1
|
Chung AN, Huang MC, Liu TH, Chang HM, Chen PY, Liu YL, Bavato F. Ketamine-dependent patients with persistent psychosis have higher neurofilament light chain levels than patients with schizophrenia. Asian J Psychiatr 2024; 100:104167. [PMID: 39111088 DOI: 10.1016/j.ajp.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES Ketamine can induce persisting psychosis in a subset of individuals who use it chronically and heavily. Previously, we found that the psychopathology and cognitive impairments in patients with ketamine dependence (KD) exhibiting persistent psychosis (KPP) bear resemblances with schizophrenia, albeit with less severity in those with no persistent psychosis (KNP). Furthermore, we also showed that patients with KD had higher blood levels of neurofilament light chain (NFL), a biomarker for neuroaxonal injury, compared to healthy controls. In this study, we aimed to investigate the differences in NFL levels between patients with KPP and KNP while comparing the levels of individuals with schizophrenia and healthy controls. METHODS We enrolled 64 treatment-seeking ketamine-dependent patients (53 with KNP and 11 with KPP), 37 medication-free patients with schizophrenia, and 80 healthy controls. Blood NFL levels were measured by single molecule array immunoassay. RESULTS NFL levels were highest in the KPP subgroup, followed by the KNP subgroup, and then the schizophrenia and control groups (mean ± SD: 24.5 ± 24.7, 12.9 ± 10.9, 9.2 ± 12.2, and 6.2 ± 2.2 pg/mL, respectively), with no significant difference observed between the schizophrenia and control groups. CONCLUSIONS We found that KD is associated with higher NFL levels compared to schizophrenia, with the KPP subgroup showing the most consistent alterations. The observation of accentuated neuroaxonal pathology in individuals with KPP implies that this clinical manifestation is associated with a specific neurobiological phenotype, despite prior evidence suggesting syndromal similarity between schizophrenia and KPP.
Collapse
Affiliation(s)
- An-Nie Chung
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital., 250 Wuxing St, Taipei, Taiwan; Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hu-Ming Chang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Tang B, Yao L, Strawn JR, Zhang W, Lui S. Neurostructural, Neurofunctional, and Clinical Features of Chronic, Untreated Schizophrenia: A Narrative Review. Schizophr Bull 2024:sbae152. [PMID: 39212651 DOI: 10.1093/schbul/sbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Studies of individuals with chronic, untreated schizophrenia (CUS) can provide important insights into the natural course of schizophrenia and how antipsychotic pharmacotherapy affects neurobiological aspects of illness course and progression. We systematically review 17 studies on the neuroimaging, cognitive, and epidemiological aspects of CUS individuals. These studies were conducted at the Shanghai Mental Health Center, Institute of Mental Health at Peking University, and Huaxi MR Research Center between 2013 and 2021. CUS is associated with cognitive impairment, severe symptoms, and specific demographic characteristics and is different significantly from those observed in antipsychotic-treated individuals. Furthermore, CUS individuals have neurostructural and neurofunctional alterations in frontal and temporal regions, corpus callosum, subcortical, and visual processing areas, as well as default-mode and somatomotor networks. As the disease progresses, significant structural deteriorations occur, such as accelerated cortical thinning in frontal and temporal lobes, greater reduction in fractional anisotropy in the genu of corpus callosum, and decline in nodal metrics of gray mater network in thalamus, correlating with worsening cognitive deficits and clinical outcomes. In addition, striatal hypertrophy also occurs, independent of antipsychotic treatment. Contrasting with the negative neurostructural and neurofunctional effects of short-term antipsychotic treatment, long-term therapy frequently results in significant improvements. It notably enhances white matter integrity and the functions of key subcortical regions such as the amygdala, hippocampus, and striatum, potentially improving cognitive functions. This narrative review highlights the progressive neurobiological sequelae of CUS, the importance of early detection, and long-term treatment of schizophrenia, particularly because treatment may attenuate neurobiological deterioration and improve clinical outcomes.
Collapse
Affiliation(s)
- Biqiu Tang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Li Yao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Jeffrey R Strawn
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Wenjing Zhang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Male AG, Goudzwaard E, Nakahara S, Turner JA, Calhoun VD, Mueller BA, Lim KO, Bustillo JR, Belger A, Voyvodic J, O'Leary D, Mathalon DH, Ford JM, Potkin SG, Preda A, van Erp TGM. Structural white matter abnormalities in Schizophrenia and associations with neurocognitive performance and symptom severity. Psychiatry Res Neuroimaging 2024; 342:111843. [PMID: 38896909 DOI: 10.1016/j.pscychresns.2024.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.
Collapse
Affiliation(s)
- Alie G Male
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA
| | - Esther Goudzwaard
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA; University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA; Discovery Accelerator Venture Unit Direct Reprogramming, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vince D Calhoun
- Departments of Psychology and Neuroscience, Georgia State University, Atlanta, GA 30302, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA 30303, USA
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA
| | - Juan R Bustillo
- Departments of Psychiatry & Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James Voyvodic
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel O'Leary
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel H Mathalon
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs San Francisco Healthcare System, San Francisco, CA 94121, USA
| | - Judith M Ford
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs San Francisco Healthcare System, San Francisco, CA 94121, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617, USA; Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
5
|
Mamah D, Patel A, Chen S, Wang Y, Wang Q. Diffusion Basis Spectrum Imaging of White Matter in Schizophrenia and Bipolar Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602402. [PMID: 39005300 PMCID: PMC11245098 DOI: 10.1101/2024.07.07.602402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Multiple studies point to the role of neuroinflammation in the pathophysiology of schizophrenia (SCZ), however, there have been few in vivo tools for imaging brain inflammation. Diffusion basis spectrum imaging (DBSI) is an advanced diffusion-based MRI method developed to quantitatively assess microstructural alternations relating to neuroinflammation, axonal fiber, and other white matter (WM) pathologies. Methods We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n = 27), schizophrenia (SCZ, n = 21), and bipolar disorder (BPD, n = 21) participants aged 18-30. We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain WM analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between groups. Clinical relationships of DBSI metrics with clinical symptoms were assessed across SCZ and control participants. Results In SCZ participants, we found a generalized increase in DBSI-derived cellularity (a putative marker of neuroinflammation), a decrease in restricted fiber fraction (a putative marker of apparent axonal density), and an increase in extra-axonal water (a putative marker of vasogenic edema) across several WM tracts. There were only minimal WM abnormalities noted in BPD, mainly in regions of the corpus callosum (increase in DTI-derived RD and extra-axonal water). DBSI metrics showed significant partial correlations with psychosis and mood symptoms across groups. Conclusion Our findings suggest that SCZ involves generalized white matter neuroinflammation, decreased fiber density, and demyelination, which is not seen in bipolar disorder. Larger studies are needed to identify medication-related effects. DBSI metrics could help identify high-risk groups requiring early interventions to prevent the onset of psychosis and improve outcomes.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Aakash Patel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - ShingShiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Wang
- Departments of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Mechanical Engineering and Materials Science, Washington University School of Medicine, St. Louis, Missouri
| | - Qing Wang
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Mechanical Engineering and Materials Science, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Shi H, Zhang Y, Yang Y, Zhang H, Li W, Zhong Z, Lv L. Serum S100B protein and white matter changes in schizophrenia before and after medication. Brain Res Bull 2024; 210:110927. [PMID: 38485004 DOI: 10.1016/j.brainresbull.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia patients have abnormalities in white matter (WM) integrity in brain regions. S100B has been shown to be a marker protein for glial cells. The atypical antipsychotics have neuroprotective effects on the brain. It is not clear whether antipsychotics can induce S100B changes and improve symptoms by protecting oligodendrocytes. To investigate WM and S100B changes and associations and determine the effect of quetiapine on WM and S100B in schizophrenia patients, we determined serum S100B levels with solid phase immunochromatography and fractional anisotropy(FA)values of 36 patients and 40 healthy controls. Patients exhibited significantly higher serum concentrations of S100B and decreased FA values in left postcentral,right superior frontal,right thalamus, and left inferior occipital gyrus, while higher in right temporal cortex WM compared with healthy controls. Following treatment with quetiapine, patients had decreased S100B and higher FA values in right cerebellum,right superior frontal,right thalamus, and left parietal cortex,and decreased FA values in right temporal cortex WM compared with pre-treatment values. Furthermore, S100B were negatively correlated with PANSS positive scores and positively correlated with FA values in the left postcentral cortex. In addition,the percentage change in FA values in the right temporal cortex was positively correlated with the percentage change in the S100B, percentage reduction in PANSS scores, and percentage reduction in PANSS-positive scores. Our findings demonstrated abnormalities in S100B and WM microstructure in patients with schizophrenia. These abnormalities may be partly reversed by quetiapine treatment.
Collapse
Affiliation(s)
- Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Haisan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhaoxi Zhong
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
7
|
Shobeiri P, Hosseini Shabanan S, Haghshomar M, Khanmohammadi S, Fazeli S, Sotoudeh H, Kamali A. Cerebellar Microstructural Abnormalities in Obsessive-Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:778-801. [PMID: 37291229 DOI: 10.1007/s12311-023-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Previous neuroimaging studies have suggested that obsessive-compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD's complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Haghshomar
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaghayegh Khanmohammadi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fazeli
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
8
|
Tabata K, Son S, Miyata J, Toriumi K, Miyashita M, Suzuki K, Itokawa M, Takahashi H, Murai T, Arai M. Association of homocysteine with white matter dysconnectivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:39. [PMID: 38509166 PMCID: PMC10954654 DOI: 10.1038/s41537-024-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several studies have shown white matter (WM) dysconnectivity in people with schizophrenia (SZ). However, the underlying mechanism remains unclear. We investigated the relationship between plasma homocysteine (Hcy) levels and WM microstructure in people with SZ using diffusion tensor imaging (DTI). Fifty-three people with SZ and 83 healthy controls (HC) were included in this retrospective observational study. Tract-Based Spatial Statistics (TBSS) were used to evaluate group differences in WM microstructure. A significant negative correlation between plasma Hcy levels and WM microstructural disruption was noted in the SZ group (Spearman's ρ = -.330, P = 0.016) but not in the HC group (Spearman's ρ = .041, P = 0.712). These results suggest that increased Hcy may be associated with WM dysconnectivity in SZ, and the interaction between Hcy and WM dysconnectivity could be a potential mechanism of the pathophysiology of SZ. Further, longitudinal studies are required to investigate whether high Hcy levels subsequently cause WM microstructural disruption in people with SZ.
