1
|
Maroto-Gómez M, Burguete-Alventosa J, Álvarez-Arias S, Malfaz M, Salichs MÁ. A Bio-Inspired Dopamine Model for Robots with Autonomous Decision-Making. Biomimetics (Basel) 2024; 9:504. [PMID: 39194483 DOI: 10.3390/biomimetics9080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Decision-making systems allow artificial agents to adapt their behaviours, depending on the information they perceive from the environment and internal processes. Human beings possess unique decision-making capabilities, adapting to current situations and anticipating future challenges. Autonomous robots with adaptive and anticipatory decision-making emulating humans can bring robots with skills that users can understand more easily. Human decisions highly depend on dopamine, a brain substance that regulates motivation and reward, acknowledging positive and negative situations. Considering recent neuroscience studies about the dopamine role in the human brain and its influence on decision-making and motivated behaviour, this paper proposes a model based on how dopamine drives human motivation and decision-making. The model allows robots to behave autonomously in dynamic environments, learning the best action selection strategy and anticipating future rewards. The results show the model's performance in five scenarios, emphasising how dopamine levels vary depending on the robot's situation and stimuli perception. Moreover, we show the model's integration into the Mini social robot to provide insights into how dopamine levels drive motivated autonomous behaviour regulating biologically inspired internal processes emulated in the robot.
Collapse
Affiliation(s)
- Marcos Maroto-Gómez
- Department of Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad, 30, 28911 Leganes, Madrid, Spain
| | - Javier Burguete-Alventosa
- Department of Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad, 30, 28911 Leganes, Madrid, Spain
| | - Sofía Álvarez-Arias
- Department of Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad, 30, 28911 Leganes, Madrid, Spain
| | - María Malfaz
- Department of Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad, 30, 28911 Leganes, Madrid, Spain
| | - Miguel Ángel Salichs
- Department of Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad, 30, 28911 Leganes, Madrid, Spain
| |
Collapse
|
2
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Peart DR, Nolan CJ, Stone AP, Williams MA, Karlovcec JM, Murray JE. Disruption of positive- and negative-feature morphine interoceptive occasion setters by dopamine receptor agonism and antagonism in male and female rats. Psychopharmacology (Berl) 2024; 241:1597-1615. [PMID: 38580732 DOI: 10.1007/s00213-024-06584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
RATIONALE Internally perceived stimuli evoked by morphine administration can form Pavlovian associations such that they can function as occasion setters (OSs) for externally perceived reward cues in rats, coming to modulate reward-seeking behaviour. Though much research has investigated mechanisms underlying opioid-related reinforcement and analgesia, neurotransmitter systems involved in the functioning of opioids as Pavlovian interoceptive discriminative stimuli remain to be disentangled despite documented differences in the development of tolerance to analgesic versus discriminative stimulus effects. OBJECTIVES Dopamine has been implicated in many opioid-related behaviours, so we aimed to investigate the role of this neurotransmitter in expression of morphine occasion setting. METHODS Male and female rats were assigned to positive- (FP) or negative-feature (FN) groups and received an injection of morphine or saline before each training session. A 15-s white noise conditioned stimulus (CS) was presented 8 times during every training session; offset of this stimulus was followed by 4-s access to liquid sucrose on morphine, but not saline, sessions for FP rats. FN rats learned the reverse contingency. Following stable discrimination, rats began generalization testing for expression of morphine-guided sucrose seeking after systemic pretreatment with different doses of the non-selective dopamine receptor antagonist, flupenthixol, and the non-selective dopamine receptor agonist, apomorphine, combined with training doses of morphine or saline in a Latin-square design. RESULTS The morphine discrimination was acquired under both FP and FN contingencies by males and females. Neither flupenthixol nor apomorphine at any dose substituted for morphine, but both apomorphine and flupenthixol disrupted expression of the morphine OS. This inhibition was specific to sucrose seeking during CS presentations rather than during the period before CS onset and, in the case of apomorphine more so than flupenthixol, to trials on which access to sucrose was anticipated. CONCLUSIONS Our findings lend support to a mechanism of occasion setting involving gating of CS-induced dopamine release rather than by direct dopaminergic modulation by the morphine stimulus.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Caitlin J Nolan
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mckenna A Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Waer FB, Sahli S, Alexe CI, Man MC, Alexe DI, Burchel LO. The Effects of Listening to Music on Postural Balance in Middle-Aged Women. SENSORS (BASEL, SWITZERLAND) 2023; 24:202. [PMID: 38203063 PMCID: PMC10781301 DOI: 10.3390/s24010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Listening to music has been found to influence postural balance in both healthy participants and certain patients, whereas no study investigates such effects among healthy middle-aged women. Thus, this study aimed to investigate the effect of music on postural balance in middle-aged women. Twenty-six healthy women aged between 50 and 55 years participated in this study. A stabilometric platform was used to assess their postural balance by recording the mean center of pressure velocity (VmCOP) in the eyes-opened (OE) and -closed (EC) conditions on both firm and foam surfaces. Our results showed that listening to an excerpt of Mozart's Jupiter significantly decreased the VmCOP values in two sensory conditions (firm surface/EO: (p < 0.01; 95% CI: 0.27 to 2.22); foam surface/EC: (p < 0.001; 95% CI: 0.48 to 2.44)), but not in the other two conditions (firm surface/EC and foam surface/EO). We concluded that listening to Mozart's symphony improved postural performance in middle-aged women, even in challenged postural conditions. These enhancements could offer great potential for everyday functioning.
Collapse
Affiliation(s)
- Fatma Ben Waer
- Research Laboratory Education, Motricity, Sport and Health, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (F.B.W.); (S.S.)
| | - Sonia Sahli
- Research Laboratory Education, Motricity, Sport and Health, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia; (F.B.W.); (S.S.)
| | - Cristina Ioana Alexe
- Department of Physical Education and Sports Performance, Faculty of Movement, Sports and Health Sciences, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
| | - Maria Cristina Man
- Department of Physical Education, 1 Decembrie 1918 University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Dan Iulian Alexe
- Department of Physical and Occupational Therapy, Faculty of Movement, Sports and Health Sciences, “Vasile Alecsandri” University of Bacău, 600115 Bacau, Romania;
| | - Lucian Ovidiu Burchel
- Department of Environmental Sciences, Physics, Physical Education and Sports, Faculty of Sciences, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
5
|
Ryakiotakis E, Fousfouka D, Stamatakis A. Maternal neglect alters reward-anticipatory behavior, social status stability, and reward circuit activation in adult male rats. Front Neurosci 2023; 17:1201345. [PMID: 37521688 PMCID: PMC10375725 DOI: 10.3389/fnins.2023.1201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Adverse early life experiences affect neuronal growth and maturation of reward circuits that modify behavior under reward predicting conditions. Previous studies demonstrate that rats undergoing denial of expected reward in the form of maternal contact (DER-animal model of maternal neglect) during early post-natal life developed anhedonia, aggressive play-fight behaviors and aberrant prefrontal cortex structure and neurochemistry. Although many studies revealed social deficiency following early-life stress most reports focus on individual animal tasks. Thus, attention needs to be given on the social effects during group tasks in animals afflicted by early life adversity. Methods To investigate the potential impact of the DER experience on the manifestation of behavioral responses induced by natural rewards, we evaluated: 1) naïve adult male sexual preference and performance, and 2) anticipatory behavior during a group 2-phase food anticipation learning task composed of a context-dependent and a cue-dependent learning period. Results DER rats efficiently spent time in the vicinity of and initiated sexual intercourse with receptive females suggesting an intact sexual reward motivation and consummation. Interestingly, during the context-dependent phase of food anticipation training DER rats displayed a modified exploratory activity and lower overall reward-context association. Moreover, during the cue-dependent phase DER rats displayed a mild deficit in context-reward association while increased cue-dependent locomotion. Additionally, DER rats displayed unstable food access priority following food presentation. These abnormal behaviours were accompanied by overactivation of the ventral prefrontal cortex and nucleus accumbens, as assessed by pCREB levels. Conclusions/discussion Collectively, these data show that the neonatal DER experience resulted in adulthood in altered activation of the reward circuitry, interfered with the normal formation of context-reward associations, and disrupted normal reward access hierarchy formation. These findings provide additional evidence to the deleterious effects of early life adversity on reward system, social hierarchy formation, and brain function.
