1
|
Mukhametova LI, Zherdev DO, Eremin SA, Levashov PA, Siebert HC, Tsvetkov YE, Yudina ON, Krylov VB, Nifantiev NE. Application of the Chitooligosaccharides and Fluorescence Polarization Technique for the Assay of Active Lysozyme in Hen Egg White. Biomolecules 2024; 14:1589. [PMID: 39766297 PMCID: PMC11673759 DOI: 10.3390/biom14121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e., carbohydrate-binding action of lysozyme) and tracer splitting (because of chitinase activity of lysozyme). Evaluation of the fluorescence polarization dynamics enables simultaneous measurement of the chitinase and lectin activities of lysozyme, which is crucial for its detection in complex biological systems. Hen egg white lysozyme (HEWL), unlike human lysozyme (HL), formed a stable complex with the chitotriose tracer that underwent no further transformations. This fact allows for easy measurement of the carbohydrate-binding activity of the HEWL. The results of the lysozyme activity measurement for hen egg samples obtained through the FPA correlated with the results obtained using the traditional turbidimetry method. The FPA does not have the drawbacks of turbidimetry, which are associated with the need to use bacterial cells that cannot be precisely standardized. Additionally, FPA offers advantages such as rapid analysis, the use of compact equipment, and standardized reagents. Therefore, the new express technique for measuring the lysozyme activity is applicable for evaluating the complex biomaterial, including for the purposes of food product quality control.
Collapse
Affiliation(s)
- Liliya I. Mukhametova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Dmitry O. Zherdev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Pavel A. Levashov
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (D.O.Z.); (S.A.E.); (P.A.L.)
| | - Hans-Christian Siebert
- RI-B-NT—Research Institute of Bioinformatics and Nanotechnology, Schauenburger Str. 116, 24118 Kiel, Germany;
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| | - Olga N. Yudina
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| | - Vadim B. Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (Y.E.T.); (O.N.Y.)
| |
Collapse
|
2
|
Guo Q, Liu B, Guo X, Yan P, Cao B, Liu R, Liu X. Characterization and application of LysSGF2 and HolSGF2 as potential biocontrol agents against planktonic and biofilm cells of common pathogenic bacteria. Int J Food Microbiol 2024; 425:110848. [PMID: 39208563 DOI: 10.1016/j.ijfoodmicro.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance represents a global health emergency, necessitating the introduction of novel antimicrobial agents. In the present study, lysozyme and holin from Shigella flexneri 1.1868 phage SGF2, named LysSGF2 and HolSGF2, respectively, were cloned, expressed, and characterized. LysSGF2 and HolSGF2 showed lytic activities against S. flexneri 1.1868 cells at 4-55 °C and pH 3.1-10.3. LysSGF2 exhibited antimicrobial activity against five gram-negative and two gram-positive bacteria. HolSGF2 showed antimicrobial activity against four gram-negative and one gram-positive species. The antibacterial activities of LysSGF2 and HolSGF2 were determined in liquid beverages, including bottled water and milk. The relative lytic activity of LysSGF2 combined with HolSGF2 against the tested bacteria was approximately 46-77 % in water. Furthermore, the combination markedly decreased the viable counts of tested bacteria by approximately 3-5 log CFU/mL. LysSGF2 and HolSGF2 could efficiently remove biofilms on polystyrene, glass, and stainless-steel. The efficacy of the LysSGF2 and HolSGF2 combination against the tested bacteria on polystyrene was 58-71 %. Combination treatment effectively killed biofilm cells formed on stainless-steel and glass by 1-4 log CFU/mL. ese results indicate that LysSGF2 and HolSGF2 can successfully control both the planktonic and biofilm cells of common pathogenic bacteria, suggesting that the combined or single use of LysSGF2 and HolSGF2 may be of great value in food processing.
