1
|
Damme KSF, Ristanovic I, Mittal VA. Reduced hippocampal volume unmasks distinct impacts of cumulative adverse childhood events (ACEs) on psychotic-like experiences in late childhood and early adolescence. Psychoneuroendocrinology 2024; 169:107149. [PMID: 39128397 DOI: 10.1016/j.psyneuen.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Stress is associated with increased vulnerability to psychosis, yet the mechanisms that contribute to these effects are poorly understood. Substantial literature has linked reduced hippocampal volume to both psychosis risk and early life stress. However, less work has explored the direct and indirect effects of stress on psychosis through the hippocampus in preclinical samples- when vulnerability for psychosis is accumulating. The current paper leverages the Adolescent Brain Cognitive Development (ABCD) Study sample to examine whether objective psychosocial stressors, specifically adverse childhood experiences (ACE), are linked to vulnerability for psychosis, measured by psychotic-like experiences (PLE) severity, in late childhood and early adolescence, both directly and indirectly through the deleterious effects of stress on the hippocampus. Baseline data from 11,728 individuals included previously examined and validated items to assess ACE exposure, hippocampal volume, and PLE severity - a developmentally appropriate metric of risk for psychosis. Objective psychosocial stress exposure in childhood was associated with elevated PLE severity during the transition from childhood to adolescence. Hippocampal volume was significantly reduced in individuals with greater PLE severity and greater childhood stress exposure compared to peers with low symptoms or low stress exposure. These findings are consistent with a hippocampal vulnerability model of psychosis risk. Stress exposure may cumulatively impact hippocampal volume and may also reflect a direct pathway of psychosis risk. Objective psychosocial stress should be considered as a treatment target that may impact neurodevelopment and psychosis risk.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA; Department of Psychiatry, Northwestern University, Chicago, IL, USA.
| | - Ivanka Ristanovic
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA; Department of Psychiatry, Northwestern University, Chicago, IL, USA; Medical Social Sciences, Northwestern University, Chicago, IL, USA; Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
3
|
Shah JL, Paquin V, McIlwaine SV, Malla AK, Joober R, Pruessner M. Examining the psychobiological response to acute social stress across clinical stages and symptom trajectories in the early psychosis continuum. Dev Psychopathol 2024; 36:774-786. [PMID: 36852607 DOI: 10.1017/s0954579423000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The stress-vulnerability model has been repeatedly highlighted in relation to the risk, onset and course of psychosis, and has been independently studied in clinical high-risk (CHR) and first-episode psychosis (FEP) populations. Notable in this literature, however, is that there are few studies directly comparing markers of stress response across progressive stages of illness. Here we examined the psychobiological response to the Trier Social Stress Test in 28 CHR (mean age 19.1) and 61 FEP (age 23.0) patients, in order to understand the stage(s) or trajectories in which differences in subjective stress or physiological response occur. The overall clinical sample had greater perceived stress and blunted cortisol (FEP + CHR, n = 89, age 21.7) compared with healthy controls (n = 45, age 22.9). Additional analyses demonstrated elevated heart rate and systolic blood pressure in FEP compared with CHR, but there were no further differences in physiological parameters (cortisol, heart rate, or blood pressure) between stage- or trajectory-based groups. Together, this suggests that individual stress response markers may differentially emerge at particular stages en route to psychosis - and demonstrates how stage-based analyses can shed light on the emergence and evolution of neurobiological changes in mental illness.