Collapse
Affiliation(s)
- Ermis Ryakiotakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Fousfouka
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- MSc Program in Molecular Biomedicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Carney AE, Clarke C, Pratt WE. Administration of neuropeptide Y into the rat nucleus accumbens shell, but not core, attenuates the motivational impairment from systemic dopamine receptor antagonism by α-flupenthixol. Neurosci Lett 2023; 797:137069. [PMID: 36641044 DOI: 10.1016/j.neulet.2023.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Previous research has demonstrated that dopamine and Neuropeptide Y (NPY) promote motivated behavior, and there is evidence to suggest that they interact within neural circuitry involved in motivation. NPY and dopamine both modulate appetitive motivation towards food through direct actions in the nucleus accumbens (NAc), although how they interact in this region to promote motivation is presently unclear. In this study, we sought to further elucidate the relationship between NAc NPY and dopamine and their effects on motivated behavior. Specifically, we examined whether NAc injections of NPY might reverse behavioral deficits caused by reduced dopamine signaling due to systemic dopamine receptor antagonism. Appetitive motivation was measured using a progressive ratio-2 paradigm. Male Sprague Dawley rats were treated with systemic injections of the dopamine antagonist, α-flupenthixol or a saline vehicle. Two hours following injections, they were administered infusions of NPY (at 0, 156, or 235 pmol) into either the NAc shell (n = 12) or the NAc core (n = 10) and were placed in operant chambers. In both groups, α-flupenthixol impaired performance on the PR-2 task. NPY receptor stimulation of the NAc shell significantly increased both breakpoint and active lever presses during the PR-2 task, and dose-dependently increased responding following systemic dopamine receptor blockade. NPY did not affect appetitive motivation when injected into the NAc core. These data demonstrate that NPY in the NAc shell can improve motivational impairments that result from dopamine antagonism, and that these effects are site specific. These results also suggest that upregulation of NPY in neurodegenerative diseases may possibly buffer early motivational deficits caused by dopamine depletion in Parkinson's and Huntington's disease patients, both of which show increased NPY expression after disease onset.
Collapse
|
7
|
Beck A, Ebrahimi C, Rosenthal A, Charlet K, Heinz A. The Dopamine System in Mediating Alcohol Effects in Humans. Curr Top Behav Neurosci 2023. [PMID: 36705911 DOI: 10.1007/7854_2022_415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-imaging studies show that the development and maintenance of alcohol use disorder (AUD) is determined by a complex interaction of different neurotransmitter systems and multiple psychological factors. In this context, the dopaminergic reinforcement system appears to be of fundamental importance. We focus on the excitatory and depressant effects of acute versus chronic alcohol intake and its impact on dopaminergic neurotransmission. Furthermore, we describe alterations in dopaminergic neurotransmission as associated with symptoms of alcohol dependence. We specifically focus on neuroadaptations to chronic alcohol consumption and their effect on central processing of alcohol-associated and reward-related stimuli. Altered reward processing, complex conditioning processes, impaired reinforcement learning, and increased salience attribution to alcohol-associated stimuli enable alcohol cues to drive alcohol seeking and consumption. Finally, we will discuss how the neurobiological and neurochemical mechanisms of alcohol-associated alterations in reward processing and learning can interact with stress, cognition, and emotion processing.
Collapse
Affiliation(s)
- Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Katrin Charlet
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Bonfiglio NS, Renati R, Agus M, Penna MP. Development of the motivation to use substance questionnaire. Drug Alcohol Depend 2022; 234:109414. [PMID: 35344878 DOI: 10.1016/j.drugalcdep.2022.109414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The use of a substance is always accompanied by a motivation that pushes the subject to use and abuse the substance. This work reports the validation data of the MUS (Motivation to Use Substance), which measures and evaluates the motivation to use substances based on the dimension of resistance, confidence, pleasure, and relaxation. METHODS The validation process involved 605 subjects belonging to a clinical sample of patients who used substances. The sample was divided into two groups: on the first, consisting of 342 subjects, an exploratory analysis was carried out, and on the second, consisting of 263 subjects, a confirmatory analysis was carried out. For concurrent and convergent validation, the SCL-90 test (Symptom Check List-90) was administered for the measurement of addiction-related psychiatric symptoms, and the ASI (Addiction Severity Index) test was administered for the measurement of the severity of the addiction. RESULTS AND CONCLUSIONS The MUS was found to be a robust test of construct validity, convergent, and concurrent. The results highlight gender and age differences for some of the MUS scales. Ultimately, MUS can be considered an excellent tool for structuring treatment programs for addiction services.
Collapse
Affiliation(s)
| | - Roberta Renati
- Institute for Educational Technology, National Research Council of Italy (CNR-ITD), Italy
| | - Mirian Agus
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
10
|
Operant Responding: Beyond Rate and Interresponse Times. Brain Res Bull 2022; 186:79-87. [DOI: 10.1016/j.brainresbull.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
|
11
|
Abstract
The following essay addresses the evolution of the term "anhedonia" as a key construct in biological psychiatry, especially as it pertains to positive emotional and motivational states central to mental health and well-being. In its strictest definition, anhedonia was intended to convey an inability to experience "pleasure" derived from ingestion of sweet tastes or the experience of pleasant odors and tactile sensations, among a host of positive sensations. However, this definition has proved to be too restrictive to capture the complexity of key psychological factors linked to major depression, schizophrenia, and substance use disorders it was originally intended to address. Despite the appeal of the elegant simplicity of the term anhedonia, its limitations soon became apparent when used to explain psychological constructs including aspects of learning, memory, and incentive motivation that are major determinants of success in securing the necessities of life. Accordingly, the definition of anhedonia has morphed into a much broader term that includes key roles in the disturbance of motivation in the form of anergia, impaired incentive motivation, along with deficits in associative learning and key aspects of memory, on which the ability to predict the consequences of one's actions are based. Here we argue that it is this latter capacity, namely predicting the likely consequences of motivated behavior, which can be termed "anticipation," that is especially important in the key deficits implied by the general term anhedonia in the context of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Anthony G Phillips
- Department of Psychiatry, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Soyon Ahn
- Department of Psychiatry, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Abstract
Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, National Institute on Drug Abuse, 250 Mason Lord Drive, Baltimore, MD, USA.
- Behavior Genetics Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Chloe J Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
13
|
Hoobehfekr S, Moghaddam HS, Shalbafan M, Hashemi MG, Pirmoradi MM, Sakenian A, Poopak A, Kashefinejad S, Yarahmadi M, Akhondzadeh S. Efficacy and safety of tipepidine as adjunctive therapy in major depressive disorder: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci 2021; 75:57-62. [PMID: 33247483 DOI: 10.1111/pcn.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
AIM Tipepidine, a synthetic, non-opioid expectorant, has been shown to improve depressive-like behavior in animal models of depression. In this study, we assessed the efficacy and tolerability of tipepidine combination therapy with citalopram in treatment of major depressive disorder (MDD). METHODS In a randomized, double-blinded, placebo-controlled clinical trial, 62 patients with MDD were assigned into two parallel groups to receive citalopram (up to 40 mg/day) plus placebo or citalopram plus tipepidine (30 mg twice daily) for 6 weeks. Participants were assessed with the Hamilton Rating Scale for Depression (HAM-D) at baseline and Weeks 2, 4, and 6. RESULTS Fifty-six patients completed the trial. The tipepidine group showed greater improvement in HAM-D scores from baseline to all three study time points (P = 0.048 for all). The remission and response-to-treatment rates were significantly higher in the tipepidine group (53.6% and 100%) compared to the placebo group (25.0% and 75%) at the study end-point (P = 0.029 and 0.005, respectively). The remission and response times in patients in the tipepidine group were also shorter compared with the placebo group (log-rank P = 0.020 and 0.004). There was no significant difference between the two groups in baseline parameters or frequency of side-effects. CONCLUSION Tipepidine combination therapy with citalopram can effectively improve symptoms of patients with MDD in a shorter period of treatment. However, further studies with larger sample sizes and longer follow-up treatment are needed to confirm our findings.
