1
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Specker G, Estrada D, Radi R, Piacenza L. Trypanosoma cruzi Mitochondrial Peroxiredoxin Promotes Infectivity in Macrophages and Attenuates Nifurtimox Toxicity. Front Cell Infect Microbiol 2022; 12:749476. [PMID: 35186785 PMCID: PMC8855072 DOI: 10.3389/fcimb.2022.749476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease which is currently treated by nifurtimox (NFX) and benznidazole (BZ). Nevertheless, the mechanism of action of NFX is not completely established. Herein, we show the protective effects of T. cruzi mitochondrial peroxiredoxin (MPX) in macrophage infections and in response to NFX toxicity. After a 3-day treatment of epimastigotes with NFX, MPX content increased (2.5-fold) with respect to control, and interestingly, an MPX-overexpressing strain was more resistant to the drug. The generation of mitochondrial reactive species and the redox status of the low molecular weight thiols of the parasite were not affected by NFX treatment indicating the absence of oxidative stress in this condition. Since MPX was shown to be protective and overexpressed in drug-challenged parasites, non-classical peroxiredoxin activity was studied. We found that recombinant MPX exhibits holdase activity independently of its redox state and that its overexpression was also observed in temperature-challenged parasites. Moreover, increased holdase activity (2-fold) together with an augmented protease activity (proteasome-related) and an enhancement in ubiquitinylated proteins was found in NFX-treated parasites. These results suggest a protective role of MPX holdase activity toward NFX toxicity. Trypanosoma cruzi has a complex life cycle, part of which involves the invasion of mammalian cells, where parasite replication inside the host occurs. In the early stages of the infection, macrophages recognize and engulf T. cruzi with the generation of reactive oxygen and nitrogen species toward the internalized parasite. Parasites overexpressing MPX produced higher macrophage infection yield compared with wild-type parasites. The relevance of peroxidase vs. holdase activity of MPX during macrophage infections was assessed using conoidin A (CA), a covalent, cell-permeable inhibitor of peroxiredoxin peroxidase activity. Covalent adducts of MPX were detected in CA-treated parasites, which proves its action in vivo. The pretreatment of parasites with CA led to a reduced infection index in macrophages revealing that the peroxidase activity of peroxiredoxin is crucial during this infection process. Our results confirm the importance of peroxidase activity during macrophage infection and provide insights for the relevance of MPX holdase activity in NFX resistance.
Collapse
Affiliation(s)
- Gabriela Specker
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Damián Estrada
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
da Silveira-Lemos D, Alessio GD, Batista MA, de Azevedo PO, Reis-Cunha JL, Mendes TADO, Lourdes RDA, de Lana M, Fujiwara RT, Filho OAM, Bartholomeu DC. Phenotypic, functional and serological aspects of genotypic-specific immune response of experimental T. cruzi infection. Acta Trop 2021; 222:106021. [PMID: 34161815 DOI: 10.1016/j.actatropica.2021.106021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
The complexity and multifactorial characteristics of Chagas disease pathogenesis hampers the establishment of appropriate experimental/epidemiological sets, and therefore, still represents one of the most challenging fields for novel insights and discovery. In this context, we used a set of attributes including phenotypic, functional and serological markers of immune response as candidates to decode the genotype-specific immune response of experimental T. cruzi infection. In this investigation, we have characterized in C57BL/6 J mice, the early (parasitemia peak) and late (post-parasitemia peak) aspects of the immune response elicited by T. cruzi strains representative of TcI, TcII or TcVI. The results demonstrated earlier parasitemia peak for TcII/Y strain followed by TcVI/CL-Brener and TcI/Colombiana strains. A panoramic overview of phenotypic and functional features of the TCD4+, TCD8+ and B-cells from splenocytes demonstrated that mice infected with TcI/Colombiana strain exhibited at early stages of infection low levels of most cytokine+ cells with a slight increase at late stages of infection. Conversely, mice infected with TcII/Y strain presented an early massive increase of cytokine+ cells, which decreases at late stages. The TcVI/CL-Brener strain showed an intermediate profile at early stages of infection with a slight increase later on at post-peak of parasitemia. The panoramic analysis of immunological connectivity demonstrated that early after infection, the TcI/Colombiana strain trigger immunological network characterized by a small number of connectivity, selectively amongst cytokines that further shade towards the late stages of infection. In contrast, the TcII/Y strain elicited in more imbricate networks early after infection, comprising a robust number of interactions between pro-inflammatory mediators, regulatory cytokines and activation markers that also decrease at late infection. On the other hand, the infection with TcVI/CL-Brener strain demonstrated an intermediate profile with connectivity axes more stable at early and late stages of infection. The analysis of IgG2a reactivity to AMA, TRYPO and EPI antigens revealed that at early stages of infection, the genotype-specific reactivity to AMA, TRYPO and EPI to distinguish was higher for TcI/Colombiana as compared to TcII/Y and TcVI/CL while, at late stages of infection, higher reactivity to AMA was observed in mice infected with TcVI/CL and TcII/Y strains. The novel systems biology approaches and the use of a flow cytometry platform demonstrated that distinct T. cruzi genotypes influenced in the phenotypic and functional features of the host immune response and the genotype-specific serological reactivity during early and late stages of experimental T. cruzi infection.
Collapse
Affiliation(s)
- Denise da Silveira-Lemos
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil; Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil.
| | - Glaucia Diniz Alessio
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil; Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brasil.
| | - Maurício Azevedo Batista
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Patrick Orestes de Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil
| | - João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Tiago Antônio de Oliveira Mendes
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Rodrigo de Almeida Lourdes
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Marta de Lana
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Ricardo Toshio Fujiwara
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Olindo Assis Martins Filho
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil
| | - Daniella Castanheira Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| |
Collapse
|
4
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009269. [PMID: 33750958 PMCID: PMC8016252 DOI: 10.1371/journal.pntd.0009269] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/01/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. CONCLUSIONS/SIGNIFICANCE Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.
Collapse
Affiliation(s)
- Andrea Vela
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Marco Coral-Almeida
- One Health Research group, Facultad de Ciencias de la salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito, Ecuador
| | - Denis Sereno
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Christian Barnabé
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Simone Frédérique Brenière
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
6
|
Gumiel M, de Mattos DP, Vieira CS, Moraes CS, Moreira CJDC, Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P, Carels N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front Mol Biosci 2020; 7:589435. [PMID: 33363206 PMCID: PMC7755933 DOI: 10.3389/fmolb.2020.589435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that the T. cruzi's cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.
Collapse
Affiliation(s)
- Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia
| | - Debora Passos de Mattos
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Caroline Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Marcelo Salabert Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | | | - Mariana Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Human Chagas-Flow ATE-IgG1 for advanced universal and Trypanosoma cruzi Discrete Typing Units-specific serodiagnosis of Chagas disease. Sci Rep 2020; 10:13296. [PMID: 32764546 PMCID: PMC7414038 DOI: 10.1038/s41598-020-69921-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The molecular and serological methods available for Discrete Typing Units (DTU)-specific diagnosis of Trypanosoma cruzi in chronic Chagas disease present limitations. The study evaluated the performance of Human Chagas-Flow ATE-IgG1 for universal and DTU-specific diagnosis of Chagas disease. A total of 102 sera from Chagas disease patients (CH) chronically infected with TcI, TcVI or TcII DTUs were tested for IgG1 reactivity to amastigote/(A), trypomastigote/(T) and epimastigote/(E) antigens along the titration curve (1:250-1:32,000). The results demonstrated that "AI 250/40%", "EVI 250/30%", "AII 250/40%", "TII 250/40%" and "EII 250/30%" have outstanding accuracy (100%) to segregate CH from non-infected controls. The attributes "TI 4,000/50%", "EI 2,000/50%", "AVI 8,000/60%" and "TVI 4,000/50%" were selected for DTU-specific serotyping of Chagas disease. The isolated use of "EI 2,000/50%" provided the highest co-positivity for TcI patients (91%). The combined decision tree algorithms using the pre-defined sets of attributes showed outstanding full accuracy (92% and 97%) to discriminate "TcI vs TcVI vs TcII" and "TcI vs TcII" prototypes, respectively. The elevated performance of Human Chagas-Flow ATE-IgG1 qualifies its use for universal and TcI/TcVI/TcII-specific diagnosis of Chagas disease. These findings further support the application of this method in epidemiological surveys, post-therapeutic monitoring and clinical outcome follow-ups for Chagas disease.