Collapse
Affiliation(s)
- Qiucui Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Zhang N, Li L, Mohri M, Siebert S, Lütteke T, Louton H, Bednarikova Z, Gazova Z, Nifantiev N, Jandowsky A, Frölich K, Eckert T, Loers G, Petridis AK, Bhunia A, Mohid SA, Scheidig AJ, Liu G, Zhang R, Lochnit G, Siebert HC. Protein - carbohydrate interaction studies using domestic animals as role models support the search of new glycomimetic molecules. Int J Biol Macromol 2024; 279:134951. [PMID: 39179069 DOI: 10.1016/j.ijbiomac.2024.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The structural dynamics of the interactions between defensins or lysozymes and various saccharide chains that are covalently linked to lipids or proteins were analyzed in relation to the sub-molecular architecture of the carbohydrate binding sites of lectins. Using tissue materials from rare and endangered domestic animals as well as from dogs it was possible to compare these results with data obtained from a human glioblastoma tissue. The binding mechanisms were analyzed on a cellular and a sub-molecular size level using biophysical techniques (e.g. NMR, AFM, MS) which are supported by molecular modeling tools. This leads to characteristic structural patterns being helpful to understand glyco-biochemical pathways in which galectins, defensins or lysozymes are involved. Carbohydrate chains have a distinct impact on cell differentiation, cell migration and immunological processes. The absence or the presence of sialic acids and the conformational dynamics in glycans are often correlated with zoonoses such as influenza- and coronavirus-infections. Receptor-sensitive glycomimetics could be a solution. The new findings concerning the function of galectin-3 in the nucleus in relation to differentiation processes can be understood when the binding specificity of neuroleptic molecules as well as the interactions between proteins and nucleic acids are describable on a sub-molecular size level.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Lan Li
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Marzieh Mohri
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Lütteke
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Nikolay Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anabell Jandowsky
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Kai Frölich
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany; RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center, Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Department of Neurosurgery, St. Lukes Hospital, Thessaloniki, Greece
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Sk Abdul Mohid
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Axel J Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Guiqin Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Günter Lochnit
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität Gießen, Friedrichstrasse 24, 35390 Gießen, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Argunov DA, Aladysheva US, Krylov VB, Nifantiev NE. Acid-Catalyzed Transformation of Pyranosides into Furanosides as a Tool for Preparation of Furanoside Synthetic Blocks. Org Lett 2024; 26:8090-8094. [PMID: 39269779 DOI: 10.1021/acs.orglett.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The importance of natural glycoconjugates containing furanoside residues causes a continued demand for the development of efficient methods for the synthesis of corresponding oligosaccharide derivatives to be used as molecular probes in glycobiological studies. Currently, the chemical synthesis of furanose-containing oligosaccharides often represents a significant challenge because of the lack of short, efficient, and reliable methods for the preparation of selectively substituted furanoside blocks. Herein, we report an easy protocol toward galactofuranose-containing molecules based on the unusual equilibrium between pyranoside and furanoside forms observed for a series of substituted galactosides. The method's utility is illustrated by the syntheses of furanoside-containing oligosaccharides related to the antigenic polysaccharides of Aspergillus fumigatus and Klebsiella pneumoniae O2ac.
Collapse
Affiliation(s)
- Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Uliana S Aladysheva
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
5
|
Mukhametova LI, Zherdev DO, Kuznetsov AN, Yudina ON, Tsvetkov YE, Eremin SA, Krylov VB, Nifantiev NE. Fluorescence-Polarization-Based Assaying of Lysozyme with Chitooligosaccharide Tracers. Biomolecules 2024; 14:170. [PMID: 38397407 PMCID: PMC10886901 DOI: 10.3390/biom14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 μM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.
