1
|
Gao W, Chen Y, Cui D, Zhu C, Jiao Q, Su L, Lu S, Yang R. Alterations of subcortical structure volume in pediatric bipolar disorder patients with manic or depressive first-episode. BMC Psychiatry 2024; 24:762. [PMID: 39487398 PMCID: PMC11531125 DOI: 10.1186/s12888-024-06208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Bipolar disorder may begin as depression or mania, which can affect the treatment and prognosis. The physiological and pathological differences among pediatric bipolar disorder (PBD) patients with different onset symptoms are not clear. The aims of the present study were to investigate subcortical structural alterations in PBD patients with first-episode depressive (PBD-FED) and first-episode manic (PBD-FEM). METHODS A total of 59 individuals including 28 PBD-FED, 13 PBD-FEM, and 18 healthy controls (HCs) underwent high-resolution structural magnetic resonance scans. FreeSurfer 7.2 was used to detect changes in subcortical volumes. Simultaneously, thalamic, hippocampal, and amygdala subregion volumes were compared between the three groups. RESULTS Analysis of covariance controlling for age, sex, education, and estimated intracranial volume shows third and fourth ventricle enlargement in patients with PBD. Compared with the PBD-FED and HCs, the PBD-FEM group had reduced gray matter volume in the left thalamus, bilateral hippocampus, and right amygdala. Subsequent subregion analyses showed right cortico-amygdaloid transient, bilateral accessory-basal nucleus, left hippocampal tail, right hippocampal head, and body volume reduction in the PBD-FEM group. CONCLUSIONS The present findings provided evidence of decreased subcortical structure in PBD-FEM patients, which might present its trait feature.
Collapse
Affiliation(s)
- Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China
| | - Yue Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Ce Zhu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Psychiatry, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Linyan Su
- Mental Health Institute, Key Laboratory of Psychiatry and Mental Health of Hunan Province, The Second Xiangya Hospital of Central South University, National Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, No. 3333 Binsheng Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Zhu Z, Lei D, Qin K, Tallman MJ, Patino LR, Fleck DE, Gong Q, Sweeney JA, DelBello MP, McNamara RK. Cortical and subcortical structural differences in psychostimulant-free ADHD youth with and without a family history of bipolar I disorder: a cross-sectional morphometric comparison. Transl Psychiatry 2023; 13:368. [PMID: 38036505 PMCID: PMC10689449 DOI: 10.1038/s41398-023-02667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) and a family history of bipolar I disorder (BD) are associated with increased risk for developing BD, their neuroanatomical substrates remain poorly understood. This study compared cortical and subcortical gray matter morphology in psychostimulant-free ADHD youth with and without a first-degree relative with BD and typically developing healthy controls. ADHD youth (ages 10-18 years) with ('high-risk', HR) or without ('low-risk', LR) a first-degree relative with BD and healthy comparison youth (HC) were enrolled. High-resolution 3D T1-weighted images were acquired using a Philips 3.0 T MR scanner. The FreeSurfer image analysis suite was used to measure cortical thickness, surface area, and subcortical volumes. A general linear model evaluated group differences in MRI features with age and sex as covariates, and exploratory correlational analyses evaluated associations with symptom ratings. A total of n = 142 youth (mean age: 14.16 ± 2.54 years, 35.9% female) were included in the analysis (HC, n = 48; LR, n = 49; HR, n = 45). The HR group exhibited a more severe symptom profile, including higher mania and dysregulation scores, compared to the LR group. For subcortical volumes, the HR group exhibited smaller bilateral thalamic, hippocampal, and left caudate nucleus volumes compared to both LR and HC, and smaller right caudate nucleus compared with LR. No differences were found between LR and HC groups. For cortical surface area, the HR group exhibited lower parietal and temporal surface area compared with HC and LR, and lower orbitofrontal and superior frontal surface area compared to LR. The HR group exhibited lower left anterior cingulate surface area compared with HC. LR participants exhibited greater right pars opercularis surface area compared with the HC. Some cortical alterations correlated with symptom severity ratings. These findings suggest that ADHD in youth with a BD family history is associated with a more a severe symptom profile and a neuroanatomical phenotype that distinguishes it from ADHD without a BD family history.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Du Lei
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, PR China
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442012, PR China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, Fujian, PR China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
3
|
Van Rheenen TE, Cotton SM, Dandash O, Cooper RE, Ringin E, Daglas-Georgiou R, Allott K, Chye Y, Suo C, Macneil C, Hasty M, Hallam K, McGorry P, Fornito A, Yücel M, Pantelis C, Berk M. Increased cortical surface area but not altered cortical thickness or gyrification in bipolar disorder following stabilisation from a first episode of mania. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110687. [PMID: 36427550 DOI: 10.1016/j.pnpbp.2022.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| | - Sue M Cotton
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Elysha Ringin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Rothanthi Daglas-Georgiou
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kelly Allott
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Craig Macneil
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Melissa Hasty
- Orygen Youth Health Clinical Program, Parkville, VIC, Australia
| | - Karen Hallam
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Patrick McGorry
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Murat Yücel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Clayton, VIC, Australia
| | - Michael Berk
- Orygen, Parkville, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
4
|