Collapse
|
8
|
Rivas-García L, Carballo-Amador MA, Flores-López CA. Design of a AFLP-PCR and PCR-RFLP test that identify the majority of discrete typing units of Trypanosoma cruzi. PLoS One 2020; 15:e0237180. [PMID: 32750094 PMCID: PMC7402520 DOI: 10.1371/journal.pone.0237180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease, caused by the intracellular parasite Trypanosoma cruzi, is one of the most important parasitological infections in the Americas. It is estimated to infect approximately 6 million people from mostly low income countries in Latin America, although recent infections have been reported in southern US states. Several studies have described an extensive genetic diversity among T. cruzi isolates throughout its geographic distribution in the American continent. This diversity has been correlated with the pathology developed during an infection. However, due to a lack of a single reliable test, current diagnosis practices of the disease are not straightforward since several different tests are applied. The use of current genomic sequence data allows for the selection of molecular markers (MM) that have the ability to identify the Discrete Typing Unit (DTU) of T. cruzi in a given infection, without the need of any sequencing reaction. Methodology/principal findings Applying three criteria on the genomic sequencing data of four different phylogenetic lineages of T. cruzi, we designed several molecular tests that can be used for the molecular typing of the parasite. The criteria used were: (1) single-copy orthologs of T. cruzi, (2) T. cruzi unique loci, and (3) T. cruzi polymorphic loci. All criteria combined allowed for the selection of 15 MM, 12 of which were confirmed to be functional and replicable in the laboratory with sylvatic samples. Furthermore, one MM produced distinct polymerase chain reaction (PCR) amplicon sizes among distinct T. cruzi DTUs, allowing the use of a AFLP-PCR test to distinguish DTUs I, II/IV, V and VI. Whereas two MM can differentiate DTUs I, II, IV and V/VI out of the six current DTUs with a PCR-RFLP test. Conclusions/significance The designed molecular tests provide a practical and inexpensive molecular typing test for the majority of DTUs of T. cruzi, excluding the need to perform any sequencing reaction. This provides the scientific community with an additional specific, quick and inexpensive test that can enhance the understanding of the correlation between the DTU of T. cruzi and the pathology developed during the infection.
Collapse
Affiliation(s)
- Lynneth Rivas-García
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | | | | |
Collapse
|
9
|
Magalhães LMD, Passos LSA, Chiari E, Galvão LMC, Koh CC, Rodrigues-Alves ML, Giunchetti RC, Gollob K, Dutra WO. Co-infection with distinct Trypanosoma cruzi strains induces an activated immune response in human monocytes. Parasite Immunol 2019; 41:e12668. [PMID: 31494949 DOI: 10.1111/pim.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
AIMS The aim of the study was to evaluate the immune response triggered by the first contact of human monocytes with two T cruzi strains from distinct discrete typing units (DTUs) IV and V, and whether co-infection with these strains leads to changes in monocyte immune profiles, which could in turn influence the subsequent infection outcome. METHODS AND RESULTS We evaluated the influence of in vitro single- and co-infection with AM64 and 3253 strains on immunological characteristics of human monocytes. Single infection of monocytes with AM64 or 3253 induced opposing anti-inflammatory and inflammatory responses, respectively. Co-infection was observed in over 50% of monocytes after 15 hours of culture, but this percentage dropped ten-fold after 72 hours. Co-infection led to high monocyte activation and an increased percentage of both IL-10 and TNF. The decreased percentage of co-infected cells observed after 72 hours was associated with a decreased frequency of TNF-expressing cells. CONCLUSION Our results show that the exacerbated response observed in co-infection with immune-polarizing strains is associated with a decreased frequency of co-infected cells, suggesting that the activated response favours parasite control. These findings may have implications for designing new Chagas disease preventive strategies.
Collapse
Affiliation(s)
- Luísa M D Magalhães
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia S A Passos
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lúcia M C Galvão
- Departamento de Parasitologia, Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Carolina C Koh
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina L Rodrigues-Alves
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo C Giunchetti
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth Gollob
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Walderez O Dutra
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Doenças Tropicais (INCT-DT), Salvador, Brazil
| |
Collapse
|
10
|
Berry ASF, Salazar-Sánchez R, Castillo-Neyra R, Borrini-Mayorí K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Náquira-Velarde C, Levy MZ, Brisson D. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl Trop Dis 2019; 13:e0007392. [PMID: 31107905 PMCID: PMC6544315 DOI: 10.1371/journal.pntd.0007392] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/31/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sexual reproduction provides an evolutionary advantageous mechanism that combines favorable mutations that have arisen in separate lineages into the same individual. This advantage is especially pronounced in microparasites as allelic reassortment among individuals caused by sexual reproduction promotes allelic diversity at immune evasion genes within individuals which is often essential to evade host immune systems. Despite these advantages, many eukaryotic microparasites exhibit highly-clonal population structures suggesting that genetic exchange through sexual reproduction is rare. Evidence supporting clonality is particularly convincing in the causative agent of Chagas disease, Trypanosoma cruzi, despite equally convincing evidence of the capacity to engage in sexual reproduction. Methodology/ Principle Findings In the present study, we investigated two hypotheses that can reconcile the apparent contradiction between the observed clonal population structure and the capacity to engage in sexual reproduction by analyzing the genome sequences of 123 T. cruzi isolates from a natural population in Arequipa, Peru. The distribution of polymorphic markers within and among isolates provides clear evidence of the occurrence of sexual reproduction. Large genetic segments are rearranged among chromosomes due to crossing over during meiosis leading to a decay in the genetic linkage among polymorphic markers compared to the expectations from a purely asexually-reproducing population. Nevertheless, the population structure appears clonal due to a high level of inbreeding during sexual reproduction which increases homozygosity, and thus reduces diversity, within each inbreeding lineage. Conclusions/ Significance These results effectively reconcile the apparent contradiction by demonstrating that the clonal population structure is derived not from infrequent sex in natural populations but from high levels of inbreeding. We discuss epidemiological consequences of this reproductive strategy on genome evolution, population structure, and phenotypic diversity of this medically important parasite. The rearrangement of alleles among individuals in a population during sexual reproduction maintains high allelic diversity within individuals in a population at polymorphic genes. Allelic diversity within individuals can be particularly important for parasites as it enhances their ability to evade host immune systems. Despite the potential benefits of sexual reproduction for parasites, natural populations of the protozoan parasite—and causative agent of human Chagas disease—Trypanosoma cruzi, exhibit clonal population structures indicative of asexual reproduction. This is particularly surprising as T. cruzi has the capacity for sexual reproduction. Here, we resolve this apparent contradiction by sequencing whole genomes of 123 T. cruzi isolates from a natural population in Arequipa, Peru. Evidence of past sexual reproduction and allelic rearrangements are common in this T. cruzi population. However, the majority of sexual reproduction events occur between close relatives resulting in an apparent clonal population structure. Sexual reproduction with distant relatives in areas with greater strain diversity has the potential to affect public health by increasing diversity in immune evasion genes within individuals and enhancing within-host survival, rapidly diversifying antigens that could affect the sensitivity of serological diagnostics, and by generating diversity in pathogenicity or drug resistance.
Collapse
Affiliation(s)
- Alexander S. F. Berry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renzo Salazar-Sánchez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Ricardo Castillo-Neyra
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katty Borrini-Mayorí
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Claudia Chipana-Ramos
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Melina Vargas-Maquera
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Jenny Ancca-Juarez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - César Náquira-Velarde
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
11
|
Performance of TcI/TcVI/TcII Chagas-Flow ATE-IgG2a for universal and genotype-specific serodiagnosis of Trypanosoma cruzi infection. PLoS Negl Trop Dis 2017; 11:e0005444. [PMID: 28333926 PMCID: PMC5380352 DOI: 10.1371/journal.pntd.0005444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/04/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T. cruzi infection. For this purpose, the reactivity of serum samples (percentage of positive fluorescent parasites-PPFP) obtained from mice chronically infected with TcI/Colombiana, TcVI/CL or TcII/Y strain as well as non-infected controls were determined using amastigote-AMA, trypomastigote-TRYPO and epimastigote-EPI in parallel batches of TcI, TcVI and TcII target antigens. Data demonstrated that “α-TcII-TRYPO/1:500, cut-off/PPFP = 20%” presented an excellent performance for universal diagnosis of T. cruzi infection (AUC = 1.0, Se and Sp = 100%). The combined set of attributes “α-TcI-TRYPO/1:4,000, cut-off/PPFP = 50%”, “α-TcII-AMA/1:1,000, cut-off/PPFP = 40%” and “α-TcVI-EPI/1:1,000, cut-off/PPFP = 45%” showed good performance to segregate infections with TcI/Colombiana, TcVI/CL or TcII/Y strain. Overall, hosts infected with TcI/Colombiana and TcII/Y strains displayed opposite patterns of reactivity with “α-TcI TRYPO” and “α-TcII AMA”. Hosts infected with TcVI/CL strain showed a typical interweaved distribution pattern. The method presented a good performance for genotype-specific diagnosis, with global accuracy of 69% when the population/prototype scenario include TcI, TcVI and TcII infections and 94% when comprise only TcI and TcII infections. This study also proposes a receiver operating reactivity panel, providing a feasible tool to classify serum samples from hosts infected with distinct T. cruzi genotypes, supporting the potential of this method for universal and genotype-specific diagnosis of T. cruzi infection. Chagas disease remains a significant public health issue infecting 6–7 million people worldwide. The factors influencing the clinical heterogeneity of Chagas disease have not been elucidated, although it has been suggested that different clinical outcome may be associated with the genetic diversity of T. cruzi isolates. Moreover, differences in therapeutic response of distinct T. cruzi genotypes have been also reported. Typing strategies for genotype-specific diagnosis of Chagas disease to identify the T. cruzi discrete typing units (DTU) have already been developed, including biochemical and molecular methods, however the techniques have limitations. The majority of these methods can not directly be performed in biological and clinical samples. In addition, it has been proposed that parasite isolates from blood may not necessarily represent the full set of strains current in the individual as some strains can be confined to tissues. The improvement of genotype-specific serology to identify the T. cruzi DTU(s) present in a given host may provide a useful tool for clinical studies. In the present investigation, we developed an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique with applicability for universal and genotype-specific diagnosis of T. cruzi infection that may contribute to add future insights for genotype-specific diagnosis of Chagas disease.