Collapse
Grants
- 19K17061 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H02749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05130 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04979 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02849 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05173 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H02844 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18dm0307008 Japan Agency for Medical Research and Development (AMED)
- JP21uk1024002 Japan Agency for Medical Research and Development (AMED)
- JPMJCR22P3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- The Novartis Pharma Research Grant; SENSHIN Medical Research Foundation; SUZUKEN Memorial Foundation; the Takeda Science Foundation.
- the Brain/MINDS Beyond program (23dm0307008) from the Japan Agency for Medical Research
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Chen Y, Liu S, Zhang B, Zhao G, Zhang Z, Li S, Li H, Yu X, Deng H, Cao H. Baseline symptom-related white matter tracts predict individualized treatment response to 12-week antipsychotic monotherapies in first-episode schizophrenia. Transl Psychiatry 2024; 14:23. [PMID: 38218952 PMCID: PMC10787827 DOI: 10.1038/s41398-023-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
There is significant heterogeneity in individual responses to antipsychotic drugs, but there is no reliable predictor of antipsychotics response in first-episode psychosis. This study aimed to investigate whether psychotic symptom-related alterations in fractional anisotropy (FA) and mean diffusivity (MD) of white matter (WM) at the early stage of the disorder may aid in the individualized prediction of drug response. Sixty-eight first-episode patients underwent baseline structural MRI scans and were subsequently randomized to receive a single atypical antipsychotic throughout the first 12 weeks. Clinical symptoms were evaluated using the eight "core symptoms" selected from the Positive and Negative Syndrome Scale (PANSS-8). Follow-up assessments were conducted at the 4th, 8th, and 12th weeks by trained psychiatrists. LASSO regression model and cross-validation were conducted to examine the performance of baseline symptom-related alterations FA and MD of WM in the prediction of individualized treatment outcome. Fifty patients completed both clinical follow-up assessments by the 8th and 12th weeks. 30 patients were classified as responders, and 20 patients were classified as nonresponders. At baseline, the altered diffusion properties of fiber tracts in the anterior thalamic radiation, corticospinal tract, callosum forceps minor, longitudinal fasciculi (ILF), inferior frontal-occipital fasciculi (IFOF) and superior longitudinal fasciculus (SLF) were related to the severity of symptoms. These abnormal fiber tracts, especially the ILF, IFOF, and SLF, significantly predicted the response to antipsychotic treatment at the individual level (AUC = 0.828, P < 0.001). These findings demonstrate that early microstructural WM changes contribute to the pathophysiology of psychosis and may serve as meaningful individualized predictors of response to antipsychotics.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shanming Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Shandong Daizhuang Hospital, Jining, Shangdong, China
| | - Zhuoqiu Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shuiying Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Haiming Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong Deng
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China.
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| |
Collapse
|
10
|
Nerland S, Slapø NB, Barth C, Mørch-Johnsen L, Jørgensen KN, Beck D, Wortinger LA, Westlye LT, Jönsson EG, Andreassen OA, Maximov II, Geier OM, Agartz I. Current Auditory Hallucinations Are Not Associated With Specific White Matter Diffusion Alterations in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae008. [PMID: 39144116 PMCID: PMC11207682 DOI: 10.1093/schizbullopen/sgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Studies have linked auditory hallucinations (AH) in schizophrenia spectrum disorders (SCZ) to altered cerebral white matter microstructure within the language and auditory processing circuitry (LAPC). However, the specificity to the LAPC remains unclear. Here, we investigated the relationship between AH and DTI among patients with SCZ using diffusion tensor imaging (DTI). Study Design We included patients with SCZ with (AH+; n = 59) and without (AH-; n = 81) current AH, and 140 age- and sex-matched controls. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were extracted from 39 fiber tracts. We used principal component analysis (PCA) to identify general factors of variation across fiber tracts and DTI metrics. Regression models adjusted for sex, age, and age2 were used to compare tract-wise DTI metrics and PCA factors between AH+, AH-, and healthy controls and to assess associations with clinical characteristics. Study Results Widespread differences relative to controls were observed for MD and RD in patients without current AH. Only limited differences in 2 fiber tracts were observed between AH+ and controls. Unimodal PCA factors based on MD, RD, and AD, as well as multimodal PCA factors, differed significantly relative to controls for AH-, but not AH+. We did not find any significant associations between PCA factors and clinical characteristics. Conclusions Contrary to previous studies, DTI metrics differed mainly in patients without current AH compared to controls, indicating a widespread neuroanatomical distribution. This challenges the notion that altered DTI metrics within the LAPC is a specific feature underlying AH.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nora Berz Slapø
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Computational Radiology and Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
11
|
Wang C, Tishler TA, Oughourlian T, Nuechterlein KH, de la Fuente-Sandoval C, Ellingson BM. Prospective, randomized, multicenter clinical trial evaluating longitudinal changes in brain function and microstructure in first-episode schizophrenia patients treated with long-acting injectable paliperidone palmitate versus oral antipsychotics. Schizophr Res 2023; 255:222-232. [PMID: 37019033 DOI: 10.1016/j.schres.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
Widespread anatomical alterations and abnormal functional connectivity have shown strong association with symptom severity in first-episode schizophrenia (FES) patients. Second-generation antipsychotic treatment might slow disease progression and possibly modify the cerebral plasticity in FES patients. However, whether a long-acting injectable antipsychotic (paliperidone palmitate [PP]), available in monthly and every-3-months formulations, is more effective than oral antipsychotics (OAP) in improving cerebral organization has been unclear. Therefore, in the current longitudinal study, we evaluated the differences in functional and microstructural changes of 68 FES patients in a randomized clinical trial of PP vs OAP. When compared to OAP treatment, PP treatment was more effective in decreasing abnormally high fronto-temporal and thalamo-temporal connectivity, as well as increasing fronto-sensorimotor and thalamo-insular connectivity. Consistent with previous studies, multiple white matter pathways showed larger changes in fractional anisotropy (FA) and mean diffusivity (MD) in response to PP compared with OAP treatment. These findings suggest that PP treatment might reduce regional abnormalities and improve cerebral connectivity networks compared with OAP treatment, and identified changes that may serve as reliable imaging biomarkers associated with medication treatment efficacy.
Collapse
Affiliation(s)
- Chencai Wang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - Todd A Tishler
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Talia Oughourlian
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; Neuroscience Interdisciplinary Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
12
|
Zeng J, Zhang W, Wu G, Wang X, Shah C, Li S, Xiao Y, Yao L, Cao H, Li Z, Sweeney JA, Lui S, Gong Q. Effects of Antipsychotic Medications and Illness Duration on Brain Features That Distinguish Schizophrenia Patients. Schizophr Bull 2022; 48:1354-1362. [PMID: 35925035 PMCID: PMC9673268 DOI: 10.1093/schbul/sbac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Previous studies have reported effects of antipsychotic treatment and illness duration on brain features. This study used a machine learning approach to examine whether these factors in aggregate impacted the utility of MRI features for differentiating individual schizophrenia patients from healthy controls. STUDY DESIGN This case-control study used patients with never-treated first-episode schizophrenia (FES, n = 179) and long-term ill schizophrenia (LTSZ, n = 30), with follow-up of the FES group after treatment (n = 71), a group of patients who had received long-term antipsychotic treatment (n = 93) and age and sex-matched healthy controls (n = 373) for each patient group. A multiple kernel learning classifier combining both structural and functional brain features was used to discriminate individual patients from controls. STUDY RESULTS MRI features differentiated untreated FES (0.73) and LTSZ (0.83) patients from healthy controls with moderate accuracy, but accuracy was significantly higher in antipsychotic-treated FES (0.94) and LTSZ (0.98) patients. Treatment was associated with significantly increased accuracy of case identification in both early course and long-term ill patients (both p < .001). Effects of illness duration, examined separately in treated and untreated patients, were less robust. CONCLUSIONS Our results demonstrate that initiation of antipsychotic treatment alters brain features in ways that further distinguish individual schizophrenia patients from healthy individuals, and have a modest effect of illness duration. Intrinsic illness-related brain alterations in untreated patients, regardless of illness duration, are not sufficiently robust for accurate identification of schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Guorong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaowan Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chandan Shah
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China,Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Su Lui
- To whom correspondence should be addressed; Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China, tel/fax: +86-28-85423960; e-mail:
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China,Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Seitz-Holland J, Cetin-Karayumak S, Wojcik JD, Lyall A, Levitt J, Shenton ME, Pasternak O, Westin CF, Baxi M, Kelly S, Mesholam-Gately R, Vangel M, Pearlson G, Tamminga CA, Sweeney JA, Clementz BA, Schretlen D, Viher PV, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Rathi Y, Keshavan M, Kubicki M. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia-a multicenter harmonized diffusion tensor imaging study. Mol Psychiatry 2021; 26:5357-5370. [PMID: 33483689 PMCID: PMC8329919 DOI: 10.1038/s41380-021-01018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joanne D Wojcik
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Levitt
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madhura Baxi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program of Neuroscience, Boston University, Boston, MA, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petra Verena Viher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, NY, USA
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: A review of DTI studies. Asian J Psychiatr 2021; 61:102688. [PMID: 34000500 DOI: 10.1016/j.ajp.2021.102688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psychotic episodes have been associated with damage to both grey matter (GM) and white matter (WM). Although a recent meta-analysis suggest that in long term treatment, first generation antipsychotics (FGA) are associated with progressive reduction in GM, second generation antipsychotics (SGA) seem to have benefits to WM microstructure. METHODS A search was conducted to identify controlled trials published from January 2000 to January 2021, which assessed WM integrity as measured by DTI in drug-naïve patients with FEP before and after antipsychotic administration. RESULTS 3 studies met the criteria for inclusion. All studies demonstrated lower FA in psychotic patients vs HC. A 6-week study reported that antipsychotic medication results in a further decrease in FA within the bilateral ACG and right ACR, regions important in emotional processing. An 8-week study found that antipsychotic treatment increase FA in the SLF, resulting in improved symptoms and increased processing speed. A 3rd study found an increase in FA in several regions along with a negative correlation between FA and PANSS at remission. CONCLUSIONS Drug-naïve FEP patients have WM dysfunction at baseline and antipsychotic medications appear to alter or improve WM especially at remission. More controlled trials are warranted to validate these conclusions.