Collapse
Affiliation(s)
- Jai L Shah
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Vincent Paquin
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Sarah V McIlwaine
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
4
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Ristanovic I, Vargas TG, Damme KSF, Mittal VA. Hippocampal subfields, daily stressors, and resting cortisol in individuals at clinical high-risk for psychosis. Psychoneuroendocrinology 2023; 148:105996. [PMID: 36495626 PMCID: PMC9898196 DOI: 10.1016/j.psyneuen.2022.105996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The hippocampus, comprised of functionally distinct subfields, both regulates stress and is affected by it during psychosis pathogenesis. Hippocampal abnormalities are evident across psychosis spectrum and are associated with aberrant cortisol levels and greater environmental stressors exposure. These associations, particularly at the subfield-level, are poorly understood in individuals at clinical high-risk (CHR) for psychosis. This represents a significant literature gap given this critical pathogenetic period is characterized by an interplay between environmental stressors and biological susceptibility. METHODS A total of 121 participants including 51 CHR (mean age=18.61) and 70 healthy controls (HC; mean age=18.3) were enrolled in the study. Participants completed a structural scan, salivary cortisol assays, and a self-report measure assessing distress from daily stressors exposure (DSI). Hippocampal subfield segmentation was conducted using Freesurfer. RESULTS Smaller hippocampal subfields were associated with greater stress levels. Greater DSI was associated with lower volumes in CA1 (r = -0.38) and CA2/3 (r = -0.29), but not in CA4/DG (r = -0.28), presubiculum (r = -0.09), or subiculum (r = -0.17). Higher resting cortisol was associated with lower volumes in presubiculum (r = -0.4) but not subiculum (r = -0.22), CA1 (r = 0.08), CA2/3 (r = 0.1), or CA4/DG (r = -0.005). Regressions indicated effects for CA1 and DSI (β = 0.57, p = .03) and presubiculum and cortisol (β = 0.61, p = .02) are specific to CHR participants relative to HCs. CONCLUSIONS The findings provided insights into links between stress and brain vulnerability during psychosis-risk period. Regional differences highlighted potentially different mechanisms by which stress impacts specific subfields. Presubiculum may be more susceptible to the impact of early stress on HPA-axis and cornu amonis to acute stressors.
Collapse
Affiliation(s)
- Ivanka Ristanovic
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA.
| | - Teresa G Vargas
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA
| | - Katherine S F Damme
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA
| | - Vijay Anand Mittal
- Northwestern University, Department of Psychology, Evanston, IL 60208, USA; Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Chicago, IL 60611, USA; Northwestern University, Medical Social Sciences, Chicago IL 60611, USA; Norhtwestern University, Institute for Policy Research, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Bielawski T, Drapała J, Krowicki P, Stańczykiewicz B, Frydecka D. Trauma Disrupts Reinforcement Learning in Rats-A Novel Animal Model of Chronic Stress Exposure. Front Behav Neurosci 2022; 16:903100. [PMID: 35663358 PMCID: PMC9157238 DOI: 10.3389/fnbeh.2022.903100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trauma, as well as chronic stress that characterizes a modern fast-paced lifestyle, contributes to numerous psychopathologies and psychological problems. Psychiatric patients with traumas, as well as healthy individuals who experienced traumas in the past, are often characterized by diminished cognitive abilities. In our protocol, we used an animal model to explore the influence of chronic trauma on cognitive abilities and behavior in the group of 20 rats (Rattus norvegicus). The experimental group was introduced to chronic (12 consecutive days) exposure to predator odor (bobcat urine). We measured the reinforcement learning of each individual before and after the exposition via the Probabilistic Selection Task (PST) and we used Social Interaction Test (SIT) to assess the behavioral changes of each individual before and after the trauma. In the experimental group, there was a significant decrease in reinforcement learning after exposure to a single trauma (Wilcoxon Test, p = 0.034) as well as after 11 days of chronic trauma (Wilcoxon-test, p = 0.01) in comparison to pre-trauma performance. The control group, which was not exposed to predator odor but underwent the same testing protocol, did not present significant deterioration in reinforcement learning. In cross-group comparisons, there was no difference between the experimental and control group in PST before odor protocol (U Mann-Whitney two-sided, p = 0.909). After exposure to chronic trauma, the experimental group deteriorated in PST performance compared to control (U Mann-Whitney Two-sided, p = 0.0005). In SIT, the experimental group spent less time in an Interaction Zone with an unfamiliar rat after trauma protocol (Wilcoxon two-sided test, p = 0.019). Major strengths of our models are: (1) protocol allows investigating reinforcement learning before and after exposition to chronic trauma, with the same group of rats, (2) translational scope, as the PST is displayed on touchscreen, similarly to human studies, (3) protocol delivers chronic trauma that impairs reward learning, but behaviorally does not induce full-blown anhedonia, thus rats performed voluntarily throughout all the procedures.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Paweł Krowicki