Collapse
|
12
|
Oliveira MTD, Branquinho RT, Alessio GD, Mello CGC, Nogueira-de-Paiva NC, Carneiro CM, Toledo MJDO, Reis AB, Martins-Filho OAM, Lana MD. TcI, TcII and TcVI Trypanosoma cruzi samples from Chagas disease patients with distinct clinical forms and critical analysis of in vitro and in vivo behavior, response to treatment and infection evolution in murine model. Acta Trop 2017; 167:108-120. [PMID: 27908747 DOI: 10.1016/j.actatropica.2016.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 01/10/2023]
Abstract
The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations. Several biological features were evaluated, including in vitro epimastigote-growth, "Vero"cells infectivity and growth, along with in vivo studies of parasitemia, polymorphism of trypomastigotes, cardiac inflammation, fibrosis and response to treatment by nifurtimox during the acute and chronic murine infection. The global results showed that the in vitro essays (acellular and cellular cultures) TcII parasites showed higher values for all parameters (growth and infectivity) than TcVI, followed by TcI. In vivo TcII parasites were more virulent and originated from patients with severe disease. Two TcII isolates from patients with severe pathology were virulent in mice, while the isolate from a patient with the indeterminate form of the disease caused mild infection. The only TcVI sample, which displayed low values in all parameters evaluated, was also originated of an indeterminate case of Chagas disease. Response to nifurtimox was not associated to parasite genetic and biology, as well as to clinical aspects of human disease. Although few number of T. cruzi samples have been analyzed, a discreet correlation between parasite genetics, biological behavior in vitro and in vivo (murine model) and the clinical form of human disease from whom the samples were isolated was verified.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Renata Tupinambá Branquinho
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Gláucia Diniz Alessio
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Carlos Geraldo Campos Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Nívia Carolina Nogueira-de-Paiva
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Cláudia Martins Carneiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | - Max Jean de Ornelas Toledo
- Departamento de Ciências Básicas da Saúde-Parasitologia, Universidade Estadual de Maringá, CEP: 87020-900, Maringá, Paraná, PR, Brazil
| | - Alexandre Barbosa Reis
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil
| | | | - Marta de Lana
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Campus Universitário Morro do Cruzeiro, Universidade Federal de Ouro Preto, CEP: 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
13
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
14
|
López-Cancino SA, Tun-Ku E, De la Cruz-Felix HK, Ibarra-Cerdeña CN, Izeta-Alberdi A, Pech-May A, Mazariegos-Hidalgo CJ, Valdez-Tah A, Ramsey JM. Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula. Acta Trop 2015. [PMID: 26219998 DOI: 10.1016/j.actatropica.2015.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Landscape interactions of Trypanosoma cruzi (Tc) with Triatoma dimidiata (Td) depend on the presence and relative abundance of mammal hosts. This study analyzed a landscape adjacent to the Calakmul Biosphere Reserve, composed of conserved areas, crop and farming areas, and the human community of Zoh Laguna with reported Chagas disease cases. Sylvatic mammals of the Chiroptera, Rodentia, and Marsupialia orders were captured, and livestock and pets were sampled along with T. dimidiata in all habitats. Infection by T. cruzi was analyzed using mtDNA markers, while lineage and DTU was analyzed using the mini-exon. 303 sylvatic specimens were collected, corresponding to 19 species during the rainy season and 114 specimens of 18 species during dry season. Five bats Artibeus jamaicensis, Artibeus lituratus, Sturnira lilium, Sturnira ludovici, Dermanura phaeotis (Dp) and one rodent Heteromys gaumeri were collected in the three habitats. All but Dp, and including Carollia brevicauda and Myotis keaysi, were infected with predominately TcI in the sylvatic habitat and TcII in the ecotone. Sigmodon hispidus was the rodent with the highest prevalence of infection by T. cruzi I and II in ecotone and domestic habitats. Didelphis viginiana was infected only with TcI in both domestic and sylvatic habitats; the only two genotyped human cases were TcII. Two main clades of T. cruzi, lineages I (DTU Ia) and II (DTU VI), were found to be sympatric (all habitats and seasons) in the Zoh-Laguna landscape, suggesting that no species-specific interactions occur between the parasite and any mammal host, in any habitat. We have also found mixed infections of the two principal T. cruzi clades in individuals across modified habitats, particularly in livestock and pets, and in both haplogroups of T. dimidiata. Results are contradictory to the dilution hypothesis, although we did find that most resilient species had an important role as T. cruzi hosts. Our study detected some complex trends in parasite transmission related to lineage sorting within the matrix. Intriguingly, TcIa is dominant in terrestrial small wildlife in the sylvatic habitat and is the only parasite DTU found in D. virginiana in the domestic habitat, although its frequency remained constant in sylvatic and ecotone vectors. Bats have a key role in TcVI dispersal from the sylvatic habitat, while dogs, sheep, and humans are drivers of TcVI between domestic and ecotone habitats. Overall, our results allow us to conclude that T. cruzi transmission is dependent on host availability within a highly permeable landscape in Zoh Laguna.
Collapse
Affiliation(s)
- Sury Antonio López-Cancino
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Ezequiel Tun-Ku
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | | | - Carlos Napoleón Ibarra-Cerdeña
- Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav), Unidad Merida, Departamento de Ecología Humana, Mérida, Yucatán, Mexico
| | - Amaia Izeta-Alberdi
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Angélica Pech-May
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico; Instituto Nacional de Medicina Tropical, Ministerio de Salud de la Nación, CONICET, Jujuy y Neuquén s/n, 3370, Puerto Iguazú, Misiones, Argentina
| | | | - Alba Valdez-Tah
- El Colegio de la Frontera Sur, Departamento de Sociedad y Cultura, Campeche, Campeche, Mexico
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| |
Collapse
|
15
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
16
|
Fernández MDP, Cecere MC, Lanati LA, Lauricella MA, Schijman AG, Gürtler RE, Cardinal MV. Geographic variation of Trypanosoma cruzi discrete typing units from Triatoma infestans at different spatial scales. Acta Trop 2014; 140:10-8. [PMID: 25090650 DOI: 10.1016/j.actatropica.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
We assessed the diversity and distribution of Trypanosoma cruzi discrete typing units (DTU) in Triatoma infestans populations and its association with local vector-borne transmission levels at various geographic scales. At a local scale, we found high predominance (92.4%) of TcVI over TcV in 68 microscope-positive T. infestans collected in rural communities in Santiago del Estero province in northern Argentina. TcV was more often found in communities with higher house infestation prevalence compatible with active vector-borne transmission. Humans and dogs were the main bloodmeal sources of the TcV- and TcVI-infected bugs. At a broader scale, the greatest variation in DTU diversity was found within the Argentine Chaco (227 microscope-positive bugs), mainly related to differences in equitability between TcVI and TcV among study areas. At a country-wide level, a meta-analysis of published data revealed clear geographic variations in the distribution of DTUs across countries. A correspondence analysis showed that DTU distributions in domestic T. infestans were more similar within Argentina (dominated by TcVI) and within Bolivia (where TcI and TcV had similar relative frequencies), whereas large heterogeneity was found within Chile. DTU diversity was lower in the western Argentine Chaco region and Paraguay (D=0.14-0.22) than in the eastern Argentine Chaco, Bolivia and Chile (D=0.20-0.68). Simultaneous DTU identifications of T. cruzi-infected hosts and triatomines across areas differing in epidemiological status are needed to shed new light on the structure and dynamics of parasite transmission cycles.
Collapse
|
17
|
Dutra WO, Menezes CAS, Magalhães LMD, Gollob KJ. Immunoregulatory networks in human Chagas disease. Parasite Immunol 2014; 36:377-87. [PMID: 24611805 DOI: 10.1111/pim.12107] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/19/2014] [Indexed: 01/11/2023]
Abstract
Chagas disease, caused by the infection with Trypanosoma cruzi, is endemic in all Latin America. Due to the increase in population migration, Chagas disease has spread worldwide and is now considered a health issue not only in endemic countries. While most chronically infected individuals remain asymptomatic, approximately 30% of the patients develop a potentially deadly cardiomyopathy. The exact mechanisms that underlie the establishment and maintenance of the cardiac pathology are not clear. However, there is consistent evidence that immunoregulatory cytokines are critical for orchestrating the immune response and thus influence disease development or control. While the asymptomatic (indeterminate) form represents a state of balance between the host and the parasite, the establishment of the cardiac form represents the loss of this balance. Analysis of data obtained from several studies has led to the hypothesis that the indeterminate form is associated with an anti-inflammatory cytokine profile, represented by high expression of IL-10, while cardiac form is associated with a high production of IFN-gamma and TNF-alpha in relation to IL-10, leading to an inflammatory profile. Here, we discuss the immunoregulatory events that might influence disease outcome, as well as the mechanisms that influence the establishment of these complex immunoregulatory networks.