Collapse
Affiliation(s)
- Liliya I. Mukhametova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
| | - Dmitry O. Zherdev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Anton N. Kuznetsov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Olga N. Yudina
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
| | - Vadim B. Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| |
Collapse
|
6
|
Solovev AS, Denisova EM, Kurbatova EA, Kutsevalova OY, Boronina LG, Ageevets VA, Sidorenko SV, Krylov VB, Nifantiev NE. Synthesis of methylphosphorylated oligomannosides structurally related to lipopolysaccharide O-antigens of Klebsiella pneumoniae serotype O3 and their application for detection of specific antibodies in rabbit and human sera. Org Biomol Chem 2023; 21:8306-8319. [PMID: 37794804 DOI: 10.1039/d3ob01203d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Methylphosphorylated mono-, di- and trimannosides structurally related to the lipopolysaccharide (LPS) O-antigens of Klebsiella pneumoniae of serotype O3 were synthesized and conjugated with a biotin tag. The stereo- and regioselective assembly of target carbohydrate chains was conducted using uniform monosaccharide synthetic blocks. After that, a methylphosphate group was introduced by coupling with a methyl-H-phosphonate reagent followed by oxidation and deprotection to give the target oligosaccharides. The 1H and 13C NMR spectra of the obtained compounds showed a good fit with the spectrum of the corresponding natural polysaccharide. The newly prepared biotinylated oligosaccharides along with the previously reported biotinylated glycoconjugates related to galactan I and galactan II of K. pneumoniae LPS were used for the ELISA detection of antibodies in anti-K. pneumoniae rabbit sera. Anti-O3 serum antibodies specifically recognized the synthesized oligosaccharide ligands with terminal methylphosphomannosyl residues, whereas anti-O1 serum antibodies recognized the oligosaccharide related to K. pneumoniae galactan II. The analysis of human sera from patients with confirmed Klebsiella infection also revealed the presence of antibodies against the synthesized oligosaccharides in clinical cases. Thus, the described compounds together with other Klebsiella related antigenic oligosaccharides could be potentially used as molecular probes for K. pneumoniae serological diagnostics development and strain serotyping.
Collapse
Affiliation(s)
- Arsenii S Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Evgeniya M Denisova
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation.
| | - Ekaterina A Kurbatova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Immunology, I. I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Olga Y Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia
| | - Liubov G Boronina
- Ural State Medical University, 3 Repina Str., 620028 Yekaterinburg, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 Saint Petersburg, Russia
| | - Sergey V Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, 9 Prof. Popov Street, 197022 Saint Petersburg, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Kiani P, Soozanipour A, Rezayat A, Taheri-Kafrani A. Lysozyme-immobilized bandage contact lens inhibits the growth and biofilm formation of common eye pathogens in vitro. Exp Eye Res 2023; 234:109601. [PMID: 37488008 DOI: 10.1016/j.exer.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Bandage contact lenses have an increased affinity to accumulate tear film proteins and bacteria during wear. Among the wide variety of tear film proteins, lysozyme has attracted the most attention for several reasons, including the fact that it is found at a high concentration in the tear film, has exceptional antibacterial and antibiofilm properties, and its significant deposits onto contact lenses. This study aims to evaluate the effect of lysozyme on bacterial biofilm formation on bandage contact lenses. For this purpose, several methods, including microtiter plate test and Colony Forming Unit (CFU) assay have been used to determine antibacterial and antibiofilm characteristics of lysozyme against the two most frequent contact lens-induced bacterial ocular infections, Staphylococcus aureus, and Pseudomonas aeruginosa. The results of these assays demonstrate lysozyme potential to inhibit 57.9% and 80.7% of the growth of S. aureus and P. aeruginosa, respectively. In addition, biofilm formations of P. aeruginosa and S. aureus reduced by 38.3% and 62.7%, respectively due to the antibiofilm effect of lysozyme. SEM and AFM imaging were utilized to visualize lysozyme antibacterial activity and topography changes of the contact lens surface, respectively, in the presence/absence of lysozyme. The results indicated that lysozyme can efficiently attack both gram-positive and gram-negative bacteria and consequently lysozyme-functionalized bandage contact lenses can reduce the risk of ocular infection after eye surgery.
