1
|
Huang J, Huang H, Liu M, Yang W, Wang H. Involvement of the TRPV1 receptor and the endocannabinoid system in schizophrenia. Brain Res Bull 2024; 215:111007. [PMID: 38852650 DOI: 10.1016/j.brainresbull.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental disorder, but its pathogenesis is still unknown, and its clinical treatment effect is very limited. Transient receptor potential vanilloid 1 (TRPV1) channel and the Endocannabinoid System (ECS)have been confirmed to be involved in the pathogenesis of SCZ, although their actions have not been fully clarified yet. The objective is to examine TRPV1 and ECS expression in the blood of schizophrenia patients and investigate their correlation with disease severity. METHODS This is a cross-sectional investigation. Peripheral blood samples were gathered from normal controls (NC, n=37), as well as individuals with schizophrenia, including first episode (n=30) and recurrent (n=30) cases. We employed western blot and ELISA techniques to quantify TRPV1, cannabinoid receptors 1(CB1), anandamide (AEA), and 2-arachidonoylglycerol (2-AG), and assess the severity of the patient's symptoms by means of the PANSS scale. RESULTS Compared to NC, TRPV1 levels showed a noticeable decrease in both first episode schizophrenia (f-SCZ group) and recurrent schizophrenia (r-SCZ group) subjects. Additionally, CB1 levels appeared increased in f-SCZ group. Furthermore, 2-AG levels were found to be elevated in both f-SCZ group and r-SCZ group compared to NC, whereas AEA levels were decreased in f-SCZ group but increased in r-SCZ group. Moreover, among schizophrenia patients, TRPV1 demonstrated a negative correlation with negative symptoms. Within r-SCZ subjects, CB1 displayed a negative correlation with relapse number, while 2-AG showed a correlation in the opposite direction. CONCLUSIONS This study provides initial clinical evidence of changed TRPV1 expression in schizophrenia, potentially linked to negative symptoms. These results suggest a possible dysfunction of TRPV1 and the endocannabinoid system (ECS), which might offer new avenues for medical interventions.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Moyin Liu
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Wanlin Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Haddad NM, De Jesus LP, Serpa M, Van De Bilt M, Talib L, Costa A, Gattaz W, Loch AA. Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01788-x. [PMID: 38502208 DOI: 10.1007/s00406-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.
Collapse
Affiliation(s)
- Natalia Mansur Haddad
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil.
| | - Leonardo Peroni De Jesus
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Mauricio Serpa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Martinus Van De Bilt
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alana Costa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alexandre Andrade Loch
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| |
Collapse
|
3
|
Colizzi M, Bortoletto R, Antolini G, Bhattacharyya S, Balestrieri M, Solmi M. Biobehavioral Interactions between Endocannabinoid and Hypothalamicpituitary- adrenal Systems in Psychosis: A Systematic Review. Curr Neuropharmacol 2024; 22:495-520. [PMID: 37533248 PMCID: PMC10845076 DOI: 10.2174/1570159x21666230801150032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The diathesis-stress paradigm and the cannabinoid-hypothesis have been proposed as possible pathophysiological models of schizophrenia. However, they have historically been studied independently of each other. OBJECTIVE This PRISMA 2020-compliant systematic review aimed at reappraising the interplay between the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system in psychosis- spectrum disorder risk and outcome. METHODS All pathophysiological and outcome clinical studies, concomitantly evaluating the two systems in psychosis-spectrum disorder risk and different stages of illness, were gathered from electronic databases (Pubmed, Web of Science, and Scopus), and discussed. RESULTS 41 eligible outputs were extracted, focusing on at least a biological measure (9 HPA-related studies: 4 eCB-interventional, 1 HPA-interventional, 1 both HPA-interventional and non-interventional, 3 non-interventional; 2 eCB-related studies: non-interventional), environmental measures only (29 studies: 1 eCB- interventional, 28 non-interventional), and genetic measures (1 study: non-interventional). Independent contributions of aberrancies in the two systems to the physiopathology and outcome of psychosis were confirmed. Also, concomitant alterations in the two systems, either genetically defined (e.g., CNR1 genetic variation), biologically determined (e.g., dysfunctional HPA axis or endocannabinoid signaling), or behaviorally imputed (e.g., cannabis use, stress exposure, and response), were consistently reported in psychosis. Further, a complex biobehavioral perturbation was revealed not only within each system (e.g., cannabis use affecting the eCB tone, stress exposure affecting the HPA axis), but also across the two systems (e.g., THC affecting the HPA axis, childhood trauma affecting the endocannabinoid signaling). CONCLUSION There is a need to concomitantly study the two systems' mechanistic contribution to psychosis in order to establish more refined biological relevance.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Giulia Antolini