Roeske MJ, Lyu I, McHugo M, Blackford JU, Woodward ND, Heckers S. Incomplete Hippocampal Inversion: A Neurodevelopmental Mechanism for Hippocampal Shape Deformation in Schizophrenia. Biol Psychiatry 2022; 92:314-322. [PMID: 35487783 PMCID: PMC9339515 DOI: 10.1016/j.biopsych.2022.02.954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Shape analyses of patients with schizophrenia have revealed bilateral deformations of the anterolateral hippocampus, primarily localized to the CA1 subfield. Incomplete hippocampal inversion (IHI), an anatomical variant of the human hippocampus resulting from an arrest during neurodevelopment, is more prevalent and severe in patients with schizophrenia. We hypothesized that IHI would affect the shape of the hippocampus and contribute to hippocampal shape differences in schizophrenia. METHODS We studied 199 patients with schizophrenia and 161 healthy control participants with structural magnetic resonance imaging to measure the prevalence and severity of IHI. High-fidelity hippocampal surface reconstructions were generated with the SPHARM-PDM toolkit. We used general linear models in SurfStat to test for group shape differences, the impact of IHI on hippocampal shape variation, and whether IHI contributes to hippocampal shape abnormalities in schizophrenia. RESULTS Not including IHI as a main effect in our between-group comparison replicated well-established hippocampal shape differences in patients with schizophrenia localized to the CA1 subfield in the anterolateral hippocampus. Shape differences were also observed near the uncus and hippocampal tail. IHI was associated with outward displacements of the dorsal and ventral surfaces of the hippocampus and inward displacements of the medial and lateral surfaces. Including IHI as a main effect in our between-group comparison eliminated the bilateral shape differences in the CA1 subfield. Shape differences in the uncus persisted after including IHI. CONCLUSIONS IHI impacts hippocampal shape. Our results suggest IHI as a neurodevelopmental mechanism for the well-known shape differences, particularly in the CA1 subfield, in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Chen X, Xiao M, Qin J, Bian Z, Qiu J, Feng T, He Q, Lei X, Chen H. Association between high levels of body-esteem and increased degree of midcingulate cortex global connectivity: A resting-state fMRI study. Psychophysiology 2022; 59:e14072. [PMID: 35460526 DOI: 10.1111/psyp.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2021] [Accepted: 03/27/2022] [Indexed: 11/26/2022]
Abstract
Multiple neuroimaging studies have examined the neural underpinnings of body image disturbances in patients with eating disorders. However, key brain regions related to body image, such as body-esteem (BE), among healthy individuals are understudied. Given the extremely crucial role of BE in eating behaviors and physical and mental health, the current study conducted data-driven analysis and characterized the neurobiological correlates of BE with the network properties of the resting brain using the voxel-wise degree centrality (DC) measures of resting-state functional magnetic resonance imaging (rs-fMRI) data and seed-based resting-state functional connectivity (RSFC). A total of 694 healthy young adults (females = 474, mean age = 18.38 years, range = 17-22) underwent rs-fMRI, and completed the Body-Esteem Scale for Adolescents and Adults, the Eating Disorder Diagnosis Scale, and the Restraint Scale. After correcting for differences in age, gender, body mass index, and head motion, whole-brain correlation analyses revealed that a high level of BE was associated with increased DC within the right midcingulate cortex (MCC) and subsequent high levels of MCC-based RSFC strengths. Furthermore, MCC connectivity patterns related to BE were inversely associated with disordered eating behaviors. These findings suggest that adaptive cognitive and emotional regulation (i.e., self-evaluation and emotion based on body image) may explain the potential relationship between MCC connectivity patterns and BE to a certain extent. As such, future studies should investigate these interesting possibilities.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ziming Bian
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China.,Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.,Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
7
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
8
|
Hua JPY, Mathalon DH. Cortical and Subcortical Structural Morphometric Profiles in Individuals with Nonaffective and Affective Early Illness Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac028. [PMID: 39144757 PMCID: PMC11206002 DOI: 10.1093/schizbullopen/sgac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Research has found strong evidence for common and distinct morphometric brain abnormality profiles in nonaffective psychosis (NAff-P) and affective psychosis (Aff-P). Due to chronicity and prolonged medication exposure confounds, it is crucial to examine structural morphometry early in the course of psychosis. Using Human Connectome Project-Early Psychosis data, multivariate profile analyses were implemented to examine regional profiles for cortical thickness, cortical surface area, subcortical volume, and ventricular volume in healthy control (HC; n = 56), early illness NAff-P (n = 83), and Aff-P (n = 30) groups after accounting for normal aging. Associations with symptom severity, functioning, and cognition were also examined. Group regional profiles were significantly nonparallel and differed in level for cortical thickness (P < .001), with NAff-P having widespread cortical thinning relative to HC and Aff-P and some regions showing greater deficits than others. Significant nonparallelism of group regional profiles was also evident for cortical surface area (P < .006), with Aff-P and N-Aff-P differing from HC and from each other (P < .001). For subcortical volume, there was significant profile nonparallelism with NAff-P having an enlarged left pallidum and smaller accumbens and hippocampus (P < .028), and Aff-P having a smaller accumbens and amygdala (P < .006), relative to HC. NAff-P also had larger basal ganglia compared to Aff-P. Furthermore, NAff-P had enlarged ventricles (P < .055) compared to HC and Aff-P. Additionally, greater ventricular volume was associated with increased manic symptoms in NAff-P and Aff-P. Overall, this study found common and distinct regional morphometric profile abnormalities in early illness NAff-P and Aff-P, providing evidence for both shared and disease-specific pathophysiological processes.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA,USA
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Wen K, Zhao Y, Gong Q, Zhu Z, Li Q, Pan N, Fu S, Radua J, Vieta E, Kumar P, Kemp GJ, Biswal BB. Cortical thickness abnormalities in patients with first episode psychosis: a meta-analysis of psychoradiologic studies and replication in an independent sample. PSYCHORADIOLOGY 2021; 1:185-198. [PMID: 35156043 PMCID: PMC8826222 DOI: 10.1093/psyrad/kkab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Abnormalities of cortical thickness (CTh) in patients with their first episode psychosis (FEP) have been frequently reported, but findings are inconsistent. OBJECTIVE To define the most consistent CTh changes in patients with FEP by meta-analysis of published whole-brain studies. METHODS The meta-analysis used seed-based d mapping (SDM) software to obtain the most prominent regional CTh changes in FEP, and meta-regression analyses to explore the effects of demographics and clinical characteristics. The meta-analysis results were verified in an independent sample of 142 FEP patients and 142 age- and sex-matched healthy controls (HCs), using both a vertex-wise and a region of interest analysis, with multiple comparisons correction. RESULTS The meta-analysis identified lower CTh in the right middle temporal cortex (MTC) extending to superior temporal cortex (STC), insula, and anterior cingulate cortex (ACC) in FEP compared with HCs. No significant correlations were identified between CTh alterations and demographic or clinical variables. These results were replicated in the independent dataset analysis. CONCLUSION This study identifies a robust pattern of cortical abnormalities in FEP and extends understanding of gray matter abnormalities and pathological mechanisms in FEP.