Collapse
Affiliation(s)
- Saba Hoobehfekr
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Shalbafan
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghazizadeh Hashemi
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Pirmoradi
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sakenian
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Poopak
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Kashefinejad
- Mental Health Research Center, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Yarahmadi
- Department of Health Psychology, Khorramshahr - Persian Gulf International Branch, Islamic Azad University, Khorramshahr, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Depression is the third most common illness among patients with schizophrenia which negatively affects the course of the disease and significantly contributes to the mortality rate, due to increased suicide. Depression, along with negative symptoms and cognitive deficits, is one of the main factors that significantly decreases the quality of life and the disease prognosis in patients with schizophrenia. In addition, depression increases the frequency of exacerbations and readmissions, decreases the quality and duration of remissions and is associated with more frequent substance abuse and an increased economic burden. Data on the prevalence of depression among patients with schizophrenia are contradictory and are associated with a low detection rate of depression in such patients, a lack of clear diagnostic criteria and difficulties in differentiation between extrapyramidal and negative symptoms. The average prevalence of depression that meets the diagnostic criteria of major depressive episodes in patients with schizophrenia is 25% at a specific point, and 60% over the course of a lifetime; the frequency of subsyndromal depression is much higher. It is essential to distinguish between primary (axial syndrome) and secondary depressive symptoms (extrapyramidal symptoms, psychogenic or nosogenic reactions, social factors, etc.) to determine treatment strategies. The published data relating to randomized clinical trials for the development of evidence-based guidelines are limited. Current recommendations are based mainly on the results of small-scale trials and reviews. Certain atypical antipsychotics (quetiapine, lurasidone, amisulpride, aripiprazole, olanzapine, clozapine) are superior to typical antipsychotics in the reduction of depressive symptoms. Clozapine is effective in the management of patients at risk from suicide. The additional prescription of antidepressants, transcranial magnetic stimulation and electroconvulsive therapy are not always effective and are only possible following the management of acute psychosis in cases when antipsychotic monotherapy proved to be ineffective.
Collapse
Affiliation(s)
- Sergey N Mosolov
- Moscow Research Institute of Psychiatry - a branch of the V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation
- Russian Medical Academy of Continuous Professional Education of the Ministry of Public Health of Russian Federation
| |
Collapse
|
15
|
|
16
|
Leukel C, Schümann D, Kalisch R, Sommer T, Bunzeck N. Dopamine Related Genes Differentially Affect Declarative Long-Term Memory in Healthy Humans. Front Behav Neurosci 2020; 14:539725. [PMID: 33328916 PMCID: PMC7673390 DOI: 10.3389/fnbeh.2020.539725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022] Open
Abstract
In humans, monetary reward can promote behavioral performance including response times, accuracy, and subsequent recognition memory. Recent studies have shown that the dopaminergic system plays an essential role here, but the link to interindividual differences remains unclear. To further investigate this issue, we focused on previously described polymorphisms of genes affecting dopaminergic neurotransmission: DAT1 40 base pair (bp), DAT1 30 bp, DRD4 48 bp, and cannabinoid receptor type 1 (CNR1). Specifically, 669 healthy humans participated in a delayed recognition memory paradigm on two consecutive days. On the first day, male vs. female faces served as cues predicting an immediate monetary reward upon correct button presses. Subsequently, participants performed a remember/know recognition memory task on the same day and 1 day later. As predicted, reward increased accuracy and accelerated response times, which were modulated by DAT 30 bp. However, reward did not promote subsequent recognition memory performance and there was no interaction with any genotype tested here. Importantly, there were differential effects of genotype on declarative long-term memory independent of reward: (a) DAT1 40 bp was linked to the quality of memory with a more pronounced difference between recollection and familiarity in the heterozygous and homozygous 10-R as compared to homozygous 9-R; (b) DAT1 30 bp was linked to memory decay, which was most pronounced in homozygous 4-R; (c) DRD4 48 bp was linked to overall recognition memory with higher performance in the short allele group; and (d) CNR1 was linked to overall memory with reduced performance in the homozygous short group. These findings give new insights into how polymorphisms, which are related to dopaminergic neuromodulation, differentially affect long-term recognition memory performance.
Collapse
Affiliation(s)
- Carla Leukel
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Dirk Schümann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raffael Kalisch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Neuroimaging Center (NIC), Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Abstract
The brain serotonin systems participate in numerous aspects of reward processing, although it remains elusive how exactly serotonin signals regulate neural computation and reward-related behavior. The application of optogenetics and imaging techniques during the last decade has provided many insights. Here, we review recent progress on the organization and physiology of the dorsal raphe serotonin neurons and the relationships between their activity and behavioral functions in the context of reward processing. We also discuss several interesting theories on serotonin's function and how these theories may be reconciled by the possibility that serotonin, acting in synergy with coreleased glutamate, tracks and calculates the so-called beneficialness of the current state to guide an animal's behavior in dynamic environments.
Collapse
Affiliation(s)
- Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100081, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
18
|
Apomorphine-induced operant deficits: a neuroleptic-sensitive but drug- and dose-dependent animal model of behavior. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s0767399x00000894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryIn order to further assess the alterations which might underly behavioral deficits associated with a reduced dopaminergic transmission, the effects of apomorphine at doses thought to stimulate dopaminergic autoreceptors were studied on rat operant behavior.Low doses of apomorphine caused a reward deficit when animais were shifted from continuons reinforcement to fixed ratio schedules of food delivery (fig. 1). This effect could be accounted for by a decreased ability of secondary reinforcers to sustain responding and/or by a disruption of cognitive processes (Table 1). The apomorphine-induced reward deficit in the fixed ratio 4 schedule was reversed by “disinhibitory” neuroleptics including amisulpride, pimozide, pipotiazine and sulpiride, at low to moderate doses. Conversely, “conventional” neuroleptics such as chlorpromazine, fluphenazine, haloperidol, metoclopramide and thioridazine were found inactive in reversing the deficit caused by apomorphine (fig. 2). Results obtained after lesion of dopaminergic neurons by 6-hydroxydopamine suggested that the behavioral deficit induced by apomorphine was related not so much to a reduction in dopaminergic activity in given restricted areas such as the VTA (fig. 3), the nucleus accumbens (fig. 4) or the prefrontal cortex (fig. 5), as to a functional imbalance between mesolimbic and mesocortical dopaminergic systems.
Collapse
|
19
|
Daily memantine treatment blunts hedonic response to sucrose in rats. Psychopharmacology (Berl) 2020; 237:103-114. [PMID: 31414153 DOI: 10.1007/s00213-019-05348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Preclinical and clinical studies suggest the potential use of memantine in the treatment of binge eating disorder. The aim of this study was to further investigate the mechanisms by which memantine influences the motivational aspects of ingestion through the analysis of licking microstructure. To interpret treatment effects in relation to drug action at specific functionally relevant times, we compared the effect of two different administration schedules. METHODS Memantine was administered daily for a week, either 1 h before or immediately after a 30-min daily session. The effects on the microstructure of licking for a 10% sucrose solution in rats were examined in the course of treatment and for 15 days after treatment discontinuation. RESULTS Treatment before testing reduced ingestion due to reduced burst size and increased latency in the first session. However, a progressive increase in burst number across sessions led to a full recovery of ingestion levels by the end of treatment. Daily post-session administration induced a dramatic decrease of activation of licking behaviour, indicated by reduced burst number, accompanied to reduced burst size. A slow recovery of ingestion took place after treatment discontinuation. CONCLUSION These results suggest a reduced hedonic/reward evaluation response, an effect likely due to NMDA receptor blockade occurring during the testing time and support the hypothesis that memantine interferes with the hedonic/non-homeostatic mechanisms regulating food intake and food-seeking. The effect of post-session administration might be explained by the development of conditioned taste aversion.
