1
|
Hill C, Kalakoutis M, Arcidiacono A, Paradine Cullup F, Wang Y, Fukutani A, Narayanan T, Brunello E, Fusi L, Irving M. Dual-filament regulation of relaxation in mammalian fast skeletal muscle. Proc Natl Acad Sci U S A 2025; 122:e2416324122. [PMID: 40073060 PMCID: PMC11929500 DOI: 10.1073/pnas.2416324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca2+]i and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load. However, these mechanisms cannot explain muscle relaxation when [Ca2+]i decreases at high load and myosin motors are attached to actin. There is, therefore, a fundamental gap in our understanding of muscle relaxation, despite its importance for muscle function in vivo, for example, for rapid eye movements or, on slower timescales, for the efficient control of posture. Here, we used time-resolved small-angle X-ray diffraction (SAXD) to determine how muscle thin and thick filaments switch OFF in extensor digitorum longus (EDL) muscles of the mouse in response to decreases in either [Ca2+]i or muscle load and to describe the distribution of muscle sarcomere lengths (SLs) during relaxation. We show that reducing load at high [Ca2+]i is more effective in switching OFF both the thick and thin filaments than reducing [Ca2+]i at high load in normal relaxation. In the latter case, the thick filaments initially remain fully ON, although the number of myosin motors bound to actin decreases and the force per attached motor increases. That initial slow phase of relaxation is abruptly terminated by yielding of one population of sarcomeres, triggering a redistribution of SLs that leads to the rapid completion of mechanical relaxation.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Michaeljohn Kalakoutis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Alice Arcidiacono
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Atsuki Fukutani
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | | | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
- Centre for Human and Applied Physiological Sciences, Shepherd’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
2
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
3
|
Sevrieva IR, Kampourakis T, Irving M. Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence. Biophys Rev 2024; 16:753-772. [PMID: 39830118 PMCID: PMC11735716 DOI: 10.1007/s12551-024-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnCN) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy. We show that the orientations of the IT arm determined by the two approaches are essentially the same and that this region acts as an almost rigid scaffold for regulatory changes in the more mobile regions of troponin. However, the TnCN orientations determined by the two methods are clearly distinct in both low- and high-calcium conditions. We discuss the implications of these results for the role of TnCN in mediating the multiple signalling pathways acting through troponin in heart muscle cells and the general advantages and limitations of FISS and cryo-EM for determining protein domain orientations in cells and multiprotein complexes.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| | - Thomas Kampourakis
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| |
Collapse
|
4
|
Domínguez-García P, Pinto JR, Akrap A, Jeney S. ATP-induced reconfiguration of the micro-viscoelasticity of cardiac and skeletal myosin solutions. APPLIED PHYSICS LETTERS 2024; 125:173702. [PMID: 39444380 PMCID: PMC11495876 DOI: 10.1063/5.0224003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
We study the high-frequency, micro-mechanical response of suspensions composed of cardiac and skeletal muscle myosin by optical trapping interferometry. We observe that in low ionic strength solutions, upon the addition of magnesium adenosine triphosphate (MgATP2-), myosin suspensions radically change their micro-mechanics properties, generating a viscoelastic fluid characterized by a complex modulus similar to a suspension of worm-like micelles. This transduction of energy, from chemical to mechanical, may be related to the relaxed states of myosin, which regulate muscle contractility and can be involved in the etiology of many myopathies. Within an analogous generic mechanical response, cardiac and skeletal myosin suspensions provide different stress relaxation times, elastic modulus values, and characteristic lengths. These discrepancies probably rely on the dissimilar physiological functions of cardiac and skeletal muscle, on the different MgATPase hydrolysis rates of cardiac and skeletal myosins, and on the observed distinct cooperative behavior of their myosin heads in the super-relaxed state. In vitro studies like these allow us to understand the foundations of muscle cell mechanics on the micro-scale, and may contribute to the engineering of biological materials whose micro-mechanics can be activated by energy regulators.
Collapse
Affiliation(s)
- Pablo Domínguez-García
- Departamento de Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32304, USA
| | - Ana Akrap
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Sylvia Jeney
- Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
5
|
Sobue K. Calmodulin: a highly conserved and ubiquitous Ca 2+ sensor. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:368-386. [PMID: 39085063 DOI: 10.2183/pjab.100.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Calcium ions (Ca2+) play critical roles in various biological phenomena. The free Ca2+ concentration in the cytoplasm of a resting cell is at the 10-7 M level, whereas that outside the cell is 10-3 M, creating a 10,000-fold gradient of Ca2+ concentrations across the cell membrane, separating the intracellular and extracellular solutions.1),2) When a cell is activated by external stimuli, the intracellular Ca2+ concentration increases to levels of 10-6-10-5 M through Ca2+ entry from the extracellular solution via plasma membrane Ca2+ channels and/or Ca2+ release from intracellular stores. This transient increase in Ca2+ functions as an important signal mediated by Ca2+ sensors. Thus, Ca2+ signals are transmitted to intracellular loci such as distinct, localized targets of Ca2+ sensors. Among numerous Ca2+ sensors present in cells, calmodulin is a highly conserved and ubiquitous Ca2+ sensor.3).