Collapse
|
15
|
Pawełczyk A, Łojek E, Żurner N, Gawłowska-Sawosz M, Gębski P, Pawełczyk T. The correlation between white matter integrity and pragmatic language processing in first episode schizophrenia. Brain Imaging Behav 2021; 15:1068-1084. [PMID: 32710335 PMCID: PMC8032571 DOI: 10.1007/s11682-020-00314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective: Higher-order language disturbances could be the result of white matter tract abnormalities. The study explores the relationship between white matter and pragmatic skills in first-episode schizophrenia. Methods: Thirty-four first-episode patients with schizophrenia and 32 healthy subjects participated in a pragmatic language and Diffusion Tensor Imaging study, where fractional anisotropy of the arcuate fasciculus, corpus callosum and cingulum was correlated with the Polish version of the Right Hemisphere Language Battery. Results: The patients showed reduced fractional anisotropy in the right arcuate fasciculus, left anterior cingulum bundle and left forceps minor. Among the first episode patients, reduced understanding of written metaphors correlated with reduced fractional anisotropy of left forceps minor, and greater explanation of written and picture metaphors correlated with reduced fractional anisotropy of the left anterior cingulum. Conclusions: The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland.
| | | | - Natalia Żurner
- Adolescent Ward, Central Clinical Hospital of Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gębski
- Scanlab Diagnostyka Medyczna Księży Młyn, Medical Examination Centre, Medical University of Łódź, Łódź, Poland
| | - Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
16
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
17
|
Tronchin G, McPhilemy G, Ahmed M, Kilmartin L, Costello L, Forde NJ, Nabulsi L, Akudjedu TN, Holleran L, Hallahan B, Cannon DM, McDonald C. White matter microstructure and structural networks in treatment-resistant schizophrenia patients after commencing clozapine treatment: A longitudinal diffusion imaging study. Psychiatry Res 2021; 298:113772. [PMID: 33556689 DOI: 10.1016/j.psychres.2021.113772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
This study investigates changes on white matter microstructure and neural networks after 6 months of switching to clozapine in schizophrenia patients compared to controls, and whether any changes are related to clinical variables. T1 and diffusion-weighted MRI images were acquired at baseline before commencing clozapine and after 6 months of treatment for 22 patients with treatment-resistant schizophrenia and 23 controls. The Tract-based spatial statistics approach was used to compare changes over time between groups in fractional anisotropy (FA). Changes in structural network organisation weighted by FA and number of streamlines were assessed using graph theory. Patients displayed a significant reduction of FA over time (p<0.05) compared to controls in the genu and body of the corpus callosum and bilaterally in the anterior and superior corona radiata. There was no correlation between FA change in patients and changes in clinical variables or serum level of clozapine. There was no changes in structural network organisation between groups (F(7,280)=2.80;p = 0.187). This longitudinal study demonstrated progressive focal FA abnormalities in key anterior tracts, but preserved brain structural network organisation in patients. The FA reduction was independent of any clinical measures and may reflect progression of the underlying pathophysiology of this malignant form of schizophrenia illness.
Collapse
Affiliation(s)
- Giulia Tronchin
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Mohamed Ahmed
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Liam Kilmartin
- College of Science and Engineering, National University of Ireland Galway, Galway, Republic of Ireland
| | - Laura Costello
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Natalie J Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Institute of Medical Imaging & Visualisation, Faculty of Health & Social Science, Bournemouth University, Bournemouth, United Kingdom
| | - Laurena Holleran
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| |
Collapse
|
18
|
Lyall AE, Nägele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, Kubicki M, Peters BD, Robinson DG, Szeszko PR. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging 2021; 307:111219. [PMID: 33221631 PMCID: PMC8127861 DOI: 10.1016/j.pscychresns.2020.111219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
We examined the impact of treatment with fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFA), on white matter in 37 recent-onset psychosis patients receiving risperidone in a double-blind placebo-controlled randomized clinical trial. Patients were scanned at baseline and randomly assigned to receive 16-weeks of treatment with risperidone + FO or risperidone + placebo. Eighteen patients received follow-up MRIs (FO, n = 10/Placebo, n = 8). Erythrocyte levels of n-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) were obtained at both time points. We employed Free Water Imaging metrics representing the extracellular free water fraction (FW) and fractional anisotropy of the tissue (FA-t). Analyses were conducted using Tract-Based-Spatial-Statistics and nonparametric permutation-based tests with family-wise error correction. There were significant positive correlations of FA-t with DHA and DPA among all patients at baseline. Patients treated with risperidone + placebo demonstrated reductions in FA-t and increases in FW, whereas patients treated with risperidone + FO exhibited no significant changes in FW and FA-t reductions were largely attenuated. The correlations of DPA and DHA with baseline FA-t support the hypothesis that n-3 PUFA intake or biosynthesis are associated with white matter abnormalities in psychosis. Adjuvant FO treatment may partially mitigate against white matter alterations observed in recent-onset psychosis patients following risperidone treatment.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Felix L Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan A Gallego
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Anil K Malhotra
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Lipidomics Research Program, University of Cincinnati, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bart D Peters
- Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Delbert G Robinson
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
19
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
20
|
Yang C, Tang J, Liu N, Yao L, Xu M, Sun H, Tao B, Gong Q, Cao H, Zhang W, Lui S. The Effects of Antipsychotic Treatment on the Brain of Patients With First-Episode Schizophrenia: A Selective Review of Longitudinal MRI Studies. Front Psychiatry 2021; 12:593703. [PMID: 34248691 PMCID: PMC8264251 DOI: 10.3389/fpsyt.2021.593703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
A large number of neuroimaging studies have detected brain abnormalities in first-episode schizophrenia both before and after treatment, but it remains unclear how these abnormalities reflect the effects of antipsychotic treatment on the brain. To summarize the findings in this regard and provide potential directions for future work, we reviewed longitudinal structural and functional imaging studies in patients with first-episode schizophrenia before and after antipsychotic treatment. A total of 36 neuroimaging studies was included, involving 21 structural imaging studies and 15 functional imaging studies. Both anatomical and functional brain changes in patients after treatment were consistently observed in the frontal and temporal lobes, basal ganglia, limbic system and several key components within the default mode network (DMN). Alterations in these regions were affected by factors such as antipsychotic type, course of treatment, and duration of untreated psychosis (DUP). Over all we showed that: (a) The striatum and DMN were core target regions of treatment in schizophrenia, and their changes were related to different antipsychotics; (b) The gray matter of frontal and temporal lobes tended to reduce after long-term treatment; and (c) Longer DUP was accompanied with faster hippocampal atrophy after initial treatment, which was also associated with poorer outcome. These findings are in accordance with previous notions but should be interpreted with caution. Future studies are needed to clarify the effects of different antipsychotics in multiple conditions and to identify imaging or other biomarkers that may predict antipsychotic treatment response. With such progress, it may help choose effective pharmacological interventional strategies for individuals experiencing recent-onset schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Naici Liu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyuan Xu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Sun
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Wenjing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Luo C, Lencer R, Hu N, Xiao Y, Zhang W, Li S, Lui S, Gong Q. Characteristics of White Matter Structural Networks in Chronic Schizophrenia Treated With Clozapine or Risperidone and Those Never Treated. Int J Neuropsychopharmacol 2020; 23:799-810. [PMID: 32808036 PMCID: PMC7770521 DOI: 10.1093/ijnp/pyaa061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite its benefits, a major concern regarding antipsychotic treatment is its possible impact on the brain's structure and function. This study sought to explore the characteristics of white matter structural networks in chronic never-treated schizophrenia and those treated with clozapine or risperidone, and its potential association with cognitive function. METHODS Diffusion tensor imaging was performed on a unique sample of 34 schizophrenia patients treated with antipsychotic monotherapy for over 5 years (17 treated with clozapine and 17 treated with risperidone), 17 never-treated schizophrenia patients with illness duration over 5 years, and 27 healthy control participants. Graph theory and network-based statistic approaches were employed. RESULTS We observed a disrupted organization of white matter structural networks as well as decreased nodal and connectivity characteristics across the schizophrenia groups, mainly involving thalamus, prefrontal, and occipital regions. Alterations in nodal and connectivity characteristics were relatively milder in risperidone-treated patients than clozapine-treated patients and never-treated patients. Altered global network measures were significantly associated with cognitive performance levels. Structural connectivity as reflected by network-based statistic mediated the difference in cognitive performance levels between clozapine-treated and risperidone-treated patients. LIMITATIONS These results are constrained by the lack of random assignment to different types of antipsychotic treatment. CONCLUSION These findings provide insight into the white matter structural network deficits in patients with chronic schizophrenia, either being treated or untreated, and suggest white matter structural networks supporting cognitive function may benefit from antipsychotic treatment, especially in those treated with risperidone.