Collapse
|
20
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
21
|
D'Aquila PS, Elia D, Galistu A. Role of dopamine D 1-like and D 2-like receptors in the activation of ingestive behaviour in thirsty rats licking for water. Psychopharmacology (Berl) 2019; 236:3497-3512. [PMID: 31273401 DOI: 10.1007/s00213-019-05317-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Analysis of lick pattern for sucrose and NaCl and of the forced swimming response after dopamine antagonist administration led us to suggest that dopamine on D1-like receptors is involved in behavioural activation, and the level of activation is "reboosted" on the basis of an evaluation process involving D2-like receptors. Although some studies investigated licking microstructure for water after dopamine antagonists, the within-session time course of their effect was never investigated. OBJECTIVES The aims of this study were to further investigate the role of dopamine receptors in the mechanisms governing water ingestion, focussing on the within-session time course of the microstructure parameters, and to test the proposed hypothesis. MATERIALS AND METHODS The effects of the dopamine D1-like receptor antagonist SCH 23390 (0.01-0.04 mg/kg) and of the dopamine D2-like receptor antagonist raclopride (0.025-0.25 mg/kg) on licking microstructure for water were examined in 20-h water-deprived rats in 30-min sessions. RESULTS As previously observed with sucrose and NaCl, SCH 23390 reduced licking by reducing burst number, suggesting reduced behavioural activation. Moreover, it resulted in an increased burst size. Raclopride reduced the size of licking bursts, while their number was either increased or decreased depending on the dose. CONCLUSION The results support the suggestion that D1 receptors are involved in behavioural activation and D2 receptors are involved in a related evaluation process. Within the framework of the proposed hypothesis, the increased burst size after D1-like receptor blockade might be interpreted as a pro-hedonic effect consequent to the increased cost of the activation of the licking response.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| | - Domenico Elia
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Adriana Galistu
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| |
Collapse
|
22
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
23
|
Addiction as Learned Behavior Patterns. J Clin Med 2019; 8:jcm8081086. [PMID: 31344831 PMCID: PMC6723628 DOI: 10.3390/jcm8081086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022] Open
Abstract
Individuals with substance use disorders (SUDs) have to cope with drug-related cues and contexts which can affect instrumental drug seeking, as shown with Pavlovian-to-instrumental transfer (PIT) tasks among humans and animals. Our review addresses two potential mechanisms that may contribute to habitual or even compulsive drug seeking and taking. One mechanism is represented by Pavlovian and PIT effects on drug intake. The other is a shift from goal-directed to habitual drug intake, which can be accessed via model-based versus model-free decision-making in respective learning tasks. We discuss the impact of these learning mechanisms on drug consumption. First, we describe how Pavlovian and instrumental learning mechanisms interact in drug addiction. Secondly, we address the effects of acute and chronic stress exposure on behavioral and neural PIT effects in alcohol use disorder (AUD). Thirdly, we discuss how these learning mechanisms and their respective neurobiological correlates can contribute to losing versus regaining control over drug intake. Utilizing mobile technology (mobile applications on smartphones including games that measure learning mechanisms, activity bracelets), computational models, and real-world data may help to better identify patients with a high relapse risk and to offer targeted behavioral and pharmacotherapeutic interventions for vulnerable patients.
Collapse
|
24
|
Abstract
Acupuncture is an ancient therapy with a variety of different explanatory models. A cascade of physiological effects has been reported, both in the peripheral and the central nervous system, following the insertion of a needle or light tapping of the skin. Clinical trials testing the specific claims of acupuncture have generally tried to focus on testing the efficacy of applying specific techniques and/or specified points. However, different conditions may respond differently to different modes of stimulation. Recently, it was demonstrated that both superficial and deep needling (with de qi/Hibiki) resulted in amelioration of patellofemoral pain and unpleasantness. The pleasurable aspect of the acupuncture experience has largely been ignored as it has been considered secondary to its pain alleviating effects. This aspect of acupuncture treatment is likely to be related to activation of self-appraisal and the reward system. When a patient seeks a therapist there are expectations of a specific effect. These expectations are partly based on self-relevant phenomena and self-referentia introspection and constitute the preference. Also, when asked about the effect of the treatment, processes that orientate pre-attentive anticipatory or mnemonic information and processes that mediate self-reflection and recollection are integrated together with sensory detection to enable a decision about the patient's perception of the effect of acupuncture treatment. These ‘self-appraisal’ processes are dependent on two integrated networks: a ventral medial prefrontal cortex paralimbic limbic ‘affective’ pathway and a dorsal medial prefrontal cortex cortical hippocampal ‘cognitive’ pathway. The limbic structures are implicated in the reward system and play a key role in most diseases and illness responses including chronic pain and depression, regulating mood and neuromodulatory responses (eg sensory, autonomic, and endocrine). The pleasurable and neuromodulatory aspects of acupuncture as well as ‘placebo needling’ may partly be explained by the activation or deactivation of limbic structures including the hippocampus, amygdala, and their connections with the hypothalamus. In patients with patellofemoral pain, the effects of superficial and deep needling remained for six months. These long term pain-alleviating effects have been attributed to activation of pain inhibiting systems in cortical and subcortical pathways. When considering long term effects the cortical cerebellar system needs to be taken into account. The cortical cerebellar system is probably central to the development of neural models that learn and eventually stimulate routinely executed (eg motor skills) and long term (eg pain alleviation) cognitive processes. These higher order cognitive processes are initially mediated in prefrontal cortical loci but later shift control iteratively to internal cerebellar representations of these processes. Possibly part of the long term healing effects of acupuncture may be attributed to changes in the cerebellar system thereby sparing processing load in cortical and subcortical areas. As cortical and subcortical structures are activated and/or de-activated following stimulation of receptors in the skin, disregarding site, ‘placebo or sham needling’ does not exist and conclusions drawn on the basis that it is an inert control are invalid. ‘Self’ may be seen as a shifting illusion, ceaselessly constructed and deconstructed, and the effect of acupuncture may reflect its status (as well as that of the therapist).
Collapse
Affiliation(s)
- Thomas Lundeberg
- Rehabilitation Medicine, UniversityClinic, Danderyds Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
25
|
Animal models in addiction research: A dimensional approach. Neurosci Biobehav Rev 2018; 106:91-101. [PMID: 30309630 DOI: 10.1016/j.neubiorev.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/13/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023]
Abstract
Drug addiction affects approximately 10% of the population and these numbers are rising. Treatment and prevention of addiction are impeded by current diagnostic systems, such as DSM-5, which are based on outcomes rather than processes. Here, we review the importance of adopting a dimensional framework, specifically the Research Domain Criteria (RDoC), to identify protective and vulnerability mechanisms in addiction. We discuss how preclinical researchers should work within this framework to develop animal models based on domains of function. We highlight RDoC paradigms related to addiction and discuss how these can be used to investigate the biological underpinnings of an addiction cycle (i.e., binge/intoxication, negative affect, and craving). Using this information, we then outline the critical role of animal research in ongoing revisions to the RDoC matrix (specifically the functional significance of domains, constructs and subconstructs) and its contribution to the development and refinement of addiction theories. We conclude with an overview of the contribution that animal research has made to the development of pharmacological and behavioural treatments for addiction.
Collapse
|
26
|
Stark EA, Vuust P, Kringelbach ML. Music, dance, and other art forms: New insights into the links between hedonia (pleasure) and eudaimonia (well-being). PROGRESS IN BRAIN RESEARCH 2018; 237:129-152. [PMID: 29779732 DOI: 10.1016/bs.pbr.2018.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For Aristotle, the goal of human life was to live well, to flourish, and to ultimately have a good life. These goals can be conceptualized as "eudaimonia," a concept distinct from "hedonia" (pleasure). Many people would argue that the arts play a large role in their well-being and eudaimonia. Music in particular is a culturally ubiquitous phenomenon which brings joy and social bonding to listeners. Research has given insights into how the "sweet anticipation" of music and other art forms can lead to pleasure, but a full understanding of eudaimonia from the arts is still missing. What is clear is that anticipation and prediction are important for extracting meaning from our environment. In fleeting moments this may translate into pleasure, but over longer timescales, it can imbue life with meaning and purpose and lead to eudaimonia. Based on the existing evidence from neuroimaging, we hypothesize that a special network in the brain, the default-mode network, may play a central role in orchestrating eudaimonia, and propose future strategies for exploring these questions further.