Collapse
Affiliation(s)
- Kenji Sobue
- Iwate Medical University, Yahaba, Shiwa-gun, Iwate, Japan
| |
Collapse
|
6
|
Gerzen OP, Votinova VO, Potoskueva IK, Tzybina AE, Nikitina LV. Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. Int J Mol Sci 2023; 24:10579. [PMID: 37445756 PMCID: PMC10341779 DOI: 10.3390/ijms241310579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The binding of calcium and magnesium ions to proteins is crucial for regulating heart contraction. However, other divalent cations, including xenobiotics, can accumulate in the myocardium and enter cardiomyocytes, where they can bind to proteins. In this article, we summarized the impact of these cations on myosin ATPase activity and EF-hand proteins, with special attention given to toxic cations. Optimal binding to EF-hand proteins occurs at an ionic radius close to that of Mg2+ and Ca2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+, Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+, and trivalent lanthanides can substitute for Ca2+. As myosin ATPase is not a specific MgATPase, Ca2+, Fe2+, Mn2+, Ni2+, and Sr2+ could support myosin ATPase activity. On the other hand, Zn2+ and Cu2 significantly inhibit ATPase activity. The affinity to various divalent cations depends on certain proteins or their isoforms and can alter with amino acid substitution and post-translational modification. Cardiac EF-hand proteins and the myosin ATP-binding pocket are potential molecular targets for toxic cations, which could significantly alter the mechanical characteristics of the heart muscle at the molecular level.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Veronika O Votinova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Iulia K Potoskueva
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Alyona E Tzybina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| |
Collapse
|
7
|
Hayek R, Gottlieb U, Gutman I, Springer S. Peroneal muscle response to single-leg drop-jump and unexpected leg-drop in young and middle-aged adults before and after one session of neuromuscular training. Eur Rev Aging Phys Act 2023; 20:11. [PMID: 37330500 DOI: 10.1186/s11556-023-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Changes in neuromuscular ability in middle age (MA) may lead to deterioration of postural control. The aim of this study was to investigate the anticipatory response of the peroneus longus muscle (PL) to landing after a single-leg drop-jump (SLDJ), and its postural response after an unexpected leg-drop in MA and young adults. A second aim was to investigate the influence of neuromuscular training on PL postural responses in both age groups. METHODS Twenty-six healthy MA (55.3 ± 4 years) and 26 healthy young adults (26.3 ± 3.6 years) participated in the study. Assessments were performed before (T0) and after (T1) PL EMG biofeedback (BF) neuromuscular training. Subjects performed SLDJ, and PL EMG activity in preparation for landing (% of flight time) was calculated. To measure PL time to activation onset and time to peak activation in response to an unexpected leg-drop, subjects stood on a customized trapdoor device that produced a sudden 30° ankle inversion. RESULTS Before training, the MA group showed significantly shorter PL activity in preparation for landing compared to the young adults (25.0% vs. 30.0%, p = 0.016), while after training there was no difference between the groups (28.0% vs. 29.0%, p = 0.387). There were no differences between groups in peroneal activity after the unexpected leg-drop before and after training. CONCLUSIONS Our results suggest that automatic anticipatory peroneal postural responses are decreased at MA, whereas reflexive postural responses appear to be intact in this age group. A short PL EMG-BF neuromuscular training may have an immediate positive effect on PL muscle activity at MA. This should encourage the development of specific interventions to ensure better postural control in this group. TRIAL REGISTRATION ClinicalTrials.gov NCT05006547.
Collapse
Affiliation(s)
- Roee Hayek
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Uri Gottlieb
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Itai Gutman
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel
| | - Shmuel Springer
- Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Medicine and Health Science Building, Rm 30, 40700, Ariel, Israel.
| |
Collapse
|
8
|
Issahaku AR, Ibrahim MAA, Mukelabai N, Soliman MES. Intermolecular And Dynamic Investigation of The Mechanism of Action of Reldesemtiv on Fast Skeletal Muscle Troponin Complex Toward the Treatment of Impaired Muscle Function. Protein J 2023:10.1007/s10930-023-10091-y. [PMID: 36959428 DOI: 10.1007/s10930-023-10091-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 03/25/2023]
Abstract
Muscle weakness as a secondary feature of attenuated neuronal input often leads to disability and sometimes death in patients with neurogenic neuromuscular diseases. These impaired muscle function has been observed in several diseases including amyotrophic lateral sclerosis, Charcot-Marie-Tooth, spinal muscular atrophy and Myasthenia gravis. This has spurred the search for small molecules which could activate fast skeletal muscle troponin complex as a means to increase muscle strength. Discovered small molecules have however been punctuated by off-target and side effects leading to the development of the second-generation small molecule, Reldesemtiv. In this study, we investigated the impact of Reldesemtiv binding to the fast skeletal troponin complex and the molecular determinants that condition the therapeutic prowess of Redesemtiv through computational techniques. It was revealed that Reldesemtiv binding possibly potentiates troponin C compacting characterized by reduced exposure to solvent molecules which could favor the slow release of calcium ions and the resultant sensitization of the subunit to calcium. These conformational changes were underscored by conventional and carbon hydrogen bonds, pi-alkyl, pi-sulfur and halogen interactions between Reldesemtiv the binding site residues. Arg113 (-3.96 kcal/mol), Met116 (-2.23 kcal/mol), Val114 (-1.28 kcal/mol) and Met121 (-0.63 kcal/mol) of the switch region of the inhibitory subunit were among the residues that contributed the most to the total free binding energy of Reldesemtiv highlighting their importance. These findings present useful insights which could lay the foundation for the development of fast skeletal muscle small molecule activators with high specificity and potency.
Collapse
Affiliation(s)
- Abdul Rashid Issahaku
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- West African Centre for Computational Research and Innovation, Accra, Ghana
| | - Mahmoud A A Ibrahim
- CompChem Research Group, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Namutula Mukelabai
- Department of Physiotherapy, School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
9
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
10
|
Rall JA. Discovery of the regulatory role of calcium ion in muscle contraction and relaxation: Setsuro Ebashi and the international emergence of Japanese muscle research. ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:481-490. [PMID: 35759528 DOI: 10.1152/advan.00108.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In the early 1950s Setsuro Ebashi was a graduate student at Tokyo University studying the biochemical models of muscle contraction. The muscle components in these models contracted in the presence of ATP, but what caught his attention was that the components did not relax when ATP was exhausted. Ebashi decided in 1952 to attempt to elucidate the mechanism of muscle relaxation using these models. This decision started a journey that would lead him to be the first to propose the calcium concept of muscle contraction and relaxation in 1961. It was an unpopular theory with biochemists who refused to accept that anything as simple as an inorganic ion, Ca2+, could control anything as important as muscle contraction. Ebashi was convinced that he was correct. He proceeded to show that micromolar concentrations of Ca2+ activated contraction. In 1961 he discovered the particulate nature of the ATP-dependent relaxing factor (the sarcoplasmic reticulum) and determined that it acted by binding Ca2+. Most notably, in 1966 he discovered troponin, the Ca2+ receptor in muscle, which mediated Ca2+ control of contraction. Ebashi's discoveries were considered the most important in the muscle field since the 1950s. Ebashi had to overcome the doubt of the scientific community. This story is one of great scientific achievement against great odds that marked the emergence of Japanese muscle research onto the international scientific stage.NEW & NOTEWORTHY Setsuro Ebashi proposed the calcium concept of muscle contraction and relaxation in 1961. It was a very unpopular theory. He showed that Ca2+ activated contraction and that the sarcoplasmic reticulum caused relaxation by binding Ca2+ in an ATP-dependent manner. Most notably, he discovered the receptor that mediated Ca2+ control of contraction and named it "troponin." Ebashi's discoveries are considered to be the most important in the muscle field since the 1950s.