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, Verona 37126, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
4
|
Weinstein AM. A brain imaging study of dopamine receptor D 2 availability in cannabis dependent users after recovery from cannabis-induced psychosis. Front Psychiatry 2023; 14:1230760. [PMID: 37965367 PMCID: PMC10641483 DOI: 10.3389/fpsyt.2023.1230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
There is increased risk of psychosis associated with cannabis use disorder and the interaction of THC with dopamine neurotransmission is complex. It is important to investigate the recovery from cannabis-induced psychosis and its effects on the brain's dopamine neurotransmission. This study was to evaluate dopamine receptor D2 availability in the striatum (caudate/putamen) in recently abstinent cannabis dependent users after recovery from psychosis in comparison with abstinent MDMA "ecstasy" abusers and healthy control participants. Participants were eight abstinent ex cannabis-dependent users who were treated for cannabis-induced psychosis with anti-psychotic medication and psychosocial support for 4 months in an inpatient treatment center for drug users. They were compared with nine abstinent ex MDMA "ecstasy" abusers who received medication and psycho-social treatment for 4 months at the same treatment facility and eight healthy control participants. All participants were scanned with bolus and constant infusion of [123I] Iodobenzamide (IBZM) in Single Photon Computed Tomography (SPECT). Cannabis abstinent users who were treated for cannabis-induced psychotic episodes showed no difference in dopamine D2 receptor availability in the caudate compared with abstinent MDMA "ecstasy" abusers and healthy control participants. This finding indicates minimal effects of cannabis-induced psychosis on dopamine reward mechanisms. There is evidence for reduced D2 receptor availability measures in the right putamen (uncorrected) which may indicate a residual effect of anti-psychotic medication.
Collapse
Affiliation(s)
- Aviv M. Weinstein
- Department of Psychology and Behavioral Science, Ariel University, Ariel, Israel
| |
Collapse
|
5
|
Bortoletto R, Piscitelli F, Candolo A, Bhattacharyya S, Balestrieri M, Colizzi M. Questioning the role of palmitoylethanolamide in psychosis: a systematic review of clinical and preclinical evidence. Front Psychiatry 2023; 14:1231710. [PMID: 37533892 PMCID: PMC10390736 DOI: 10.3389/fpsyt.2023.1231710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential. Methods This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis. Results Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied. Discussion Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder. Systematic review registration https://doi.org/10.17605/OSF.IO/AFMTK.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Anna Candolo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Addington J, Chao A, Braun A, Miller M, Farris MS. Patient-Reported Outcome Measures in Clinical High Risk for Psychosis: A Systematic Review. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad006. [PMID: 37025755 PMCID: PMC10069322 DOI: 10.1093/schizbullopen/sgad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A key issue in both research and clinical work with youth at clinical high risk (CHR) of psychosis is that there are clearly heterogenous clinical outcomes in addition to the development of psychosis. Thus, it is important to capture the psychopathologic outcomes of the CHR group and develop a core outcomes assessment set that may help in dissecting the heterogeneity and aid progress toward new treatments. In assessing psychopathology and often poor social and role functioning, we may be missing the important perspectives of the CHR individuals themselves. It is important to consider the perspectives of youth at CHR by using patient-reported outcome measures (PROMs). This systematic review of PROMs in CHR was conducted based on a comprehensive search of several databases and followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Sixty-four publications were included in the review examining PROMs for symptoms, functioning, quality of life, self-perceptions, stress, and resilience. Typically, PROMs were not the primary focus of the studies reviewed. The PROMs summarized here fit with results published elsewhere in the literature based on interviewer measures. However, very few of the measures used were validated for CHR or for youth. There are several recommendations for determining a core set of PROMs for use with CHR.