Collapse
Affiliation(s)
- Eloise A Stark
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music, Aarhus/Aalborg, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & Royal Academy of Music, Aarhus/Aalborg, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Institut d'études avancées de Paris, Paris, France.
| |
Collapse
|
27
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
28
|
Vergara VM, Weiland BJ, Hutchison KE, Calhoun VD. The Impact of Combinations of Alcohol, Nicotine, and Cannabis on Dynamic Brain Connectivity. Neuropsychopharmacology 2018; 43:877-890. [PMID: 29134961 PMCID: PMC5809800 DOI: 10.1038/npp.2017.280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 01/05/2023]
Abstract
Alcohol, nicotine, and cannabis are among the most commonly used drugs. A prolonged and combined use of these substances can alter normal brain wiring in different ways depending on the consumed cocktail mixture. Brain connectivity alterations and their change with time can be assessed using functional magnetic resonance imaging (fMRI) because of its spatial and temporal content. Here, we estimated dynamic functional network connectivity (dFNC) as derived from fMRI data to investigate the effects of single or combined use of alcohol, nicotine, and cannabis. Data from 534 samples were grouped according to their substance use combination as controls (CTR), smokers (SMK), drinkers (DRN), smoking-and-drinking subjects (SAD), marijuana users (MAR), smoking-and-marijuana users (SAM), marijuana-and-drinking users (MAD), and users of all three substances (ALL). The DRN group tends to exhibit decreased connectivity mainly in areas of sensorial and motor control, a result supported by the dFNC outcome and the alcohol use disorder identification test. This trend dominated the SAD group and in a weaker manner MAD and ALL. Nicotine consumers were characterized by an increment of connectivity between dorsal striatum and sensorimotor areas. Where possible, common and separate effects were identified and characterized by the analysis of dFNC data. Results also suggest that a combination of cannabis and nicotine have more contrasting effects on the brain than a single use of any of these substances. On the other hand, marijuana and alcohol might follow an additive effect trend. We concluded that all of the substances have an impact on brain connectivity, but the effect differs depending on the dFNC state analyzed.
Collapse
Affiliation(s)
- Victor M Vergara
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA,The Mind Research Network, Lovelace Biomedical and Environmental Research Institute, 1101 Yale Boulevard, Albuquerque, NM 87106, USA, Tel: +1 505 272 5028, Fax: +1 505 272 8002, E-mail:
| | - Barbara J Weiland
- Departments of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Kent E Hutchison
- Departments of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| |
Collapse
|
29
|
Abstract
AbstractThe central nervous system is the integrator of most of the actions of the animal and as such plays a vital rôle in the control of voluntary food intake. Much of the work to understand how intake is controlled has been carried out with rats but that which has been done with pigs is included. The first experiments used electrolytic lesions in the designation of the ‘hunger centre’ and the ‘satiety centre’. Recent work has identified the paraventricular nucleus as a sensing site for experimental manipulations. Chemical stimulation of the brain has also been carried out to try to gain understanding of the rôle of neurotransmitters. Noradrenaline (NA) stimulates intake when given into many sites. Serotonin (5-HT) inhibits intake and has been claimed to play a rôle in the selection of macronutrients but 5-HT must now be interpreted in the light of the existence of several different subtypes of 5-HT receptors. Dopamine appears to moderate the hedonic response of eating. Numerous peptides are active in the brain where their rôle as neuromodulators may be quite different from their function in the periphery and at least three types of opioid receptors are implicated with kappa antagonists producing the most potent facilitatory effects. Neuropeptide Y and peptide YY produce massive orexigenic effects which readily overcome peripheral satiety factors. The brain cannot control intake in isolation. It receives inputs in the blood stream, such as glucose, as well as via the nervous system, both from the special senses and from visceral organs such as stomach, intestines and liver. Taste and olfaction are important in diet selection and a specific appetite for protein has been demonstrated in the pig.
Collapse
|
30
|
Moreines JL, Owrutsky ZL, Gagnon KG, Grace AA. Divergent effects of acute and repeated quetiapine treatment on dopamine neuron activity in normal vs. chronic mild stress induced hypodopaminergic states. Transl Psychiatry 2017; 7:1275. [PMID: 29225337 PMCID: PMC5802622 DOI: 10.1038/s41398-017-0039-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 01/04/2023] Open
Abstract
Clinical evidence supports the use of second-generation dopamine D2 receptor antagonists (D2RAs) as adjunctive therapy or in some cases monotherapy in patients with depression. However, the mechanism for the clinical antidepressant effect of D2RAs remains unclear. Specifically, given accumulating evidence for decreased ventral tegmental area (VTA) dopamine system function in depression, an antidepressant effect of a medication that is expected to further reduce dopamine system activity seems paradoxical. In the present paper we used electrophysiological single unit recordings of identified VTA dopamine neurons to characterize the impact of acute and repeated administration of the D2RA quetiapine at antidepressant doses in non-stressed rats and those exposed to the chronic mild stress (CMS) rodent depression model, the latter modeling the hypodopaminergic state observed in patients with depression. We found that acute quetiapine increased dopamine neuron population activity in non-stressed rats, but not in CMS-exposed rats. Conversely, repeated quetiapine increased VTA dopamine neuron population activity to normal levels in CMS-exposed rats, but had no persisting effects in non-stressed rats. These data suggest that D2RAs may exert their antidepressant actions via differential effects on the dopamine system in a normal vs. hypoactive state. This explanation is supported by prior studies showing that D2RAs differentially impact the dopamine system in animal models of schizophrenia and normal rats; the present results extend this phenomenon to an animal model of depression. These data highlight the importance of studying medications in the context of animal models of psychiatric disorders as well as normal conditions.
Collapse
Affiliation(s)
- Jared L Moreines
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Zoe L Owrutsky
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kimberly G Gagnon
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
31
|
Comprehensive review: Computational modelling of schizophrenia. Neurosci Biobehav Rev 2017; 83:631-646. [PMID: 28867653 DOI: 10.1016/j.neubiorev.2017.08.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/08/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Computational modelling has been used to address: (1) the variety of symptoms observed in schizophrenia using abstract models of behavior (e.g. Bayesian models - top-down descriptive models of psychopathology); (2) the causes of these symptoms using biologically realistic models involving abnormal neuromodulation and/or receptor imbalance (e.g. connectionist and neural networks - bottom-up realistic models of neural processes). These different levels of analysis have been used to answer different questions (i.e. understanding behavioral vs. neurobiological anomalies) about the nature of the disorder. As such, these computational studies have mostly supported diverging hypotheses of schizophrenia's pathophysiology, resulting in a literature that is not always expanding coherently. Some of these hypotheses are however ripe for revision using novel empirical evidence. Here we present a review that first synthesizes the literature of computational modelling for schizophrenia and psychotic symptoms into categories supporting the dopamine, glutamate, GABA, dysconnection and Bayesian inference hypotheses respectively. Secondly, we compare model predictions against the accumulated empirical evidence and finally we identify specific hypotheses that have been left relatively under-investigated.
Collapse
|
32
|
Belujon P, Grace AA. Dopamine System Dysregulation in Major Depressive Disorders. Int J Neuropsychopharmacol 2017; 20:1036-1046. [PMID: 29106542 PMCID: PMC5716179 DOI: 10.1093/ijnp/pyx056] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Anhedonia is considered a core feature of major depressive disorder, and the dopamine system plays a pivotal role in the hedonic deficits described in this disorder. Dopaminergic activity is complex and under the regulation of multiple brain structures, including the ventral subiculum of the hippocampus and the basolateral amygdala. Whereas basic and clinical studies demonstrate deficits of the dopaminergic system in depression, the origin of these deficits likely lies in dysregulation of its regulatory afferent circuits. This review explores the current information regarding the afferent modulation of the dopaminergic system and its relevance to major depressive disorder, as well as some of the system-level effects of novel antidepressants such as agomelatine and ketamine.