Collapse
Affiliation(s)
- W O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia - Doenças Tropicais - INCT-DT, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
18
|
Meza SKL, Kaneshima EN, Silva SDO, Gabriel M, de Araújo SM, Gomes ML, Monteiro WM, Barbosa MDGV, Toledo MJDO. Comparative pathogenicity in Swiss mice of Trypanosoma cruzi IV from northern Brazil and Trypanosoma cruzi II from southern Brazil. Exp Parasitol 2014; 146:34-42. [PMID: 25296157 DOI: 10.1016/j.exppara.2014.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
Abstract
The geographical heterogeneity of Chagas disease (ChD) is mainly caused by genetic variability of the etiological agent Trypanosoma cruzi. Our hypothesis was that the pathogenicity for mice may vary with the genetic lineage (or Discrete Typing Unit - DTU) of the parasite. To test this hypothesis, parasitological and histopathological evaluations were performed in mice inoculated with strains belonging to the DTU T. cruzi IV (TcIV) from the State of Amazonas (northern Brazil), or the DTU T. cruzi II (TcII) from the State of Paraná (southern Brazil). Groups of 10 Swiss mice were inoculated with eight strains of TcIV obtained from acute cases (7) from two outbreaks of orally acquired ChD, and from the triatomine Rhodnius robustus (1) from Amazonas; and three strains of TcII obtained from chronic patients in Paraná. We evaluated the pre-patent period, patent period, maximum peak of parasitemia, day of maximum peak of parasitemia, area under the parasitemia curve, inflammatory process, and tissue parasitism in the acute phase. TcIV was less virulent than TcII, and showed significantly (p < 0.005) lower parasitemia levels. Although the levels of tissue parasitism did not differ statistically, mice infected with TcIV displayed significantly (p < 0.001) fewer inflammatory processes than mice infected with TcII. This supported the working hypothesis, since TcIV from Amazonas was less pathogenic than TcII from Paraná; and agreed with the lower severity of human cases of ChD in the Amazon region.
Collapse
Affiliation(s)
- Sheila Karina Lüders Meza
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Center for Medical and Pharmaceutical Sciences, State University of Western Paraná, Paraná, Brazil
| | | | | | | | - Silvana Marques de Araújo
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil
| | - Mônica Lúcia Gomes
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil
| | | | - Maria das Graças Vale Barbosa
- Post-Graduate Program in Tropical Medicine, State University of Amazonas, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Amazonas, Brazil
| | - Max Jean de Ornelas Toledo
- Post-Graduate Program in Health Sciences, State University of Maringá (UEM), Paraná, Brazil; Department of Basic Health Sciences, UEM, Paraná, Brazil.
| |
Collapse
|
19
|
Ortiz S, Zulantay I, Apt W, Saavedra M, Solari A. Transferability of Trypanosoma cruzi from mixed human host infection to Triatoma infestans and from insects to axenic culture. Parasitol Int 2014; 64:33-6. [PMID: 25240699 DOI: 10.1016/j.parint.2014.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
The etiologic agent of Chagas disease is Trypanosoma cruzi, a protozoan whose life cycle involves obligatory passage through vertebrate and invertebrate hosts in a series of stages. The aim of this study was to explore the transferability of mixed discrete typing units (DTUs) of T. cruzi present in chronic chagasic patients when passed through an invertebrate host during xenodiagnosis (XD) and then when transferred to axenic cultures to obtain T. cruzi isolates. DTUs of T. cruzi present in these two hosts and axenic cultures were identified by kDNA PCR amplification and subsequent hybridization with DTU-specific probes. Mixtures of Tc I, Tc II, Tc V and Tc VI DTUs were detected in blood samples. However as a result of XD and axenic cultures it was possible to identify mostly Tc V. We conclude that the transferability of an isolate of T.cruzi derived from mixed DTUs present in human blood depends upon the starved invertebrate host used for xenodiagnosis.
Collapse
Affiliation(s)
- Sylvia Ortiz
- Laboratorio de Biología Molecular de Parásitos, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Inés Zulantay
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Werner Apt
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Saavedra
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Solari
- Laboratorio de Biología Molecular de Parásitos, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Arnaud-Haond S, Moalic Y, Barnabé C, Ayala FJ, Tibayrenc M. Discriminating micropathogen lineages and their reticulate evolution through graph theory-based network analysis: the case of Trypanosoma cruzi, the agent of Chagas disease. PLoS One 2014; 9:e103213. [PMID: 25148574 PMCID: PMC4141739 DOI: 10.1371/journal.pone.0103213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 06/28/2014] [Indexed: 12/02/2022] Open
Abstract
Micropathogens (viruses, bacteria, fungi, parasitic protozoa) share a common trait, which is partial clonality, with wide variance in the respective influence of clonality and sexual recombination on the dynamics and evolution of taxa. The discrimination of distinct lineages and the reconstruction of their phylogenetic history are key information to infer their biomedical properties. However, the phylogenetic picture is often clouded by occasional events of recombination across divergent lineages, limiting the relevance of classical phylogenetic analysis and dichotomic trees. We have applied a network analysis based on graph theory to illustrate the relationships among genotypes of Trypanosoma cruzi, the parasitic protozoan responsible for Chagas disease, to identify major lineages and to unravel their past history of divergence and possible recombination events. At the scale of T. cruzi subspecific diversity, graph theory-based networks applied to 22 isoenzyme loci (262 distinct Multi-Locus-Enzyme-Electrophoresis -MLEE) and 19 microsatellite loci (66 Multi-Locus-Genotypes -MLG) fully confirms the high clustering of genotypes into major lineages or "near-clades". The release of the dichotomic constraint associated with phylogenetic reconstruction usually applied to Multilocus data allows identifying putative hybrids and their parental lineages. Reticulate topology suggests a slightly different history for some of the main "near-clades", and a possibly more complex origin for the putative hybrids than hitherto proposed. Finally the sub-network of the near-clade T. cruzi I (28 MLG) shows a clustering subdivision into three differentiated lesser near-clades ("Russian doll pattern"), which confirms the hypothesis recently proposed by other investigators. The present study broadens and clarifies the hypotheses previously obtained from classical markers on the same sets of data, which demonstrates the added value of this approach. This underlines the potential of graph theory-based network analysis for describing the nature and relationships of major pathogens, thereby opening stimulating prospects to unravel the organization, dynamics and history of major micropathogen lineages.
Collapse
Affiliation(s)
- Sophie Arnaud-Haond
- IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) - Département Ecosystèmes Marins Exploités, Sète, France
| | - Yann Moalic
- IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) - Département Ecosystèmes Marins Exploités, Sète, France
| | - Christian Barnabé
- Interactions hôte-vecteur-parasite dans les maladies dues aux Trypanosomatidés, INTERTRYP (IRD-CIRAD), Montpellier, France
| | - Francisco José Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Montpellier, France
| |
Collapse
|
21
|
Machin A, Telleria J, Brizard JP, Demettre E, Séveno M, Ayala FJ, Tibayrenc M. Trypanosoma cruzi: gene expression surveyed by proteomic analysis reveals interaction between different genotypes in mixed in vitro cultures. PLoS One 2014; 9:e95442. [PMID: 24748035 PMCID: PMC3991653 DOI: 10.1371/journal.pone.0095442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
We have analyzed the comportment in in vitro culture of 2 different genotypes of Trypanosoma cruzi, the agent of Chagas disease, pertaining to 2 major genetic subdivisions (near-clades) of this parasite. One of the stocks was a fast-growing one, highly virulent in mice, while the other one was slow- growing, mildly virulent in mice. The working hypothesis was that mixtures of genotypes interact, a pattern that has been observed by us in empirical experimental studies. Genotype mixtures were followed every 7 days and characterized by the DIGE technology of proteomic analysis. Proteic spots of interest were characterized by the SAMESPOT software. Patterns were compared to those of pure genotypes that were also evaluated every 7 days. One hundred and three spots exhibited changes in time by comparison with T = 0. The major part of these spots (58%) exhibited an under-expression pattern by comparison with the pure genotypes. 32% of the spots wereover-expressed; 10% of spots were not different from those of pure genotypes. Interestingly, interaction started a few minutes after the mixtures were performed. We have retained 43 different proteins that clearly exhibited either under- or over-expression. Proteins showing interaction were characterized by mass spectrometry (MALDI-TOF). Close to 50% of them were either tubulins or heat shock proteins. This study confirms that mixed genotypes of T. cruzi interact at the molecular level. This is of great interest because mixtures of genotypes are very frequent in Chagas natural cycles, both in insect vectors and in mammalian hosts, and may play an important role in the transmission and severity of Chagas disease. The methodology proposed here is potentially applicable to any micropathogen, including fungi, bacteria and viruses. It should be of great interest in the case of bacteria, for which the epidemiological and clinical consequences of mixed infections could be underestimated.