Collapse
Affiliation(s)
- Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610041, Sichuan, China
| | - Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona 08036, Catalonia, Spain
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Solna 171-77, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona 08036, Catalonia, Spain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona 08036, Catalonia, Spain
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont 02478, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston 02115, MA, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark 07102, NJ, USA
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
10
|
Roes MM, Yin J, Taylor L, Metzak PD, Lavigne KM, Chinchani A, Tipper CM, Woodward TS. Hallucination-Specific structure-function associations in schizophrenia. Psychiatry Res Neuroimaging 2020; 305:111171. [PMID: 32916453 DOI: 10.1016/j.pscychresns.2020.111171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/13/2023]
Abstract
Combining structural (sMRI) and functional magnetic resonance imaging (fMRI) data in schizophrenia patients with and without auditory hallucinations (9 SZ_AVH, 12 SZ_nAVH), 18 patients with bipolar disorder, and 22 healthy controls, we examined whether cortical thinning was associated with abnormal activity in functional brain networks associated with auditory hallucinations. Language-task fMRI data were combined with mean cortical thickness values from 148 brain regions in a constrained principal component analysis (CPCA) to identify brain structure-function associations predictable from group differences. Two components emerged from the multimodal analysis. The "AVH component" highlighted an association of frontotemporal and cingulate thinning with altered brain activity characteristic of hallucinations among patients with AVH. In contrast, the "Bipolar component" distinguished bipolar patients from healthy controls and linked increased activity in the language network with cortical thinning in the left occipital-temporal lobe. Our findings add to a body of evidence of the biological underpinnings of hallucinations and illustrate a method for multimodal data analysis of structure-function associations in psychiatric illness.
Collapse
Affiliation(s)
- Meighen M Roes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada
| | - John Yin
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Laura Taylor
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paul D Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Katie M Lavigne
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Christine M Tipper
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- BC Mental Health and Substance Use Services Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Calvo A, Roddy DW, Coughlan H, Kelleher I, Healy C, Harley M, Clarke M, Leemans A, Frodl T, O’Hanlon E, Cannon M. Reduced hippocampal volume in adolescents with psychotic experiences: A longitudinal population-based study. PLoS One 2020; 15:e0233670. [PMID: 32492020 PMCID: PMC7269246 DOI: 10.1371/journal.pone.0233670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
AIMS Smaller hippocampal volumes are among the most consistently reported neuroimaging findings in schizophrenia. However, little is known about hippocampal volumes in people who report psychotic experiences. This study investigated differences in hippocampal volume between young people without formal diagnoses who report psychotic experiences (PEs) and those who do not report such experiences. This study also investigated if any differences persisted over two years. METHODS A nested case-control study of 25 adolescents (mean age 13.5 years) with reported PEs and 25 matched controls (mean age 13.36 years) without PEs were drawn from a sample of 100 local schoolchildren. High-resolution T1-weighted anatomical imaging and subsequent automated cortical segmentation (Freesurfer 6.0) was undertaken to determine total hippocampal volumes. Comprehensive semi-structured clinical interviews were also performed including information on PEs, mental diagnoses and early life stress (bullying). Participants were invited for a second scan at two years. RESULTS 19 adolescents with PEs and 19 controls completed both scans. Hippocampal volumes were bilaterally lower in the PE group compared to the controls with moderate effects sizes both at baseline [left hippocampus p = 0.024 d = 0.736, right hippocampus p = 0.018, d = 0.738] and at 2 year follow up [left hippocampus p = 0.027 d = 0.702, right = 0.048 d = 0.659] throughout. These differences survived adjustment for co-morbid mental disorders and early life stress. CONCLUSIONS Psychotic experiences are associated with total hippocampal volume loss in young people and this volume loss appears to be independent of possible confounders such as co-morbid disorders and early life stress.
Collapse
Affiliation(s)
- Ana Calvo
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Faculty of Health Sciences, Universidad Internacional de la Rioja (UNIR), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Darren W. Roddy
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Helen Coughlan
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ian Kelleher
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm Healy
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michelle Harley
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Clarke
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alexander Leemans
- Image Sciences Institute University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department and Hospital of Psychiatry and Psychotherapy, Otto von Guericke University Mageburg, Mageburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, Magdeburg, Germany
| | - Erik O’Hanlon
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mary Cannon
- Dept. of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
The Amygdala in Schizophrenia and Bipolar Disorder: A Synthesis of Structural MRI, Diffusion Tensor Imaging, and Resting-State Functional Connectivity Findings. Harv Rev Psychiatry 2020; 27:150-164. [PMID: 31082993 DOI: 10.1097/hrp.0000000000000207] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Frequently implicated in psychotic spectrum disorders, the amygdala serves as an important hub for elucidating the convergent and divergent neural substrates in schizophrenia and bipolar disorder, the two most studied groups of psychotic spectrum conditions. A systematic search of electronic databases through December 2017 was conducted to identify neuroimaging studies of the amygdala in schizophrenia and bipolar disorder, focusing on structural MRI, diffusion tensor imaging (DTI), and resting-state functional connectivity studies, with an emphasis on cross-diagnostic studies. Ninety-four independent studies were selected for the present review (49 structural MRI, 27 DTI, and 18 resting-state functional MRI studies). Also selected, and analyzed in a separate meta-analysis, were 33 volumetric studies with the amygdala as the region-of-interest. Reduced left, right, and total amygdala volumes were found in schizophrenia, relative to both healthy controls and bipolar subjects, even when restricted to cohorts in the early stages of illness. No volume abnormalities were observed in bipolar subjects relative to healthy controls. Shape morphometry studies showed either amygdala deformity or no differences in schizophrenia, and no abnormalities in bipolar disorder. In contrast to the volumetric findings, DTI studies of the uncinate fasciculus tract (connecting the amygdala with the medial- and orbitofrontal cortices) largely showed reduced fractional anisotropy (a marker of white matter microstructure abnormality) in both schizophrenia and bipolar patients, with no cross-diagnostic differences. While decreased amygdalar-orbitofrontal functional connectivity was generally observed in schizophrenia, varying patterns of amygdalar-orbitofrontal connectivity in bipolar disorder were found. Future studies can consider adopting longitudinal approaches with multimodal imaging and more extensive clinical subtyping to probe amygdalar subregional changes and their relationship to the sequelae of psychotic disorders.