Collapse
Affiliation(s)
- Pardis Kiani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
8
|
Gu Z, Wang L, Dong Q, Xu K, Ye J, Shao X, Yang S, Lu C, Chang C, Hou Y, Zhai Y, Wang X, He F, Sun A. Aberrant LYZ expression in tumor cells serves as the potential biomarker and target for HCC and promotes tumor progression via csGRP78. Proc Natl Acad Sci U S A 2023; 120:e2215744120. [PMID: 37428911 PMCID: PMC10629575 DOI: 10.1073/pnas.2215744120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.
Collapse
Affiliation(s)
- Zhiwen Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Qian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Jingnan Ye
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Songpeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cuixiu Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Yuanjun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Xinxin Wang
- Department of Pathology, Beijing You’an Hospital, Capital Medical University, Beijing100069, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| |
Collapse
|
9
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
11
|
Congiu L, Granato V, Jakovcevski I, Kleene R, Fernandes L, Freitag S, Kneussel M, Schachner M, Loers G. Mice Mutated in the Third Fibronectin Domain of L1 Show Enhanced Hippocampal Neuronal Cell Death, Astrogliosis and Alterations in Behavior. Biomolecules 2023; 13:776. [PMID: 37238646 PMCID: PMC10216033 DOI: 10.3390/biom13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.
Collapse
Affiliation(s)
- Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Matthias Kneussel
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| |
Collapse
|
12
|
Altwaijry N, Almutairi GS, Khan MS, Alokail MS, Alafaleq N, Ali R. The effect of novel antihypertensive drug valsartan on lysozyme aggregation: A combined in situ and in silico study. Heliyon 2023; 9:e15270. [PMID: 37123968 PMCID: PMC10130856 DOI: 10.1016/j.heliyon.2023.e15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 μM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 μM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 μM VAL while the increase in β-sheet was detected at 100 μM concentration of VAL. The hydrophobicity of HEWL was increased at 100 μM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 μM VAL, while at 100 μM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 μM, preventing aggregation. Also, we assume that at 100 μM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Ghaliah S. Almutairi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahhnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author.
| | - Majed S. Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medial Research Center (KAIMRC), Medical Research Core Facility and Platforms (MRCFP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
13
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Ramadoss R, Al-Shukri M, Shomar B, Ilyin VA, Vincent AS. Substantiation of propitious "Enzybiotic" from two novel bacteriophages isolated from a wastewater treatment plant in Qatar. Sci Rep 2022; 12:9093. [PMID: 35641576 PMCID: PMC9156722 DOI: 10.1038/s41598-022-13171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Lysin of bacteriophages isolated from a particular ecosystem could be inducted as a bio-controlling tool against the inhabiting pathogenic bacterial strains. Our study aims at both experimental and computational characterization of the identical lysin gene product inherent in the genomes of two novel Myoviridae bacteriophages, Escherichia Phage C600M2 (GenBank accession number OK040807, Protein ID: UCJ01465) and Escherichia Phage CL1 (GenBank Genome accession number OK040806.1, Protein ID: UCJ01321) isolated from wastewater collected from the main water treatment plant in Qatar. The lysin protein, evinced to be a globular N-acetyl-muramidase with intrinsic “cd00737: endolysin_autolysin” domain, was further expressed and purified to be experimentally validated by turbidimetric assay for its utility as an anti-bacterial agent. Comprehensive computational analysis revealed that the scrutinized lysin protein shared 85–98% sequence identity with 61 bacteriophages, all native to wastewater allied environments. Despite varied Host Recognition Components encoded in their genomes, the similitude of lysins, suggests its apparent significance in host–pathogen interactions endemic to wastewater environment. The present study substantiates the identical lysin from Escherichia Phage C600M2 and Escherichia Phage CL1 as propitious “enzybiotic”, a hybrid term to describe enzymes analogous to anti-biotics to combat antibiotic-resistant bacteria by in silico analysis and subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya Ramadoss