Collapse
Affiliation(s)
- Chunyan Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China,Correspondence: Dr Su Lui, MD, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China ()
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Abnormalities of effective connectivity and white matter microstructure in the triple network in patients with schizophrenia. Psychiatry Res 2020; 290:113019. [PMID: 32474067 DOI: 10.1016/j.psychres.2020.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
Disorganized communication among large-scale brain networks, especially in the salience network, default mode network and central executive network, have been consistently reported in schizophrenia (SZ) patients. However, abnormal patterns of the effective connectivity and abnormalities in the white matter of these networks remains unclear in patients with SZ. Fifty-six SZ patients and fifty-five healthy controls were enrolled in the present study and underwent resting state functional magnetic resonance and diffusion tensor imaging. Twelve main nodes within the triple networks were defined by independent components analysis. Effective connectivity between these main nodes was computed using Granger causality analysis. Voxel-based analysis of the diffusion tensor imaging data was conducted to explore white matter changes. The SZ patients showed abnormal effective connectivity between the anterior cingulate cortex and the dorsolateral prefrontal cortex. The abnormal white matter showed decreased fractional anisotropy localized in the bilateral anterior corona radiate and left superior long fasciculus in patients with SZ. These findings shed light on the importance of the triple network in the pathogenesis of SZ, which may facilitate the understanding of SZ.
Collapse
|
23
|
White T, Langen C, Schmidt M, Hough M, James A. Comparative Neuropsychiatry: White Matter Abnormalities in Children and Adolescents with Schizophrenia, Bipolar Affective Disorder, and Obsessive-Compulsive Disorder. Eur Psychiatry 2020; 30:205-13. [DOI: 10.1016/j.eurpsy.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
AbstractBackground:There is considerable evidence that white matter abnormalities play a key role in the pathogenesis of a number of major psychiatric disorders, including schizophrenia, bipolar affective disorder, and obsessive-compulsive disorder. Few studies, however, have compared white matter abnormalities early in the course of the illness.Methods:A total of 102 children and adolescents participated in the study, including 43 with early-onset schizophrenia, 13 with early-onset bipolar affective disorder, 17 with obsessive-compulsive disorder, and 29 healthy controls. Diffusion tensor imaging scans were obtained on all children and the images were assessed for the presence of non-spatially overlapping regions of white matter differences, a novel algorithm known as the pothole approach.Results:Patients with early-onset schizophrenia and early-onset bipolar affective disorder had a significantly greater number of white matter potholes compared to controls, but the total number of potholes did not differ between the two groups. The volumes of the potholes were significantly larger in patients with early-onset bipolar affective disorder compared to the early-onset schizophrenia group. Children and adolescents with obsessive-compulsive disorder showed no differences in the total number of white matter potholes compared to controls.Conclusions:White matter abnormalities in early-onset schizophrenia and bipolar affective disorder are more global in nature, whereas children and adolescents with obsessive-compulsive disorder do not show widespread differences in FA.
Collapse
|
24
|
Simões B, Vassos E, Shergill S, McDonald C, Toulopoulou T, Kalidindi S, Kane F, Murray R, Bramon E, Ferreira H, Prata D. Schizophrenia polygenic risk score influence on white matter microstructure. J Psychiatr Res 2020; 121:62-67. [PMID: 31770658 DOI: 10.1016/j.jpsychires.2019.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are highly heritable, share symptomatology, and have a polygenic architecture. The impact of recent polygenic risk scores (PRS) for psychosis, which combine multiple genome-wide associated risk variations, should be assessed on heritable brain phenotypes also previously associated with the illnesses, for a better understanding of the pathways to disease. We have recently reported on the current SZ PRS's ability to predict 1st episode of psychosis case-control status and general cognition. Herein, we test its penetrance on white matter microstructure, which is known to be impaired in SZ, in BD and their relatives, using 141 participants (including SZ, BP, relatives of SZ or BP patients, and healthy volunteers), and two white matter integrity indexes: fractional anisotropy (FA) and mean diffusivity (MD). No significant correlation between the SZ PRS and FA or MD was found, thus it remains unclear whether white matter changes are primarily associated with SZ genetic risk profiles.
Collapse
Affiliation(s)
- Beatriz Simões
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), NCBES Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Timothea Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Psychology, Bilkent University, Turkey
| | - Sridevi Kalidindi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Fergus Kane
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elvira Bramon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Mental Health Neurosciences Research Department, Division of Psychiatry, University College London, London, UK
| | - Hugo Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| |
Collapse
|
25
|
Matsuoka K, Morimoto T, Matsuda Y, Yasuno F, Taoka T, Miyasaka T, Yoshikawa H, Takahashi M, Kitamura S, Kichikawa K, Kishimoto T. Computer-assisted cognitive remediation therapy for patients with schizophrenia induces microstructural changes in cerebellar regions involved in cognitive functions. Psychiatry Res Neuroimaging 2019; 292:41-46. [PMID: 31521942 DOI: 10.1016/j.pscychresns.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Previous studies have reported that cognitive remediation therapy (CRT) improves cognitive deficits in patents with schizophrenia. However, few studies have focused on the underlying structural alterations in the brain following Vocational Cognitive Ability Training by the Japanese Cognitive Rehabilitation Program for Schizophrenia (VCAT-J). In this study, we analyzed changes in diffusion tensor imaging parameters in 31 patients with schizophrenia after 12 weeks of intervention consisting of standard treatment alone or standard treatment plus VCAT-J, in order to determine the effect of the latter on white matter microstructural plasticity. Cognitive function was evaluated using the Japanese version of the Brief Assessment of Cognition in Schizophrenia (BACS-J) scale. The CRT group exhibited significant improvements in verbal fluency and composite BACS-J scores, relative to the treatment-as-usual (TAU) group. In addition, the CRT group exhibited significantly increased fractional anisotropy (FA) values, along with significantly decreased radial (RD) and mean diffusivity (MD) values, in the posterior lobe of the left cerebellum. Changes in RD and MD values were negatively correlated with changes in BACS-J composite scores. These suggest that VCAT-J might mediate improvements in myelin sheath composition in the posterior lobe of the left cerebellum, which may have been associated with improvements in cognitive function.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan.
| | - Tsubasa Morimoto
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Yasuhiro Matsuda
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan; Department of Psychiatry, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, Aichi, Japan
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Soichiro Kitamura
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, Japan
| |
Collapse
|
26
|
Zong X, Hu M, Pantazatos SP, Mann JJ, Wang G, Liao Y, Liu ZC, Liao W, Yao T, Li Z, He Y, Lv L, Sang D, Tang J, Chen H, Zheng J, Chen X. A Dissociation in Effects of Risperidone Monotherapy on Functional and Anatomical Connectivity Within the Default Mode Network. Schizophr Bull 2019; 45:1309-1318. [PMID: 30508134 PMCID: PMC6811838 DOI: 10.1093/schbul/sby175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Respective changes in functional and anatomical connectivities of default mode network (DMN) after antipsychotic treatment have been reported. However, alterations in structure-function coupling after treatment remain unknown. We performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging in 42 drug-naive first-episode schizophrenia patients (FESP) both at baseline and after 8-weeks risperidone monotherapy, and in 38 healthy volunteers. Independent component analysis was used to assess voxel-wise DMN synchrony. A 3-step procedure was used to trace fiber paths between DMN components. Structure-function couplings were assessed by Pearson's correlations between mean fractional anisotropy and temporal correlation coefficients in major tracts of DMN. Pretreatment, FESP showed impaired functional connectivity in posterior cingulate cortex/precuneus (PCC/PCUN) and medial prefrontal cortex (mPFC), but no abnormalities in fibers connecting DMN components. After treatment, there were significant increases in functional connectivities of PCC/PCUN. Increases in functional connectivity between PCC/PCUN and mPFC correlated with improvement in positive symptoms. The structure-function coupling in tracts connecting PCC/PCUN and bilateral medial temporal lobes decreased after treatment. No alterations in DMN fiber integrity were detected. This combination of functional and anatomical findings in FESP contributes novel evidence related to neurobehavioral treatment effects. Increased functional connectivities between PCC/PCUN and mPFC may be treatment response biomarkers for positive symptoms. Increases in functional connectivities, no alterations in fiber integrity, combined with decreases in structural-functional coupling, suggest that DMN connectivities may be dissociated by modality after 8-week treatment. Major limitations of this study, however, include lack of repeat scans in healthy volunteers and control group of patients taking placebo or comparator antipsychotics.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Maolin Hu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Spiro P Pantazatos
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanhui Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Chun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liao
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tao Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Huafu Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjie Zheng
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,To whom correspondence should be addressed; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; tel: +86-731-85531571, fax: +86-731-85531571, e-mail:
| |
Collapse
|
27
|
Hamoda HM, Makhlouf AT, Fitzsimmons J, Rathi Y, Makris N, Mesholam-Gately RI, Wojcik JD, Goldstein J, McCarley RW, Seidman LJ, Kubicki M, Shenton ME. Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging Behav 2019; 13:472-481. [PMID: 29667043 DOI: 10.1007/s11682-018-9862-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The "cognitive dysmetria" hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Hesham M Hamoda
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - A T Makhlouf
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - J Fitzsimmons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Women's Health, Connors Center for Women's Health & Gender Biology; Departments of Psychiatry and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R W McCarley
- Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - L J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
28
|
Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res Neuroimaging 2019; 289:26-36. [PMID: 31132567 DOI: 10.1016/j.pscychresns.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of white matter (WM) and grey matter pathology in subjects at ultra-high risk of psychosis (UHR), although a limited number of diffusion-weighted magnetic resonance imaging (DW-MRI) and surface-based morphometry (SBM) studies have revealed anatomically inconsistent results. The present multimodal study applies tractography and SBM to analyze WM microstructure, whole-brain cortical anatomy, and potential interconnections between WM and grey matter abnormalities in UHR subjects. Thirty young male UHR patients and 30 healthy controls underwent DW-MRI and T1-weighted MRI. Fractional anisotropy; mean, radial, and axial diffusivity in 18 WM tracts; and vertex-based cortical thickness, area, and volume were analyzed. We found increased radial diffusivity in the left anterior thalamic radiation and reduced bilateral thickness across the frontal, temporal, and parietal cortices. No correlations between WM and grey matter abnormalities were identified. These results provide further evidence that WM microstructure abnormalities and cortical anatomical changes occur in the UHR state. Disruption of structural connectivity in the prefrontal-subcortical circuitry, likely caused by myelin pathology, and cortical thickness reduction affecting the networks presumably involved in processing and coordination of external and internal information streams may underlie the widespread deficits in neurocognitive and social functioning that are consistently reported in UHR subjects.