Collapse
Affiliation(s)
- Alexandre Machin
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
| | - Jenny Telleria
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
| | - Jean-Paul Brizard
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique, n° 5096, Centre Institut de Recherche pour le Développement, Montpellier, France
| | - Edith Demettre
- Plate-forme de Proteomique Fonctionnelle, c/o Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicales, Unité 661, Université Montpellier I et II, Montpellier, France
| | - Martial Séveno
- Plate-forme de Proteomique Fonctionnelle, c/o Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicales, Unité 661, Université Montpellier I et II, Montpellier, France
| | - Francisco José Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Michel Tibayrenc
- Unité Mixte de Recherche, Institut de Recherche pour le Développement/Centre National de la Recherche Scientifique/Universités Montpellier 1 and 2, Génétique et Evolution des Maladies Infectieuses, n° 5290, Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) Institut de Recherche pour le Développement, Montpellier, France
- * E-mail:
| |
Collapse
|
22
|
Barnabe C, Buitrago R, Bremond P, Aliaga C, Salas R, Vidaurre P, Herrera C, Cerqueira F, Bosseno MF, Waleckx E, Breniere SF. Putative panmixia in restricted populations of Trypanosoma cruzi isolated from wild Triatoma infestans in Bolivia. PLoS One 2013; 8:e82269. [PMID: 24312410 PMCID: PMC3843716 DOI: 10.1371/journal.pone.0082269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/29/2013] [Indexed: 01/26/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is subdivided into six discrete typing units (DTUs; TcI-TcVI) of which TcI is ubiquitous and genetically highly variable. While clonality is the dominant mode of propagation, recombinant events play a significant evolutive role. Recently, foci of wild Triatoma infestans have been described in Bolivia, mainly infected by TcI. Hence, for the first time, we evaluated the level of genetic exchange within TcI natural potentially panmictic populations (single DTU, host, area and sampling time). Seventy-nine TcI stocks from wild T. infestans, belonging to six populations were characterized at eight microsatellite loci. For each population, Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD), and presence of repeated multilocus genotypes (MLG) were analyzed by using a total of seven statistics, to test the null hypothesis of panmixia (H0). For three populations, none of the seven statistics allowed to rejecting H0; for another one the low size did not allow us to conclude, and for the two others the tests have given contradictory results. Interestingly, apparent panmixia was only observed in very restricted areas, and was not observed when grouping populations distant of only two kilometers or more. Nevertheless it is worth stressing that for the statistic tests of "HWE", in order to minimize the type I error (i. e. incorrect rejection of a true H0), we used the Bonferroni correction (BC) known to considerably increase the type II error ( i. e. failure to reject a false H0). For the other tests (LD and MLG), we did not use BC and the risk of type II error in these cases was acceptable. Thus, these results should be considered as a good indicator of the existence of panmixia in wild environment but this must be confirmed on larger samples to reduce the risk of type II error.
Collapse
Affiliation(s)
- Christian Barnabe
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Rosio Buitrago
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Philippe Bremond
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
| | - Claudia Aliaga
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Renata Salas
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Pablo Vidaurre
- Servicio Departamental de Salud (SEDES) of La Paz, La Paz, Bolivia
| | - Claudia Herrera
- Department of Tropical Medicine, Tulane University, School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Frédérique Cerqueira
- Plateforme Génomique Environnementale du Labex Centre "Méditerranéen Environnement Biodiversité", Séquençage – Génotypage, Université Montpellier 2, Montpellier, France
| | - Marie-France Bosseno
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Etienne Waleckx
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| | - Simone Frédérique Breniere
- MIVEGEC (Université de Montpellier 1 et 2 - CNRS 5290 - IRD 224), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de recherche pour le développement (IRD), Representation in Bolivia, La Paz, Bolivia
- Instituto Nacional de Laboratorios de Salud (INLASA), Department of Entomology, La Paz, Bolivia
| |
Collapse
|
23
|
Silva JCVDOE, Assis GFMD, Oliveira MTD, Valadares HMS, Valle IFD, Paiva NCND, Martins HR, Lana MD. Molecular and biological characterization of Trypanosoma cruzi strains isolated from children from Jequitinhonha Valley, State of Minas Gerais, Brazil. Rev Soc Bras Med Trop 2013; 46:433-40. [PMID: 23982097 DOI: 10.1590/0037-8682-0077-2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The biological diversity of Trypanosoma cruzi strains plays an important role in the clinical and epidemiological features of Chagas disease. METHODS Eight T. cruzi strains isolated from children living in a Chagas disease vector-controlled area of Jequitinhonha Valley, State of Minas Gerais, Brazil, were genetically and biologically characterized. RESULTS The characterizations demonstrated that all of the strains belonged to T. cruzi II, and showed high infectivity and a variable mean maximum peak of parasitemia. Six strains displayed low parasitemia, and two displayed moderate parasitemia. Later peaks of parasitemia and a predominance of intermediate and large trypomastigotes in all T. cruzi strains were observed. The mean pre-patent period was relatively short (4.2 ± 0.25 to 13.7 ± 3.08 days), whereas the patent period ranged from 3.3 ± 1.08 to 34.5 ± 3.52 days. Mortality was observed only in animals infected with strain 806 (62.5%). Histopathological analysis of the heart showed that strains 501 and 806 caused inflammation, but fibrosis was observed only in animals infected with strain 806. CONCLUSIONS The results indicate the presence of an association between the biological behavior in mice and the genetic characteristics of the parasites. The study also confirmed general data from Brazil where T. cruzi II lineage is the most prevalent in the domiciliary cycle and generally has low virulence, with some strains capable of inducing inflammatory processes and fibrosis.
Collapse
|
24
|
Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice. PLoS Negl Trop Dis 2013; 7:e2069. [PMID: 23437410 PMCID: PMC3578774 DOI: 10.1371/journal.pntd.0002069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/07/2013] [Indexed: 12/03/2022] Open
Abstract
Background In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties. Methodology/Principal Findings Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar. Conclusion/Significance T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, constituting an important health problem in the American Continent. In the Brazilian Amazon, Chagas disease has been recognized as an emerging problem. There are few studies exploring the genetic and biological framework of stocks of T. cruzi from the Western Brazilian Amazon, where Chagas disease has a profile of lower morbidity and mortality, appearing mainly in the chronic latent form. Here, we carried out the biological characterization in mice of T. cruzi isolates belonging to TcI and TcIV DTUs from the State of Amazonas, Western Brazilian Amazon. T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice, with a higher virulence for the latter DTU as revealed by several biological parameters. Results strongly support the working hypothesis that biological differences are proportional to the evolutionary divergence among the DTUs, and highlight the need to take into account the phylogenetic diversity of T. cruzi natural stocks circulating in the emergent areas for Chagas disease in all applied studies dealing with clinical diversity of Chagas disease, immunology, diagnosis, prognosis, and drug and vaccine trials.
Collapse
|
25
|
Ragone PG, Pérez Brandán C, Padilla AM, Monje Rumi M, Lauthier JJ, Alberti D’Amato AM, Tomasini N, Cimino RO, Romero NM, Portelli M, Nasser JR, Basombrío MA, Diosque P. Biological behavior of different Trypanosoma cruzi isolates circulating in an endemic area for Chagas disease in the Gran Chaco region of Argentina. Acta Trop 2012; 123:196-201. [PMID: 22643298 DOI: 10.1016/j.actatropica.2012.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
The biological behavior of the different Trypanosoma cruzi strains is still unclear and the importance of exploring the relevance of these differences in natural isolates is of great significance. Herein we describe the biological behavior of four T. cruzi isolates circulating sympatrically in a restricted geographic area in Argentina endemic for Chagas Disease. These isolates were characterized as belonging to the Discrete Typing Units (DTUs) TcI, TcIII, TcV and TcVI as shown by Multilocus Enzyme Electrophoresis and Multilocus Sequence Typing. In order to study the natural behavior of the different isolates and to preserve their natural properties, we developed a vector transmission model that allows their maintenance in the laboratory. The model consisted of serial passages of these parasites between insect vectors and mice. Vector-derived parasite forms were then inoculated in C57BL/6J mice and number of parasite in peripheral blood, serological response and histological damage in acute and chronic phases of the infection were measured. Parasites from DTUs TcI, TcIII and TcVI were detected by direct fresh blood examination, while TcV parasites could only be detected by Polimerase Chain Reaction. No significant difference in the anti-T. cruzi antibody response was found during the chronic phase of infection, except for mice infected with TcV parasites where no antibodies could be detected. Histological sections showed that TcI isolate produced more damage in skeletal muscle while TcVI induced more inflammation in the heart. This work shows differential biological behavior among different parasite isolates obtained from the same cycle of transmission, permitting the opportunity to formulate future hypotheses of clinical and epidemiological importance.