- Biological Sciences, Carnegie Mellon University Qatar, PO box 24866, Doha, Qatar
| | - Moza Al-Shukri
- Biological Sciences, Carnegie Mellon University Qatar, PO box 24866, Doha, Qatar
| | - Basem Shomar
- Environmental Science Center (ESC), Qatar University, PO box 2713, Doha, Qatar
| | | | | |
Collapse
|
15
|
Crystal Structure of Human Lysozyme Complexed with N-Acetyl-α-d-glucosamine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human lysozyme is a natural non-specific immune protein that participates in the immune response of infants against bacterial and viral infections. Lysozyme is a well-known hydrolase that cleaves peptidoglycan in bacterial cell walls. Several crystal structures of human lysozyme have been reported, but little is known regarding how it recognizes sugar molecules. In this study, the crystal structures of human lysozyme in its native and two N-acetyl-α-d-glucosamine (α-D-NAG)-bound forms were determined at 1.3 Å and 1.55/1.60 Å resolution, respectively. Human lysozyme formed a typical c-type lysozyme fold and the α-D-NAG molecule was bound to the middle of subsites C and D. The N-acetyl and glucosamine groups of α-D-NAG were stabilized by hydrophobic interactions (Val117, Ala126, and Trp127), hydrogen bonds (Asn64, Asn78, Ala126, and Val128), and water bridges. Conformational changes of Arg80, Tyr81, Val128, and Arg131 of human lysozyme were observed due to the interactions of α-D-NAG with the active-site cleft. The binding configuration of α-D-NAG in human lysozyme was distinct compared with that of other sugar-bound lysozymes. Findings from this structural analysis provide a better understanding of the sugar recognition of human lysozyme during the immune response to microbial pathogens.
Collapse
|
16
|
Efficacy of Chondroprotective Food Supplements Based on Collagen Hydrolysate and Compounds Isolated from Marine Organisms. Mar Drugs 2021; 19:md19100542. [PMID: 34677442 PMCID: PMC8541357 DOI: 10.3390/md19100542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis belongs to the most common joint diseases in humans and animals and shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell biological and molecular modeling methods support that these well-defined substances may act as effective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine residues from marine organisms were strongly supported by both an animal model and molecular modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondroprotective food supplement was examined by high resolution NMR experiments. Molecular modeling simulations were used to further characterize the interaction potency of collagen fragments and glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates, sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapentaenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here in the context of human and veterinary medicine.
Collapse
|
17
|
Gerbst AG, Krylov VB, Nifantiev NE. Computational and NMR Conformational Analysis of Galactofuranoside Cycles Presented in Bacterial and Fungal Polysaccharide Antigens. Front Mol Biosci 2021; 8:719396. [PMID: 34513924 PMCID: PMC8424007 DOI: 10.3389/fmolb.2021.719396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Unlike pyranoside cycles which are generally characterized by strictly defined conformational preferences, furanosides are flexible and may adopt a wide range of available conformations. During our previous studies, conformational changes of galactofuranoside cycles upon total sulfation were described computationally, using a simple Hartree–Fock (HF) method, and principal conformers of the 5-membered galactose ring were revealed. However, in the case of more complex disaccharide structures, it was found that this method and the widely applied DFT-B3LYP produced results that deviated from experimental evidence. In this study, other DFT functionals (PBE0 and double hybrid B2PLYP) along with RI-MP2 are employed to study the conformational behavior of the galactofuranoside ring. Reinvestigation of galactofuranosides with a lactic acid substituent at O-3 revealed that changes in the orientation of lactic acid residue at O-3 might induce conformational changes of the furanoside cycle. Such findings are important for further modeling of carbohydrate–protein interaction.