Collapse
|
13
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Salokangas RKR, Koutsouleris N, Hietala J, Tuominen L. Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis. Schizophr Res 2020; 215:284-292. [PMID: 31744752 DOI: 10.1016/j.schres.2019.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Structural and functional abnormalities of the amygdala in schizophrenia have been well documented. Post-mortem studies suggest that the lateral nucleus is particularly affected in schizophrenia. It is not known whether the amygdala subnuclei are differently affected at the time of the first-episode psychosis or already at high-risk state. 75 first-episode psychosis patients (FEP), 45 clinical high-risk patients (CHR) and 76 population controls participated in this cross-sectional case-control study. Participants underwent T1-weighted 3T MRI scans, from which the amygdala was segmented using a newly developed automated algorithm. Because early adverse events increase risk for psychosis and affect the amygdala, we also tested whether experiences of childhood maltreatment associate with the putative amygdala subnuclei abnormalities. Compared to the population controls, FEP had smaller volumes of the lateral, and basal nuclei. In CHR, only the lateral nucleus was significantly smaller compared to the control subjects. Experience of childhood maltreatment was inversely associated with lateral nucleus volumes in FEP but not in CHR. These results show that the lateral and basal nuclei of the amygdala are already affected in FEP. These volumetric changes may reflect specific cellular abnormalities that have been observed in post-mortem studies in schizophrenia in the same subnuclei. Decreased volume of the lateral nucleus in CHR suggest that a smaller lateral nucleus could serve as a potential biomarker for psychosis risk. Finally, we found that the lateral nucleus volumes in FEP may be sensitive to the effects of childhood maltreatment.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Maija Walta
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Raimo K R Salokangas
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Nussbaumstr. 7, D-80336, Munich, Germany
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Lauri Tuominen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; University of Ottawa Institute of Mental Health Research, Ottawa, ON, K1Z 8N3, Canada
| |
Collapse
|
14
|
Tang X, Lyu G, Chen M, Huang W, Lin Y. Amygdalar and Hippocampal Morphometry Abnormalities in First-Episode Schizophrenia Using Deformation-Based Shape Analysis. Front Psychiatry 2020; 11:677. [PMID: 32765318 PMCID: PMC7379331 DOI: 10.3389/fpsyt.2020.00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated and quantified the amygdalar and hippocampal morphometry abnormalities exerted by first-episode schizophrenia using a total of 92 patients and 106 healthy control participants. Magnetic resonance imaging (MRI) based automated segmentation was conducted to obtain the amygdalar and hippocampal segmentations. Disease-versus-control volume differences of the bilateral amygdalas and hippocampi were quantified. In addition, deformation-based statistical shape analysis was employed to quantify the region-specific shape abnormalities of each structure of interest. To better identify the key relevant areas in the pathology of first-episode schizophrenia, each structure was divided into four subregions; CA1, CA2, CA3 combined with dentate gyrus for the hippocampus in each hemisphere and basolateral, basomedial, centromedial, and lateral nucleus for the amygdala in each hemisphere. We observed significant global volume reduction and localized shape atrophy in each of the four structures of interest. The amygdalar shape abnormalities mainly occurred at the basolateral and centromedial subregions, whereas the hippocampal shape abnormalities mainly concentrated on the CA1 and CA2 subregions. For the same structure, the one on the right hemisphere was affected more by the disease pathology than that on the left hemisphere. To conclude, we have successfully quantified the global and local morphometric abnormalities of the bilateral amygdalas and hippocampi using a sophisticated statistical analysis pipeline and high-field subregion segmentations, with MRI data of a considerable sample size. This study is one of the very first of such kind in first-episode schizophrenia analyses.
Collapse
Affiliation(s)
- Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiwen Lyu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Minhua Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Electrical and Electronic Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
| | - Weikai Huang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yin Lin
- Department of Psychology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
15
|
Hanford LC, Pinnock F, Hall GB, Heinrichs RW. Cortical thickness correlates of cognitive performance in cognitively-matched individuals with and without schizophrenia. Brain Cogn 2019; 132:129-137. [PMID: 31005042 DOI: 10.1016/j.bandc.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022]
Abstract
Schizophrenia is characterized by psychosis and, in most cases, cognitive impairment. It is unclear, however, whether these elements of the disorder represent distinct or related disease processes. Accordingly, this study investigated 3-way interactions between group, cognition and cortical thickness in cognitively-matched patients with schizophrenia and healthy control groups. Patients and healthy controls were group-matched on demographics and a broadly-based index of cognitive performance. T1-weighted images were processed using Freesurfer. Variable selection techniques were applied to determine which regions best predicted 3-way interaction effects. Independent variables included age, sex, IQ, and 87 regional cortical thickness values strongly associated with group or cognition. Antipsychotic treatment effects were also investigated. Twenty regions were selected by the best fitting model. The top 6 regions included the left pre- and post-central, left superior frontal and temporal and right rostral and caudal middle frontal cortices. No antipsychotic treatment effects were seen. Cortical thinning in schizophrenia exists even in the absence of cognitive impairment. Our findings support the separation of psychosis and cognitive impairment as independent disease processes, with distinct relations with cortical thickness in prefrontal cortical areas. Parsing out these two disease processes will increase understanding of heterogeneity in schizophrenia and may modify treatment targets.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Farena Pinnock
- Department of Psychology, York University, Toronto, ONT, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ONT, Canada
| | | |
Collapse
|
16
|
Jamea AA, Alblowi M, Alghamdi J, Alosaimi FD, Al-Bader F, Bashir S. Volumetric and Shape Analysis of the Subcortical Regions in Schizophrenia Patients: A Pilot Study. J Clin Imaging Sci 2019; 9:1. [PMID: 30788185 PMCID: PMC6380120 DOI: 10.4103/jcis.jcis_61_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/04/2018] [Indexed: 11/30/2022] Open
Abstract
Objective: Investigation of brain structure in disease has been enhanced by developments in shape analysis methods that can identify subtle regional surface distortions. High-resolution magnetic resonance (MR) imaging was used to compare volumetric and shape analysis in schizophrenia (SCZ) patients and healthy controls (CON). Methods: T1-weighted, 1-mm thick MR images were acquired for 15 patients with SCZ and 15 age-matched healthy controls using subcortical volume and shape analysis, which we believe to be complimentary to volumetric measures. Results: SCZ patients showed significant shape differences compared to healthy controls in the right hippocampus (P < 0.005), left and right putamen (P < 0.044 and P < 0.031), left caudate (P < 0.029), right pallidum (P < 0.019), and left thalamus (P < 0.033). Conclusion: Our results provide evidence for subcortical neuroanatomical changes in patients with SCZ. Hence, shape analysis may aid in the identification of structural biomarkers for identifying individuals of SCZ.