Collapse
|
26
|
Direct molecular identification of Trypanosoma cruzi discrete typing units in domestic and peridomestic Triatoma infestans and Triatoma sordida from the Argentine Chaco. Parasitology 2012; 139:1570-9. [PMID: 23036510 DOI: 10.1017/s0031182012000856] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We assessed the distribution of Trypanosoma cruzi Discrete Typing Units (DTUs) in domestic and peridomestic Triatoma infestans and Triatoma sordida specimens collected in a well-defined rural area in Pampa del Indio, northeastern Argentina. Microscopically-positive bugs were randomly selected with a multi-level sampling design, and DTUs were identified using direct PCR strategies. TcVI predominated in 61% of 69 T. infestans and in 56% of 9 T. sordida. TcV was the secondary DTU in T. infestans (16%) and was found in 1 T. sordida specimen (11%). Three T. sordida (33%) were found infected with TcI, a DTU also identified in local Didelphis albiventris opossums. Mixed DTU infections occurred rarely (5%) and were detected both directly from the bugs' rectal ampoule and parasite cultures. The identified DTUs and bug collection sites of T. infestans were significantly associated. Bugs infected with TcV were almost exclusively captured in domiciles whereas those with TcVI were found similarly in domiciles and peridomiciles. All mixed infections occurred in domiciles. TcV-infected bugs fed more often on humans than on dogs, whereas TcVI-infected bugs showed the reverse pattern. T. sordida is a probable sylvatic vector of TcI linked to D. albiventris, and could represent a secondary vector of TcVI and TcV in the domestic/peridomestic cycle.
Collapse
|
27
|
Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. INFECTION GENETICS AND EVOLUTION 2011; 12:240-53. [PMID: 22226704 DOI: 10.1016/j.meegid.2011.12.009] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zalloum L, Lala ERP, Moreira NM, Silveira TGV, Dalálio MMDO, Toledo MJDO, Gomes ML, Araújo SMD. Induction of phagocytic activity and nitric-oxide production in natural populations of Trypanosoma cruzi I and II from the state of Paraná, Brazil. Rev Inst Med Trop Sao Paulo 2011; 53:247-53. [PMID: 22012449 DOI: 10.1590/s0036-46652011000500002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 09/08/2011] [Indexed: 11/22/2022] Open
Abstract
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Collapse
Affiliation(s)
- Leila Zalloum
- Departamento de Ciências Básicas da Saúde, Laboratório de Parasitologia, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Barnabé C, De Meeûs T, Noireau F, Bosseno MF, Monje EM, Renaud F, Brenière SF. Trypanosoma cruzi discrete typing units (DTUs): Microsatellite loci and population genetics of DTUs TcV and TcI in Bolivia and Peru. INFECTION GENETICS AND EVOLUTION 2011; 11:1752-60. [DOI: 10.1016/j.meegid.2011.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
|
30
|
Analyses of 32 loci clarify phylogenetic relationships among Trypanosoma cruzi lineages and support a single hybridization prior to human contact. PLoS Negl Trop Dis 2011; 5:e1272. [PMID: 21829751 PMCID: PMC3149036 DOI: 10.1371/journal.pntd.0001272] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/22/2011] [Indexed: 01/23/2023] Open
Abstract
Background The genetic diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, has been traditionally divided in two major groups, T. cruzi I and II, corresponding to discrete typing units TcI and TcII-VI under a recently proposed nomenclature. The two major groups of T. cruzi seem to differ in important biological characteristics, and are thus thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. To understand the potential connection between the different manifestations of Chagas disease and variability of T. cruzi strains, it is essential to have a correct reconstruction of the evolutionary history of T. cruzi. Methodology/Principal Findings Nucleotide sequences from 32 unlinked loci (>26 Kilobases of aligned sequence) were used to reconstruct the evolutionary history of strains representing the known genetic variability of T. cruzi. Thorough phylogenetic analyses show that the original classification of T. cruzi in two major lineages does not reflect its evolutionary history and that there is only strong evidence for one major and recent hybridization event in the history of this species. Furthermore, estimates of divergence times using Bayesian methods show that current extant lineages of T. cruzi diverged very recently, within the last 3 million years, and that the major hybridization event leading to hybrid lineages TcV and TcVI occurred less than 1 million years ago, well before the contact of T. cruzi with humans in South America. Conclusions/Significance The described phylogenetic relationships among the six major genetic subdivisions of T. cruzi should serve as guidelines for targeted epidemiological and prophylaxis studies. We suggest that it is important to reconsider conclusions from previous studies that have attempted to uncover important biological differences between the two originally defined major lineages of T. cruzi especially if those conclusions were obtained from single or few strains. Trypanosoma cruzi is the protozoan parasite that causes Chagas disease, a major health problem in Latin America. The genetic diversity of this parasite has been traditionally divided in two major groups: T. cruzi I and II, which can be further divided in six major genetic subdivisions (subgroups TcI-TcVI). T. cruzi I and II seem to differ in important biological characteristics, and are thought to represent a natural division relevant for epidemiological studies and development of prophylaxis. Having a correct reconstruction of the evolutionary history of T. cruzi is essential for understanding the potential connection between the genetic and phenotypic variability of T. cruzi with the different manifestations of Chagas disease. Here we present results from a comprehensive phylogenetic analysis of T. cruzi using more than 26 Kb of aligned sequence data. We show strong evidence that T. cruzi II (TcII-VI) is not a natural evolutionary group but a paraphyletic lineage and that all major lineages of T. cruzi evolved recently (<3 million years ago [mya]). Furthermore, the sequence data is consistent with one major hybridization event having occurred in this species recently (< 1 mya) but well before T. cruzi entered in contact with humans in South America.
Collapse
|
31
|
Trypanosoma cruzi: ubiquity expression of surface cruzipain molecules in TCI and TCII field isolates. Parasitol Res 2010; 107:443-7. [DOI: 10.1007/s00436-010-1888-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 04/20/2010] [Indexed: 11/30/2022]
|
32
|
Modelling the Transmission of Trypanosoma cruzi: The Need for an Integrated Genetic Epidemiological and Population Genomics Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 673:200-11. [DOI: 10.1007/978-1-4419-6064-1_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
33
|
Susceptibilidad in vitro a hexadecilfosfocolina (miltefosina), nifurtimox y benznidazole de cepas de Trypanosoma cruzi aisladas en Santander, Colombia. BIOMEDICA 2009. [DOI: 10.7705/biomedica.v29i3.15] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Subileau M, Barnabé C, Douzery E, Diosque P, Tibayrenc M. Trypanosoma cruzi: New insights on ecophylogeny and hybridization by multigene sequencing of three nuclear and one maxicircle genes. Exp Parasitol 2009; 122:328-37. [DOI: 10.1016/j.exppara.2009.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/07/2009] [Accepted: 04/12/2009] [Indexed: 11/28/2022]
|
35
|
Devillers H, Lobry JR, Menu F. An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations. J Theor Biol 2008; 255:307-15. [DOI: 10.1016/j.jtbi.2008.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/30/2008] [Accepted: 08/20/2008] [Indexed: 11/16/2022]
|
36
|
Usefulness of the polymerase chain reaction for monitoring cure of mice infected with different Trypanosoma cruzi clonal genotypes following treatment with benznidazole. Exp Parasitol 2008; 120:45-9. [PMID: 18533149 DOI: 10.1016/j.exppara.2008.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 03/03/2008] [Accepted: 04/25/2008] [Indexed: 11/22/2022]
Abstract
The capacity of the polymerase chain reaction (PCR) to detect the DNA of Trypanosoma cruzi was evaluated in 90 blood samples from BALB/c mice infected with T. cruzi cloned stocks of genotypes 19 and 20 (T. cruzi I) and 39 and 32 (T. cruzi II), and treated with benznidazole. The results from the fresh blood examination, hemoculture, and ELISA allowed to group the treated animals into: cured (TC), dissociated (DIS) and non-cured (NC). The PCR detected T. cruzi DNA in 50.9%, 58.3% and 100.0% of the samples from TC, DIS and NC mice, respectively. These DNA possibly derives from live T. cruzi or from recently lysed parasites, suggests that these animals are in fact not cured. The difference between the PCR results and results obtained using other techniques was statistically significant and independent of the parasite genotype. The PCR described has therefore potential to be used in cure control of treated patients.
Collapse
|
37
|
Mathieu-Daudé F, Bosseno MF, Garzon E, Lelièvre J, Sereno D, Ouaissi A, Brenière SF. Sequence diversity and differential expression of Tc52 immuno-regulatory protein in Trypanosoma cruzi: potential implications in the biological variability of strains. Parasitol Res 2007; 101:1355-63. [PMID: 17659387 DOI: 10.1007/s00436-007-0651-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Trypanosoma cruzi is highly heterogeneous in terms of genetics and biological properties. To explore the diversity of T. cruzi, we focused our study on the T. cruzi Tc52 protein playing a critical immunosuppressive role during infection. Sequence variability and expression levels of this virulence factor were analysed in various strains. Among the 40 amino acid substitutions detected in the Tc52 coding sequences, three substitutions may have an impact on protein activity or function, as two are localized in sites involved in the glutathione binding and the third is present in the region bearing immunomodulatory function. This sequence variability was consistent with the genetic subdivisions of T. cruzi. Moreover, we observed that the level of Tc52 transcripts and proteins varied between the different strains, but we did not find a significant correlation between Tc52 expression and the phylogeny of the parasite. Thus, both diversity in the sequences and differences in the expression levels of Tc52 protein may be involved in the biological variability of T. cruzi, especially in virulence and immunosuppression properties of T. cruzi strains.