Collapse
Affiliation(s)
- Pauline Belujon
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace),Correspondence: Pauline Belujon, PhD, University of Poitiers, Laboratory of Experimental and Clinical Neurosciences, 1 rue Georges Bonnet, 86073 Poitiers, France ()
| | - Anthony A Grace
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace)
| |
Collapse
|
33
|
Cameron JD, Chaput JP, Sjödin AM, Goldfield GS. Brain on Fire: Incentive Salience, Hedonic Hot Spots, Dopamine, Obesity, and Other Hunger Games. Annu Rev Nutr 2017; 37:183-205. [PMID: 28564556 DOI: 10.1146/annurev-nutr-071816-064855] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.
Collapse
Affiliation(s)
- Jameason D Cameron
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Jean-Philippe Chaput
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| | - Anders M Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Gary S Goldfield
- Healthy Active Living and Obesity (HALO) Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada; , ,
| |
Collapse
|
34
|
Eisenstein SA, Bogdan R, Chen L, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Barch DM. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res 2017; 86:9-17. [PMID: 27886638 PMCID: PMC5272837 DOI: 10.1016/j.jpsychires.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author, Sarah A. Eisenstein, Psychiatry Department, Campus Box 8225, Washington University School of Medicine, St. Louis, MO 63110, Phone: (314) 362-7107, Fax: (314) 362-0168,
| | - Ryan Bogdan
- Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stephen M. Moerlein
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J. Black
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Neurology Department, Washington University School of Medicine, St. Louis, MO, USA,Neuroscience Department, Washington University School of Medicine, MO, USA
| | - Joel S. Perlmutter
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA,Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA; Radiology Department, Washington University School of Medicine, St. Louis, MO, USA; Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA; Neurology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Deanna M. Barch
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
35
|
Histone Lysine Demethylases of JMJD2 or KDM4 Family are Important Epigenetic Regulators in Reward Circuitry in the Etiopathology of Depression. Neuropsychopharmacology 2017; 42:854-863. [PMID: 27711046 PMCID: PMC5312068 DOI: 10.1038/npp.2016.231] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Major depressive disorder (MDD) is debilitating mental illness and is one of the leading contributors to global burden of disease, but unfortunately newer and better drugs are not forthcoming. The reason is lack of complete understanding of molecular mechanisms underlying the development of this disorder. Recent research shows dysregulation in epigenetic regulatory mechanisms, particularly the transcriptionally repressive di- and tri-methylation of histone 3 lysine 9 (H3K9me2/me3) in nucleus accumbens (NAc), a critical region of the reward pathway involved in the development of anhedonia, the hallmark of depression. However, the role of histone lysine demethylases, which can remove methylation from H3K9, in particular Jumonji domain containing demethylases 2 or Jmjd2 family, has not been studied. Using social defeat stress-induced mouse model of depression, this study uncovered that transcripts of most of the Jmjd2 members were unchanged after 5 days of defeat during the onset of depression, but were downregulated after 10 days of defeat in full-blown depression. Blocking the Jumonji domain containing demethylases by chronic administration of inhibitors dimethyloxalylglycine (DMOG) and ML324 resulted in depression-like phenotype even in absence of stress exposure, which was associated with an increase in transcriptionally repressive epigenetic marks H3K9me2/me3 in NAc, causing altered neuroplastic changes as reported in NAc in depression models. Thus, we report for the first time that Jmjd2 class demethylases are critical epigenetic regulators involved in etiopathology of depression and related disorders and activation of these demethylases can be a good strategy in the treatment of MDD and related psychiatric disorders.
Collapse
|
36
|
Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R811-R840. [PMID: 27534877 PMCID: PMC5130579 DOI: 10.1152/ajpregu.00234.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more "rewarding" than low-calorie foods. "Reward" has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain's "reward circuit." Implicit in this title is the assumption that "rewarding" experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors.
Collapse
Affiliation(s)
- Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
37
|
Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res 2016; 320:431-439. [PMID: 27984049 DOI: 10.1016/j.bbr.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome.
Collapse
Affiliation(s)
- Cindee F Robles
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
38
|
Kennedy CH, Meyer KA. The Use of Psychotropic Medication for People with Severe Disabilities and Challenging Behavior: Current Status and Future Directions. ACTA ACUST UNITED AC 2016. [DOI: 10.2511/rpsd.23.2.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
People with severe disabilities who engage in challenging behavior are often prescribed psychotropic medication as a form of intervention. Although the goal of the medication is to reduce challenging behavior, limited empirical evidence is available to support the use of psychotropic intervention for people with severe disabilities. However, across a range of drug classes basic research suggests that many psychotropic medications selectively affect dimensions of behavior that could be of benefit in reducing challenging behavior. Currently, researchers cannot demonstrate whether most drugs prescribed to reduce challenging behavior are effective or predict when adverse side effects will emerge from their use. In this article we review the basic literature on behavioral pharmacology and integrate those findings with existing applied research to update JASH readers regarding the status of psychotropic medication. From this review, we present a set of suggestions that include: (a) improving research practices, (b) increasing the diversity of individuals involved in decision-making processes regarding medication use, and (c) developing consumer-friendly strategies for monitoring drug effects.
Collapse
|
39
|
van Duin EDA, Goossens L, Hernaus D, da Silva Alves F, Schmitz N, Schruers K, van Amelsvoort T. Neural correlates of reward processing in adults with 22q11 deletion syndrome. J Neurodev Disord 2016; 8:25. [PMID: 27429661 PMCID: PMC4946156 DOI: 10.1186/s11689-016-9158-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic neurotransmission in 22q11DS, which may contribute to the increased vulnerability for psychosis. A dysfunctional motivational reward system is considered one of the salient features in psychosis and thought to be related to abnormal dopaminergic neurotransmission. The functional anatomy of the brain reward circuitry has not yet been investigated in 22q11DS. METHODS This study aims to investigate neural activity during anticipation of reward and loss in adult patients with 22q11DS. We measured blood-oxygen-level dependent (BOLD) activity in 16 patients with 22q11DS and 12 healthy controls during a monetary incentive delay task using a 3T Philips Intera MRI system. Data were analysed using SPM8. RESULTS During anticipation of reward, the 22q11DS group alone displayed significant activation in bilateral middle frontal and temporal brain regions. Compared to healthy controls, significantly less activation in bilateral cingulate gyrus extending to premotor, primary motor and somatosensory areas was found. During anticipation of loss, the 22q11DS group displayed activity in the left middle frontal gyrus and anterior cingulate cortex, and relative to controls, they showed reduced brain activation in bilateral (pre)cuneus and left posterior cingulate. Within the 22q11DS group, COMT Val hemizygotes displayed more activation compared to Met hemizygotes in right posterior cingulate and bilateral parietal regions during anticipation of reward. During anticipation of loss, COMT Met hemizygotes compared to Val hemizygotes showed more activation in bilateral insula, striatum and left anterior cingulate. CONCLUSIONS This is the first study to investigate reward processing in 22q11DS. Our preliminary results suggest that people with 22q11DS engage a fronto-temporal neural network. Compared to healthy controls, people with 22q11DS primarily displayed reduced activity in medial frontal regions during reward anticipation. COMT hemizygosity affects responsivity of the reward system in this condition. Alterations in reward processing partly underlain by the dopamine system may play a role in susceptibility for psychosis in 22q11DS.