- Department of Laser Technologies, Automation and Production Management, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Dorota Frydecka
- Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022; 15:117-133. [PMID: 35840278 DOI: 10.1016/j.rpsmen.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
8
|
Cortisol Levels in Childhood Associated With Emergence of Attenuated Psychotic Symptoms in Early Adulthood. Biol Psychiatry 2022; 91:226-235. [PMID: 34715990 PMCID: PMC7612877 DOI: 10.1016/j.biopsych.2021.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND In individuals at clinical high-risk for psychosis, elevated cortisol levels predict subsequent onset of psychotic disorder. However, it is unclear whether cortisol alterations are evident at an earlier clinical stage and promote progression of psychosis expression. This study aimed to address this issue by investigating whether cortisol levels in childhood were associated with the emergence of attenuated psychotic symptoms in early adulthood. In exploratory analyses, we examined whether cortisol and psychosocial stress measures interacted in predicting attenuated psychotic symptoms. METHODS A sample of children (N = 109) enriched for psychosis risk factors were recruited at age 9-12 years and assessed at age 11-14 years (T1) and 17-21 years (T2). Measures of psychopathology, psychosocial stressors, and salivary cortisol were obtained at T1. Attenuated psychotic symptoms were assessed at T2 using the Prodromal Questionnaire. RESULTS Diurnal cortisol (β = 0.915, 95% CI: 0.062-1.769) and daily stressors (β = 0.379, 95% CI: 0.034-0.723) at T1 were independently associated with total Prodromal Questionnaire scores at T2 after accounting for demographic factors and T1 psychopathology. Exploratory analyses indicated a significant interaction between T1 diurnal cortisol and daily stressors (β = 0.743, 95% CI: 0.081-1.405), with the highest predicted T2 total Prodromal Questionnaire scores occurring when both diurnal cortisol and daily stressors were increased. CONCLUSIONS Our findings suggest that daily stressors and elevations in diurnal cortisol in late childhood/early adolescence increases risk for developing attenuated psychotic symptoms. These findings emphasize the importance of assessing environmental and biological risk factors for psychosis during neurodevelopmentally vulnerable time periods.
Collapse
|
9
|
Davies C, Appiah-Kusi E, Wilson R, Blest-Hopley G, Bossong MG, Valmaggia L, Brammer M, Perez J, Allen P, Murray RM, McGuire P, Bhattacharyya S. Altered relationship between cortisol response to social stress and mediotemporal function during fear processing in people at clinical high risk for psychosis: a preliminary report. Eur Arch Psychiatry Clin Neurosci 2022; 272:461-475. [PMID: 34480630 PMCID: PMC8938358 DOI: 10.1007/s00406-021-01318-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that people at Clinical High Risk for Psychosis (CHR) have a blunted cortisol response to stress and altered mediotemporal activation during fear processing, which may be neuroendocrine-neuronal signatures of maladaptive threat responses. However, whether these facets are associated with each other and how this relationship is affected by cannabidiol treatment is unknown. We examined the relationship between cortisol response to social stress and mediotemporal function during fear processing in healthy people and in CHR patients. In exploratory analyses, we investigated whether treatment with cannabidiol in CHR individuals could normalise any putative alterations in cortisol-mediotemporal coupling. 33 CHR patients were randomised to 600 mg cannabidiol or placebo treatment. Healthy controls (n = 19) did not receive any drug. Mediotemporal function was assessed using a fearful face-processing functional magnetic resonance imaging paradigm. Serum cortisol and anxiety were measured immediately following the Trier Social Stress Test. The relationship between cortisol and mediotemporal blood-oxygen-level-dependent haemodynamic response was investigated using linear regression. In healthy controls, there was a significant negative relationship between cortisol and parahippocampal activation (p = 0.023), such that the higher the cortisol levels induced by social stress, the lower the parahippocampal activation (greater deactivation) during fear processing. This relationship differed significantly between the control and placebo groups (p = 0.033), but not between the placebo and cannabidiol groups (p = 0.67). Our preliminary findings suggest that the parahippocampal response to fear processing may be associated with the neuroendocrine (cortisol) response to experimentally induced social stress, and that this relationship may be altered in patients at clinical high risk for psychosis.