Collapse
Affiliation(s)
- Jack A Rall
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|
12
|
Okada D, Okamoto Y, Io T, Oka M, Kobayashi D, Ito S, Yamada R, Ishii K, Ono K. Comparative Study of Transcriptome in the Hearts Isolated from Mice, Rats, and Humans. Biomolecules 2022; 12:biom12060859. [PMID: 35740984 PMCID: PMC9221511 DOI: 10.3390/biom12060859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The heart is a significant organ in mammalian life, and the heartbeat mechanism has been an essential focus of science. However, few studies have focused on species differences. Accordingly, challenges remain in studying genes that have universal functions across species and genes that determine species differences. Here, we analyzed transcriptome data in mouse, rat, and human atria, ventricles, and sinoatrial nodes (SA) obtained from different platforms and compared them by calculating specificity measure (SPM) values in consideration of species differences. Among the three heart regions, the species differences in SA were the greatest, and we searched for genes that determined the essential characteristics of SA, which was SHOX2 in our criteria. The SPM value of SHOX2 was prominently high across species. Similarly, by calculating SPM values, we identified 3 atrial-specific, 11 ventricular-specific, and 17 SA-specific markers. Ontology analysis identified 70 cardiac region- and species-specific ontologies. These results suggest that reanalyzing existing data by calculating SPM values may identify novel tissue-specific genes and species-dependent gene expression. This study identified the importance of SHOX2 as an SA-specific transcription factor, a novel cardiac regional marker, and species-dependent ontologies.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
- Correspondence:
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Miho Oka
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 618-8585, Japan; (T.I.); (M.O.)
| | - Daiki Kobayashi
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Suzuka Ito
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| | - Ryo Yamada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan; (D.O.); (R.Y.)
| | - Kuniaki Ishii
- Department of Pharmacology, Faculty of medicine, Yamagata University, Iida-Nishi, Yamagata 990-9585, Japan;
| | - Kyoichi Ono
- Department of Cell Physiology, Akita Graduate School of Medicine, Hondo, Akita 010-8543, Japan; (D.K.); (S.I.); (K.O.)
| |
Collapse
|
13
|
Fujiwara S. Dynamical Behavior of Disordered Regions in Disease-Related Proteins Revealed by Quasielastic Neutron Scattering. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:795. [PMID: 35744058 PMCID: PMC9230977 DOI: 10.3390/medicina58060795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Background and Objectives: Intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) are known to be involved in various human diseases. Since the IDPs/IDRs are fluctuating between many structural substrates, the dynamical behavior of the disease-related IDPs/IDRs needs to be characterized to elucidate the mechanisms of the pathogenesis of the diseases. As protein motions have a hierarchy ranging from local side-chain motions, through segmental motions of loops or disordered regions, to diffusive motions of entire molecules, segmental motions, as well as local motions, need to be characterized. Materials and Methods: Combined analysis of quasielastic neutron scattering (QENS) spectra with the structural data provides information on both the segmental motions and the local motions of the IDPs/IDRs. Here, this method is applied to re-analyze the QENS spectra of the troponin core domain (Tn-CD), various mutants of which cause the pathogenesis of familial cardiomyopathy (FCM), and α-synuclein (αSyn), amyloid fibril formation of which is closely related to the pathogenesis of Parkinson's disease, collected in the previous studies. The dynamical behavior of wild-type Tn-CD, FCM-related mutant Tn-CD, and αSyn in the different propensity states for fibril formation is characterized. Results: In the Tn-CD, the behavior of the segmental motions is shown to be different between the wild type and the mutant. This difference is likely to arise from changes in the intramolecular interactions, which are suggested to be related to the functional aberration of the mutant Tn-CD. In αSyn, concerted enhancement of the segmental motions and the local motions is observed with an increased propensity for fibril formation, suggesting the importance of these motions in fibril formation. Conclusions: Characterization of the segmental motions as well as the local motions is thus useful for discussing how the changes in dynamical behavior caused by the disease-related mutations and/or environmental changes could be related to the functional and/or behavioral aberrations of these proteins.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Institute for Quantum Biology, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
14
|
POTTER JAMESD. Reprint of: The Content of Troponin, Tropomyosin, Actin, and Myosin in Rabbit Skeletal Muscle Myofibrils. Arch Biochem Biophys 2022; 726:109241. [DOI: 10.1016/j.abb.2022.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Hassoun R, Erdmann C, Schmitt S, Fujita-Becker S, Mügge A, Schröder RR, Geyer M, Borbor M, Jaquet K, Hamdani N, Mannherz HG. Functional Characterization of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G). Int J Mol Sci 2022; 23:ijms23084465. [PMID: 35457283 PMCID: PMC9024677 DOI: 10.3390/ijms23084465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Rasmus R. Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, D-45147 Essen, Germany;
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| |
Collapse
|
16
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
17
|
Yang HW, Jiang YF, Lee HG, Jeon YJ, Ryu B. Ca 2+-Dependent Glucose Transport in Skeletal Muscle by Diphlorethohydroxycarmalol, an Alga Phlorotannin: In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893679. [PMID: 33628395 PMCID: PMC7889350 DOI: 10.1155/2021/8893679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Diphlorethohydroxycarmalol (DPHC), a type of phlorotannin isolated from the marine alga Ishige okamurae, reportedly alleviates impaired glucose tolerance. However, the molecular mechanisms of DPHC regulatory activity and by which it exerts potential beneficial effects on glucose transport into skeletal myotubes to control glucose homeostasis remain largely unexplored. The aim of this study was to evaluate the effect of DPHC on cytosolic Ca2+ levels and its correlation with blood glucose transport in skeletal myotubes in vitro and in vivo. Cytosolic Ca2+ levels upon DPHC treatment were evaluated in skeletal myotubes and zebrafish larvae by Ca2+ imaging using Fluo-4. We investigated the effect of DPHC on the blood glucose level and glucose transport pathway in a hyperglycemic zebrafish. DPHC was shown to control blood glucose levels by accelerating glucose transport; this effect was associated with elevated cytosolic Ca2+ levels in skeletal myotubes. Moreover, the increased cytosolic Ca2+ level caused by DPHC can facilitate the Glut4/AMPK pathways of the skeletal muscle in activating glucose metabolism, thereby regulating muscle contraction through the regulation of expression of troponin I/C, CaMKII, and ATP. Our findings provide insights into the mechanism of DPHC activity in skeletal myotubes, suggesting that increased cytosolic Ca2+ levels caused by DPHC can promote glucose transport into skeletal myotubes to modulate blood glucose levels, thus indicating the potential use of DPHC in the prevention of diabetes.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Fei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
18
|
Kinney CJ, O'Neill A, Noland K, Huang W, Muriel J, Lukyanenko V, Kane MA, Ward CW, Collier AF, Roche JA, McLenithan JC, Reed PW, Bloch RJ. μ-Crystallin in Mouse Skeletal Muscle Promotes a Shift from Glycolytic toward Oxidative Metabolism. Curr Res Physiol 2021; 4:47-59. [PMID: 34746826 PMCID: PMC8562245 DOI: 10.1016/j.crphys.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023] Open
Abstract
μ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, β-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that μ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of μ-crystallin are associated with a shift toward greater fat metabolism.