Collapse
Affiliation(s)
- Françoise Mathieu-Daudé
- Département Sociétés et Santé, UR008 Pathogénie et Epidémiologie des Trypanosomatidés, Institut de Recherche pour le Développement, 911 Av. Agropolis, 34394, Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Regis-da-Silva CG, Freitas JM, Passos-Silva DG, Furtado C, Augusto-Pinto L, Pereira MT, DaRocha WD, Franco GR, Macedo AM, Hoffmann JS, Cazaux C, Pena SDJ, Teixeira SMR, Machado CR. Characterization of the Trypanosoma cruzi Rad51 gene and its role in recombination events associated with the parasite resistance to ionizing radiation. Mol Biochem Parasitol 2006; 149:191-200. [PMID: 16828179 DOI: 10.1016/j.molbiopara.2006.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 12/24/2022]
Abstract
The Rad51 gene encodes a highly conserved enzyme involved in DNA double-strand break (DSB) repair and recombination processes. We cloned and characterized the Rad51 gene from Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. This gene is expressed in all three forms of the parasite life cycle, with mRNA levels that are two-fold more abundant in the intracellular amastigote form. The recombinase activity of the TcRad51 gene product was verified by an increase in recombination events observed in transfected mammalian cells expressing TcRad51 and containing two inactive copies of the neomycin-resistant gene. As a component of the DSB repair machinery, we investigated the role of TcRad51 in the resistance to ionizing radiation and zeocin treatment presented by T. cruzi. When exposed to gamma irradiation, different strains of the parasite survive to dosages as high as 1 kGy. A role for TcRad51 in this process was evidenced by the increased expression of its mRNA after irradiation. Furthermore, transfected parasites over-expressing TcRad51 have a faster kinetics of recovery of the normal pattern of chromosomal bands after irradiation as well as a higher resistance to zeocin treatment than do wild-type cultures.
Collapse
Affiliation(s)
- Carlos Gustavo Regis-da-Silva
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bértoli M, Andó MH, De Ornelas Toledo MJ, De Araújo SM, Gomes ML. Infectivity for mice of Trypanosoma cruzi I and II strains isolated from different hosts. Parasitol Res 2006; 99:7-13. [PMID: 16447068 DOI: 10.1007/s00436-005-0122-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 11/18/2005] [Indexed: 11/25/2022]
Abstract
In this paper, the infectivity for mice of Trypanosoma cruzi I and II strains isolated from sylvatic animals, triatomines, and humans is determined using fresh blood examination, hemoculture, culture of macerated organs, and polymerase chain reaction (PCR). Six strains were considered to have low infectivity (9.1-18.2%), five medium (27.3-45.4%), and one high (100.0%). Infectivity of T. cruzi strains isolated from sylvatic animals was significantly higher than that of strains isolated from humans and triatomines (p=0.0141). No significant difference was observed between the infectivity of T. cruzi I and II strains. The parasite was detected by fresh blood examination in one strain, by hemoculture and culture of macerated organs in four strains, and by PCR in all strains. We conclude that the infectivity is related to the host from which the strains were isolated, but the infectivity is not related to the genetic group of the parasite. We also conclude that the majority of the strains studied have low and medium infectivity for mice, and that PCR is an important tool to detect T. cruzi in strains with this biological characteristic.
Collapse
Affiliation(s)
- Marta Bértoli
- Departamento de Análises Clínicas, Parasitologia Básica, Universidade Estadual De Maringá, Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
40
|
Martins HR, Toledo MJO, Veloso VM, Carneiro CM, Machado-Coelho GLL, Tafuri WL, Bahia MT, Valadares HM, Macedo AM, Lana M. Trypanosoma cruzi: Impact of dual-clone infections on parasite biological properties in BALB/c mice. Exp Parasitol 2006; 112:237-46. [PMID: 16406355 DOI: 10.1016/j.exppara.2005.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
Herein, we have analyzed major biological properties following dual-clone Trypanosoma cruzi infections in BALB/c mice. Eight T. cruzi clonal stocks, two of each principal genotype, including genotype 19 and 20 (T. cruzi I), hybrid genotype 39 (T. cruzi) and 32 (T. cruzi II) were combined into 24 different dual-clone infections. Special attention was given to characterize biological parameters assayed including: prepatent period, patent period, maximum of parasitemia, day of maximum parasitemia, area under the parasitemia curve, infectivity, mortality, and hemoculture positivity. Our findings clearly demonstrated that features resultant of dual-clone infections of T. cruzi clonal stocks did not display either the characteristics of the corresponding monoclonal infections or the theoretical mixture based on the respective monoclonal infections. Significant changes in the expected values were observed in 4.2-79.2% of the mixtures considering the eight biological parameters studied. A lower frequency of significant differences was found for mixtures composed by phylogenetically distant clonal stocks. Altogether, our data support our hypothesis that mixed T. cruzi infections have a great impact on the biological properties of the parasite in the host and re-emphasizes the importance of considering the possible occurrence of natural mixed infections in humans and their consequences on the biological aspects of ongoing Chagas' disease.
Collapse
Affiliation(s)
- H R Martins
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), UFOP, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oury B, Tarrieu F, Monte-Alegre A, Ouaissi A. Trypanosoma cruzi: Sequence polymorphism of the gene encoding the Tc52 immunoregulatory-released factor in relation to the phylogenetic diversity of the species. Exp Parasitol 2005; 111:198-206. [PMID: 16199037 DOI: 10.1016/j.exppara.2005.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 07/04/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.
Collapse
Affiliation(s)
- Bruno Oury
- Institut de Recherche pour le Développement (IRD), Unité de Recherche no 8 Pathogénie des Trypanosomatidae, Montpellier, France.
| | | | | | | |
Collapse
|
42
|
Villarreal D, Nirdé P, Hide M, Barnabé C, Tibayrenc M. Differential gene expression in benznidazole-resistant Trypanosoma cruzi parasites. Antimicrob Agents Chemother 2005; 49:2701-9. [PMID: 15980339 PMCID: PMC1168707 DOI: 10.1128/aac.49.7.2701-2709.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the differential gene expression among representative Trypanosoma cruzi stocks in relation to benznidazole exposures using a random differentially expressed sequences (RADES) technique. Studies were carried out with drug pressure both at the natural susceptibility level of the wild-type parasite (50% inhibitory concentration for the wild type) and at different resistance levels. The pattern of differential gene expression performed with resistant stocks was compared to the population structure of this parasite, established by random amplified polymorphic DNA analysis and multilocus enzyme electrophoresis. A RADES band polymorphism was observed, and over- or underexpression was linked to the resistance level of the stock. The analysis of RADES bands suggested that different products may be involved in benznidazole resistance mechanisms. No significant association was found between phylogenetic clustering and benznidazole susceptibility. Benznidazole resistance may involve several mechanisms, depending on the level of drug exposure.
Collapse
Affiliation(s)
- Diana Villarreal
- Génétique et Evolution des Maladies Infectieuses G.E.M.I., UMR 2724 CNRS/IRD, UR 165 IRD, Centre de Recherche IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
43
|
Campos RF, Guerreiro MLS, Sobral KDSC, Lima RDCPC, Andrade SG. Response to chemotherapy with benznidazole of clones isolated from the 21SF strain of Trypanosoma cruzi (biodeme Type II, Trypanosoma cruzi II). Rev Soc Bras Med Trop 2005; 38:142-6. [PMID: 15821788 DOI: 10.1590/s0037-86822005000200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Susceptibility to chemotherapy with benznidazole was investigated of 5 clones isolated from the 21 SF strain (biodeme Type II, Trypanosoma cruzi II). Swiss mice were infected with the parental strain for each clone and submitted to chemotherapy with benznidazole (100mg/kg/day during 90 days). Treatment determined negativity of the parasitemia. Cure rates were evaluated by parasitological cure tests. Serology was evaluated for treated animals (titers from negative to 1:640) and untreated controls (1:160 to 1:640). Cure rates varied from 30 to 100% for the 5 clones, and were 25% for the parental strain. Results suggested that the variability of response to treatment of the clonal populations of Trypanosoma cruzi II strains is responsible for the high variation in the response to chemotherapy with benznidazole and nifurtimox by strains of this biodeme.