Collapse
Affiliation(s)
- Esther D. A. van Duin
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Liesbet Goossens
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Dennis Hernaus
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Fabiana da Silva Alves
- />Department of Psychiatry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Nicole Schmitz
- />Department of Psychiatry, Academic Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Koen Schruers
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Therese van Amelsvoort
- />Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
40
|
Berridge KC, Robinson TE. The Mind of an Addicted Brain: Neural Sensitization of Wanting Versus Liking. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/1467-8721.ep10772316] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
42
|
Post-trial dopaminergic modulation of conditioned catalepsy: A single apomorphine induced increase/decrease in dopaminergic activation immediately following a conditioned catalepsy response can reverse/enhance a haloperidol conditioned and sensitized catalepsy response. Behav Brain Res 2016; 311:87-98. [PMID: 27173428 DOI: 10.1016/j.bbr.2016.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022]
Abstract
Haloperidol can induce catalepsy and this drug effect can be conditioned as well as sensitized to contextual cues. We used a paired/unpaired Pavlovian conditioning protocol to establish haloperidol catalepsy conditioned and sensitized responses. Groups of rats were given 10 daily catalepsy tests following administration of vehicle (n=24) or haloperidol (1.0mg/kg) either paired (n=18) or unpaired (n=18) to testing. Subsequently, testing for conditioning was conducted and conditioning and sensitization of catalepsy were observed selectively in the paired group. Immediately following a second test for catalepsy conditioning, the groups were subdivided into 4 vehicle groups, 3 unpaired haloperidol groups and 3 paired haloperidol groups and were given one of three post-trial treatments (vehicle, 0.05mg/kg or 2.0mg/kg apomorphine). One day later the conditioned catalepsy test 3 was carried out and on the next day, a haloperidol challenge test was performed. The post-trial apomorphine treatments had major effects on the paired groups upon both conditioning and the haloperidol challenge test. The low dose apomorphine post-trial treatment enhanced both the conditioned and the haloperidol sensitized catalepsy responses. The high dose apomorphine post-trial treatment eliminated conditioned catalepsy and eliminated the initial acute catalepsy response to haloperidol that was induced in the vehicle control groups. These results demonstrate the sensitivity of conditioned drug cues to modification by increases/decreases in activity of the dopamine system in the immediate post-trial interval after a conditioning trial. This demonstration that post-trial dopaminergic drug treatments can modify conditioned drug behavior has broad implications for conditioned drug effects.
Collapse
|
43
|
Bhaumik R, Jenkins LM, Gowins JR, Jacobs RH, Barba A, Bhaumik DK, Langenecker SA. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. Neuroimage Clin 2016; 16:390-398. [PMID: 28861340 PMCID: PMC5570580 DOI: 10.1016/j.nicl.2016.02.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Understanding abnormal resting-state functional connectivity of distributed brain networks may aid in probing and targeting mechanisms involved in major depressive disorder (MDD). To date, few studies have used resting state functional magnetic resonance imaging (rs-fMRI) to attempt to discriminate individuals with MDD from individuals without MDD, and to our knowledge no investigations have examined a remitted (r) population. In this study, we examined the efficiency of support vector machine (SVM) classifier to successfully discriminate rMDD individuals from healthy controls (HCs) in a narrow early-adult age range. We empirically evaluated four feature selection methods including multivariate Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net feature selection algorithms. Our results showed that SVM classification with Elastic Net feature selection achieved the highest classification accuracy of 76.1% (sensitivity of 81.5% and specificity of 68.9%) by leave-one-out cross-validation across subjects from a dataset consisting of 38 rMDD individuals and 29 healthy controls. The highest discriminating functional connections were between the left amygdala, left posterior cingulate cortex, bilateral dorso-lateral prefrontal cortex, and right ventral striatum. These appear to be key nodes in the etiopathophysiology of MDD, within and between default mode, salience and cognitive control networks. This technique demonstrates early promise for using rs-fMRI connectivity as a putative neurobiological marker capable of distinguishing between individuals with and without rMDD. These methods may be extended to periods of risk prior to illness onset, thereby allowing for earlier diagnosis, prevention, and intervention.
Collapse
Affiliation(s)
- Runa Bhaumik
- Biostatistical Research Center, The University of Illinois at Chicago, United States
| | - Lisanne M Jenkins
- Cognitive Neuroscience Center, The University of Illinois at Chicago, United States
| | - Jennifer R Gowins
- Cognitive Neuroscience Center, The University of Illinois at Chicago, United States
| | - Rachel H Jacobs
- Cognitive Neuroscience Center, The University of Illinois at Chicago, United States
- Institute for Juvenile Research, The University of Illinois at Chicago, United States
| | - Alyssa Barba
- Cognitive Neuroscience Center, The University of Illinois at Chicago, United States
| | - Dulal K Bhaumik
- Biostatistical Research Center, The University of Illinois at Chicago, United States
| | - Scott A Langenecker
- Cognitive Neuroscience Center, The University of Illinois at Chicago, United States
| |
Collapse
|
44
|
Lako IM, Taxis K, van den Heuvel ER, Leenaars CHC, Burger H, Wiersma D, Slooff CJ, Knegtering H, Bruggeman R. Altered emotional experiences attributed to antipsychotic medications - A potential link with estimated dopamine D2 receptor occupancy. Psychiatry Res 2016; 236:9-14. [PMID: 26791397 DOI: 10.1016/j.psychres.2016.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Altered emotional experiences in response to antipsychotics may increase the burden of disease in patients with schizophrenia. In a large cross-sectional study, patients with schizophrenia completed the Subjects Reaction to Antipsychotics questionnaire (SRA) to assess whether they attributed altered emotional experiences (flattened affect or depressive symptoms) to their antipsychotics. Association with antipsychotic D2 receptor affinity and occupancy was examined using logistic regression. We compared antipsychotic-attributed emotional experiences between patients using antipsychotic monotherapy and combination therapy. Of the 1298 included patients, 23% attributed flattened affect to their antipsychotics and 16% attributed depressive symptoms to their antipsychotics, based on the SRA. No differences were observed between antipsychotics in patients on monotherapy. We discuss that within these patients' relatively low dose range, altered emotional experiences did not appear to relate to the level of D2 receptor affinity of antipsychotic monotherapy. Patients using antipsychotic combination therapy (22%) were more likely to attribute depressive symptoms to their antipsychotics than patients using antipsychotic monotherapy (OR [95%CI]=1.443 [1.033-2.015]); possibly due to higher D2 receptor occupancies as estimated by dose equivalents.
Collapse
Affiliation(s)
- Irene M Lako
- Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Katja Taxis
- Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands.
| | - Edwin R van den Heuvel
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cathalijn H C Leenaars
- Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands; Central Animal laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huibert Burger
- Department of General Practice, University Medical Center Groningen, Groningen, The Netherlands
| | - Durk Wiersma
- Rob Giel Research center, University Medical Center Groningen, Groningen, The Netherlands
| | - Cees J Slooff
- Department of Psychotic Disorders, Mental Health Organization Drenthe, The Netherlands
| | - Henderikus Knegtering
- Rob Giel Research center, University Medical Center Groningen, Groningen, The Netherlands; Lentis Research, Center for Mental Health Groningen, Groningen, The Netherlands
| | - Richard Bruggeman
- Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands; Rob Giel Research center, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Colombo M, Wright C. Explanatory pluralism: An unrewarding prediction error for free energy theorists. Brain Cogn 2016; 112:3-12. [PMID: 26905647 DOI: 10.1016/j.bandc.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/22/2023]
Abstract
Courtesy of its free energy formulation, the hierarchical predictive processing theory of the brain (PTB) is often claimed to be a grand unifying theory. To test this claim, we examine a central case: activity of mesocorticolimbic dopaminergic (DA) systems. After reviewing the three most prominent hypotheses of DA activity-the anhedonia, incentive salience, and reward prediction error hypotheses-we conclude that the evidence currently vindicates explanatory pluralism. This vindication implies that the grand unifying claims of advocates of PTB are unwarranted. More generally, we suggest that the form of scientific progress in the cognitive sciences is unlikely to be a single overarching grand unifying theory.