Collapse
Affiliation(s)
- Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, Russia
| |
Collapse
|
18
|
Castillo G, Kleene R, Schachner M, Loers G, Torda AE. Proteins Binding to the Carbohydrate HNK-1: Common Origins? Int J Mol Sci 2021; 22:ijms22158116. [PMID: 34360882 PMCID: PMC8347730 DOI: 10.3390/ijms22158116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
The human natural killer (HNK-1) carbohydrate plays important roles during nervous system development, regeneration after trauma and synaptic plasticity. Four proteins have been identified as receptors for HNK-1: the laminin adhesion molecule, high-mobility group box 1 and 2 (also called amphoterin) and cadherin 2 (also called N-cadherin). Because of HNK-1′s importance, we asked whether additional receptors for HNK-1 exist and whether the four identified proteins share any similarity in their primary structures. A set of 40,000 sequences homologous to the known HNK-1 receptors was selected and used for large-scale sequence alignments and motif searches. Although there are conserved regions and highly conserved sites within each of these protein families, there was no sequence similarity or conserved sequence motifs found to be shared by all families. Since HNK-1 receptors have not been compared regarding binding constants and since it is not known whether the sulfated or non-sulfated part of HKN-1 represents the structurally crucial ligand, the receptors are more heterogeneous in primary structure than anticipated, possibly involving different receptor or ligand regions. We thus conclude that the primary protein structure may not be the sole determinant for a bona fide HNK-1 receptor, rendering receptor structure more complex than originally assumed.
Collapse
Affiliation(s)
- Gaston Castillo
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.C.); (R.K.)
| | - Ralf Kleene
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.C.); (R.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Gabriele Loers
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.C.); (R.K.)
- Correspondence: (G.L.); (A.E.T.); Tel.: +49-40741056292 (G.L.); +49-40428387331 (A.E.T.)
| | - Andrew E. Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstr. 43, 20146 Hamburg, Germany
- Correspondence: (G.L.); (A.E.T.); Tel.: +49-40741056292 (G.L.); +49-40428387331 (A.E.T.)
| |
Collapse
|
19
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
20
|
Yoon BK, Ma GJ, Park H, Ferhan AR, Cho NJ, Jackman JA. Solvent-induced conformational tuning of lysozyme protein adlayers on silica surfaces: A QCM-D and LSPR study. Int J Biol Macromol 2021; 182:1906-1914. [PMID: 34022315 DOI: 10.1016/j.ijbiomac.2021.05.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
There is broad interest in functionalizing solid surfaces with lysozyme, which is a widely studied antimicrobial protein. To date, most efforts have focused on developing more effective immobilization schemes to promote lysozyme attachment in fully aqueous conditions, while there remains an outstanding need to understand how tuning the solution-phase conformational stability of lysozyme proteins can modulate adsorption behavior and resulting adlayer properties. Inspired by the unique conformational behavior of lysozyme proteins in water-ethanol mixtures, we conducted quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurements to systematically investigate the adsorption behavior of lysozyme proteins onto silica surfaces across a wide range of water-ethanol mixtures. Our findings revealed that lysozyme adsorption behavior strongly depended on the ethanol fraction in a non-monotonic fashion and this trend could be rationalized by taking into account how competing effects of water and ethanol solvation influence solution-phase protein size and conformational stability. Integrated analysis of the QCM-D and LSPR measurement trends enabled quantitative determination of the solvent mass within lysozyme adlayers, which tended to decrease at higher ethanol fractions and supported that the hydrodynamic properties of lysozyme adlayers are mainly influenced by the degree of protein conformational flexibility as opposed to solvation effects alone.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
22
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
23
|
Jin L, Gao W, Liu C, Zhang N, Mukherjee S, Zhang R, Dong H, Bhunia A, Bednarikova Z, Gazova Z, Liu M, Han J, Siebert HC. Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. Int J Biol Macromol 2020; 161:1393-1404. [DOI: 10.1016/j.ijbiomac.2020.07.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
24
|
Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J. Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence. FASEB J 2020; 34:7561-7577. [PMID: 32281204 DOI: 10.1096/fj.201902630r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Abstract
Elucidation of host-pathogen interaction is essential for developing effective strategies to combat bacterial infection. Dual RNA-Seq using cultured cells or tissues/organs as the host of pathogen has emerged as a novel strategy to understand the responses concurrently from both pathogen and host at cellular level. However, bacterial infection mostly causes systematic responses from the host at organism level where the interplay is urgently to be understood but inevitably being neglected by the current practice. Here, we developed an approach that simultaneously monitor the genome-wide infection-linked transcriptional alterations in both pathogenic Vibrio parahaemolyticus and the infection host nematode Caenorhabditis elegans. Besides the dynamic alterations in transcriptomes of both C. elegans and V. parahaemolyticus during infection, we identify a two-component system, BarA/UvrY, that is important for virulence in host. BarA/UvrY not only controls the virulence factors in V. parahaemolyticus including Type III and Type VI secretion systems, but also attenuates innate immune responses in C. elegans, including repression on the MAP kinase-mediated cascades. Thus, our study exemplifies the use of dual RNA-Seq at organism level to uncover previously unrecognized interplay between host and pathogen.