Collapse
Affiliation(s)
- Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia
| | - Tolibdzhon A Akhadov
- Department of Radiology, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Maria A Omelchenko
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Andrey O Rumyantsev
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Vasiliy G Kaleda
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
29
|
Multimodal classification of drug-naïve first-episode schizophrenia combining anatomical, diffusion and resting state functional resonance imaging. Neurosci Lett 2019; 705:87-93. [PMID: 31022433 DOI: 10.1016/j.neulet.2019.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/15/2023]
Abstract
The accurate diagnosis in the early stage of schizophrenia (SZ) is of great importance yet remains challenging. The classification between SZ and control groups based on magnetic resonance imaging (MRI) data using machine learning method could be helpful for SZ diagnosis. Increasing evidence showed that the combination of multimodal MRI data might further improve the classification performance However, medication effect has a profound influence on patients' anatomical and functional features and may reduce the classification efficiency. In this paper, we proposed a multimodal classification method to discriminate drug-naïve first-episode schizophrenia patients from healthy controls (HCs) by a combined structural MRI, diffusion tensor imaging (DTI) and resting state-functional MRI data. To reduce the feature dimension of multimodal data, we applied sparse coding (SC) for feature selection and multi-kernel support vector machine (SVM) for feature combination and classification. The best classification performance with the classification accuracy of 84.29% and area under the receiver operating characteristic (ROC) curve (AUC) of 81.64% was achieved when all modality data were combined. Interestingly, the identified functional markers were mainly found in default mode network (DMN) and cerebellar connections, while the structural markers were within limbic system and prefrontal-thalamo-hippocampal circuit.
Collapse
|
30
|
White matter abnormalities in depression: A categorical and phenotypic diffusion MRI study. NEUROIMAGE-CLINICAL 2019; 22:101710. [PMID: 30849644 PMCID: PMC6406626 DOI: 10.1016/j.nicl.2019.101710] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
Abstract
Mood depressive disorder is one of the most disabling chronic diseases with a high rate of everyday life disability that affects 350 million people around the world. Recent advances in neuroimaging have reported widespread structural abnormalities, suggesting a dysfunctional frontal-limbic circuit involved in the pathophysiological mechanisms of depression. However, a variety of different white matter regions has been implicated and is sought to suffer from lack of reproducibility of such categorical-based biomarkers. These inconsistent results might be attributed to various factors: actual categorical definition of depression as well as clinical phenotype variability. In this study, we 1/ examined WM changes in a large cohort (114 patients) compared to a healthy control group and 2/ sought to identify specific WM alterations in relation to specific depressive phenotypes such as anhedonia (i.e. lack of pleasure), anxiety and psychomotor retardation –three core symptoms involved in depression. Consistent with previous studies, reduced white matter was observed in the genu of the corpus callosum extending to the inferior fasciculus and posterior thalamic radiation, confirming a frontal-limbic circuit abnormality. Our analysis also reported other patterns of increased fractional anisotropy and axial diffusivity as well as decreased apparent diffusion coefficient and radial diffusivity in the splenium of the corpus callosum and posterior limb of the internal capsule. Moreover, a positive correlation between FA and anhedonia was found in the superior longitudinal fasciculus as well as a negative correlation in the cingulum. Then, the analysis of the anxiety and diffusion metric revealed that increased anxiety was associated with greater FA values in genu and splenium of corpus callosum, anterior corona radiata and posterior thalamic radiation. Finally, the motor retardation analysis showed a correlation between increased Widlöcher depressive retardation scale scores and reduced FA in the body and genu of the corpus callosum, fornix, and superior striatum. Through this twofold approach (categorical and phenotypic), this study has underlined the need to move forward to a symptom-based research area of biomarkers, which help to understand the pathophysiology of mood depressive disorders and to stratify precise phenotypes of depression with targeted therapeutic strategies. Mood depressive disorder is one of the most disabling chronic disease. Past studies of diffusion analysis had found inconsistent results. We analyzed white matter integrity in a large cohort of depressed patients. We conducted both categorical and dimensional approaches. In the future, these biomarkers could help to develop new therapeutic strategies.
Collapse
|
31
|
Liu J, Yao L, Zhang W, Deng W, Xiao Y, Li F, Sweeney JA, Gong Q, Lui S. Dissociation of fractional anisotropy and resting-state functional connectivity alterations in antipsychotic-naive first-episode schizophrenia. Schizophr Res 2019; 204:230-237. [PMID: 30121186 DOI: 10.1016/j.schres.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
Altered resting-state functional connectivity (rsFC) has been demonstrated between multiple brain regions in schizophrenia. However, whether these alterations are related to fractional anisotropy (FA) alterations in pathways that connect regions with altered rsFC remains unknown. In this study, diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed with 181 antipsychotic-naïve first-episode schizophrenia patients and 173 matched healthy controls. FA was measured using tensor-guided tractography in identifiable pathways between selected pairs of brain regions with altered rsFC as determined by prior meta-analysis. Compared with controls, patients showed significantly decreased FA between right caudate nucleus and right pallidum, right caudate nucleus and right putamen, and right hippocampus and right thalamus. Decreased rsFC was observed between right pallidum and right thalamus, and right insula and right superior temporal gyrus. No significant correlation was observed between FA and rsFC. FA between right caudate nucleus and right putamen was inversely correlated with negative symptoms while rsFC between right pallidum and right thalamus was inversely correlated with positive symptoms. The lack of robust correlations between FA and rsFC and no overlap of these abnormalities indicate that regional rsFC alterations in the early course of schizophrenia are not primarily associated with FA alterations. The observation that positive and negative symptoms are related to different functional and structural disturbances is consistent with this dissociation, and with prior work suggests that different pathophysiological mechanism may underlie positive and negative symptoms in the early course of schizophrenia.
Collapse
Affiliation(s)
- Jieke Liu
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Li
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res 2019; 204:238-244. [PMID: 30177343 DOI: 10.1016/j.schres.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Potential effects of initiating acute antipsychotic treatment on white matter (WM) microstructure in schizophrenia patients remain poorly characterized. Thirty-five drug-naïve first-episode schizophrenia patients were scanned before and after six weeks of treatment with second-generation antipsychotic medications. Nineteen demographically matched healthy subjects were scanned twice over the same time interval. Tract-based spatial statistics was used to test for changes in WM microstructural integrity after treatment. Widespread fractional anisotropy (FA) decrease was found in patients after antipsychotic treatment in bilateral posterior corona radiata, anterior corona radiata, superior corona radiata and posterior thalamic radiation, left posterior limb of the internal capsule, and mid-body of the corpus callosum. These effects appeared to result primarily from decreased axial diffusivity. These findings suggest an effect on brain white matter from acute antipsychotic therapy in schizophrenia.
Collapse
|
33
|
Micro- and Macrostructural White Matter Integrity in Never-Treated and Currently Unmedicated Patients With Schizophrenia and Effects of Short-Term Antipsychotic Treatment. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:462-471. [PMID: 30852126 DOI: 10.1016/j.bpsc.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Schizophrenia is associated with progressive white matter changes, but it is unclear whether antipsychotic medications contribute to these. Our objective was to characterize effects of short-term treatment with risperidone on white matter diffusion indices. METHODS We recruited 42 patients with schizophrenia (30 never treated and 12 currently untreated) and 42 matched healthy control subjects in this prospective case-control neuroimaging study. Patients received a 6-week trial of risperidone. Using diffusion tensor imaging, we assessed microstructural (fractional anisotropy, mean diffusivity, and radial diffusivity) and macrostructural (radial fiber trophy) white matter integrity deficits in unmedicated patients compared with control subjects and change in white matter integrity in patients before and after antipsychotic treatment (mean risperidone dose at end point was 3.73 ± 1.72 mg). RESULTS At baseline, fractional anisotropy was decreased in the left medial temporal white matter (cluster extent: 123 voxels; Montreal Neurological Institute peak coordinates: x = -51, y = -44, z = -7; α < .05), and mean diffusivity was increased in the fusiform/lingual gyrus white matter extending to the hippocampal part of the cingulum (cluster extent: 185 voxels; peak coordinates: x = -27, y = -49, z = 2; α < .04) in patients compared with control subjects. Radial diffusivity and macrostructure were not abnormal. None of the diffusion indices showed a significant change after 6 weeks of treatment with both voxelwise and whole-brain white matter analyses. CONCLUSIONS We demonstrate microstructural white matter integrity abnormalities in the absence of macrostructural impairment in unmedicated patients with primarily early-stage schizophrenia. In our data, we found no significant white matter changes after short-term treatment with risperidone.