Collapse
Affiliation(s)
- Abdullah Abu Jamea
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Alblowi
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jamaan Alghamdi
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad D Alosaimi
- Department of Psychiatry, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Bader
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
17
|
Calvo A, Delvecchio G, Altamura AC, Soares JC, Brambilla P. Gray matter differences between affective and non-affective first episode psychosis: A review of Magnetic Resonance Imaging studies: Special Section on "Translational and Neuroscience Studies in Affective Disorders" Section Editor, Maria Nobile MD, PhD. This Section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord 2019; 243:564-574. [PMID: 29625792 DOI: 10.1016/j.jad.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/22/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Non-affective and affective psychoses are very common mental disorders. However, their neurobiological underpinnings are still poorly understood. Therefore, the goal of the present review was to evaluate structural Magnetic Resonance Imaging (MRI) studies exploring brain deficits in both non-affective (NA-FEP) and affective first episode psychosis (A-FEP). METHODS A bibliographic search on PUBMED of all MRI studies exploring gray matter (GM) differences between NA-FEP and A-FEP was conducted. RESULTS Overall, the results from the available evidence showed that the two diagnostic groups share common GM alterations in fronto-temporal regions and anterior cingulate cortex. In contrast, unique GM deficits have also been observed, with reductions in amygdala for A-FEP and in hippocampus and insula for NA-FEP. LIMITATIONS Few small MRI studies with heterogeneous methodology. CONCLUSIONS Although the evidences are far to be conclusive, they suggest the presence of common and distinct pattern of GM alterations in NA-FEP and A-FEP. Future larger longitudinal studies are needed to further characterize specific neural biomarkers in homogenous NA-FEP and A-FEP samples.
Collapse
Affiliation(s)
- A Calvo
- Faculty of Health Sciences, Universidad Internacional de la Rioja (UNIR), Spain.
| | - G Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - A C Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - J C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, USA
| | - P Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; IRCCS "E. Medea" Scientific Institute, Bosisio Parini LC, Italy.
| |
Collapse
|
18
|
Kim JY, Jeon H, Kwon A, Jin MJ, Lee SH, Chung YC. Self-Awareness of Psychopathology and Brain Volume in Patients With First Episode Psychosis. Front Psychiatry 2019; 10:839. [PMID: 31803084 PMCID: PMC6873658 DOI: 10.3389/fpsyt.2019.00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023] Open
Abstract
Memory impairment, excessive rumination, and increased interpersonal sensitivity are major characteristics of high psychosis risk or first episode psychosis (FEP). Herein, we investigated the relationship between brain volume and self-awareness of psychopathology in patients with FEP. All participants (FEP: 34 and HCs: 34) completed clinical assessments and the following self-reported psychopathology evaluations: prospective and retrospective memory questionnaire (PRMQ), ruminative response scale (RRS), and interpersonal sensitivity measure (IPSM). Structural magnetic resonance imaging was then conducted. The PRMQ, RRS, and IPSM scores were significantly higher in the FEP group than in the healthy controls (HCs). The volumes of the amygdala, hippocampus, and superior temporal gyrus (STG) were significantly lower in the FEP group than in the HCs. There was a significant group-dependent moderation effect between self-awareness of psychopathology (PRMQ, RRS, and IPSM scores) and right STG (rSTG) volume. In the FEP group, self-awareness of psychopathology was positively associated with rSTG volume, while in the HCs, this correlation was negative. Our results indicate that self-awareness of psychopathology impacts rSTG volume in the opposite direction between patients with FEP and HCs. In patients with FEP, awareness of impairment may induce increases in rSTG brain volume. However, HCs showed decreased rSTG volume when they were aware of impairment.
Collapse
Affiliation(s)
- Jeong-Youn Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Hyeonjin Jeon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Aeran Kwon
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
19
|
Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation. Neuroimage 2018; 170:182-198. [DOI: 10.1016/j.neuroimage.2017.02.069] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
|
20
|
Arumugham SS, Torres IJ, Lang DJ, Su W, Lam RW, Honer WG, Yatham LN. Subcortical structural volumes in recently remitted first episode mania. J Affect Disord 2017; 222:23-27. [PMID: 28667890 DOI: 10.1016/j.jad.2017.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have yielded inconsistent findings with regard to subcortical volumetric abnormalities in patients with bipolar I disorder. Duration of illness and long term medication intake could have confounded the findings. METHOD Volumes of nine subcortical structures were compared between 63 patients who recently remitted from their first manic episode and 77 healthy volunteers. The volumetric segmentation was performed with the automated segmentation algorithm Freesurfer version 5.1. RESULTS There were no significant volumetric differences between the two groups in any of the structures examined including caudate, putamen, globus pallidum, nucleus accumbens, amygdala, thalamus, cerebellum, hippocampus and lateral ventricles (q > 0.05-false discovery rate corrected). LIMITATIONS All patients were on psychotropic medications at the time of scanning, which might have confounded the results. Sample size may not be large enough to detect small volumetric changes. CONCLUSIONS Patients with bipolar I disorder do not appear to have any significant subcortical volumetric abnormalities during the early stage of the disease. Thus, early stage bipolar disorder may present an opportunity for intervention to arrest neuroprogression of the disease.
Collapse
Affiliation(s)
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Su
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Hill K, Bolo N, Sarvode Mothi S, Lizano P, Guimond S, Tandon N, Molokotos E, Keshavan M. Subcortical surface shape in youth at familial high risk for schizophrenia. Psychiatry Res Neuroimaging 2017; 267:36-44. [PMID: 28734178 DOI: 10.1016/j.pscychresns.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023]
Abstract
Abnormalities in the subcortical brain regions that support cognitive functions have been reported in schizophrenia. Relatives of those with schizophrenia often present with psychosis-like traits (schizotypy) and similar cognition as those with schizophrenia. To evaluate the relationships between subcortical structure, schizotypy, and cognitive function, we assessed shape and volume of the hippocampus, amygdala and thalamus in untreated youth at familial high risk for schizophrenia (HRSZ). The sample consisted of 66 HRSZ and 69 age-matched healthy controls (HC). Subjects' cognitive functions and schizotypy were assessed, and T1-weighted brain MRI were analyzed using the FSL software FIRST. The right hippocampus and right amygdala showed significantly increased concavity (inward displacement) in HRSZ compared to HC. While regional subcortical shape displacements were significantly correlated with sustained attention and executive function scores in HC, fewer correlations were seen in HRSZ. This suggests a possible alteration of the local structure-function relationship in subcortical brain regions of HRSZ for these cognitive domains, which could be related to anomalous plasticity.