Collapse
Affiliation(s)
- Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Chao
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amy Braun
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Madeline Miller
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Megan S Farris
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
D'Souza DC, DiForti M, Ganesh S, George TP, Hall W, Hjorthøj C, Howes O, Keshavan M, Murray RM, Nguyen TB, Pearlson GD, Ranganathan M, Selloni A, Solowij N, Spinazzola E. Consensus paper of the WFSBP task force on cannabis, cannabinoids and psychosis. World J Biol Psychiatry 2022; 23:719-742. [PMID: 35315315 DOI: 10.1080/15622975.2022.2038797] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES The liberalisation of cannabis laws, the increasing availability and potency of cannabis has renewed concern about the risk of psychosis with cannabis. METHODS The objective of the WFSBP task force was to review the literature about this relationship. RESULTS Converging lines of evidence suggest that exposure to cannabis increases the risk for psychoses ranging from transient psychotic states to chronic recurrent psychosis. The greater the dose, and the earlier the age of exposure, the greater the risk. For some psychosis outcomes, the evidence supports some of the criteria of causality. However, alternate explanations including reverse causality and confounders cannot be conclusively excluded. Furthermore, cannabis is neither necessary nor sufficient to cause psychosis. More likely it is one of the multiple causal components. In those with established psychosis, cannabis has a negative impact on the course and expression of the illness. Emerging evidence also suggests alterations in the endocannabinoid system in psychotic disorders. CONCLUSIONS Given that exposure to cannabis and cannabinoids is modifiable, delaying or eliminating exposure to cannabis or cannabinoids, could potentially impact the rates of psychosis related to cannabis, especially in those who are at high risk for developing the disorder.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marta DiForti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,South London and Maudsley NHS Mental Health Foundation Trust, London, UK
| | - Suhas Ganesh
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Tony P George
- Addictions Division and Centre for Complex Interventions, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Hall
- The National Centre for Youth Substance Use Research, University of Queensland, Brisbane, Australia
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University, Copenhagen, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy B Nguyen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK.,Institute for Clinical Sciences, Imperial College London, London, UK
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Olin Neuropsychiatry Ctr. Institute of Living, Hartford, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alex Selloni
- Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Edoardo Spinazzola
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Parksepp M, Haring L, Kilk K, Koch K, Uppin K, Kangro R, Zilmer M, Vasar E. The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines 2022; 10:biomedicines10020243. [PMID: 35203453 PMCID: PMC8869544 DOI: 10.3390/biomedicines10020243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations in the expanded endocannabinoid system (eECS) and cell membrane composition have been implicated in the pathophysiology of schizophrenia spectrum disorders. We enrolled 54 antipsychotic (AP)-naïve first-episode psychosis (FEP) patients and 58 controls and applied a targeted metabolomics approach followed by multivariate data analysis to investigate the profile changes in the serum levels of endocannabinoids: 2-arachidonoylglycerol (2-AG) and anandamide, endocannabinoids-like N-acylethanolamines (NAEs: linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide), and their dominating lipid precursor’s phosphatidylcholines. Biomolecule profiles were measured at the onset of first-episode psychosis (FEP) and 0.6 years and 5.1 years after the initiation of AP treatment. The results indicated that FEP might be characterized by elevated concentrations of NAEs and by decreased 2-AG levels. At this stage of the disease, the NAE-mediated upregulation of peroxisome proliferator-activated receptors (PPARs) manifested themselves in energy expenditure. A 5-year disease progression and AP treatment adverse effects led to a robust increase in 2-AG levels, which contributed to strengthened cannabinoid (CB1) receptor-mediated effects, which manifested in obesity. Dynamic 2-AG, NAEs, and their precursors in terms of phosphatidylcholines are relevant to the description of the metabolic shifts resulting from the altered eECS function during and after FEP.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