Collapse
|
34
|
Mamah D, Ji A, Rutlin J, Shimony JS. White matter integrity in schizophrenia and bipolar disorder: Tract- and voxel-based analyses of diffusion data from the Connectom scanner. NEUROIMAGE-CLINICAL 2018; 21:101649. [PMID: 30639179 PMCID: PMC6411967 DOI: 10.1016/j.nicl.2018.101649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 11/22/2022]
Abstract
Background Diffusion imaging abnormalities have been associated with schizophrenia (SZ) and bipolar disorder (BD), indicating impaired structural connectivity. Newer methods permit the automated reconstruction of major white matter tracts from diffusion-weighted MR images in each individual's native space. Using high-definition diffusion data from SZ and BP subjects, we investigated brain white matter integrity using both an automated tract-based and voxel-based methods. Methods Using a protocol matched to the NIH (Young-Adult) Human Connectome Project (and collected on the same customized ‘Connectom’ scanner), diffusion scans were acquired from 87 total participants (aged 18–30), grouped as SZ (n = 24), BD (n = 33) and healthy controls (n = 30). Fractional anisotropy (FA) of eighteen white matter tracks were analyzed using the TRACULA software. Voxel-wise statistical analyses of diffusion data was carried out using the tract-based spatial statistics (TBSS) software. TRACULA group effects and clinical correlations were investigated using analyses of variance and multiple regression. Results TRACULA analysis identified a trend towards lower tract FA in SZ patients, most significantly in the left anterior thalamic radiation (ATR; p = .04). TBSS results showed significantly lower FA voxels bilaterally within the cerebellum and unilaterally within the left ATR, posterior thalamic radiation, corticospinal tract, and superior longitudinal fasciculus in SZ patients compared to controls (FDR corrected p < .05). FA in BD patients did not significantly differ from controls using either TRACULA or TBSS. Multiple regression showed FA of the ATR as predicting chronic mania (p = .0005) and the cingulum-angular bundle as predicting recent mania (p = .02) in patients. TBSS showed chronic mania correlating with FA voxels within the left ATR and corpus callosum. Conclusions White matter abnormality in SZ varies in severity across different white matter tract regions. Our results indicate that voxel-based analysis of diffusion data is more sensitive than tract-based analysis in identifying such abnormalities. Absence of white matter abnormality in BD may be related to medication effects and age. Our study investigated white matter integrity in 87 young schizophrenia, bipolar disorder and control subjects with a tract-based (TRACULA) and a voxel-based (TBSS) approach, using high-definition diffusion imaging data obtained from the Human Connectome Project ‘Connectom’ scanner. TRACULA evaluated fractional anisotropy (FA) from 18 white matter tracts. TBSS evaluated regional white matter FA. TRACULA identified a trend towards lower tract FA in schizophrenia subjects across multiple tracts. TBSS results showed mainly unilaterally decreased FA voxels in schizophrenia subjects. FA in bipolar patients did not significantly differ from controls with either method. With TRACULA, multiple regression showed that anterior thalamic radiation FA predicted chronic affectivity and cingulum-angular bundle FA predicted recent mania in patients. With TBSS, chronic mania correlated with FA voxels within the left anterior thalamic radiation and corpus callosum.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.
| | - Andrew Ji
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S Shimony
- Department Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
35
|
Altered white matter connectivity in patients with schizophrenia: An investigation using public neuroimaging data from SchizConnect. PLoS One 2018; 13:e0205369. [PMID: 30300425 PMCID: PMC6177186 DOI: 10.1371/journal.pone.0205369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have produced extensive evidence on white matter abnormalities in schizophrenia (SZ). However, optimum consistency and reproducibility have not been achieved, and reported low white matter tract integrity in patients with SZ varies between studies. A whole-brain imaging study with a large sample size is needed. This study aimed to investigate white matter integrity in the corpus callosum and connections between regions of interests (ROIs) in the same hemisphere in 122 patients with SZ and 129 healthy controls with public neuroimaging data from SchizConnect. For each diffusion-weighted image (DWI), two-tensor full-brain tractography was performed; DWIs were parcellated by processing and registering T1 images with FreeSurfer and Advanced Normalization Tools. White matter query language was used to extract white matter fiber tracts. We evaluated group differences in means of diffusion measures between the patients and controls, and correlations of diffusion measures with the severity of clinical symptoms and cognitive impairment in the patients using the Positive and Negative Syndrome Scale (PANSS), a letter-number sequencing (LNS) test, vocabulary test, letter fluency test, category fluency test, and trail-making test, part A. To correct for multiple comparisons, a false discovery rate of q < 0.05 was applied. In patients with SZ, we observed significant radial diffusivity (RD) and trace (TR) increases in left thalamo-occipital tracts and the right uncinate fascicle, and a significant RD increase in the right middle longitudinal fascicle (MDLF) and the right superior longitudinal fascicle ii. Correlations were present between TR of left thalamo-occipital tracts, and the letter fluency test and the LNS test, and RD in the right MDLF and PANSS positive subscale score. However, these correlations were not significant after correction for multiple comparisons. These results indicated widespread white matter fiber tract abnormalities in patients with SZ, contributing to SZ pathophysiology.
Collapse
|
36
|
Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, Semeralul M, Daskalakis ZJ. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain Imaging Behav 2018; 11:1836-1848. [PMID: 27915397 DOI: 10.1007/s11682-016-9657-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SCZ) and obsessive-compulsive disorder (OCD) are psychiatric disorders with abnormalities in white matter structure. These disorders share high comorbidity and family history of OCD is a risk factor for SCZ which suggests some shared neurobiology. White matter was examined using diffusion tensor imaging in relativity large samples of SCZ (N = 48), OCD (N = 38) and non-psychiatric controls (N = 45). Fractional anisotropy (FA) was calculated and tract based spatial statistics were used to compare groups. In a whole brain analysis, SCZ and OCD both showed small FA reductions relative to controls in the corpus callosum. Both SCZ and OCD showed accelerated reductions in FA with age; specifically in the left superior longitudinal fasciculus in OCD, while the SCZ group demonstrated a more widespread pattern of FA reduction. Patient groups did not differ from each other in total FA or age effects in any regions. A general linear model using 13 a-priori regions of interest showed marginal group, group*gender, and group*age interactions. When OCD and SCZ groups were analyzed together, these marginal effects became significant (p < 0.05), suggesting commonalities exist between these patient groups. Overall, our results demonstrate a similar pattern of accelerated white matter decline with age and greater white matter deficit in females in OCD and SCZ, with overlap in the spatial pattern of deficits. There was no evidence for statistical differences in overall white matter between OCD and SCZ. Taken together, the results support the notion of shared neurobiology in SCZ and OCD.
Collapse
Affiliation(s)
- Colin Hawco
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada. .,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Natasha Radhu
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - David Rotenberg
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Felicity A Backhouse
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mawahib Semeralul
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Unit 4-1, Office 125, 1001 Queen Street West, Toronto, ON, M6J 1H4, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Corpus callosum volumes in the 5 years following the first-episode of schizophrenia: Effects of antipsychotics, chronicity and maturation. NEUROIMAGE-CLINICAL 2018; 18:932-942. [PMID: 29876278 PMCID: PMC5988462 DOI: 10.1016/j.nicl.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023]
Abstract
Background White matter (WM) structural changes, particularly affecting the corpus callosum (CC), seem to be critically implicated in psychosis. Whether such abnormalities are progressive or static is still a matter of debate in schizophrenia research. Aberrant maturation processes might also influence the longitudinal trajectory of age-related CC changes in schizophrenia patients. We investigated whether patients with first-episode schizophrenia-related psychoses (FESZ) would present longitudinal CC and whole WM volume changes over the 5 years after disease onset. Method Thirty-two FESZ patients and 34 controls recruited using a population-based design completed a 5-year assessment protocol, including structural MRI scanning at baseline and follow-up. The linear effects of disease duration, clinical outcome and antipsychotic (AP) use over time on WM and CC volumes were studied using both voxelwise and volume-based morphometry analyses. We also examined maturation/aging abnormalities through cross-sectional analyses of age-related trajectories of total WM and CC volume changes. Results No interaction between diagnosis and time was observed, and clinical outcome did not influence CC volumes in patients. On the other hand, FESZ patients continuously exposed to AP medication showed volume increase over time in posterior CC. Curve-estimation analyses revealed a different aging pattern in FESZ patients versus controls: while patients displayed a linear decline of total WM and anterior CC volumes with age, a non-linear trajectory of total WM and relative preservation of CC volumes were observed in controls. Conclusions Continuous AP exposure can influence CC morphology during the first years after schizophrenia onset. Schizophrenia is associated with an abnormal pattern of total WM and anterior CC aging during non-elderly adulthood, and this adds complexity to the discussion on the static or progressive nature of structural abnormalities in psychosis.