Collapse
Affiliation(s)
- Kathryn Hill
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Nicolas Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA.
| | - Suraj Sarvode Mothi
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Synthia Guimond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Baylor College of Medicine, Houston, TX, USA
| | - Elena Molokotos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| |
Collapse
|
22
|
Kohmura K, Adachi Y, Tanaka S, Katayama H, Imaeda M, Kawano N, Nishioka K, Ando M, Iidaka T, Ozaki N. Regional decrease in gray matter volume is related to body dissatisfaction in anorexia nervosa. Psychiatry Res Neuroimaging 2017; 267:51-58. [PMID: 28763717 DOI: 10.1016/j.pscychresns.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric disorder, in which the prognosis for some patients is poor. The etiology and effective treatments for AN have not been established. We examined morphometric changes in the brain of AN and clarified how the changes were associated with symptoms and pathophysiology. We enrolled 52 participants: 7 with the restrictive type of AN, 13 with the binge-eating/purging type, 3 with eating disorder not otherwise specified, and 29 healthy controls. Participants underwent T1-weighted MRI. Group differences between patients and controls in gray matter volume (GMV) were analyzed using voxel-based morphometry. Age and body mass index (BMI) were considered covariates. Correlations between regional GMVs and drive for thinness and body dissatisfaction were examined. Patients had decreased GMV in the superior/middle temporal gyrus (STG/MTG), pulvinar, and superior frontal gyrus after correction for age and BMI, and in the STG/MTG, middle frontal gyrus, and cingulate after correction for age. A correlational group difference was detected for body dissatisfaction and GMV in the STG. Our findings suggest that decreased GMV in the STG is related to body dissatisfaction that could come from impaired visuospatial perception, together with GMV decreases in several regions, which may be involved in development of AN.
Collapse
Affiliation(s)
- Kunihiro Kohmura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Seichiryo Hospital, Nagoya, Aichi, Japan.
| | - Yasunori Adachi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Satoshi Tanaka
- Department of Psychiatry, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroto Katayama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Miho Imaeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Sakura Clinic, Nagoya, Aichi, Japan
| | - Naoko Kawano
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuo Nishioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; National Hospital Organization Higashi Owari National Hospital, Nagoya, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tetsuya Iidaka
- Department of Physical and Occupational Therapy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Linking persistent negative symptoms to amygdala-hippocampus structure in first-episode psychosis. Transl Psychiatry 2017; 7:e1195. [PMID: 28786981 PMCID: PMC5611735 DOI: 10.1038/tp.2017.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Early persistent negative symptoms (PNS) following a first episode of psychosis (FEP) are linked to poor functional outcome. Reports of reduced amygdalar and hippocampal volumes in early psychosis have not accounted for heterogeneity of symptoms. Age is also seldom considered in this population, a factor that has the potential to uncover symptom-specific maturational biomarkers pertaining to volume and shape changes within the hippocampus and amygdala. T1-weighted volumes were acquired for early (N=21), secondary (N=30), non-(N=44) PNS patients with a FEP, and controls (N=44). Amygdalar-hippocampal volumes and surface area (SA) metrics were extracted with the Multiple Automatically Generated Templates (MAGeT)-Brain algorithm. Linear mixed models were applied to test for a main effect of group and age × group interactions. Early PNS patients had significantly reduced left amygdalar and right hippocampal volumes, as well as similarly lateralized negative age × group interactions compared to secondary PNS patients (P<0.017, corrected). Morphometry revealed decreased SA in early PNS compared with other patient groups in left central amygdala, and in a posterior region when compared with controls. Early and secondary PNS patients had significantly decreased SA as a function of age compared with patients without such symptoms within the right hippocampal tail (P<0.05, corrected). Significant amygdalar-hippocampal changes with age are linked to PNS after a FEP, with converging results from volumetric and morphometric analyses. Differential age trajectories suggest an aberrant maturational process within FEP patients presenting with PNS, which could represent dynamic endophenotypes setting these patients apart from their non-symptomatic peers. Studies are encouraged to parse apart such symptom constructs when examining neuroanatomical changes emerging after a FEP.
Collapse
|
24
|
Bois C, Levita L, Ripp I, Owens DCG, Johnstone EC, Whalley HC, Lawrie SM. Longitudinal changes in hippocampal volume in the Edinburgh High Risk Study of Schizophrenia. Schizophr Res 2016; 173:146-151. [PMID: 25534070 DOI: 10.1016/j.schres.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Schizophrenia is associated with structural brain abnormalities that are likely to be present before disease onset. It remains unclear to what extent these represent general vulnerability indicators or are associated with the developing clinical state itself. It also remains unclear whether such state or trait alterations may be evident at any given time-point, or whether they progress over time. To investigate this, structural brain scans were acquired at two time-points (mean scan-interval 1.87years) in a cohort of young unaffected individuals at high familial risk of schizophrenia (baseline, n=142; follow-up, n=64) and healthy controls (baseline, n=36; follow-up, n=18). Sub-cortical reconstructions of the hippocampus and amygdala were generated using the longitudinal pipeline available with Freesurfer. The high risk cohort was subdivided into individuals that remained well during the study (HR[well], baseline, n=68; follow-up, n=30), transient and/or partial symptoms that were insufficient to support a formal diagnosis (HR[symp], baseline, n=57; follow-up, n=26) and individuals that subsequently developed schizophrenia according to ICD-10 criteria (HR[ill], baseline, n=17; follow-up, n=8). Longitudinal change in the hippocampus and amygdala was compared, focusing first on overall differences between high-risk individuals and controls and then on sub-group differences within the high-risk cohort. We found a significantly altered developmental trajectory for all high risk individuals compared to controls, with controls showing a significant increase in hippocampal volume over time compared to those at high risk. We did not find evidence of altered longitudinal trajectories based on clinical outcome within the high risk cohort. These results suggest that an altered developmental trajectory of hippocampal volume is associated with a general familial predisposition to develop schizophrenia, as this alteration was not related to subsequent clinical outcome.
Collapse
Affiliation(s)
- C Bois
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | - L Levita
- Department of Psychology, University of Sheffield, UK
| | - I Ripp
- Department of Neuroscience, University of Cologne, Germany
| | - D C G Owens
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - E C Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - H C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - S M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
25
|
Zhao G, Denisova K, Sehatpour P, Long J, Gui W, Qiao J, Javitt DC, Wang Z. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia. PLoS One 2016; 11:e0155415. [PMID: 27176232 PMCID: PMC4866699 DOI: 10.1371/journal.pone.0155415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in schizophrenia.
