria Research, Dwarka Sector 8, New Delhi, India
| | - Harish C Srivastava
- Indian Council of Medical Research - National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Alex Eapen
- Indian Council of Medical Research - National Institute of Malaria Research, IDVC Field Unit, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Advancing the multi-disciplinarity of parasitology within the British Society for Parasitology: studies of host-parasite evolution in an ever-changing world. Parasitology 2018; 145:1641-1646. [PMID: 30185237 DOI: 10.1017/s0031182018001476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of parasites typically crosses into other research disciplines and spans across diverse scales, from molecular- to populational-levels, notwithstanding promoting an understanding of parasites set within evolutionary time. Today, the 2030 Sustainable Development Goals (SDGs) help frame much of contemporary parasitological research, since parasites can be found in all ecosystems, blighting human, animal and plant health. In recognition of the multi-disciplinary nature of parasitological research, the 2017 Autumn Symposium of the British Society for Parasitology was held in London to provide a forum for novel exchange across medical, veterinary and wildlife fields of study. Whilst the meeting was devoted to the topic of parasitism, it sought to foster mutualism, the antithesis perhaps of parasitism, by forging new academic connections and social networks to exchange novel ideas. The meeting also celebrated the longstanding career of Professor David Rollinson, FLS in the award of the International Federation for Tropical Medicine Medal for his efforts spanning 40 years of parasitological research. Indeed, David has done so much to explore and promote the fascinating biology of parasitism, as exemplified by the 15 manuscripts contained within this Special Issue.
Collapse
|