Collapse
Affiliation(s)
- Christian J. Kinney
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Andrea O'Neill
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Kaila Noland
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joaquin Muriel
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher W. Ward
- Department of Orthopedics School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa F. Collier
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joseph A. Roche
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - John C. McLenithan
- Department of Medicine School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Patrick W. Reed
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Robert J. Bloch
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| |
Collapse
|
19
|
Nam D, Cha JM, Park K. Next-Generation Wearable Biosensors Developed with Flexible Bio-Chips. MICROMACHINES 2021; 12:64. [PMID: 33430524 PMCID: PMC7827596 DOI: 10.3390/mi12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
The development of biosensors that measure various biosignals from our body is an indispensable research field for health monitoring. In recent years, as the demand to monitor the health conditions of individuals in real time have increased, wearable-type biosensors have received more attention as an alternative to laboratory equipment. These biosensors have been embedded into smart watches, clothes, and accessories to collect various biosignals in real time. Although wearable biosensors attached to the human body can conveniently collect biosignals, there are reliability issues due to noise generated in data collection. In order for wearable biosensors to be more widely used, the reliability of collected data should be improved. Research on flexible bio-chips in the field of material science and engineering might help develop new types of biosensors that resolve the issues of conventional wearable biosensors. Flexible bio-chips with higher precision can be used to collect various human data in academic research and in our daily lives. In this review, we present various types of conventional biosensors that have been used and discuss associated issues such as noise and inaccuracy. We then introduce recent studies on flexible bio-chips as a solution to these issues.
Collapse
Affiliation(s)
| | - Jae Min Cha
- Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Korea;
| | - Kiwon Park
- Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Korea;
| |
Collapse
|
20
|
Tobacman LS. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys J 2021; 120:1-9. [PMID: 33221250 PMCID: PMC7820733 DOI: 10.1016/j.bpj.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Recently, our understanding of the structural basis of troponin-tropomyosin's Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin's binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.
Collapse
Affiliation(s)
- Larry S Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Ravishankar H, Pedersen MN, Eklund M, Sitsel A, Li C, Duelli A, Levantino M, Wulff M, Barth A, Olesen C, Nissen P, Andersson M. Tracking Ca 2+ ATPase intermediates in real time by x-ray solution scattering. SCIENCE ADVANCES 2020; 6:eaaz0981. [PMID: 32219166 PMCID: PMC7083613 DOI: 10.1126/sciadv.aaz0981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/23/2019] [Indexed: 05/14/2023]
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) transporters regulate calcium signaling by active calcium ion reuptake to internal stores. Structural transitions associated with transport have been characterized by x-ray crystallography, but critical intermediates involved in the accessibility switch across the membrane are missing. We combined time-resolved x-ray solution scattering (TR-XSS) experiments and molecular dynamics (MD) simulations for real-time tracking of concerted SERCA reaction cycle dynamics in the native membrane. The equilibrium [Ca2]E1 state before laser activation differed in the domain arrangement compared with crystal structures, and following laser-induced release of caged ATP, a 1.5-ms intermediate was formed that showed closure of the cytoplasmic domains typical of E1 states with bound Ca2+ and ATP. A subsequent 13-ms transient state showed a previously unresolved actuator (A) domain arrangement that exposed the ADP-binding site after phosphorylation. Hence, the obtained TR-XSS models determine the relative timing of so-far elusive domain rearrangements in a native environment.
Collapse
Affiliation(s)
- Harsha Ravishankar
- Department of Chemistry, Umeå University. Linnaeus Väg 10, 901 87 Umeå, Sweden
| | | | | | - Aljona Sitsel
- DANDRITE–Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University. Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Chenge Li
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius Väg 16C, 106 91 Stockholm, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen. Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility, Grenoble, Cedex 38043, BP 220, France
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze -Ed 18, 90128 Palermo, Italy
| | - Michael Wulff
- European Synchrotron Radiation Facility, Grenoble, Cedex 38043, BP 220, France
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius Väg 16C, 106 91 Stockholm, Sweden
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Vest Ole Worms Allé 3, 113 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE–Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University. Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Magnus Andersson
- Department of Chemistry, Umeå University. Linnaeus Väg 10, 901 87 Umeå, Sweden
- Corresponding author.
| |
Collapse
|
22
|
Yamada Y, Namba K, Fujii T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat Commun 2020; 11:153. [PMID: 31919429 PMCID: PMC6952405 DOI: 10.1038/s41467-019-14008-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Contraction of striated muscles is driven by cyclic interactions of myosin head projecting from the thick filament with actin filament and is regulated by Ca2+ released from sarcoplasmic reticulum. Muscle thin filament consists of actin, tropomyosin and troponin, and Ca2+ binding to troponin triggers conformational changes of troponin and tropomyosin to allow actin-myosin interactions. However, the structural changes involved in this regulatory mechanism remain unknown. Here we report the structures of human cardiac muscle thin filament in the absence and presence of Ca2+ by electron cryomicroscopy. Molecular models in the two states built based on available crystal structures reveal the structures of a C-terminal region of troponin I and an N-terminal region of troponin T in complex with the head-to-tail junction of tropomyosin together with the troponin core on actin filament. Structural changes of the thin filament upon Ca2+ binding now reveal the mechanism of Ca2+ regulation of muscle contraction.