Collapse
Affiliation(s)
- Cathy Davies
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Elizabeth Appiah-Kusi
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Robin Wilson
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Grace Blest-Hopley
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Matthijs G. Bossong
- grid.5477.10000000120346234Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lucia Valmaggia
- grid.13097.3c0000 0001 2322 6764Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Michael Brammer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- grid.450563.10000 0004 0412 9303CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Paul Allen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.35349.380000 0001 0468 7274Department of Psychology, University of Roehampton, London, UK ,grid.416167.30000 0004 0442 1996Icahn School of Medicine, Mount Sinai Hospital, New York, USA
| | - Robin M. Murray
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Philip McGuire
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK ,grid.37640.360000 0000 9439 0839Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
10
|
Gaulden AD, Burson N, Sadik N, Ghosh I, Khan S, Brummelte S, Kallakuri S, Perrine SA. Effects of fentanyl on acute locomotor activity, behavioral sensitization, and contextual reward in female and male rats. Drug Alcohol Depend 2021; 229:109101. [PMID: 34628096 PMCID: PMC8671359 DOI: 10.1016/j.drugalcdep.2021.109101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Although fentanyl has gained widespread prominence, there remains a lack of knowledge on this opioid synthetic agonist, particularly related to sex effects. Therefore, we conducted behavioral tests in female and male rats to measure drug abuse-related responses to fentanyl hypothesizing sex-specific responses. METHODS Using female and male rats, we measured the effects of acute or repeated administration of fentanyl (20 μg/kg) on locomotor activity (LMA) and behavioral sensitization in an open field test. We further measured contextual-reward and associated locomotor activity during training in a conditioned place preference (CPP) paradigm using a low (4 μg/kg) or high (16 μg/kg) dose of fentanyl. Vaginal lavage samples were collected from female rats in the CPP study, and the estrous phase was determined based on the cytological characterization. RESULTS Female, but not male, rats showed elevated LMA in response to acute fentanyl and behavioral sensitization to repeated administration of fentanyl. Fentanyl produced significant CPP in both sexes, but it was more potent in males. Finally, our secondary investigation of the estrous cycle on fentanyl-CPP suggests that non-estrus phases, likely reflecting high estradiol, may predict the degree of fentanyl preference in females. CONCLUSIONS Fentanyl was more potent and/or effective to produce LMA and LMA sensitization in females but more potent to produce CPP in males. Furthermore, the role of sex in fentanyl responses varied across endpoints, and sex differences in LMA were not predictive of sex differences in CPP.
Collapse
Affiliation(s)
- Andrew D. Gaulden
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI
| | - Nicole Burson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| | - Ishita Ghosh
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Sabrina Khan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Susanne Brummelte
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI.,Department of Psychology, Wayne State University, Detroit, MI
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI.,Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI.,Research Services, John D. Dingell VA Medical Center, Detroit, MI
| |
Collapse
|
11
|
West ML, Guest RM, Carmel A. Comorbid early psychosis and borderline personality disorder: Conceptualizing clinical overlap, etiology, and treatment. Personal Ment Health 2021; 15:208-222. [PMID: 33955194 DOI: 10.1002/pmh.1509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Despite substantial efforts aimed at the detection and intervention for early symptoms of mental illness, there is relatively limited research on the clinical overlap between borderline personality disorder (BPD) and early psychosis, for example, clinical high risk (CHR) for psychosis, in young people. We present a narrative review of the clinical overlap between BPD and psychosis spectrum symptoms. Both conditions have unstable temporal course, and both are marked by functional impairment, increased suicide risk, and higher rates of psychiatric inpatient services. We then review evidence-based treatments for psychosis and BPD, emphasizing treatments for early presentations of these symptoms and initial research considering treatments for the overlap. Psychotherapies with the strongest empirical support include cognitive behavioral models, with BPD showing limited response to adjunctive pharmacotherapy. We end by discussing specific recommendations for future research, including longitudinal studies to determine the predictors of the course of illness and the development of treatments to target comorbid BPD and CHR symptoms.