Collapse
Key Words
- AP, antipsychotics
- CC, corpus callosum
- Corpus callosum
- FEP, first episode of psychosis
- FESZ, First-episode of schizophrenia-related psychoses
- GM, gray matter
- MEM, mixed-effects model
- Magnetic resonance imaging
- Psychosis
- ROI, region-of-interest
- Schizophrenia
- VBM, voxel-based morphometry
- VolBM, volume-based morphometry
- WM, white matter
- White matter
Collapse
|
38
|
Joo SW, Chon MW, Rathi Y, Shenton ME, Kubicki M, Lee J. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia. Schizophr Res 2018; 192:159-166. [PMID: 28506703 DOI: 10.1016/j.schres.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. METHOD Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). RESULTS Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. CONCLUSION Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sung Woo Joo
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Pec O, Bob P, Simek J, Raboch J. Dissociative states in borderline personality disorder and their relationships to psychotropic medication. Neuropsychiatr Dis Treat 2018; 14:3253-3257. [PMID: 30538483 PMCID: PMC6260192 DOI: 10.2147/ndt.s179091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND According to recent data, dissociation may play an important role in borderline personality disorder (BPD), nevertheless specific influences of psychotropic medication on dissociative symptoms in BPD and their therapeutic indications are largely unknown. The purpose of this study was to assess relationships of dissociative symptoms in BPD patients with levels of psychotropic medication and compare these results with a subgroup of patients with schizophrenia. MATERIALS AND METHODS In this study, we investigated 52 BPD patients and compared the results with a control group of 36 schizophrenia patients. In all participants, we assessed actual day doses of antipsychotic medication in chlorpromazine equivalents and antidepressant medication in fluoxetine equivalents. Dissociative symptoms were measured by Dissociative Experiences Scale (DES), and other psychopathological symptoms were measured using Health of the Nation Outcome Scales. RESULTS Results indicate that dissociative symptoms measured by DES were significantly correlated with antipsychotic medication (Spearman R=0.45, P<0.01) in chlorpromazine equivalents and antidepressant medication in fluoxetine equivalents (0.36, P<0.01). These relationships between medication and dissociative symptoms were not found in the control group of schizophrenia patients. CONCLUSION The results suggest that levels of antipsychotic medication and antidepressant medication are significantly associated with dissociative symptoms in BPD but not in schizophrenia.
Collapse
Affiliation(s)
- Ondrej Pec
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, .,Psychotherapeutic and Psychosomatic Clinic ESET, Prague, Czech Republic
| | - Petr Bob
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic, .,Central European Institute of Technology, Faculty of Medicine, Masaryk University, Brno, Czech Republic,
| | - Jakub Simek
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic,
| | - Jiri Raboch
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic,
| |
Collapse
|
40
|
Vitolo E, Tatu MK, Pignolo C, Cauda F, Costa T, Ando' A, Zennaro A. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2017; 270:8-21. [PMID: 28988022 DOI: 10.1016/j.pscychresns.2017.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions.
Collapse
Affiliation(s)
- Enrico Vitolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Mona Karina Tatu
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Claudia Pignolo
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Franco Cauda
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy; GCS-fMRI, Koelliker Hospital, Corso Galileo Ferraris 247/255, 10134 Turin, TO, Italy.
| | - Tommaso Costa
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Agata Ando'
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| | - Alessandro Zennaro
- Department of Psychology, University of Turin, Via Po 14, 10123 Turin, TO, Italy.
| |
Collapse
|
41
|
Matsos A, Loomes M, Zhou I, Macmillan E, Sabel I, Rotziokos E, Beckwith W, Johnston I. Chemotherapy-induced cognitive impairments: White matter pathologies. Cancer Treat Rev 2017; 61:6-14. [DOI: 10.1016/j.ctrv.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
42
|
Rae CL, Davies G, Garfinkel SN, Gabel MC, Dowell NG, Cercignani M, Seth AK, Greenwood KE, Medford N, Critchley HD. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis. Biol Psychiatry 2017; 82:716-725. [PMID: 28359565 DOI: 10.1016/j.biopsych.2017.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. METHODS Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. RESULTS Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. CONCLUSIONS Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to psychosis.
Collapse
Affiliation(s)
- Charlotte L Rae
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton; Division of Neuroscience, University of Sussex, Falmer, Brighton.
| | - Geoff Davies
- Brighton & Sussex Medical School, School of Psychology, University of Sussex, Falmer, Brighton; Sussex Partnership National Health Service Foundation Trust, United Kingdom
| | - Sarah N Garfinkel
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton; Division of Neuroscience, University of Sussex, Falmer, Brighton
| | - Matt C Gabel
- Division of Neuroscience, University of Sussex, Falmer, Brighton
| | | | - Mara Cercignani
- Division of Neuroscience, University of Sussex, Falmer, Brighton
| | - Anil K Seth
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton; School of Engineering & Informatics, University of Sussex, Falmer, Brighton
| | - Kathryn E Greenwood
- Brighton & Sussex Medical School, School of Psychology, University of Sussex, Falmer, Brighton; Sussex Partnership National Health Service Foundation Trust, United Kingdom
| | - Nick Medford
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton; Division of Neuroscience, University of Sussex, Falmer, Brighton; Sussex Partnership National Health Service Foundation Trust, United Kingdom
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton; Division of Neuroscience, University of Sussex, Falmer, Brighton; Sussex Partnership National Health Service Foundation Trust, United Kingdom
| |
Collapse
|
43
|
Serpa MH, Doshi J, Erus G, Chaim-Avancini TM, Cavallet M, van de Bilt MT, Sallet PC, Gattaz WF, Davatzikos C, Busatto GF, Zanetti MV. State-dependent microstructural white matter changes in drug-naïve patients with first-episode psychosis. Psychol Med 2017; 47:2613-2627. [PMID: 28826419 DOI: 10.1017/s0033291717001015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) microstructural abnormalities in schizophrenia. Whether or not such alterations could vary depending on clinical status (i.e. acute psychosis v. remission) remains to be investigated. METHODS Twenty-five treatment-naïve first-episode psychosis (FEP) patients and 51 healthy-controls (HC) underwent MRI scanning at baseline. Twenty-one patients were re-scanned as soon as they achieved sustained remission of symptoms; 36 HC were also scanned twice. Rate-of-change maps of longitudinal DTI changes were calculated for in order to examine WM alterations associated with changes in clinical status. We conducted voxelwise analyses of fractional anisotropy (FA) and trace (TR) maps. RESULTS At baseline, FEP presented reductions of FA in comparison with HC [p < 0.05, false-discovery rate (FDR)-corrected] affecting fronto-limbic WM and associative, projective and commissural fasciculi. After symptom remission, patients showed FA increase over time (p < 0.001, uncorrected) in some of the above WM tracts, namely the right anterior thalamic radiation, right uncinate fasciculus/inferior fronto-occipital fasciculus, and left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. We also found significant correlations between reductions in PANSS scores and FA increases over time (p < 0.05, FDR-corrected). CONCLUSIONS WM changes affecting brain tracts critical to the integration of perceptual information, cognition and emotions are detectable soon after the onset of FEP and may partially reverse in direct relation to the remission of acute psychotic symptoms. Our findings reinforce the view that WM abnormalities in brain tracts are a key neurobiological feature of acute psychotic disorders, and recovery from such WM pathology can lead to amelioration of symptoms.
Collapse
Affiliation(s)
- M H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - J Doshi
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - G Erus
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - T M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M Cavallet
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M T van de Bilt
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - P C Sallet
- Laboratory of Neuroscience, LIM-27,Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Instituto de Psiquiatria,3o andar, LIM-27,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - W F Gattaz
- Laboratory of Neuroscience, LIM-27,Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Instituto de Psiquiatria,3o andar, LIM-27,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - C Davatzikos
- Section of Biomedical Image Analysis (SBIA), Department of Radiology,University of Pennsylvania,3600 Market St,Suite 380, Philadelphia, PA,USA
| | - G F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| | - M V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21),Department and Institute of Psychiatry,Faculty of Medicine,University of São Paulo, Centro de Medicina Nuclear,3o andar, LIM-21,Rua Dr. Ovídio Pires de Campos,s/n, São Paulo, SP,Brazil
| |
Collapse
|
44
|
Lan MJ, Rubin-Falcone H, Motiwala F, Chen Y, Stewart JW, Hellerstein DJ, Mann JJ, McGrath PJ. White matter tract integrity is associated with antidepressant response to lurasidone in bipolar depression. Bipolar Disord 2017; 19:444-449. [PMID: 28796415 PMCID: PMC5657395 DOI: 10.1111/bdi.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Patients with bipolar disorder spend the most time in the depressed phase, and that phase is associated with the most morbidity and mortality. Treatment of bipolar depression lacks a test to determine who will respond to treatment. White matter disruptions have been found in bipolar disorder. Previous reports suggest that white matter disruptions may be associated with resistance to antidepressant medication, but this has never been investigated in a prospective study using a Food and Drug Administration (FDA)-approved medication. METHODS Eighteen subjects with bipolar disorder who were in a major depressive episode and off all medications were recruited. Magnetic resonance imaging was acquired using a 64-direction diffusion tensor imaging sequence on a 3T scanner. Subjects were treated with 8 weeks of open-label lurasidone. The Montgomrey-Asberg Depression Rating Scale (MADRS) was completed weekly. Tract-Based Spatial Statistics were utilized to perform a regression analysis of fractional anisotropy (FA) data with treatment outcome as assessed by percent change in MADRS as a regressor while controlling for age and sex, using a threshold of P (threshold-free cluster enhancement-corrected) <.05. RESULTS FA was positively correlated with antidepressant treatment response in multiple regions of the mean FA skeleton bilaterally, including tracts in the frontal and parietal lobes. CONCLUSIONS Greater disruptions in the white matter tracts in bipolar disorder were associated with poorer antidepressant response to lurasidone. The disruptions may potentially indicate treatment with a different antidepressant medication class. These results are limited by the open-label study design, sample size and lack of a healthy control group.