Collapse
Affiliation(s)
- Yurika Yamada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takashi Fujii
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Zhao C, Somiya T, Takai S, Ueki S, Arata T. Structural Dynamics of the N-Extension of Cardiac Troponin I Complexed with Troponin C by Site-Directed Spin Labeling Electron Paramagnetic Resonance. Sci Rep 2019; 9:15259. [PMID: 31649274 PMCID: PMC6813352 DOI: 10.1038/s41598-019-51740-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/07/2019] [Indexed: 11/29/2022] Open
Abstract
The secondary structure of the N-extension of cardiac troponin I (cTnI) was determined by measuring the distance distribution between spin labels attached to the i and i + 4 residues: 15/19, 23/27, 27/31, 35/39, and 43/47. All of the EPR spectra of these regions in the monomeric state were broadened and had a amplitude that was reduced by two-thirds of that of the single spin-labeled spectra and was fit by two residual distance distributions, with a major distribution one spreading over the range from 1 to 2.5 nm and the other minor peak at 0.9 nm. Only slight or no obvious changes were observed when the extension was bound to cTnC in the cTnI-cTnC complex at 0.2 M KCl. However, at 0.1 M KCl, residues 43/47, located at the PKC phosphorylation sites Ser42/44 on the boundary of the extension, exclusively exhibited a 0.9 nm peak, as expected from α-helix in the crystal structure, in the complex. Furthermore, 23/27, which is located on the PKA phosphorylation sites Ser23/24, showed that the major distribution was markedly narrowed, centered at 1.4 nm and 0.5 nm wide, accompanying the spin label immobilization of residue 27. Residues 35 and 69 at site 1 and 2 of cTnC exhibited partial immobilization of the attached spin labels upon complex formation. The results show that the extension exhibited a primarily partially folded or unfolded structure equilibrated with a transiently formed α-helix-like short structure over the length. We hypothesize that the structure binds at least near sites 1 and 2 of cTnC and that the specific secondary structure of the extension on cTnC becomes uncovered when decreasing the ionic strength demonstrating that only the phosphorylation regions of cTnI interact stereospecifically with cTnC.
Collapse
Affiliation(s)
- Chenchao Zhao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Takayasu Somiya
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Shinji Takai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Shoji Ueki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Samuki, Kagawa, 769-2193, Japan
| | - Toshiaki Arata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan. .,Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan. .,Department of Biology, Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Osaka, Osaka, 558-8585, Japan.
| |
Collapse
|
24
|
Caremani M, Brunello E, Linari M, Fusi L, Irving TC, Gore D, Piazzesi G, Irving M, Lombardi V, Reconditi M. Low temperature traps myosin motors of mammalian muscle in a refractory state that prevents activation. J Gen Physiol 2019; 151:1272-1286. [PMID: 31554652 PMCID: PMC6829559 DOI: 10.1085/jgp.201912424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The active force of mammalian skeletal muscle is reduced at low temperatures. Caremani et al. reveal that this is due to the rise of a population of myosin motors captured in a refractory state insensitive to muscle activation. Myosin motors in the thick filament of resting striated (skeletal and cardiac) muscle are trapped in an OFF state, in which the motors are packed in helical tracks on the filament surface, inhibiting their interactions with actin and utilization of ATP. To investigate the structural changes induced in the thick filament of mammalian skeletal muscle by changes in temperature, we collected x-ray diffraction patterns from the fast skeletal muscle extensor digitorum longus of the mouse in the temperature range from near physiological (35°C) to 10°C, in which the maximal isometric force (T0) shows a threefold decrease. In resting muscle, x-ray reflections signaling the OFF state of the thick filament indicate that cooling produces a progressive disruption of the OFF state with motors moving away from the ordered helical tracks on the surface of the thick filament. We find that the number of myosin motors in the OFF state at 10°C is half of that at 35°C. At T0, changes in the x-ray signals that report the fraction and conformation of actin-attached motors can be explained if the threefold decrease in force associated with lowering temperature is due not only to a decrease in the force-generating transition in the actin-attached motors but also to a twofold decrease in the number of such motors. Thus, lowering the temperature reduces to the same extent the fraction of motors in the OFF state at rest and the fraction of motors attached to actin at T0, suggesting that motors that leave the OFF state accumulate in a disordered refractory state that makes them unavailable for interaction with actin upon stimulation. This regulatory effect of temperature on the thick filament of mammalian skeletal muscle could represent an energetically convenient mechanism for hibernating animals.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - David Gore
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| |
Collapse
|
25
|
Caremani M, Pinzauti F, Powers JD, Governali S, Narayanan T, Stienen GJM, Reconditi M, Linari M, Lombardi V, Piazzesi G. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J Gen Physiol 2018; 151:53-65. [PMID: 30510036 PMCID: PMC6314382 DOI: 10.1085/jgp.201812196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022] Open
Abstract
When striated (skeletal and cardiac) muscle is in its relaxed state, myosin motors are packed in helical tracks on the surface of the thick filament, folded toward the center of the sarcomere, and unable to bind actin or hydrolyze ATP (OFF state). This raises the question of whatthe mechanism is that integrates the Ca2+-dependent thin filament activation, making myosin heads available for interaction with actin. Here we test the interdependency of the thin and thick filament regulatory mechanisms in intact trabeculae from the rat heart. We record the x-ray diffraction signals that mark the state of the thick filament during inotropic interventions (increase in sarcomere length from 1.95 to 2.25 µm and addition of 10-7 M isoprenaline), which potentiate the twitch force developed by an electrically paced trabecula by up to twofold. During diastole, none of the signals related to the OFF state of the thick filament are significantly affected by these interventions, except the intensity of both myosin-binding protein C- and troponin-related meridional reflections, which reduce by 20% in the presence of isoprenaline. These results indicate that recruitment of myosin motors from their OFF state occurs independently and downstream from thin filament activation. This is in agreement with the recently discovered mechanism based on thick filament mechanosensing in which the number of motors available for interaction with actin rapidly adapts to the stress on the thick filament and thus to the loading conditions of the contraction. The gain of this positive feedback may be modulated by both sarcomere length and the degree of phosphorylation of myosin-binding protein C.