- Correspondence: ; Tel.: +372-7318-767
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 50090 Tartu, Estonia;
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| |
Collapse
|
9
|
Carlyle M, Constable T, Walter ZC, Wilson J, Newland G, Hides L. Cannabis-induced dysphoria/paranoia mediates the link between childhood trauma and psychotic-like experiences in young cannabis users. Schizophr Res 2021; 238:178-184. [PMID: 34717186 DOI: 10.1016/j.schres.2021.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/13/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023]
Abstract
Childhood trauma (abuse and neglect) is a major risk factor for cannabis use disorder and psychotic-spectrum disorders. Psychotic-like experiences (PLEs) in young people who use cannabis may be an early indicator of psychosis risk following cannabis use. We examined whether (i) childhood trauma moderates the association between cannabis use and PLEs, (ii) the association between childhood trauma and cannabis use is mediated by subjective effects of cannabis (euphoria and dysphoria/paranoia), and (iii) the association between childhood trauma and PLEs is also mediated by these subjective effects. Participants were 2630 cannabis users (aged 16-25) recruited online. They were asked to complete a cross-sectional survey measuring cannabis and other substance use, childhood trauma, PLEs, and the subjective effects of cannabis (euphoria and dysphoria/paranoia). A significant interaction indicated that the effect of cannabis on PLE frequency was stronger for individuals with more severe childhood trauma. Childhood trauma was also associated with greater cannabis use and PLE frequency, both of which were mediated by subjective dysphoria/paranoia when using the drug. This suggests childhood trauma is associated with greater PLEs in young people who use cannabis, which may be linked with an increased susceptibility to the dysphoric/paranoid subjective effects when using the drug. Childhood trauma should be addressed early in young people who use cannabis to mitigate the psychosis-associated harms of the drug.
Collapse
Affiliation(s)
- Molly Carlyle
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia; National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia.
| | - Toby Constable
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| | - Zoe C Walter
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia; National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| | - Joanna Wilson
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| | - Grace Newland
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia; National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| | - Leanne Hides
- Lives Lived Well research group, School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia; National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Joaquim HPG, Costa AC, Pereira CAC, Talib LL, Bilt MMV, Loch AA, Gattaz WF. Plasmatic endocannabinoids are decreased in subjects with ultra-high risk of psychosis. Eur J Neurosci 2021; 55:1079-1087. [PMID: 34716624 DOI: 10.1111/ejn.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
The onset of frank psychosis is usually preceded by a prodromal phase characterized by attenuated psychotic symptoms. Currently, research on schizophrenia prodromal phase (ultra-high risk for psychosis [UHR]) has focused on the risk of developing psychosis, on the transition to full blown psychosis and on its prediction. Neurobiological differences between UHR individuals who fully recover (remitters) versus those who show persistent/progressive prodromal symptoms (nonremitters) have been little explored. The endocannabinoid system constitutes a neuromodulatory system that plays a major role in brain development, synaptic plasticity, emotional behaviours and cognition. It comprises two cannabinoid receptors (CB1/CB2), two endocannabinoid ligands, arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2AG) along with their inactivation enzymes. Despite much evidence that the endocannabinoid system is imbalanced during psychosis, very little is known about it in UHR. Therefore, we aimed to quantify the plasma endocannabinoid levels in UHR and healthy controls (HC) and verify if these metabolites could differentiate between remitters and nonremitters. Circulating concentrations of AEA (p = .003) and 2AG (p < .001) were lower in UHR when compared with HC, with no difference between remitters and nonremitters. Regarding clinical evolution, it was observed that out of 91 UHRs initially considered, 16 had psychiatric complaints (3 years of follow-up). Considering those subjects, there were weak correlations between clinical parameters and plasma concentrations of endocannabinoids. Our results suggest that the endocannabinoids are imbalanced before frank psychosis and that changes can be seen in plasma of UHR individuals. These molecules proved to be potential biomarkers to identify individuals in the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Cícero A C Pereira