Collapse
Affiliation(s)
- Michelle L West
- CEDAR Clinic and Research Program, Massachusetts Mental Health Center, Boston, Massachusetts, USA.,Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, University of Colorado School of Medicine (CUSOM), Aurora, Colorado, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - Adam Carmel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021; 15:S1888-9891(21)00067-7. [PMID: 34271162 DOI: 10.1016/j.rpsm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
13
|
Misiak B, Pruessner M, Samochowiec J, Wiśniewski M, Reginia A, Stańczykiewicz B. A meta-analysis of blood and salivary cortisol levels in first-episode psychosis and high-risk individuals. Front Neuroendocrinol 2021; 62:100930. [PMID: 34171354 DOI: 10.1016/j.yfrne.2021.100930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
Dysregulated cortisol responses and glucose metabolism have been reported in psychosis. We performed a random-effects meta-analysis of cortisol responses in first-episode psychosis (FEP) and psychosis risk states, taking into consideration glucose metabolism. A total of 47 studies were included. Unstimulated blood cortisol levels were significantly higher (g = 0.48, 95 %CI: 0.25-0.70, p < 0.001) in FEP, but not in psychosis risk states (g = 0.39, 95 %CI: -0.42-1.21, p = 0.342), compared to controls. Cortisol awakening response (CAR) was attenuated in FEP (g = -0.40, 95 %CI: -0.68 - -0.12, p = 0.006), but not in psychosis risk states (p = 0.433). Glucose and insulin levels were positively correlated with unstimulated blood cortisol levels in FEP. Our meta-analysis supports previous findings of elevated blood cortisol levels and attenuated CAR in FEP. Future research should focus on identifying the common denominators for alterations in stress hormones and glucose metabolism.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | | | - Artur Reginia
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
14
|
Rodriguez V, Aas M, Vorontsova N, Trotta G, Gadelrab R, Rooprai NK, Alameda L. Exploring the Interplay Between Adversity, Neurocognition, Social Cognition, and Functional Outcome in People With Psychosis: A Narrative Review. Front Psychiatry 2021; 12:596949. [PMID: 33762975 PMCID: PMC7982734 DOI: 10.3389/fpsyt.2021.596949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
History of adversity is associated with subsequent psychosis, and with a spectrum of cognitive alterations in individuals with psychosis. These cognitive features go from neurocognitive aspects as working memory and attention, to complex social cognitive processes as theory of mind and emotional perception. Difficulties in these domains impact patients' social and occupational functioning, which has been shown to be more impaired in those previously exposed to childhood trauma. However, the interplay between adversity, neurocognition, and functioning is yet poorly understood. This narrative review aims to explore the evidence on whether deficits in neurocognitive and social cognitive domains may act as possible putative mechanism linking adversity with functioning in people with psychosis. We show available evidence supporting the link between adversity and poorer functioning in psychosis, especially in chronic stages; and replicated evidence suggesting associations of social cognition and, to a lesser extent, neurocognition with impairment in functioning in patients; although there is still an important gap in the literature testing particularly deficits in social cognition as mediator of the link between adversity and functional decline in psychosis. Targeting interventions focusing on neurocognition and social cognition in individuals with adversity and psychosis seems important, given the severe deterioration of these patients in these domains, although more research is needed to test whether such treatments can specifically improve functioning in individuals with psychosis and adversity. Literature aiming to understand the determinants of functional outcome should consider the pervasive impact of childhood adversity, and its related effects on cognition.
Collapse
Affiliation(s)
- Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Monica Aas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Mental Health Research and Development, Vestre Viken Hospital Trust, Drammen, Norway
| | - Natasha Vorontsova
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Romayne Gadelrab
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Navneet Kaur Rooprai
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
15
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
16
|
Hinney B, Walter A, Aghlmandi S, Andreou C, Borgwardt S. Does Hippocampal Volume Predict Transition to Psychosis in a High-Risk Group? A Meta-Analysis. Front Psychiatry 2020; 11:614659. [PMID: 33519555 PMCID: PMC7840882 DOI: 10.3389/fpsyt.2020.614659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia has a prodromal phase of several years in most patients, making it possible to identify patients at clinical high risk (CHR) for developing the disorder. So far, these individuals are identified based on clinical criteria alone, and there is no reliable biomarker for predicting the transition to psychosis. It is well-established that reductions in brain volume, especially in the hippocampus, are associated with schizophrenia. Therefore, hippocampal volume may serve as a biomarker for psychosis. Several studies have already investigated hippocampal volume in CHR groups. Based on these studies, the present meta-analysis compares the baseline left and right hippocampal volume of CHR patients who developed a psychosis with that of CHR patients without such a transition. Our results show no statistically significant effect of the hippocampal volume on the transition risk for psychosis.