Collapse
Affiliation(s)
| | | | | | | | | | - Ger J M Stienen
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marco Linari
- PhysioLab, University of Florence, Firenze, Italy
| | | | | |
Collapse
|
26
|
Phung LA, Karvinen SM, Colson BA, Thomas DD, Lowe DA. Age affects myosin relaxation states in skeletal muscle fibers of female but not male mice. PLoS One 2018; 13:e0199062. [PMID: 30226869 PMCID: PMC6143227 DOI: 10.1371/journal.pone.0199062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
The recent discovery that myosin has two distinct states in relaxed muscle–disordered relaxed (DRX) and super-relaxed (SRX)–provides another factor to consider in our fundamental understanding of the aging mechanism in skeletal muscle, since myosin is thought to be a potential contributor to dynapenia (age-associated loss of muscle strength independent of atrophy). The primary goal of this study was to determine the effects of age on DRX and SRX states and to examine their sex specificity. We have used quantitative fluorescence microscopy of the fluorescent nucleotide analog 2′/3′-O-(N-methylanthraniloyl) ATP (mantATP) to measure single-nucleotide turnover kinetics of myosin in skinned skeletal muscle fibers under relaxing conditions. We examined changes in DRX and SRX in response to the natural aging process by measuring the turnover of mantATP in skinned fibers isolated from psoas muscle of adult young (3–4 months old) and aged (26–28 months old) C57BL/6 female and male mice. Fluorescence decays were fitted to a multi-exponential decay function to determine both the time constants and mole fractions of fast and slow turnover populations, and significance was analyzed by a t-test. We found that in females, both the DRX and SRX lifetimes of myosin ATP turnover at steady state were shorter in aged muscle fibers compared to young muscle fibers (p ≤ 0.033). However, there was no significant difference in relaxation lifetime of either DRX (p = 0.202) or SRX (p = 0.804) between young and aged male mice. No significant effects were measured on the mole fractions (populations) of these states, as a function of sex or age (females, p = 0.100; males, p = 0.929). The effect of age on the order of myosin heads at rest and their ATPase function is sex specific, affecting only females. These findings provide new insight into the molecular factors and mechanisms that contribute to aging muscle dysfunction in a sex-specific manner.
Collapse
Affiliation(s)
- Lien A. Phung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sira M. Karvinen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (DDT); (DAL)
| | - Dawn A. Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (DDT); (DAL)
| |
Collapse
|
27
|
Piazzesi G, Caremani M, Linari M, Reconditi M, Lombardi V. Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the Contraction to the Task. Front Physiol 2018; 9:736. [PMID: 29962967 PMCID: PMC6010558 DOI: 10.3389/fphys.2018.00736] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022] Open
Abstract
A dual regulation of contraction operates in both skeletal and cardiac muscles. The first mechanism, based on Ca2+-dependent structural changes of the regulatory proteins in the thin filament, makes the actin sites available for binding of the myosin motors. The second recruits the myosin heads from the OFF state, in which they are unable to split ATP and bind to actin, in relation to the force during contraction. Comparison of the relevant X-ray diffraction signals marking the state of the thick filament demonstrates that the force feedback that controls the regulatory state of the thick filament works in the same way in skeletal as in cardiac muscles: even if in an isometric tetanus of skeletal muscle force is under the control of the firing frequency of the motor unit, while in a heartbeat force is controlled by the afterload, the stress-sensor switching the motors ON plays the same role in adapting the energetic cost of the contraction to the force. A new aspect of the Frank-Starling law of the heart emerges: independent of the diastolic filling of the ventricle, the number of myosin motors switched ON during systole, and thus the energetic cost of contraction, are tuned to the arterial pressure. Deterioration of the thick-filament regulation mechanism may explain the hyper-contractility related to hypertrophic cardiomyopathy, an inherited heart disease that in 40% of cases is due to mutations in cardiac myosin.
Collapse
Affiliation(s)
| | | | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy
| | | | | |
Collapse
|
28
|
Irving M. Regulation of Contraction by the Thick Filaments in Skeletal Muscle. Biophys J 2017; 113:2579-2594. [PMID: 29262355 PMCID: PMC5770512 DOI: 10.1016/j.bpj.2017.09.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/23/2022] Open
Abstract
Contraction of skeletal muscle cells is initiated by a well-known signaling pathway. An action potential in a motor nerve triggers an action potential in a muscle cell membrane, a transient increase of intracellular calcium concentration, binding of calcium to troponin in the actin-containing thin filaments, and a structural change in the thin filaments that allows myosin motors from the thick filaments to bind to actin and generate force. This calcium/thin filament mediated pathway provides the "START" signal for contraction, but it is argued that the functional response of the muscle cell, including the speed of its contraction and relaxation, adaptation to the external load, and the metabolic cost of contraction is largely determined by additional mechanisms. This review considers the role of the thick filaments in those mechanisms, and puts forward a paradigm for the control of contraction in skeletal muscle in which both the thick and thin filaments have a regulatory function. The OFF state of the thick filament is characterized by helical packing of most of the myosin head or motor domains on the thick filament surface in a conformation that makes them unavailable for actin binding or ATP hydrolysis, although a small fraction of the myosin heads are constitutively ON. The availability of the majority fraction of the myosin heads for contraction is controlled in part by the external load on the muscle, so that these heads only attach to actin and hydrolyze ATP when they are required. This phenomenon seems to be the major determinant of the well-known force-velocity relationship of muscle, and controls the metabolic cost of contraction. The regulatory state of the thick filament also seems to control the dynamics of both muscle activation and relaxation.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
29
|
Matsuo T, Tominaga T, Kono F, Shibata K, Fujiwara S. Modulation of the picosecond dynamics of troponin by the cardiomyopathy-causing mutation K247R of troponin T observed by quasielastic neutron scattering. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1781-1789. [PMID: 28923663 DOI: 10.1016/j.bbapap.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
Troponin (Tn), consisting of three subunits (TnC, TnI, and TnT), regulates cardiac muscle contraction in a Ca2+-dependent manner. Various point mutations of human cardiac Tn are known to cause familial hypertrophic cardiomyopathy due to aberration of the regulatory function. In this study, we investigated the effects of one of these mutations, K247R of TnT, on the picosecond dynamics of the Tn core domain (Tn-CD), consisting of TnC, TnI and TnT2 (183-288 residues of TnT), by carrying out the quasielastic neutron scattering measurements on the reconstituted Tn-CD containing either the wild-type TnT2 (wtTn-CD) or the mutant TnT2 (K247R-Tn-CD) in the absence and presence of Ca2+. It was found that Ca2+-binding to the wtTn-CD decreases the residence time of atomic motions in the Tn-CD with slight changes in amplitudes, suggesting that the regulatory function mainly requires modulation of frequency of atomic motions. On the other hand, the K247R-Tn-CD shows different dynamic behavior from that of the wtTn-CD both in the absence and presence of Ca2+. In particular, the K247R-Tn-CD exhibits a larger amplitude than the wtTn-CD in the presence of Ca2+, suggesting that the mutant can explore larger conformational space than the wild-type. This increased flexibility should be relevant to the functional aberration of this mutant.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Fumiaki Kono
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
| | - Satoru Fujiwara
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
30
|
Ghashghaee NB, Li KL, Dong WJ. Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, Brook JD, Rutland CS, Setchfield K, Gell C, Ghosh TK, Bu'Lock F, Thornborough C, Ehler E, Loughna S. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol 2017; 106:1-13. [PMID: 28359939 PMCID: PMC5441184 DOI: 10.1016/j.yjmcc.2017.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/03/2022]
Abstract
Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs. Four mutations identified in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and GATAAA/AATAAA. In vitro analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. I130V and S229F mutations caused abnormal structural properties in the sarcomere. Reduced TPM1 expression during early cardiogenesis causes aberrant gross morphology. Apoptosis, sarcomere assembly and cardiac conduction were also affected.