Collapse
Affiliation(s)
- MJ Lan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute
| | - H Rubin-Falcone
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Depression Evaluation Service, New York State Psychiatric Institute, New York, NY USA
| | - F Motiwala
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute
| | - Ying Chen
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Depression Evaluation Service, New York State Psychiatric Institute, New York, NY USA
| | - JW Stewart
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Depression Evaluation Service, New York State Psychiatric Institute, New York, NY USA
| | - DJ Hellerstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Depression Evaluation Service, New York State Psychiatric Institute, New York, NY USA
| | - JJ Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute
| | - PJ McGrath
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA,Depression Evaluation Service, New York State Psychiatric Institute, New York, NY USA
| |
Collapse
|
45
|
Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 2017; 51:500-508. [PMID: 28415873 DOI: 10.1177/0004867417699473] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Schizophrenia is a devastating mental disorder accompanied by aberrant structural brain connectivity. The question whether schizophrenia is a progressive brain disorder is yet to be resolved. Thus, it is not clear when these structural alterations occur and how they develop over time. METHODS In our selective review, we summarized recent findings from longitudinal magnetic resonance imaging studies investigating structural brain alterations and its impact on clinical outcome at different stages of the illness: (1) subjects at ultra-high risk of developing psychosis, (2) patients with a first episode psychosis, and (3) chronically ill patients. Moreover, we reviewed studies examining the longitudinal effects of medication on brain structure in patients with schizophrenia. RESULTS (1) Studies from pre-clinical stages to conversion showed a more pronounced cortical gray matter loss (i.e. superior temporal and inferior frontal regions) in those individuals who later made transition to psychosis. (2) Studies investigating patients with a first episode psychosis revealed a decline in multiple gray matter regions (i.e. frontal regions and thalamus) over time as well as progressive cortical thinning in the superior and inferior frontal cortex. (3) Studies focusing on patients with chronic schizophrenia showed that gray matter decreased to a greater extent (i.e. frontal and temporal areas, thalamus, and cingulate cortices)-especially in poor-outcome patients. Very few studies reported effects on white matter microstructure in the longitudinal course of the illness. CONCLUSION There is adequate evidence to suggest that schizophrenia is associated with progressive gray matter abnormalities particularly during the initial stages of illness. However, causal relationships between structural changes and illness course-especially in chronically ill patients-should be interpreted with caution. Findings might be confounded by longer periods of treatment and higher doses of antipsychotics or epiphenomena related to the illness.
Collapse
Affiliation(s)
- Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
46
|
Abnormal Trajectory of Intracortical Myelination in Schizophrenia Implicates White Matter in Disease Pathophysiology and the Therapeutic Mechanism of Action of Antipsychotics. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:454-462. [PMID: 29735155 DOI: 10.1016/j.bpsc.2017.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Postmortem and imaging studies provide converging evidence that the frontal lobe myelination trajectory is dysregulated in schizophrenia (SZ) and suggest that early in treatment, antipsychotic medications increase intracortical myelin (ICM). We used magnetic resonance imaging to examine whether the ICM trajectory in SZ is dysregulated and altered by antipsychotic treatment. METHODS We examined 93 subjects with SZ (64 men and 29 women) taking second-generation oral antipsychotics with medication exposures of 0-333 months in conjunction with 80 healthy control subjects (52 men and 28 women). Frontal lobe ICM volume was estimated using a novel dual contrast magnetic resonance imaging method that combines two images that track different tissue components. RESULTS When plotted against oral antipsychotic exposure duration, ICM of subjects with SZ was higher as a function of medication exposure during the first year of treatment but declined thereafter. In the age range examined, ICM of subjects with SZ was lower with increased age, while ICM of healthy control subjects was not. CONCLUSIONS In adults with SZ, the relationship between length of exposure to oral second-generation antipsychotics and ICM was positive during the first year of treatment but was negative after this initial period, consistent with suboptimal later adherence after initial adherence. This ICM trajectory resembles clinically observed antipsychotic response trajectory with high rates of remission in the first year followed by progressively lower response rates. The results support postmortem evidence that SZ pathophysiology involves ICM deficits and suggest that correcting these deficits may be an important mechanism of action for antipsychotics.
Collapse
|
47
|
Klauser P, Baker ST, Cropley VL, Bousman C, Fornito A, Cocchi L, Fullerton JM, Rasser P, Schall U, Henskens F, Michie PT, Loughland C, Catts SV, Mowry B, Weickert TW, Shannon Weickert C, Carr V, Lenroot R, Pantelis C, Zalesky A. White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs. Schizophr Bull 2017; 43:425-435. [PMID: 27535082 PMCID: PMC5605265 DOI: 10.1093/schbul/sbw100] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
White matter abnormalities associated with schizophrenia have been widely reported, although the consistency of findings across studies is moderate. In this study, neuroimaging was used to investigate white matter pathology and its impact on whole-brain white matter connectivity in one of the largest samples of patients with schizophrenia. Fractional anisotropy (FA) and mean diffusivity (MD) were compared between patients with schizophrenia or schizoaffective disorder (n = 326) and age-matched healthy controls (n = 197). Between-group differences in FA and MD were assessed using voxel-based analysis and permutation testing. Automated whole-brain white matter fiber tracking and the network-based statistic were used to characterize the impact of white matter pathology on the connectome and its rich club. Significant reductions in FA associated with schizophrenia were widespread, encompassing more than 40% (234ml) of cerebral white matter by volume and involving all cerebral lobes. Significant increases in MD were also widespread and distributed similarly. The corpus callosum, cingulum, and thalamic radiations exhibited the most extensive pathology according to effect size. More than 50% of cortico-cortical and cortico-subcortical white matter fiber bundles comprising the connectome were disrupted in schizophrenia. Connections between hub regions comprising the rich club were disproportionately affected. Pathology did not differ between patients with schizophrenia and schizoaffective disorder and was not mediated by medication. In conclusion, although connectivity between cerebral hubs is most extensively disturbed in schizophrenia, white matter pathology is widespread, affecting all cerebral lobes and the cerebellum, leading to disruptions in the majority of the brain's fiber bundles.
Collapse
Affiliation(s)
- Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia;,Lausanne University Hospital, Department of Psychiatry, Prilly, Switzerland
| | - Simon T. Baker
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Vanessa L. Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia
| | - Frans Henskens
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Brain and Mental Health Research, University of Newcastle, Waratah, New South Wales, Australia;,Hunter Medical Research Institute, Newcastle, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Carmel Loughland
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane, Qeensland, Australia
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia;,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas W. Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan Carr
- Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia;,Department of Psychiatry, Monash University, Clayton, Victoria, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Randwick, New South Wales, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia;,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia;,Schizophrenia Research Institute, Randwick, New South Wales, Australia;,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| |
Collapse
|
48
|
Pan E, Ates MA, Algul A, Aytekin A, Basoglu C, Ebrinc S, Cetin M, Kose S. Fractional Anisotropic Changes of Corpus Callosum Associated with Antipsychotic Treatment in First-Episode Antipsychotic Drug-Naive Patients with Schizophrenia. ACTA ACUST UNITED AC 2017. [DOI: 10.5455/bcp.20160319021659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Erdal Pan
- Department of Psychiatry, Eskisehir Military Hospital, Eskisehir—Turkey
| | - Mehmet Alpay Ates
- Department of Psychiatry, Gulhane Military Medical Academy Haydarpasa Research and Training Hospital, Istanbul - Turkey
| | - Ayhan Algul
- Department of Psychiatry, Gulhane Military Medical Academy Haydarpasa Research and Training Hospital, Istanbul - Turkey
| | - Aykut Aytekin
- Department of Radiology, Balikesir Military Hospital, Balıkesir - Turkey
| | - Cengiz Basoglu
- Department of Psychiatry, Gulhane Military Medical Academy Haydarpasa Research and Training Hospital, Istanbul - Turkey
| | - Servet Ebrinc
- Department of Psychiatry, Gulhane Military Medical Academy Haydarpasa Research and Training Hospital, Istanbul - Turkey
| | - Mesut Cetin
- Department of Psychiatry, Gulhane Military Medical Academy Haydarpasa Research and Training Hospital, Istanbul - Turkey
| | - Samet Kose
- H. Kalyoncu University, Department of Psychology, Gaziantep - Turkey
- University of Texas Medical School of Houston, TX, USA and Center for Neurobehavioral Research on Addictions, Houston, TX, USA
| |
Collapse
|
49
|
Stedehouder J, Kushner SA. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry 2017; 22:4-12. [PMID: 27646261 PMCID: PMC5414080 DOI: 10.1038/mp.2016.147] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30-120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- J Stedehouder
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Domen P, Peeters S, Michielse S, Gronenschild E, Viechtbauer W, Roebroeck A, Os JV, Marcelis M. Differential Time Course of Microstructural White Matter in Patients With Psychotic Disorder and Individuals at Risk: A 3-Year Follow-up Study. Schizophr Bull 2017; 43:160-170. [PMID: 27190279 PMCID: PMC5216846 DOI: 10.1093/schbul/sbw061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Although widespread reduced white matter (WM) integrity is a consistent finding in cross-sectional diffusion tensor imaging (DTI) studies of schizophrenia, little is known about the course of these alterations. This study examined to what degree microstructural WM alterations display differential trajectories over time as a function of level of psychosis liability. METHODS Two DTI scans with a 3-year time interval were acquired from 159 participants (55 patients with a psychotic disorder, 55 nonpsychotic siblings and 49 healthy controls) and processed with tract-based spatial statistics. The mean fractional anisotropy (FA) change over time was calculated. Main effects of group, as well as group × region interactions in the model of FA change were examined with multilevel (mixed-effects) models. RESULTS Siblings revealed a significant mean FA decrease over time compared to controls (B = -0.004, P = .04), resulting in a significant sibling-control difference at follow-up (B = -0.007, P = .03). Patients did not show a significant change over time, but their mean FA was lower than controls both at baseline and at follow-up. A significant group × region interaction (χ2 = 105.4, P = .01) revealed group differences in FA change in the right cingulum, left posterior thalamic radiation, right retrolenticular part of the internal capsule, and the right posterior corona radiata. CONCLUSION Whole brain mean FA remained stable over a 3-year period in patients with psychotic disorder and declined over time in nonaffected siblings, so that at follow-up both groups had lower FA with respect to controls. The results suggest that liability for psychosis may involve a process of WM alterations.
Collapse
Affiliation(s)
- Patrick Domen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands;
| | - Sanne Peeters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ed Gronenschild
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| |
Collapse
|