Collapse
Affiliation(s)
- Rozália Figueira Campos
- Laboratório de Chagas Experimental, Autoimunidade e Imunidade Celular, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | | | | | | | | |
Collapse
|
44
|
Garzon E, Genna F, Bosseno MF, Simony-La Fontaine J, Radal M, Sereno D, Mathieu-Daude F, Ouaissi A, Brenière SF. Differential infectivity and immunopathology in murine experimental infections by two natural clones belonging to theTrypanosoma cruziI lineage. Parasitology 2005; 131:109-19. [PMID: 16038402 DOI: 10.1017/s003118200400722x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immunopathology of Chagas' disease in Balb/c mice infected with 2Trypanosoma cruziclones, belonging to theT. cruziI lineage and presenting differentin vitrovirulence (P/209 cl1>SO34 cl4) was compared. In the acute phase, evading mechanisms such as parasite-induced lymphocyte polyclonal activation and T cell immunosuppression were higher in mice infected with the clone giving a higher parasitaemia (P/209 cl1). A similar increase of non-specific isotypes was observed in both infections with IgG2a prevalence. Interestingly, CD8+ cell hypercellularity and lymphocyte immunosuppression were observed during the chronic phase (245 days post-infection) in mice infected by the most virulent clone. In the same way, the parasite-specific antibody response was more intense in P/209 cl1-infected mice over the acute phase. During the chronic phase this response remarkably dropped down in SO34 cl4-infected mice exclusively. Finally, P/209 cl1-infected mice presented a more severe inflammation and tissue damage in heart and quadriceps than SO34 cl4-infected mice. This comparative study showed differences between the two clones: a higher virulencein vivobeing clearly associated with a greater ability to induce evasion mechanisms and severe tissue damage.
Collapse
Affiliation(s)
- E Garzon
- Institut de Recherche pour le Développement, IRD, UR 008 Pathogénie et Epidémiologie des Trypanosomatidés, 911 Av. Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Villarreal D, Barnabé C, Sereno D, Tibayrenc M. Lack of correlation between in vitro susceptibility to Benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Exp Parasitol 2004; 108:24-31. [PMID: 15491545 DOI: 10.1016/j.exppara.2004.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 05/15/2004] [Accepted: 07/01/2004] [Indexed: 11/18/2022]
Abstract
Chagas disease remains an important health problem in Central and South America. Nitroimidazole derivative drugs like Benznidazole are commonly used to treat Trypanosoma cruzi infection. Natural variation of drug susceptibility between various T. cruzi stocks has been proposed as a possible explanation of treatment failure. Thus, the aim of this work was to determine potential correlations between in vitro Benznidazole susceptibility of different T. cruzi stocks and their genetic diversity. For this purpose, 16 natural stocks representing the overall genetic diversity of the parasite were analysed. Genetic characterisation was assessed by both random amplified polymorphic DNA (RAPD) and multilocus enzyme electrophoresis (MLEE) analyses. Drug activity was determined by two complementary methods, the MTT-PMS micro-method and FACs analysis. The 50% inhibitory concentrations (IC(50)s) were determined. Important variation of IC(50) values (7.3-16.9 microM) among stocks belonging to different discrete typing units (DTUs) was recorded. Further, correlation analysis showed that natural susceptibility to Benznidazole in T. cruzi expressed as IC(50) level was not related with its genetic structure represented by the different DTUs. These results are discussed in relation with the proposed hypothesis establishing a link between genetic diversity and biological behaviour in T. cruzi.
Collapse
Affiliation(s)
- Diana Villarreal
- Génétique et Evolution des Maladies Infectieuses G.E.M.I (Ex-CEPM) UMR No. 2724 CNRS/IRD, UR 165 IRD, Centre de Recherche IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
46
|
Barnabé C, Tibayrenc M. Trypanosoma cruzi: long-term sub-cultures in two different culture media do not confirm the existence of highly versatile multilocus genotypes. Int J Parasitol 2004; 34:779-84. [PMID: 15157760 DOI: 10.1016/j.ijpara.2004.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/03/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Trypanosoma cruzi Y reference strain is found in many laboratories under at least two highly distinct genotypes, A and B corresponding to the 'discrete typing units' T. cruzi IIb and T. cruzi IId, respectively. Previous work has reported reversible switches between these genotypes according to the culture media used in the experiments: genotype A would be associated with blood-enriched culture media, while genotype B would be associated with blood-free culture media. We tried to reproduce this observation, but used a different cloning method of individual organisms. Our cloning was verified visually under the microscope, while the previous studies relied on a cloning by dilution only. The subclones so obtained were submitted to long-term exposure to both media, and no change was observed in isoenzyme and random amplified polymorphic DNA genotypes. The discrepancy is probably explained by the cloning method: clones obtained from the previous method (dilution and plating) could come from several parasite cells while only one cell generates a clone when micro-manipulation is used.
Collapse
Affiliation(s)
- Christian Barnabé
- Génétique et Evolution des Maladies Infectieuses, Unité Mixte de Recherche Centre National de la Recherche Scientifique (CNRS)/Institut de Recherche pour le Développement (IRD) no. 2724, IRD, Montpellier, France.
| | | |
Collapse
|
47
|
Abstract
The trypanosomiases consist of a group of important animal and human diseases caused by parasitic protozoa of the genus Trypanosoma. In sub-Saharan Africa, the final decade of the 20th century witnessed an alarming resurgence in sleeping sickness (human African trypanosomiasis). In South and Central America, Chagas' disease (American trypanosomiasis) remains one of the most prevalent infectious diseases. Arthropod vectors transmit African and American trypanosomiases, and disease containment through insect control programmes is an achievable goal. Chemotherapy is available for both diseases, but existing drugs are far from ideal. The trypanosomes are some of the earliest diverging members of the Eukaryotae and share several biochemical peculiarities that have stimulated research into new drug targets. However, differences in the ways in which trypanosome species interact with their hosts have frustrated efforts to design drugs effective against both species. Growth in recognition of these neglected diseases might result in progress towards control through increased funding for drug development and vector elimination.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tibayrenc M. Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution. KINETOPLASTID BIOLOGY AND DISEASE 2003; 2:12. [PMID: 14613498 PMCID: PMC270070 DOI: 10.1186/1475-9292-2-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 10/28/2003] [Indexed: 11/10/2022]
Abstract
Background This paper summarizes the main results obtained on Trypanosoma cruzi genetic diversity and population structure since this parasite became the theme of many genetic and molecular studies in the early seventies. Results T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU). Rare hybridization events are nevertheless detectable in natural populations and have been recently obtained in the laboratory. Conclusions The DTUs and natural clones of T. cruzi constitute relevant units for molecular epidemiology and experimental evolution. Experimental mating opens the way to an in-depth knowledge of this parasite's formal genetics.
Collapse
Affiliation(s)
- Michel Tibayrenc
- UR62 "Genetics of Infectious Diseases", UMR CNRS/IRD 9926, IRD Centre, BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
49
|
Gomes ML, Toledo MJDO, Nakamura CV, Bittencourt NDLR, Chiari E, de Araújo SM. Trypanosoma cruzi: genetic group with peculiar biochemical and biological behavior. Mem Inst Oswaldo Cruz 2003; 98:649-54. [PMID: 12973532 DOI: 10.1590/s0074-02762003000500011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thirty-two Trypanosoma cruzi strains, isolated from chronic chagasic patients in the northwest of the state of Paran (Brazil), were analyzed using molecular, biochemical and biological characteristics. Genotypic analysis using randomly amplified polymorphic DNA and simple sequence repeat-anchored polymerase chain reaction amplified profiles showed a large, genetically well-correlated group that contained the majority of the strains and a divergent group that included the PR-150 strain. For glycoconjugate composition, the PR-150 strain was different from the other strains considering the absence or presence of specific bands in aqueous or detergent phases. This strain was also totally different from the others in one out of the six parameters related to in vitro and in vivo biological behavior. We highlight the fact that the PR-150 was totally resistant to benznidazole. For the other biological parameters this strain was not totally distinct from the others, but it showed a peculiar behavior.
Collapse
Affiliation(s)
- Mônica Lúcia Gomes
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maring , PR, 87020-900, Brasil.
| | | | | | | | | | | |
Collapse
|
50
|
Franco DJ, Vago AR, Chiari E, Meira FCA, Galvão LMC, Machado CRS. Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Exp Parasitol 2003; 104:54-61. [PMID: 12932760 DOI: 10.1016/s0014-4894(03)00119-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In rats, CL-Brener clone caused high mortality, severe acute myocarditis, and myositis that subsided completely in surviving animals. Accordingly, no parasite kDNA could be amplified in several organs after 4 months. The monoclonal JG strain caused null mortality, acute predominantly focal myocarditis, discrete and focal myositis, and a chronic phase with sparse inflammatory foci. Double infection with both Trypanosoma cruzi populations turned mortality very low or null. At the end of the acute phase, the heart exhibited only JG strain kDNA (LSSP-PCR), while skeletal muscles and rectum exhibited only CL-Brener kDNA. Molecular and histopathological findings were accordant. In double infection chronic phase, JG strain remains in heart and appeared in organs previously parasitized by CL-Brener clone. Understanding the virulence and histotropism shifts now described could be important to clarify the variable clinical course and epidemiological peculiarities of Chagas' disease.
Collapse
Affiliation(s)
- Deila J Franco
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | | | | | | |
Collapse
|