Collapse
Affiliation(s)
- Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | | | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Bo Peng
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Macau SAR, China
| |
Collapse
|
25
|
Al Adem K, Lukman S, Kim TY, Lee S. Inhibition of lysozyme aggregation and cellular toxicity by organic acids at acidic and physiological pH conditions. Int J Biol Macromol 2020; 149:921-930. [DOI: 10.1016/j.ijbiomac.2020.01.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
|
26
|
Zhang R, Jin L, Zhang N, Petridis AK, Eckert T, Scheiner-Bobis G, Bergmann M, Scheidig A, Schauer R, Yan M, Wijesundera SA, Nordén B, Chatterjee BK, Siebert HC. The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is A Role Model for Nanomedical Diagnostic and Therapeutic Tools. Mar Drugs 2019; 17:E469. [PMID: 31409009 PMCID: PMC6722915 DOI: 10.3390/md17080469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Li Jin
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Athanasios K Petridis
- Neurochirurgische Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, Düsseldorf 40255, Germany
| | - Thomas Eckert
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Martin Bergmann
- Institut für Veterinäranatomie, Histologie und Embryologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Axel Scheidig
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Am Botanischen Garten 19, 24118 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts Universität Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Bengt Nordén
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1, A P C Road, Kolkata-700009, India
| | - Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
27
|
Fiołka MJ, Czaplewska P, Macur K, Buchwald T, Kutkowska J, Paduch R, Kaczyński Z, Wydrych J, Urbanik-Sypniewska T. Anti-Candida albicans effect of the protein-carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS One 2019; 14:e0212869. [PMID: 30856188 PMCID: PMC6411149 DOI: 10.1371/journal.pone.0212869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
An antifungal active fraction (AAF) from the coelomic fluid (CF) of the earthworm Dendrobaena veneta was isolated. The aim of the study was to analyze the antifungal activity of the AAF and to carry out chemical characterization of the fraction. The active fraction showed antifungal activity against a clinical C. albicans isolate, C. albicans ATCC 10231, and C. krusei ATCC 6258. It effectively reduced the metabolic activity of C. albicans cells and influenced their morphology after 48 hours of incubation. Scanning electron microscopy (SEM) images revealed loss of integrity of the cell wall induced by the active fraction. Calcofluor White staining showed changes in the structure of the C. albicans cell wall induced by the AAF. The fungal cells died via apoptosis and necrosis after the treatment with the studied fraction. Electrophoresis under native conditions revealed the presence of two compounds in the AAF, while SDS/PAGE gel electrophoresis showed several protein and carbohydrate compounds. The active fraction was analyzed using Raman spectroscopy, MALDI TOF/TOF, and ESI LC-MS. The Raman analysis confirmed the presence of proteins and determined their secondary structure. The MALDI TOF/TOF analysis facilitated detection of four main compounds with a mass of 7694.9 m/z, 12292.3 m/z, 21628.3 m/z, and 42923.2 m/z in the analyzed fraction. The presence of carbohydrate compounds in the preparation was confirmed by nuclear magnetic resonance (NMR) and gas chromatography (GC-MS). The ATR-FTIR spectrum of the AAF exhibited high similarity to the spectrum of egg white lysozyme. The AAF showed no endotoxicity and cytotoxicity towards normal skin fibroblasts (HSF); therefore, it can be used for the treatment of skin and mucous membrane candidiasis in the future. Given its efficient and selective action, the fraction seems to be a promising preparation with antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Marta J. Fiołka