Collapse
Affiliation(s)
- Guihu Zhao
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
| | - Kristina Denisova
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Sackler Institute for Psychobiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha 410083, China
- * E-mail: ; ; (ZW); (JL)
| | - Weihua Gui
- School of Information Science and Engineering, Central South University, Changsha 410083, China
| | - Jianping Qiao
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Daniel C. Javitt
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Zhishun Wang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America
- * E-mail: ; ; (ZW); (JL)
| |
Collapse
|
26
|
Mamah D, Alpert KI, Barch DM, Csernansky JG, Wang L. Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders. NEUROIMAGE-CLINICAL 2016; 11:276-286. [PMID: 26977397 PMCID: PMC4781974 DOI: 10.1016/j.nicl.2016.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
Background Disorders within the schizophrenia spectrum genetically overlap with bipolar disorder, yet questions remain about shared biological phenotypes. Investigation of brain structure in disease has been enhanced by developments in shape analysis methods that can identify subtle regional surface deformations. Our study aimed to identify brain structure surface deformations that were common across related psychiatric disorders, and characterize differences. Methods Using the automated FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping, we examined volumes and shapes of seven brain structures: hippocampus, amygdala, caudate, nucleus accumbens, putamen, globus pallidus and thalamus. We compared findings in controls (CON; n = 40), and those with schizophrenia (SCZ; n = 52), schizotypal personality disorder (STP; n = 12), psychotic bipolar disorder (P-BP; n = 49) and nonpsychotic bipolar disorder (N-BP; n = 24), aged 15–35. Relationships between morphometric measures and positive, disorganized and negative symptoms were also investigated. Results Inward deformation was present in the posterior thalamus in SCZ, P-BP and N-BP; and in the subiculum of the hippocampus in SCZ and STP. Most brain structures however showed unique shape deformations across groups. Correcting for intracranial size resulted in volumetric group differences for caudate (p < 0.001), putamen (p < 0.01) and globus pallidus (p < 0.001). Shape analysis showed dispersed patterns of expansion on the basal ganglia in SCZ. Significant clinical relationships with hippocampal, amygdalar and thalamic volumes were observed. Conclusions Few similarities in surface deformation patterns were seen across groups, which may reflect differing neuropathologies. Posterior thalamic contraction in SCZ and BP suggest common genetic or environmental antecedents. Surface deformities in SCZ basal ganglia may have been due to antipsychotic drug effects. Shape analysis identified structural abnormalities in psychiatric disorders, where volume analysis did not Few similarities in surface deformation patterns were seen across diagnostic groups Posterior thalamic contraction was seen in both schizophrenia and bipolar patients Expansion of basal ganglia regions were seen in schizophrenia patients
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, United States.
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University Medical School, St. Louis, United States; Department of Psychology, Washington University Medical School, St. Louis, United States; Department of Radiology, Washington University Medical School, St. Louis, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
27
|
Hanford LC, Nazarov A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord 2016; 18:4-18. [PMID: 26851067 DOI: 10.1111/bdi.12362] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a debilitating illness, the psychopathology of which is associated with aberrant structural and functional differences in the brain. Despite the many advances in psychiatric research, our understanding of the complex neurobiological underpinnings of BD remains incomplete. The aim of this review was to critically examine all available published magnetic resonance imaging (MRI) research reporting cortical thickness in BD with respect to a healthy population and/or other psychiatric samples. METHODS The systematic search encompassed all relevant studies published until November 2014. Relevant papers were identified through an online search of select databases (MEDLINE and EMBASE) using key terms bipolar disorder or mania, and cortical thickness. Two independent raters determined the eligibility of papers and performed separate data extraction to ensure quality and accuracy of reporting. RESULTS A total of 17 papers met the criteria and were included in this review. Compared to a healthy population, the majority of studies reported decreased cortical thickness in the left anterior cingulate/paracingulate and the left superior temporal gyrus, as well as several prefrontal regions bilaterally in patients with BD. Studies also show consistency of cortical thinning in individuals with BD and schizophrenia in frontal and temporal regions, suggesting some common neuropathology. CONCLUSIONS This systematic review further supports a link between specific structural brain abnormalities and BD. Future studies should investigate cortical thickness with respect to at-risk populations to determine whether these neuropathologies develop before or after the onset of BD.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Anthony Nazarov
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Roberto B Sassi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Mood Disorders Outpatient Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
28
|
Benes FM. Building models for postmortem abnormalities in hippocampus of schizophrenics. Schizophr Res 2015; 167:73-83. [PMID: 25749020 DOI: 10.1016/j.schres.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/17/2023]
Abstract
Postmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
Collapse
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience and Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Hippocampal, amygdala and nucleus accumbens volume in first-episode schizophrenia patients and individuals at high familial risk: A cross-sectional comparison. Schizophr Res 2015; 165:45-51. [PMID: 25864953 DOI: 10.1016/j.schres.2015.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/21/2015] [Accepted: 03/22/2015] [Indexed: 11/21/2022]
Abstract
It is unknown whether brain changes occur prior to onset of schizophrenia or after it develops. Prospective familial high risk studies provide a good method to investigate this. In the Edinburgh High Risk Study, structural MRI scans of 150 young individuals at familial high risk of schizophrenia, 34 patients with first-episode schizophrenia and 36 matched controls were obtained. Of the high risk participants with scans suitable for analysis, 17 developed schizophrenia after the scans were taken, whilst 57 experienced isolated or sub-clinical psychotic symptoms, and 70 remained well. We used Freesurfer to extract volumetric measurements of the hippocampus, amygdala and nucleus accumbens with the aim of assessing whether any alterations found were present in all those at high risk, or selectively in the high risk cohort based on future clinical outcome, or only in those experiencing their first-episode of psychosis. We found no significant differences in any examined regions between controls and those at high risk, or between those at high risk who later developed schizophrenia and those who remained well. However, patients with first-episode schizophrenia demonstrated significant volumetric reductions in the bilateral hippocampus, left amygdala, and right nucleus accumbens compared to high risk individuals and healthy controls, which were not significantly associated with the intake of anti-psychotic medication or duration of illness. We found that patients had significantly smaller left amygdalae and bilateral hippocampus compared to HR[ill]. Our findings suggest that volumetric reductions of the hippocampus, amygdala and nucleus accumbens occur early in the first-episode of psychosis. The apparent absence of high risk versus control differences we found using Freesurfer is at odds with our previous studies conducted on the same sample, and possible methodological reasons for these apparent discrepancies are discussed.