Collapse
Affiliation(s)
| | - Javier Granados-Riveron
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de México Federico Gómez, Mexico
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, USA
| | | | | | - J David Brook
- School of Life Sciences, University of Nottingham, UK
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | | | | | - Frances Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | | | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, The Cardiovascular Division, King's College London, UK
| | | |
Collapse
|
32
|
Abstract
Knowledge accumulated in the field of energetics of muscle contraction has been reviewed in this article. Active muscle converts chemical energy into heat and work. Therefore, measurements of heat production and mechanical work provide the framework for understanding the process of energy conversion in contraction. In the 1970s, precise comparison between energy output and the associated chemical reactions was performed. It has been found that the two do not match in several situations, resulting in an energy balance discrepancy. More recently, efforts in resolving these discrepancies in the energy balance have been made involving chemical analysis, phosphorus nuclear magnetic resonance spectroscopy, and microcalorimetry. Through reviewing the evidence from these studies, the energy balance discrepancy developed early during isometric contraction has become well understood on a quantitative basis. In this situation energy balance is established when we take into account the binding of Ca to sarcoplasmic proteins such as troponin and parvalbumin, and also the shift of cross-bridge states. On the other hand, the energy balance discrepancy observed during rapid shortening still remains to be clarified. The problem may be related to the essential mechanism of cross-bridge action.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Neurophysiology, University of Oita Faculty of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
33
|
Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:194. [PMID: 27294090 DOI: 10.21037/atm.2016.05.19] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Suspected acute myocardial infarction (AMI) is one of the leading causes of admission to the emergency departments in Western countries but also an increasing cause in many other nations. The diagnosis of AMI involves the evaluation of clinical signs and symptoms, electrocardiographic assessment, and measurement of cardiac circulating biomarkers. In the last sixty years, the use of laboratory markers has changed considerably. Early biomarkers assessment has entailed testing for total enzyme activity of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase (CK). Advances in electrophoresis allowed the identification of more cardio-specific isoenzymes of both CK and LDH, thus leading to the introduction of the CK-MB and LDH-1 activity assays. Soon thereafter, the development of immunoassays, as well as technical advances in automation, allowed the measurements of the CK-MB in mass rather than in activity and myoglobin. Currently, cardiac troponins have the highest sensitivity and specificity for myocardial necrosis and represent the biochemical gold standard for diagnosing AMI. This review provides a chronology of the major events which marked the evolution of cardiac biomarkers testing and the development of the relative assays from the first introduction of AST in the 1950s to the last high sensitivity troponin immunoassays in the 2010s.
Collapse
Affiliation(s)
- Elisa Danese
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Martina Montagnana
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| |
Collapse
|
34
|
Narita A, Usukura E, Yagi A, Tateyama K, Akizuki S, Kikumoto M, Matsumoto T, Maéda Y, Ito S, Usukura J. Direct observation of the actin filament by tip-scan atomic force microscopy. Microscopy (Oxf) 2016; 65:370-7. [PMID: 27242058 PMCID: PMC5895109 DOI: 10.1093/jmicro/dfw017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/28/2016] [Indexed: 11/13/2022] Open
Abstract
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope.
Collapse
Affiliation(s)
- Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Eiji Usukura
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Yagi
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Kiyohiko Tateyama
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Shogo Akizuki
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Mahito Kikumoto
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomoharu Matsumoto
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuichiro Maéda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shuichi Ito
- R&D Group, Olympus Corporation, 2-3 Kuboyama-cho, Hachioji, Tokyo 192-8512, Japan
| | - Jiro Usukura
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Non-Straub type actin from molluscan catch muscle. Biochem Biophys Res Commun 2016; 474:384-387. [PMID: 27120462 DOI: 10.1016/j.bbrc.2016.04.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022]
Abstract
We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Сrenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization-depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers.
Collapse
|
36
|
Toyota N, Fujitsuka C, Ishibashi G, S Yoshida L, Takano-Ohmuro H. Morphological Modifications in Myofibrils by Suppressing Tropomyosin 4α in Chicken Cardiac Myocytes. Cell Struct Funct 2016; 41:45-54. [PMID: 27118431 DOI: 10.1247/csf.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin (TPM) localizes along F-actin and, together with troponin T (TnT) and other components, controls calcium-sensitive muscle contraction. The role of the TPM isoform (TPM4α) that is expressed in embryonic and adult cardiac muscle cells in chicken is poorly understood. To analyze the function of TPM4α in myofibrils, the effects of TPM4α-suppression were examined in embryonic cardiomyocytes by small interference RNA transfection. Localization of myofibril proteins such as TPM, actin, TnT, α-actinin, myosin and connectin was examined by immunofluorescence microscopy on day 5 when almost complete TPM4α-suppression occurred in culture. A unique large structure was detected, consisting of an actin aggregate bulging from the actin bundle, and many curved filaments projecting from the aggregate. TPM, TnT and actin were detected on the large structure, but myosin, connectin, α-actinin and obvious myofibril striations were undetectable. It is possible that TPM4α-suppressed actin filaments are sorted and excluded at the place of the large structure. This suggests that TPM4α-suppression significantly affects actin filament, and that TPM4α plays an important role in constructing and maintaining sarcomeres and myofibrils in cardiac muscle.