Collapse
Affiliation(s)
- Bernd Hinney
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Anna Walter
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland
| | - Christina Andreou
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Piotrowski P, Kotowicz K, Rymaszewska J, Beszłej JA, Plichta P, Samochowiec J, Kalinowska S, Trześniowska-Drukała B, Misiak B. Allostatic load index and its clinical correlates at various stages of psychosis. Schizophr Res 2019; 210:73-80. [PMID: 31262574 DOI: 10.1016/j.schres.2019.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates systemic biological dysregulations in patients with psychosis that have been conceptualized as the "allostatic load" (AL) index. We aimed to investigate the AL index in 37 subjects at familial high risk of psychosis (FHRP), 42 first-episode psychosis (FEP) patients, 25 acutely relapsed schizophrenia (SCZ-AR) patients and 42 healthy controls (HCs), taking into account psychopathology and cognitive impairment. The AL index was calculated based on 15 biomarkers (cardiovascular markers, anthropometric measures, inflammatory markers, glucose homeostasis parameters, lipids and steroids). Cognition was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The AL index was significantly higher in patients with psychosis and FHR-P individuals compared to HCs. Patients with FEP and FHR-P individuals had similar AL index. Moreover, the AL index was significantly higher in SCZ-AR patients compared to other groups of participants. Higher AL index was associated with more severe general psychopathology and depressive symptoms, lower scores of attention (total score, digit span and digit coding tasks) and semantic fluency, as well as worse general functioning in patients with psychosis. There was a significant negative correlation between the AL index and the scores of attention (total score and digit coding task) in FHR-P individuals. No significant correlations between the AL index and cognition were found in HCs. Our results indicate that biological dysregulations, captured by the AL index, appear already in FHR-P individuals and progress with psychotic exacerbations. Elevated AL index might contribute to cognitive impairments in FHR-P individuals and patients with psychosis.
Collapse
Affiliation(s)
- Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Piotr Plichta
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Sylwia Kalinowska
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Beata Trześniowska-Drukała
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
18
|
Labad J. The role of cortisol and prolactin in the pathogenesis and clinical expression of psychotic disorders. Psychoneuroendocrinology 2019; 102:24-36. [PMID: 30503781 DOI: 10.1016/j.psyneuen.2018.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/03/2023]
Abstract
For many years, the study of the psychotic phenotpe and approach to treatment of schizophrenia has been focused on positive psychotic symptoms, although the functional outcome is more clearly associated with negative and cognitive symptoms. Recently, there has been a growing interest in identifying biomarkers associated with these symptoms at early stages of the illness, including the risk of psychosis in vulnerable individuals (at-risk mental states [ARMS]). In this paper, the role of cortisol and prolactin in the clinical expression of psychosis will be reviewed. In examination of the role of these hormones and the risk of developing a psychotic disorder in ARMS individuals, previous studies have suggested potential roles for both cortisol and prolactin. The study of cognitive abilities in recent-onset psychotic patients has suggested that affected cognitive domains differ depending upon the studied hormones: cortisol (processing speed, verbal and working memory) and prolactin (processing speed), with several studies suggesting that there are sex-differences in these associations. All of these results suggest that both cortisol and prolactin contribute to the pathogenesis and clinical expression of psychotic disorders.
Collapse
Affiliation(s)
- Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, Institut d'Investigació Sanitària Parc Taulí (I3PT), Translational Neuroscience Unit, Universitat Autònoma de Barcelona (UAB), CIBERSAM. Sabadell, Barcelona, Spain.