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG-MUG Laboratory of Mass Spectrometry, Gdansk, Poland
| | - Katarzyna Macur
- Intercollegiate Faculty of Biotechnology UG-MUG Laboratory of Mass Spectrometry, Gdansk, Poland
| | - Tomasz Buchwald
- Institute of Material Research and Quantum Engineering, Faculty of Technical Physics, Poznań University of Technology, Poznań, Poland
| | - Jolanta Kutkowska
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology Maria Curie-Skłodowska University, Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Zbigniew Kaczyński
- Department of Biomedical Chemistry, Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Teresa Urbanik-Sypniewska
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
28
|
A chemiluminescence biosensor for lysozyme detection based on aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod carbon fiber composite. Talanta 2019; 200:57-66. [PMID: 31036225 DOI: 10.1016/j.talanta.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 01/16/2023]
Abstract
In our work, aptamers and hemin/G-quadruplex DNAzyme modified sandwich-rod graphene quantum dots @ graphene oxide @ carbon fiber composite (DNAzyme/L-Apt/GQDs@GO@CF) was successfully prepared for sensitive and selective chemiluminescence (CL) detection of lysozyme (LZM). Initially, GQDs@GO@CF was successfully prepared and characterized. Lysozyme aptamers (L-Apt) as a recognition element and hemin/G-quadruplex DNAzyme (DNAzyme) as a catalyst of luminal - H2O2 were modified on the surface of GQDs@GO@CF, sequentially. The immobilization properties of GQDs@GO@CF to L-Apt and the adsorption properties of L-Apt/GQDs@GO@CF to DNAzyme were also researched, respectively. Then, the modified sandwich-rod carbon fiber composite was applied to the construction of CL biosensor for LZM detection. When LZM existed, DNAzyme would be released from the surface of L-Apt/GQDs@GO@CF and catalyzed the reaction of luminal - H2O2. Under optimized conditions, the CL biosensor for LZM detection showed wide linear range of 2.64 × 10-10 to 6.6 × 10-8 g/L and low detection limit of 1.25 × 10-11 g/L (3δ). Finally, the CL biosensor was successfully used for LZM detection in human urine samples and illustrated the potential application in pratical samples.
Collapse
|
29
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
30
|
Lukasiewicz J, Lugowski C. Editorial: O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Virulence 2018; 9:919-922. [PMID: 29638195 PMCID: PMC5955433 DOI: 10.1080/21505594.2018.1460188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jolanta Lukasiewicz
- a Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Czeslaw Lugowski
- a Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
31
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Ananikov VP, Eremin DB, Yakukhnov SA, Dilman AD, Levin VV, Egorov MP, Karlov SS, Kustov LM, Tarasov AL, Greish AA, Shesterkina AA, Sakharov AM, Nysenko ZN, Sheremetev AB, Stakheev AY, Mashkovsky IS, Sukhorukov AY, Ioffe SL, Terent’ev AO, Vil’ VA, Tomilov YV, Novikov RA, Zlotin SG, Kucherenko AS, Ustyuzhanina NE, Krylov VB, Tsvetkov YE, Gening ML, Nifantiev NE. Organic and hybrid systems: from science to practice. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|