Collapse
Affiliation(s)
- Naoji Toyota
- Department of Environmental Biology, Kumamoto Gakuen University
| | | | | | | | | |
Collapse
|
37
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
38
|
|
39
|
Matsuo T, Takeda S, Oda T, Fujiwara S. Structures of the troponin core domain containing the cardiomyopathy-causing mutants studied by small-angle X-ray scattering. Biophys Physicobiol 2015; 12:145-58. [PMID: 27493864 PMCID: PMC4736830 DOI: 10.2142/biophysico.12.0_145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 12/01/2022] Open
Abstract
Troponin (Tn), consisting of three subunits, TnC, TnI, and TnT, is a protein in the thin filaments in muscle, and, together with another thin-filament protein tropomyosin (Tm), plays a major role in regulation of muscle contraction. Various mutations of Tn cause familial hypertrophic cardiomyopathy. These mutations are directly related to aberrations in this regulatory mechanism. Here we focus on the mutations E244D and K247R of TnT, which reside in the middle of the pathway of the Ca(2+)-binding signal from TnC to Tm. These mutations induce an increase in the maximum tension of cardiac muscle without changes in Ca(2+)-sensitivity. As a first step toward elucidating the molecular mechanism underlying this functional aberration, we carried out small-angle X-ray scattering experiments on the Tn core domain containing the wild type subunits and those containing the mutant TnT in the absence and presence of Ca(2+). Changes in the overall shape induced by the mutations were detected for the first time by the changes in the radius of gyration and the maximum dimension between the wild type and the mutants. Analysis of the scattering curves by model calculations shows that TnC adopts a dumbbell structure regardless of the mutations, and that the mutations change the distributions of the conformational ensembles so that the flexible N- and C-terminal regions of TnT become close to the center of the whole moelcule. This suggests, since these regions are related to the Tn-Tm interactions, that alteration of the Tn-Tm interactions induced by the mutations causes the functional aberration.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Soichi Takeda
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Toshiro Oda
- RIKEN SPring-8 center, RIKEN Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Satoru Fujiwara
- Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| |
Collapse
|
40
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
41
|
Kagemoto T, Li A, Dos Remedios C, Ishiwata S. Spontaneous oscillatory contraction (SPOC) in cardiomyocytes. Biophys Rev 2015; 7:15-24. [PMID: 28509984 PMCID: PMC5425754 DOI: 10.1007/s12551-015-0165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca2+ levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca2+ (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Amy Li
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667, Singapore.
| |
Collapse
|
42
|
WAKABAYASHI T. Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:321-50. [PMID: 26194856 PMCID: PMC4631897 DOI: 10.2183/pjab.91.321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 06/10/2023]
Abstract
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions.
Collapse
Affiliation(s)
- Takeyuki WAKABAYASHI
- Department of Physics, Graduate School of Science, the University of Tokyo, Tokyo, Japan
- Department of Biosciences, Graduate School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
43
|
Liu W, Olson SD. Compartment calcium model of frog skeletal muscle during activation. J Theor Biol 2015; 364:139-53. [DOI: 10.1016/j.jtbi.2014.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022]
|
44
|
Sevrieva I, Knowles AC, Kampourakis T, Sun YB. Regulatory domain of troponin moves dynamically during activation of cardiac muscle. J Mol Cell Cardiol 2014; 75:181-7. [PMID: 25101951 PMCID: PMC4169182 DOI: 10.1016/j.yjmcc.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/26/2014] [Indexed: 11/24/2022]
Abstract
Heart muscle is activated by Ca2+ to generate force and shortening, and the signaling pathway involves allosteric mechanisms in the thin filament. Knowledge about the structure-function relationship among proteins in the thin filament is critical in understanding the physiology and pathology of the cardiac function, but remains obscure. We investigate the conformation of the cardiac troponin (Tn) on the thin filament and its response to Ca2+ activation and propose a molecular mechanism for the regulation of cardiac muscle contraction by Tn based uniquely on information from in situ protein domain orientation. Polarized fluorescence from bifunctional rhodamine is used to determine the orientation of the major component of Tn core domain on the thin filaments of cardiac muscle. We show that the C-terminal lobe of TnC (CTnC) does not move during activation, suggesting that CTnC, together with the coiled coil formed by the TnI and TnT chains (IT arm), acts as a scaffold that holds N-terminal lobe of TnC (NTnC) and the actin binding regions of troponin I. The NTnC, on the other hand, exhibits multiple orientations during both diastole and systole. By combining the in situ orientation data with published in vitro measurements of intermolecular distances, we construct a model for the in situ structure of the thin filament. The conformational dynamics of NTnC plays an important role in the regulation of cardiac muscle contraction by moving the C-terminal region of TnI from its actin-binding inhibitory location and enhancing the movement of tropomyosin away from its inhibitory position. In situ conformational changes of troponin in myocardium were investigated. A model for the cardiac thin filament was constructed based on the in situ data. The IT arm of cardiac troponin acts as a scaffold that holds the regulatory domain. The regulatory domain of cardiac troponin moves dynamically during activation. The dynamics of regulatory domain is important in cardiac muscle regulation.
Collapse
Affiliation(s)
- Ivanka Sevrieva
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Andrea C Knowles
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
45
|
Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, Arata T. Calcium-dependent interaction sites of tropomyosin on reconstituted muscle thin filaments with bound Myosin heads as studied by site-directed spin-labeling. Biophys J 2014; 105:2366-73. [PMID: 24268148 DOI: 10.1016/j.bpj.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/09/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca(2+) ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca(2+). These findings suggest that even in the myosin-bound (open) state, Ca(2+) may regulate actomyosin contractile properties via Tm.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
46
|
Schlecht W, Zhou Z, Li KL, Rieck D, Ouyang Y, Dong WJ. FRET study of the structural and kinetic effects of PKC phosphomimetic cardiac troponin T mutants on thin filament regulation. Arch Biochem Biophys 2014; 550-551:1-11. [PMID: 24708997 DOI: 10.1016/j.abb.2014.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/31/2023]
Abstract
FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca(2+) and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca(2+) and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca(2+) sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca(2+)-sensitivity. The rate of Ca(2+)-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca(2+)-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca(2+)-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca(2+)-sensitivity and likely play an important role in cardiac regulation.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Zhiqun Zhou
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - King-Lun Li
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Daniel Rieck
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Yexin Ouyang
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
47
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
48
|
Jayasundar JJ, Xing J, Robinson JM, Cheung HC, Dong WJ. Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints. PLoS One 2014; 9:e87135. [PMID: 24558365 PMCID: PMC3928104 DOI: 10.1371/journal.pone.0087135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022] Open
Abstract
Cardiac troponin (cTn) is the Ca2+-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca2+ signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca2+-free and saturating Ca2+ conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca2+-saturated structure, the absence of regulatory Ca2+ perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca2+, induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca2+ the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.
Collapse
Affiliation(s)
- Jayant James Jayasundar
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Jun Xing
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - John M. Robinson
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America
| | - Herbert C. Cheung
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering and The Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Reconditi M, Brunello E, Fusi L, Linari M, Martinez MF, Lombardi V, Irving M, Piazzesi G. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog. J Physiol 2013; 592:1119-37. [PMID: 24344169 DOI: 10.1113/jphysiol.2013.267849] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments.
Collapse
Affiliation(s)
- Massimo Reconditi
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | | | | | | | | | | | | | | |
Collapse
|