Collapse
Affiliation(s)
- Matteo Colombo
- Tilburg Center for Logic, Ethics & Philosophy of Science, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands.
| | - Cory Wright
- Department of Philosophy, McIntosh Humanities Building 917, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-2408, USA.
| |
Collapse
|
46
|
West CHK, Boss-Williams KA, Ritchie JC, Weiss JM. Reprint of: Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol. Alcohol 2016; 50:91-105. [PMID: 26873226 DOI: 10.1016/j.alcohol.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
Sprague-Dawley rats selectively-bred for susceptibility to stress in our laboratory (Susceptible, or SUS rats) voluntarily consume large amounts of alcohol, and amounts that have, as shown here, pharmacological effects, which normal rats will not do. In this paper, we explore neural events in the brain that underlie this propensity to readily consume alcohol. Activity of locus coeruleus neurons (LC), the major noradrenergic cell body concentration in the brain, influences firing of ventral tegmentum dopaminergic cell bodies of the mesocorticolimbic system (VTA-DA neurons), which mediate rewarding aspects of alcohol. We tested the hypothesis that in SUS rats alcohol potently suppresses LC activity to markedly diminish LC-mediated inhibition of VTA-DA neurons, which permits alcohol to greatly increase VTA-DA activity and rewarding aspects of alcohol. Electrophysiological single-unit recording of LC and VTA-DA activity showed that in SUS rats alcohol decreased LC burst firing much more than in normal rats and as a result markedly increased VTA-DA activity in SUS rats while having no such effect in normal rats. Consistent with this, in a behavioral test for reward using conditioned place preference (CPP), SUS rats showed alcohol, given by intraperitoneal (i.p.) injection, to be rewarding. Next, manipulation of LC activity by microinfusion of drugs into the LC region of SUS rats showed that (a) decreasing LC activity increased alcohol intake and increasing LC activity decreased alcohol intake in accord with the formulation described above, and (b) increasing LC activity blocked both the rewarding effect of alcohol in the CPP test and the usual alcohol-induced increase in VTA-DA single-unit activity seen in SUS rats. An important ancillary finding in the CPP test was that an increase in LC activity was rewarding by itself, while a decrease in LC activity was aversive; consequently, effects of LC manipulations on alcohol-related reward in the CPP test were perhaps even larger than evident in the test. Finally, when increased LC activity was associated with (i.e., conditioned to) i.p. alcohol, subsequent alcohol consumption by SUS rats was markedly reduced, indicating that SUS rats consume large amounts of alcohol because of rewarding physiological consequences requiring increased VTA-DA activity. The findings reported here are consistent with the view that the influence of alcohol on LC activity leading to changes in VTA-DA activity strongly affects alcohol-mediated reward, and may well be the basis of the proclivity of SUS rats to avidly consume alcohol.
Collapse
Affiliation(s)
- Charles H K West
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Katherine A Boss-Williams
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - James C Ritchie
- Department of Pathology, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, School of Medicine, Woodruff Memorial Research Building (WMB), 4th Floor, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Involvement of opioid signaling in food preference and motivation. PROGRESS IN BRAIN RESEARCH 2016; 229:159-187. [DOI: 10.1016/bs.pbr.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Withdrawal from Acute Amphetamine Induces an Amygdala-Driven Attenuation of Dopamine Neuron Activity: Reversal by Ketamine. Neuropsychopharmacology 2016; 41:619-27. [PMID: 26129677 PMCID: PMC5130137 DOI: 10.1038/npp.2015.191] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/08/2022]
Abstract
Drug addiction is a chronic disorder characterized by a cycle composed of drug seeking, intoxication with drug taking and withdrawal associated with negative affect. Numerous studies have examined withdrawal/negative affect after chronic use; however, very few have examined the effect of acute administration on the negative affective state after acute drug withdrawal. One dose of amphetamine was injected into Sprague-Dawley rats. Despair behavior using the modified forced swim test (FST) and dopamine (DA) activity in the ventral tegmental area using in vivo electrophysiological recordings were studied 18, 48 and 72 h after injection of amphetamine. The effects of inactivation of the basolateral amygdala (BLA) and ketamine administration on VTA DA neuron activity and passivity in the modified FST were examined. Eighteen hours following amphetamine withdrawal, there was a substantial decrease in the number of active DA neurons, as well as an increase in time spent immobile in the modified FST, which returned to baseline after 72 h. Inactivation of the BLA after acute amphetamine prevented the decrease in DA neuron tonic activity. Injection of ketamine also prevented the decrease in DA population activity but had no effect on immobility measured in the modified FST. The data support a model in which the negative affective state following acute amphetamine withdrawal is associated with a decrease in DA neuron population activity, driven by hyperactivity of the BLA. Although ketamine reversed the hypodopaminergic state following withdrawal, the failure to reduce immobility in the modified FST indicates that different processes underlying negative emotional state may exist between depression and drug withdrawal.
Collapse
|
49
|
Kirkpatrick MG, Goldenson NI, Kapadia N, Kahler CW, de Wit H, Swift RM, McGeary JE, Sussman S, Leventhal AM. Emotional traits predict individual differences in amphetamine-induced positive mood in healthy volunteers. Psychopharmacology (Berl) 2016; 233:89-97. [PMID: 26429791 PMCID: PMC4703469 DOI: 10.1007/s00213-015-4091-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Previous research on emotional correlates of individual differences in subjective responses to D-amphetamine has focused on relatively broad personality traits. Yet, emotional functioning is best characterized by several narrow subcomponents, each of which may contribute uniquely to amphetamine response. Here, we examine several specific subdomains of emotional functioning in relation to acute amphetamine response. METHOD At a baseline session, healthy stimulant-naive volunteers (N = 97) completed measures of several subdomains of baseline trait emotional functioning and then completed two counterbalanced experimental sessions during which they received a single oral dose of 20 mg D-amphetamine or placebo. Acute subjective drug response measures were completed at repeated intervals before and after drug administration. Data from subjective measures that were significantly modulated by amphetamine were reduced using principal component analysis (amphetamine or placebo) into three higher-order factors of "positive mood," "arousal," and "drug high." Amphetamine did not significantly alter any "negative" subjective states. Separate multiple regression analyses were conducted regressing these three drug factors on baseline trait emotional functioning scales. RESULTS The combined set of trait emotional functioning indicators accounted for approximately 22 % of the variance in acute amphetamine-induced positive mood changes. Greater anticipatory pleasure and greater anxious distress each uniquely predicted greater amphetamine-induced positive mood. Trait emotional functioning did not significantly predict amphetamine-induced changes in arousal or drug high. DISCUSSION Emotional traits appear to moderate drug-induced positive mood but not other dimensions of amphetamine effects. Different facets of emotional functioning may differentially modulate amphetamine's subjective effect profile.
Collapse
Affiliation(s)
- Matthew G. Kirkpatrick
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Nicholas I. Goldenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Nahel Kapadia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | | | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence VA Medical Center, Providence, Rhode Island
| | - John E. McGeary
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence VA Medical Center, Providence, Rhode Island
| | - Steve Sussman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Adam M. Leventhal
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| |
Collapse
|
50
|
Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H. Roles of "Wanting" and "Liking" in Motivating Behavior: Gambling, Food, and Drug Addictions. Curr Top Behav Neurosci 2016; 27:105-136. [PMID: 26407959 DOI: 10.1007/7854_2015_387] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to seek out and consume rewards has evolutionarily been driven by the urge to fulfill physiological needs. However in a modern society dominated more by plenty than scarcity, we tend to think of motivation as fueled by the search for pleasure. Here, we argue that two separate but interconnected subcortical and unconscious processes direct motivation: "wanting" and "liking." These two psychological and neuronal processes and their related brain structures typically work together, but can become dissociated, particularly in cases of addiction. In drug addiction, for example, repeated consumption of addictive drugs sensitizes the mesolimbic dopamine system, the primary component of the "wanting" system, resulting in excessive "wanting" for drugs and their cues. This sensitizing process is long-lasting and occurs independently of the "liking" system, which typically remains unchanged or may develop a blunted pleasure response to the drug. The result is excessive drug-taking despite minimal pleasure and intense cue-triggered craving that may promote relapse long after detoxification. Here, we describe the roles of "liking" and "wanting" in general motivation and review recent evidence for a dissociation of "liking" and "wanting" in drug addiction, known as the incentive sensitization theory (Robinson and Berridge 1993). We also make the case that sensitization of the "wanting" system and the resulting dissociation of "liking" and "wanting" occurs in both gambling disorder and food addiction.
Collapse
Affiliation(s)
- M J F Robinson
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA.
| | - A M Fischer
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - A Ahuja
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - E N Lesser
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - H Maniates
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| |
Collapse
|