| |
Collapse
|
19
|
The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019; 172:40-70. [DOI: 10.1016/j.pneurobio.2018.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
|
20
|
Dauvermann MR, Donohoe G. The role of childhood trauma in cognitive performance in schizophrenia and bipolar disorder - A systematic review. SCHIZOPHRENIA RESEARCH-COGNITION 2018; 16:1-11. [PMID: 30581765 PMCID: PMC6293032 DOI: 10.1016/j.scog.2018.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Childhood trauma (CT) has repeatedly been associated with cognitive deficits in patients with psychosis but many inconsistencies have been reported so that the nature of the relationship remains unclear. The purpose of this review was to better characterize the contribution of CT to cognitive deficits by considering the type, severity and frequency of childhood traumatic events and their relationships with psychosis at all stages. Relevant studies were identified via electronic and manual literature searches and included original studies that investigated the relationship between CT and higher cognitive performance or social cognitive performance in patients with schizophrenia, bipolar disorder and psychosis at all stages of the illness stages (i.e. ultra-high risk, first episode or chronic phase). Overall, a majority of studies reported that patients who experienced CT displayed deficits in general cognitive ability compared to patients with psychosis without such a history. Associations between CT and other cognitive function were more mixed. When comparing patient groups, the association between CT and cognitive function was more inconsistent in patients with chronic schizophrenia than in healthy participants, ultra-high risk individuals, first-episode patients and patients with chronic bipolar disorder. In understanding the variability in the reported relationships between CT and cognition across study populations, we highlight the variety of questionnaires used and discuss the likelihood of there being differences in cognitive function based on specific stressors, severity and frequency. Finally, we consider future research steps that may shed light on psychobiological mechanisms underlying CT and cognitive performance in patients with psychosis.
Collapse
|
21
|
The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers. Proc Natl Acad Sci U S A 2018; 115:E10206-E10215. [PMID: 30201713 DOI: 10.1073/pnas.1804340115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ample evidence links dysregulation of the stress response to the risk for psychiatric disorders. However, we lack an integrated understanding of mechanisms that are adaptive during the acute stress response but potentially pathogenic when dysregulated. One mechanistic link emerging from rodent studies is the interaction between stress effectors and neurovascular coupling, a process that adjusts cerebral blood flow according to local metabolic demands. Here, using task-related fMRI, we show that acute psychosocial stress rapidly impacts the peak latency of the hemodynamic response function (HRF-PL) in temporal, insular, and prefrontal regions in two independent cohorts of healthy humans. These latency effects occurred in the absence of amplitude effects and were moderated by regulatory genetic variants of KCNJ2, a known mediator of the effect of stress on vascular responsivity. Further, hippocampal HRF-PL correlated with both cortisol response and genetic variants that influence the transcriptional response to stress hormones and are associated with risk for major depression. We conclude that acute stress modulates hemodynamic response properties as part of the physiological stress response and suggest that HRF indices could serve as endophenotype of stress-related disorders.
Collapse
|
22
|
Guma E, Devenyi GA, Malla A, Shah J, Chakravarty MM, Pruessner M. Neuroanatomical and Symptomatic Sex Differences in Individuals at Clinical High Risk for Psychosis. Front Psychiatry 2017; 8:291. [PMID: 29312018 PMCID: PMC5744013 DOI: 10.3389/fpsyt.2017.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
Sex differences have been widely observed in clinical presentation, functional outcome and neuroanatomy in individuals with a first-episode of psychosis, and chronic patients suffering from schizophrenia. However, little is known about sex differences in the high-risk stages for psychosis. The present study investigated sex differences in cortical and subcortical neuroanatomy in individuals at clinical high risk (CHR) for psychosis and healthy controls (CTL), and the relationship between anatomy and clinical symptoms in males at CHR. Magnetic resonance images were collected in 26 individuals at CHR (13 men) and 29 CTLs (15 men) to determine total and regional brain volumes and morphology, cortical thickness, and surface area (SA). Clinical symptoms were assessed with the brief psychiatric rating scale. Significant sex-by-diagnosis interactions were observed with opposite directions of effect in male and female CHR subjects relative to their same-sex controls in multiple cortical and subcortical areas. The right postcentral, left superior parietal, inferior parietal supramarginal, and angular gyri [<5% false discovery rate (FDR)] were thicker in male and thinner in female CHR subjects compared with their same-sex CTLs. The same pattern was observed in the right superior parietal gyrus SA at the regional and vertex level. Using a recently developed surface-based morphology pipeline, we observed sex-specific shape differences in the left hippocampus (<5% FDR) and amygdala (<10% FDR). Negative symptom burden was significantly higher in male compared with female CHR subjects (p = 0.04) and was positively associated with areal expansion of the left amygdala in males (<5% FDR). Some limitations of the study include the sample size, and data acquisition at 1.5 T. This study demonstrates neuroanatomical sex differences in CHR subjects, which may be associated with variations in symptomatology in men and women with psychotic symptoms.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Ashok Malla
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Jai Shah
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Marita Pruessner
- Prevention and Early Intervention Program for Psychosis, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada.,Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|