Collapse
|
30
|
Mahon PB, Lee DS, Trinh H, Tward D, Miller MI, Younes L, Barta PE, Ratnanather JT. Morphometry of the amygdala in schizophrenia and psychotic bipolar disorder. Schizophr Res 2015; 164:199-202. [PMID: 25766598 PMCID: PMC4439197 DOI: 10.1016/j.schres.2015.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Volumetric studies suggest smaller amygdalae in subjects with schizophrenia (SZ) than with bipolar disorder (BP). We use morphometry to identify subregions of amygdala differentially affected in SZ and psychotic BP. Based on template centered population analysis, the shape of the amygdala in psychotic BP differs from SZ (pleft=0.044, pright=0.042). Using a high-field 7 T atlas, the bilateral basolateral, basomedial and centromedial subregions and the right lateral subregion were significantly atrophied in SZ compared to psychotic BP (p<0.02). These results suggest that change in shape of amygdala may represent a morphologic feature distinguishing SZ from psychotic BP.
Collapse
Affiliation(s)
- Pamela B. Mahon
- Mood Disorders Center, Johns Hopkins University, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Corresponding Author: Pamela B. Mahon, Department of Psychiatry, Johns Hopkins School of Medicine, 600 N Wolfe St, Phipps 300, Baltimore, MD 21287,
| | - David S. Lee
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Huong Trinh
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Tward
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I. Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick E. Barta
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
Smith MJ, Cobia DJ, Reilly JL, Gilman JM, Roberts AG, Alpert KI, Wang L, Breiter HC, Csernansky JG. Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects. Hippocampus 2015; 25:1042-51. [PMID: 25760303 DOI: 10.1002/hipo.22427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 11/07/2022]
Abstract
Cannabis use has been associated with episodic memory (EM) impairments and abnormal hippocampus morphology among both healthy individuals and schizophrenia subjects. Considering the hippocampus' role in EM, research is needed to evaluate the relationship between cannabis-related hippocampal morphology and EM among healthy and clinical groups. We examined differences in hippocampus morphology between control and schizophrenia subjects with and without a past (not current) cannabis use disorder (CUD). Subjects group-matched on demographics included 44 healthy controls (CON), 10 subjects with a CUD history (CON-CUD), 28 schizophrenia subjects with no history of substance use disorders (SCZ), and 15 schizophrenia subjects with a CUD history (SCZ-CUD). Large-deformation, high-dimensional brain mapping with MRI produced surface-based representations of the hippocampus that were compared across all four groups and correlated with EM and CUD history. Surface maps of the hippocampus were generated to visualize morphological differences. CON-CUD and SCZ-CUD were characterized by distinct cannabis-related hippocampal shape differences and parametric deficits in EM performance. Shape differences observed in CON-CUD were associated with poorer EM performance, while shape differences observed in SCZ-CUD were associated with a longer duration of CUD and shorter duration of CUD remission. A past history of CUD may be associated with notable differences in hippocampal morphology and EM impairments among adults with and without schizophrenia. Although the results may be compatible with a causal hypothesis, we must consider that the observed cannabis-related shape differences in the hippocampus could also be explained as biomarkers of a neurobiological susceptibility to poor memory or the effects of cannabis.
Collapse
Affiliation(s)
- Matthew J Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Warren Wright Adolescent Center, Chicago, Illinois
| | - Derin J Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Warren Wright Adolescent Center, Chicago, Illinois
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Warren Wright Adolescent Center, Chicago, Illinois
| | - Jodi M Gilman
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrea G Roberts
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Warren Wright Adolescent Center, Chicago, Illinois
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hans C Breiter
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Warren Wright Adolescent Center, Chicago, Illinois
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
32
|
Song X, Quan M, Lv L, Li X, Pang L, Kennedy D, Hodge S, Harrington A, Ziedonis D, Fan X. Decreased cortical thickness in drug naïve first episode schizophrenia: in relation to serum levels of BDNF. J Psychiatr Res 2015; 60:22-8. [PMID: 25282282 DOI: 10.1016/j.jpsychires.2014.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/16/2014] [Accepted: 09/11/2014] [Indexed: 01/19/2023]
Abstract
This study was to examine cortical thickness in drug naïve, first episode schizophrenia patients, and to explore its relationship with serum levels of brain-derived neurotrophic factor (BDNF). Forty-five drug naive schizophrenia patients and 28 healthy controls were enrolled in the study. Freesurfer was used to parcellate cortical regions, and vertex-wise group analysis was used for whole brain cortical thickness. The clusters for the brain regions that demonstrated group differences were extracted, and the mean values of thickness were calculated. Serum levels of BDNF were measured using enzyme-linked immunosorbent assay (ELISA). After controlling for age and gender, significantly thinner cortical thickness was found in left insula and superior temporal gyrus in the patient group compared with the healthy control group (HC group) (p's < 0.001). Lower serum levels of BDNF were also found in the patient group compared with the HC group (p = 0.001). Correlation analysis showed a significant positive relationship between thickness of left insula and serum levels of BDNF within the HC group (r = 0.396, p = 0.037) but there was no such relationship within the patient group (r = 0.035, p = 0.819). Cortical thinning is present in drug naïve, first episode schizophrenia patients, indicating neurodevelopmental abnormalities at the onset of schizophrenia. Left insula might be an imaging biomarker in detecting the impaired protective role of neurotrophic factor for the brain development in schizophrenia.
Collapse
Affiliation(s)
- Xueqin Song
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| | - Meina Quan
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luxian Lv
- Henan Province Biological Psychiatry Key Laboratory, Xinxiang Medical University, Xinxiang, China; Henan Province Mental Hospital, The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xue Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lijuan Pang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - David Kennedy
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Steven Hodge
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy Harrington
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas Ziedonis
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xiaoduo Fan
- UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Vázquez-Roque RA, Ubhi K, Masliah E, Flores G. Chronic cerebrolysin administration attenuates neuronal abnormalities in the basolateral amygdala induced by neonatal ventral hippocampus lesion in the rat. Synapse 2013; 68:31-8. [DOI: 10.1002/syn.21718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/07/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Rubén Antonio Vázquez-Roque
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570 Puebla México
| | - Kiren Ubhi
- Department of Neurosciences; University of California; San Diego, La Jolla California 92093-0624
| | - Eliezer Masliah
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570 Puebla México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología; Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570 Puebla México
| |
Collapse
|
34
|
|