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Martinus M V Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alexandre A Loch
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
11
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
12
|
Colizzi M, Ruggeri M, Bhattacharyya S. Unraveling the Intoxicating and Therapeutic Effects of Cannabis Ingredients on Psychosis and Cognition. Front Psychol 2020; 11:833. [PMID: 32528345 PMCID: PMC7247841 DOI: 10.3389/fpsyg.2020.00833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Research evidence suggests a dose–response relationship for the association between cannabis use and risk of psychosis. Such relationship seems to reflect an increased risk of psychosis not only as a function of frequent cannabis use, but also of high-potency cannabis use in terms of concentration of Δ-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive component. This finding would be in line with the evidence that Δ9-THC administration induces transient psychosis-like symptoms in otherwise healthy individuals. Conversely, low-potency varieties would be less harmful because of their lower amount of Δ9-THC and potential compresence of another cannabinoid, cannabidiol (CBD), which seems to mitigate Δ9-THC detrimental effects. A growing body of studies begins to suggest that CBD may have not only protective effects against the psychotomimetic effects of Δ9-THC but even therapeutic properties on its own, opening new prospects for the treatment of psychosis. Despite being more limited, evidence of the effects of cannabis on cognition seems to come to similar conclusions, with increasing Δ9-THC exposure being responsible for the cognitive impairments attributed to recreational cannabis use while CBD preventing such effects and, when administered alone, enhancing cognition. Molecular evidence indicates that Δ9-THC and CBD may interact with cannabinoid receptors with almost opposite mechanisms, with Δ9-THC being a partial agonist and CBD an inverse agonist/antagonist. With the help of imaging techniques, pharmacological studies in vivo have been able to show opposite effects of Δ9-THC and CBD also on brain function. Altogether, they may account for the intoxicating and therapeutic effects of cannabis on psychosis and cognition.
Collapse
Affiliation(s)
- Marco Colizzi
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Colizzi M, Tosato S, Ruggeri M. Cannabis and Cognition: Connecting the Dots towards the Understanding of the Relationship. Brain Sci 2020; 10:brainsci10030133. [PMID: 32120842 PMCID: PMC7139821 DOI: 10.3390/brainsci10030133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Several studies have advanced the understanding of the effects of cannabis on cognitive function. A comprehensive reappraisal of such literature may help in drawing conclusions about the potential risks associated with cannabis use. In summary, the evidence suggests that earlier age of use, high-frequency and high-potency cannabis use, as well as sustained use over time and use of synthetic cannabinoids, are all correlated with a higher likelihood of developing potentially severe and persistent executive function impairments. While the exact mechanisms underlying the adverse effects of cannabis on cognition are not completely clear, Magnetic Resonance Imaging (MRI) studies support the presence of both structural and functional alterations associated with cannabis use. Cognitive dysfunction is also a core feature of many neuropsychiatric disorders and care must be taken regarding the effects of cannabis use in these patient populations. Cognitive impairments affect patients’ daily functions, sociability, and long-term outcome, posing elevated economic, social, and clinical burdens. There is, thus, a compelling case for implementing behavioral and cognitive rehabilitation therapies for these patients, as well as investigating the endocannabinoid system in the development of new psychopharmacological treatments.
Collapse
Affiliation(s)
- Marco Colizzi
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Correspondence: ; Tel.: +39-045-812-6832
| | - Sarah Tosato
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|